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ABSTRACT. We prove an essentially optimal large sieve inequality for self-dual Eisenstein
series of varying levels. This bound can alternatively be interpreted as a large sieve inequality
for rationals ordered by height. The method of proof is recursive, and has some elements
in common with Heath-Brown’s quadratic large sieve, and the asymptotic large sieve of
Conrey, Iwaniec, and Soundararajan.

1. INTRODUCTION

1.1. Setting up the problem. A general large sieve inequality is an upper bound on the
operator norm of an arithmetically-defined matrix A = (A, ), with A, ,, € C. Define the
norm of A, denoted ||A|[, by

A = max >3 and
=1 m n

The duality principle implies that ||A|| = [|[A||, where A" = (\m)-

A particularly interesting choice of A, is A¢(n), where f ranges over a family F of
automorphic forms or L-functions, n ranges over an interval of positive integers, say N/2 <
n < N, and Af(n) is the n-th Dirichlet series coefficient of the L-function L(f,s). In this
case, we write A(F, N) for the norm of this large sieve matrix, namely

(1.1) AF N =max Y| S ands ()]

|laj=1
feF N/2<n<N

2, a = (ay).

The dual norm A*(F, N) is given by
(1.2) AYFN)=max Y ‘ S BrAs(n)

|Bl=1
N/2<n<N feF

’2

The classical multiplicative large sieve inequality concerns the case where \¢(n) = x(n),
and where the family runs over primitive Dirichlet characters y modulo ¢, with ¢ < Q. Ap-
plications include the Bombieri-Vinogradov theorem, estimates for moments of L-functions,
zero density estimates, and a variety of sieving problems. See [M] for details.

There are many works on large sieve inequalities for other families. For instance, Deshouillers
and Iwaniec [DI] obtained a sharp bound for cusp forms on GLs, which in turn has been a
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powerful tool in studying statistical properties of the Riemann zeta function on the critical
line. Heath-Brown [H-B] showed an essentially optimal upper bound on the sparse sub-family
of quadratic Dirichlet characters. Many state of the art works on quadratic twists of modular
forms, with elliptic curves being of particular interest, have relied on Heath-Brown’s bound.

In this paper, we are interested in the following family /. For any Dirichlet character ¢
modulo r and real number ¢, define

Ap.t(a,b) = ()i (b)(a/b)".

Here Y, Ayi(a,b) =: Ay (n) is the n-th Hecke eigenvalue of a self-dual Eisenstein series
on I'y(r?), and when 1 is primitive, the Eisenstein series is a newform. Let k be a positive
integer, and let 6 run over all Dirichlet characters modulo k. Let () > 1 be a real number,
and for each /2 < ¢ < @ with (¢, k) = 1, let x run over primitive Dirichlet characters
modulo ¢. Finally, let 7' > 1 be a real number, and let |¢| < T. Then define F to consist of
the characters x6, with corresponding data A (a,b), with N/2 < ab < N and (a,b) = 1.
We write

13 QeI =ms[ 3 3 Y| Y awhadab

Q/2<¢<Q x (mod ¢) 6 (mod k) N/2<ab<N
(¢,k)=1 (a,b)=

which agrees with A(F, N) for this family F. The dual norm A*(Q,k,T, N) is given by

(1.4) A"(Q,k,T,N) = max ‘ / SOy Y ijgvt)\xat(a,b)dt’?.
18]=1 T/2<t<T

N/2< b<N Q/2<q<QX (mod ¢) 6 (mod k)
(g,k)=1

d

As a ‘trivial’ bound, which we mainly state for a frame of reference, one may deduce from
the classical large sieve inequality the bound

(1.5) A(Q,k,T,N) < (Q*kTVN + Nlog N).

Deducing the estimate (1.5) uses the idea of the Dirichlet hyperbola method, by summing
over a < v/N trivially, and applying the classical large sieve to the sum over b < N /a.

The condition (a,b) = 1 may be easily overlooked, yet it is vital. The above sketch shows
that the trivial bound (1.5) holds even without the condition (a,b) = 1. In fact, if the
condition (a,b) = 1 were to be omitted in (1.3), then the term of size Q*kT+/N in (1.5)
would not be removable, because one could choose a,; to be the indicator function that
a = b in (1.3). For this, note A, ;(a,a) = 1 for a coprime to the modulus of x. Therefore,
any substantial improvement over this trivial bound must use the condition (a,b) = 1
The restriction (a,b) = 1 is similar in spirit to the (necessary) square-free restriction when
studying quadratic characters, as in [H-B]; for more on this point, see Section 1.4.1. We also
observe that choosing oy, = g to depend only on the product ab would give rise to sums
of the form > a,Ay(n) appearing in (1.3). Then considering n = p* would lead to a large
term as discussed above.

1.2. Main results, and discussion.
Theorem 1.1. We have
(1.6) A(Q,k,T,N) <. (QKTN)*(Q*kT + N).
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This estimate is optimal (up to the e-aspect) by general principles (see [IK, Chapter 7]).
We may interpret this as a spectral large sieve inequality for the family of trivial nebentypus
newform Eisenstein series on T'y(¢*k?), with varying level g. Theorem 1.1 appears to be the
first sharp large sieve inequality for a G L, family with varying levels. The classical large sieve
inequality can be interpreted as a G L, large sieve inequality, while Heath-Brown’s celebrated
quadratic large sieve can be viewed as an estimate for the sub-family of self-dual GL; forms.
The G Ly families of varying nebentypus do not seem to have strong orthogonality properties,
as shown by Iwaniec and Li [IL].

We also have an additive character variant on Theorem 1.1.

Theorem 1.2. Define a norm

Aaqa (Q, N max Z Z ‘ Z  peq(tab) d

Q/2<q<Qt (mod q) N/2<ab<N
(g,k)=1 (ab)=
(ab,q):l

Then Aadd.(Q? N) < (Q2 + N)1+6‘

Theorem 1.2 follows quickly from Theorem 1.1, by the method in [IK, Section 7.5]. We
have omitted the T" and k aspects solely to simplify the expressions; hybrid bounds analogous
0 (1.6) hold for the additive characters as well.

We may interpet Theorem 1.1 as a large sieve inequality for rationals, which we now
explain. Let v, be the usual p-adic valuation. For ¢ > 1, let Q) = {z € Q : vy(x) >
0 for all p | ¢}, which is a ring. Indeed, with the multiplicative set S defined by S = {n €
Z : (n,q) = 1}, then Q) = S™'Z, the localization of Z by S. There exists a natural
reduction map red, : Q, — Z/qZ. The reduction map may be restricted to @(Xq) ={z €
Q : vy(x) = 0 for all p | ¢}, which is a multiplicative subgroup of Q*. If x is a Dirichlet
character modulo ¢, and n € Q(,, then define x(n) by x(redy(n)). That is, if n = a/b € Q(,,

then x(n) = x(ab). For n = a/b € Q* in lowest terms, define ht(n) = |ab|, which is a cousin
of a height function. Note that |[{n € Q* : ht(n) < X}| = X1Fo),

Theorem 1.3. We have

(1.7) S 3 ‘ S anx(n ‘ <@+N) Y ol

q<Q x (mod q) nEQ( ) neQx
ht(n)<N ht(n)<N

This is simply a restatement of Theorem 1.1 in this notation, with £ = 1 and the omis-
sion of T'. These specializations are not necessary, and are only in place to de-clutter the
statement.

From Theorem 1.3 one can also easily derive results about rationals ordered by the more
standard height function. For n = a/b € Q* in lowest terms, let Ht(n) = max(|al, |b|). Note
that ht(n) < Ht(n)?, from which we immediately deduce:

Corollary 1.4. We have

ST Y e <@+ 8 Y el

9<Qx (mod q) neQp, neQ
Ht(n)<N
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This is sharp, since |{n € Q* : Ht(n) < X}| = X?T°M. Since Theorem 1.3 easily implies
Corollary 1.4, but not vice-versa, this supports our usage of ht in place of Ht.

For n € Q*, one may define o, = e(n), or o, = ey(a), etc. These examples illustrating
Theorem 1.3 are somewhat similar to the quantities studied in [DFI].

The proof of Theorem 1.1 attacks the problem from both sides, via A and A*. In this
sense, the proof has new features not seen in previous large sieve inequality bounds. Very
briefly, the strategy of proof is as follows. If N > Q2?kT, then we study the dual norm A*
and apply the functional equation of Dirichlet L-functions. The dual side is effective in this
range of parameters because the functional equation will shorten the lengths of summation.
On the other hand, if N < Q?kT, then we more directly study the family average. The main
tool on this side is the divisor-switching method used by Conrey-Iwaniec-Soundararajan on
the asymptotic large sieve [CIS] (see also [H, p.210]). On both sides, we derive a recursive
bound which relates the norm to itself, but with different (smaller) parameters.

When N ~ Q?kT, then both methods are essentially circular. The key to breaking out of
this deadlock is to use monotonicity, lengthening one of the sums. The use of the functional
equation and monotonicity were both crucial tools in Heath-Brown’s quadratic large sieve.
A major difference between our method and Heath-Brown’s is that in the quadratic case,
the norm was almost self-dual by quadratic reciprocity. This property completely fails in
our situation.

We now discuss the two main workhorse results used to prove Theorem 1.1, both of which
require defining some variants on A. Let

N
/ _ -
(1.8) N@QKTN) = . omax XA (R, 0, c)'
XR2WULQ?*kT
X<C

Note trivially A(Q,k,T,N) < A(Q,k,T,N), by taking X =1, R=Q, ¢ =k, U =T,
C = 1. Theorem 1.1 will show these norms are essentially the same order of magnitude.
On a first pass, the reader is encouraged to think of A'(Q,k, T, N) as A(Q, k, T, N) itself.
Another notational convenience is to write
(1.9) AQ,k,T,N) = max ARk, U,M),

Q<R<Q(Q*kTN)*

T<U<T(Q?*kTN)®
N<M<N(Q?ETN)®

and similarly for other norms, such as A’. In practice, the choices of ¢ will be either unim-
portant, or apparent from the context, and no confusion should arise from suppressing them
on the left hand side of (1.9).

Theorem 1.5 (Recursive functional equation). Suppose N > Q?*kT(QKkT)~¢. Then

Q4k2T2>:| ‘

(1.10) A(Q,k,T,N) < (QKTNY: [N n LN(Q, kT

Q*kT

We also derive a recursive bound on A by the family average approach.
Theorem 1.6 (Recursive family average). Suppose Q*kT > N(QKT)~. Then
Q*kT —— ( N

N 2 kQT’

(1.11) A(Q,k, T, N) < (QKTNY: [Q%T n kT, N)} .
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The proofs of Theorems 1.5 and 1.6, appearing in Sections 4 and 5, respectively, are logi-
cally independent, and can be read in either order. Although very different in the fine details,
the two proofs have important structural similarities. Because of the logical independence of
these two sections, and due to the strong analogies, we have deliberately chosen to ‘refresh’
notation when passing from Section 4 to Section 5. Even more, we have structured the
proofs in a similar way, and chosen notation to help draw the reader’s attention to analogous
quantities in the two proofs.

Our main interest in Theorem 1.1 is with K = T" = 1. However, the recursive nature of
the proof and the appearance of the generalized norm A’ in Theorems 1.5 and 1.6 forces us
to consider more general values of k and T

1.3. Applications. The classical large sieve has a wealth of important applications, and
we consider some variants for the new rational large sieve (Theorem 1.1). The literature
in analytic number theory on sieving problems for the rational numbers is relatively sparse.
The authors of [EEHK, Z] give versions of Gallagher’s larger sieve for rationals, and deduce
some impressive algebraic applications. More applications could be of great interest.

Consider the following sieving problem. Let N' = {n € Q- : ht(n) < N}. Let P be a
finite set of prime numbers. For each p € P, let ), C Z/pZ. Define the sifted set

SW,P,Q) ={n €N :forall p with v,(n) =0, red,(n) & Q,}.

Note that if v,(n) # 0, then red,(n) may not be defined. Let w(p) = [€2,|, and suppose that
w(p) < p for all p € P. Let h(p) = ;z%p()p) for p € P, and h(p) = 0 for p ¢ P, and extend h
multiplicatively on the squarefree integers. Define H = > <0 h(q).

Proposition 1.7. With the above notation, we have

(N + Q2)1+5
—H .

One can prove this following the method of [IK, Theorem 7.14]. Alternatively, see [K,
Proposition 2.3] for a proof in much greater generality. For a nontrivial result, one needs
H > N¢, which is more restrictive than in the classical arithmetic large sieve.

A standard application of the classical large sieve is to let €2, consist of p%l residue
classes chosen arbitrarily, for all p < Q. Then H > @, and taking Q = /N gives that
ISV, P, Q)| < NV2+e,

We also present a Barban-Davenport-Halberstam type theorem. Suppose that o, is a se-
quence supported on Q~g, with ht(n) < X. We assume a weak Siegel-Walfisz type condition
for the sequence, as follows. Define

S(X,x) = Y awx(n),

ht(n)<X

SV, P, Q)| <

For x = x’xo with x’ of conductor r > 1, and yq trivial modulo s, we assume

X127 (s)

(1.12) 1S(X, x)| <k |04|(10g—X)B,

for some k-fold divisor function 73, and all r < (log X)5.
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Proposition 1.8. Suppose that « satisfies the S-W condition (1.12), for any B > 0. Then

1 2 X|a|2
Z Z ) Z Qp — ——~ Z o, <K s
q<Qa(mod q) ht(n)<X SO(Q) ht(n)<X (10g X)
n= a‘(mOd q) (’I’L q):l

for any A > 0, provided Q < X'7¢.

We prove Proposition 1.8 in Section 3.

1.4. Proof sketches. Here we present some overly-simplified outlines of the proofs. In this
section we freely drop factors of size (Q*kTN)?, as if they were 1.

1.4.1. Theorem 1.5. For simplicity, we omit the t-aspect, and write A(Q, k, V) for the norm.
For a bump function w supported on [1/2,2], consider

S = Z w(%b)ﬂ’(a, b)|?>, where T(a,b) Z/BXQXH ab).
(a,b)=1 q,x,0

The condition (a, b) = 1 is necessary but difficult to use. In comparison to the quadratic large
sieve, this condition is analogous to the restriction to fundamental discriminants. Inspired by
this similarity, and following [H-BJ, let 1 <Y < N/10 to be chosen later, and note S < S.y

where
Sey =Y (aNb>|T(a,b)\2.

We then write S5y = Se—S<y, where Scy has ) <Y, and Sy has a and b unconstrained.

These two sums are treated in completely dlfferent ways. For S<y, let g = (a,b) and change
variables a — ga and b — gb. Ignoring coprimality issues, then T'(ga, gb) ~ T'(a,b), and so

s 3 S w(EE)renr = [ ke Y (5) et

ab<Y g @) ab<y 2mi’

(a,b)=1 (a,b)=1
Next shift contours to the line ¢, passing a pole at s = 1/2. The contribution to S<y from
the new contour is essentially < N°A(Q, k,Y)|B]?. The pole at s = 1/2 gives

N\ 1/2
1~ 2

(1.13) La(/2) Y (%> T(a,b)2.

ab<yY

(a,b)=1
This term (1.13) is not satisfactorily bounded on its own. Indeed, even if we accept Theorem
1.1, then by breaking up into dyadic segments M /2 < ab < M, with 1 < M <Y, we can at
best bound (1.13) by

N2 o 2 2 1/2y,1/2\( 312
max (57) Q%+ M) < (@ KVN + NV
The former term of size Q*kv/N is the culprit, and matches with (1.5). Luckily, and crucially,
the term (1.13) will partially cancel with another term from S.,. This cancellation property
also appeared in [H-B].
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Next consider Sy,. Opening |T'(a,b)| and applying the Mellin inversion formula gives

Sw= > BB /(2) F(s)N*L(s, B)L(s, B) L

2
q1,92,X1,X2,01,02

where ® = x1X26:0,. Unfortunately, ® may not be primitive, and this complicates the
application of the functional equation. For this sketch, we consider the two extremes, where
either ® is primitive of conductor q;q2k, or where ® is trivial. The trivial case is easy to
control, since this means x; = x2 (whence ¢; = ¢2) and 0; = 0. This gives rise to a diagonal
term of acceptable size O(N|S]?). For the primitive characters, we shift contours to the line
—1, change variables s — 1 — s, and apply the functional equation. This gives (roughly)

Z ﬁl@/@) w(l—s) <QI§1\2[I:>1S_ ”y(z(i)s)L(s ®)L(s, D) Qd;

q1,92,X1,X2,01,02

where 7(s) is the product of gamma factors in the completed L-function of L(s, ®)L(s, ®).
Next re-open the Dirichlet series and rearrange, giving

~ v(s) —(q1gok)> ! s
1 —s)—2 (q1g2k)>~"
%’:/@)w( Y-a,, Z BBy fa(ab) 5

Letting g = (a, b), replacing a by ga and b by gb, and summing over g, we obtain

Z / w(l— s)ﬂC(QS) Z 5152MX1X29192(@5> &

_ s—1
2) 7(1 S) q1,92,X1,X2,01,02 ( >N 2mi’

as the sum can be truncated at ab < % (by shifting the contour far to the right). Next
we shift contours back to the line €, crossing a pole at s = 1/2. This polar term has a nice

simplification, and takes the same form as (1.13), but with ab truncated at % instead of
Y. Taking Y = % then causes these two polar terms to cancel! The contribution on the
line ¢ essentially becomes bounded by o2 kA(Q, k, %), in line with Theorem 1.5.

1.4.2. Theorem 1.6. For simplicity take k = 1 and omit ¢, and write A(Q, N) for the norm.
For a bump function w, let

S = Z (@/Q) Y. ITP.  TCO= Y. auwsx(abd).
)

x (mod ¢ N/2<ab<N
(a,b)=1

The condition that y is primitive is necessary but difficult to use. In analogy with the proof
of Theorem 1.5, let Y < /10, and define

Sy =Y w(a/@) Y T

q X (mod q)
cond(x)>Y

Then S < S.y, by positivity. Again, write S = S, —S<y where S<y has characters modulo
g with cond(x) <Y and S has x ranging over all characters of modulus q.
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For Scy, replace ¢ by gqo and x by xxo where (the new) yx has conductor ¢, and g is
trivial. Ignoring coprimality, we have T'(xxo,t) = T(x,t). Applying Mellin inversion, and
summing over ¢y to form a zeta function, we obtain

Sor 3 [, Fo(5) e X meorg

x (mod q)

We shift contours to the line ¢, passing a pole at s = 1 only. This polar term takes the form

(1.14) MYt Y T

g<Y X (mod q)

On the new line ¢, we essentially obtain an expression of size A(Y, N)|3]?. This polar term
is the analog of (1.13), and as before, it is not satisfactorily bounded on its own. Indeed,
Theorem 1.1 would imply that at best it is bounded by

Qmax B~ (R + N)lo” = (QY + QN)|af”

Here the term QN is the culprit, and as before, we will cancel this polar term with one
arising within Se.
Now consider S,,. Opening the square and applying orthogonality of characters gives

SOO ~ Q Z w1 <Q/Q> Z aal,blrz,bw
q (a1,b1)=(az,b2)=1
a1ba=azb1 (mod q)
where w; (x) = zw(x). The range of possible values of ged(a1bs, asby) causes some arithmeti-
cal difficulties. For this sketch, we consider the two extreme cases, where either they are
coprime, or where a;by = asby, which we call the diagonal case. Since (a1,b1) = (ag, b2) = 1,
the diagonal reduces to a; = ay and by = by, giving a term of size O(Q?*/«|?), which is
acceptable.
We now focus on the case (a1bs, asb;) = 1. Write a1bs = asby + ¢r, which we now interpret
as ajby = asby (mod r), with ¢ = ‘”bz’r;a?bl Note typically r < N/@Q, so this reduces the
modulus when Q2 > N. This leads to

by — asb
Soo ~ Q Z Z w1 <%)C¥ahbl&a27b2.

T (a1,b1)=(az,b2)=1
a1ba=azb1 (mod r)

Next we detect the congruence with characters modulo r, as in [CIS], giving

a1by — agb -
oo ~ Q Z Z Z w1 <%>()éahblOéaQ,bQX((lleale).

r  x(mod ) (a1,b1)=(az,b2)=1

Since the characters are not primitive, replace x by xxo and r by rrq where the new x has
conductor r, and Yyq is trivial modulo ry. Applying Mellin inversion, and evaluating the
ro-sum in terms of a zeta function, we obtain that S, is roughly

DY T Y (M) s Daw @) g

(1) r<N/Q x (mod ) (a1,b1)=1
(ag,bz):l

Next we shift contours to the line —1 4 &, passing a pole at s = 0 only. Note that w;(0) =
w(1). This polar term nicely simplifies, and takes the same form as (1.14), but with r
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truncated at N/@Q instead of Y. Taking Y = N/Q causes the two polar terms to cancel.
Next consider the integral along the line —1 + €. The variables a;, b; are not separated, but
one might hope that this is only a technical issue solvable with integral transform techniques
(indeed, see Lemma 5.2). We might then expect that the contribution from the new line of

integration to be bounded by %QA(N /Q, N)|a|?, which is consistent with Theorem 1.6.
The wealth of extra parameters in the definition of A’ in (1.8) are there to account for the
overlooked conditions (both arithmetical and archimedean).

1.4.3. Reflections. The similarities between the proofs are remarkable, even if the fine details
are different. We also observe that the divisor-switching method used in the proof of Theorem
1.6 is analogous to the functional equation of the Dirichlet L-functions used for Theorem
1.5. At the cost of some exaggeration, one might call the divisor switch itself a functional
equation. In support of this, consider the family of functions 7,(n) = >__,_ (a/b)*, which
does indeed satisfy the functional equation 7_4(n) = 74(n), by the divisor switch. Moreover,
these coefficients 74(n) appear as Fourier coefficients of the level 1 Eisenstein series, and the
functional equation of the Eisenstein series is entwined with the functional equation of its
Fourier coefficients.

1.4.4. Theorem 1.1. Theorem 1.1 is deduced from Theorems 1.5 and 1.6 in Section 2. The
proof uses that the norm A is monotonic, and applies the two self-referential theorems in

a recursive manner. In retrospect, some of these ideas have similarities to elements used
in [BI1, BI2].

1.5. Notation and conventions. Let I'r(s) = 77%/2I'(s/2). If x is a Dirichlet character
and a/b € Q in lowest terms, we may interchangeably write

(1.15) x(a)X(b) = x(ab) = x(a/b).
We use the notation A < B as a synonym for
(1.16) A< C(e)(Q*kTN)°B.

1.6. Acknowledgments. I thank Henryk Iwaniec and Emmanuel Kowalski for valuable
comments. [ am also grateful to the referee for a careful reading which uncovered several
inaccuracies.

2. DEDUCTION OF THEOREM 1.1
In this section, we use Theorems 1.5 and 1.6 to prove Theorem 1.1.
2.1. Monotonicity. Asin the quadratic large sieve [H-B], it is vital that the norm A(Q, k, T, N)

is essentially monotonic in the N- and @-components. The proofs differ a bit depending on
the case, but the overall theme is similar, and based on an idea of Forti and Viola [FV].

Lemma 2.1. Suppose P > log QN with a large (but absolute) implied constant. Then there
exists a prime p € [P,2P] so that

A(Q? k? T7 N) S 8A(Q’ k’ T? Np)'
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Proof. Since k and T are frozen, we suppress them from the discussion, writing A(Q, N)
in place of A(Q,k, T, N). Let v, be complex numbers supported on N/2 < ab < N, and
(a,b) = 1. Let P > 1 be a parameter to be chosen, and let P* denote the number of primes

p € [P,2P]. The prime number theorem implies P* ~ %. Now we have

Z’ GZ YapX (@ ‘ Z Z‘ Z YapX (@)X(b)

P<p<2P (a,b)=

of

N/2<ab<N N/2<ab<N
DIV [ SEEETE

P<p<2P  P<p<2P (a,b)=1

plq plg N/2<ab<N

For the terms with p|g, we simply use % Zpggégp 1< %. Taking P > logQ large
enough so that P*log P > 2log (), and rearranging, we obtain

AQ,N <r£1%< Mzz Z ‘ Z YasX(a)X(b)] -

P<p<2P (a,b)=1
pla N/2<ab<N

Next we separate the values of a and b to make two sub-sums corresponding to (p,ab) = 1
and plab. This gives
)

A(Q,N) < rnaxi 2 = Z <‘

P<p<2P  (ab,p)=1 plab
plg

We bound the terms with p|ab similarly to the treatment of p|q, giving

%0 !'YPZP* 2 ’Z‘ = 08 hepr M?P* 2. AQMNY_ el

P<p<2P  plab pP<p<2P plab
Plq

4log N

———A(Q, N).

4log N

1
P leg P < 5, whence

We choose P > log N large enough so that

A(Q, N) < max

770 |7|QZ 2 ‘ Z e ab‘

P<p<2P (ab)=
plq (abp)

Now we freely multiply by |x(p)|?, which has absolute value 1 since p { ¢. In addition, we
change variables A = ap, let 04 = Ya/pp, make note that Np/2 < Ab < Np, |§] = |y], and
(A,b) = 1. Thus

AQN) S 5 Y A@QND) S8 max AQN) 0
P<p<2pP

Lemma 2.2. Suppose P > log NQ with a large (but absolute) implied constant. Then there
exists a prime p € [P,2P] so that

A(Q,k,T,N) < 8A(Qp, k, T, N).
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Proof. Since k and T are frozen, we suppress them in the notation. Let P > 10 to be chosen,
ok * R i
and let P™ =3 p  op Z Smod p) 1, so P = 5. We have

)DREDSERINCINED DRI DI ) \Zﬁxxm)x(mf

(a,b)=1 q,X (a,b)=1 P<p<2P4 (mod p) ¢:x
N/2<ab<N N/2<ab<N
- Y (X +Z)!Zﬂxx
(a,b)=1 Y
N/2<ab<N (p,ab)= plab

For the terms with p|ab, we simply use 5t >y 1 < w, and choose P > log N large
plab

2P log N < 1

enough so that 5=757% < 5. For the terms with p { ab, we freely multiply by [0 (a)(b)|?,

which is 1 for such primes. This gives

2 1 e
A(Q, )<rggg<W (aZ p**Z‘Zﬁxxzb(a)xw(b)‘-

,b)=1 Y 4X
N/2<ab<N

Next we separate the values of ¢ to make two sub-sums corresponding to (p,q) = 1 and plq.

This gives
| Z )

N/2<ab<N (q,p

4
A(Q,N)<rg§S(W Zl

We upper bound the terms with p|q, giving

P P**Z\Z\ _P**ZA@, )T S gy 2@ NP
plq plq

=1
N/2<ab<N
4PlogQ 1

P log P < 3, whence

8 1 2
AQN) < max > P**Z‘ > Bxx¢(ab)‘~

b) 1 pf‘l} a;X
N/2<ab<N (¢,p)=1

We choose P > log ) large enough so that

Now x% is a character of conductor pg, with pQ/2 < pg < pQ, so we obtain
8
< — < .
AQ.N) < 5 ) APQ, N) <8 max A(pQ,N) N

Remark. The norm A is also monotonic in the k and T-aspects, but this property is not
needed in this work, so we do not give proofs.

2.2. Relations between norms. To simplify the recursive steps in the proof of Theorem
1.1, it is convenient to have the following relations.

Lemma 2.3. Suppose that there exists e > 1 such that
A(Q,k,T,N) < Q*kT + N°,

for all Q, k, T, N. Then we have for all Q, k, T', N that
AN(Q,k,T,N) < Q*T + N°.
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Lemma 2.4. Suppose that there exists e > 1 such that
A(Q,k,T,N) < (Q*T)° + N,
forall Q, k, T, N. Then we have for all Q, k, T', N that
A(Q,k,T,N) < (Q*kT)* + N.
Proof. The proofs of both lemmas follow from the definitions (1.8) and (1.9). O

2.3. The recursions.

Proposition 2.5. Suppose that there exists e > 1 such that

(2.1) AQ,k,T,N) < Q*kT + N°,

for all Q,k,T,N. Then with ¢ =2 — %, we have for all Q,k, T, N that
AQ, k,T,N) < (Q*kT)” + N.

Proof. Let F = Q*kT, which is the size of the family. By monotonicity (Lemma 2.1), we
have A(Q,k,T,N) < A(Q, k,T, Ny) for N; > Nlog(FN). Let Ny < Nlog N+ F* for some
a > 1, so that F' < N;. By Theorem 1.5,

Ni— F?
A(Q7k7T7N) < A<Q7k7T7N1) 5 Nl + _A,(Q7k7T7 _>
F N

By Lemma 2.3, we can use the assumption (2.1) to obtain
2 2e—1

A(Q,k,T,N) §N1+&<F+ (F—>) < N1+ljv

< N Fe FQeflfa(efl).
- N = + P+

1 ~

We choose « optimally so that a = 2e — 1 — a(e — 1), which simplifies as a = 2 — % Since
e > 1 by assumption, this means o > 1, and completes the proof. O

We also have a complementary version:
Proposition 2.6. Suppose that there exists e > 1 such that
(2.2) A(Q,k,T,N) < (Q*T)° + N,
for all Q,k, T, N. Then with ¢ =2 — % we have for all Q,k,T, N
AQ,k,T,N) < Q*kT + N¢.

Proof. Let F = Q*kT. By monotonicity (Lemma 2.2), we have A(Q, k, T, N) < A(Qq,k, T, N)
for Q1 > Qlog(FN). We take F} := Q2kT = Q*kT log*(FN) + N for some a > 1, so that
N < Q3kT. By Theorem 1.6, we have

B
A(Q, k, T, N) < AQ1, k,T,N) < Fi + WlA/( kT, N).

kT

By Lemma 2.4, we can use the assumption (2.2) to obtain

Fl N2 e NQe—l 2e—1—a(e—1)
A(kaaT7N),§F1+—<<—> +N)<<F1+ — S F 4 N® 4 N?emlmeterh),
N\ F Fy

Choosing o = 2 — % completes the proof. O
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2.4. Proof of Theorem 1.1. Using the trivial bound (1.5), we have
A(Q,k,T,N) S Q*kTVN + N < (VN + Q*T)? < N + (Q*kT)?,

which is (2.2) with exponent e = ey = 2. Applying Proposition 2.6 gives (2.1) with e; =
2——0 = 3/2. Continuing this process, we obtain a sequence of exponents e;, with e;,1 = 2——
for which either (2.2) or (2.1) holds (in an alternating fashion). It is easy to check that the
e; are monotonically decreasing, with limit 1, whence Theorem 1.1 holds.

3. PROOF OF PROPOSITION 1.8

The following proof is based on [IK, Section 17.2]. Decomposing with Dirichlet characters
and applying orthogonality gives
=2 2. ISP

sy Y| X an_@ S o

g<Qa(mod q)  ht(n)<X ht(n)<X q<Q x (mod q)
n=a (mod q) (n,g)=1 XFX0

Write ¢ = qoq’ and x = xoX’, where y has conductor ¢’. Then (3.1) is at most

> Z IS(X X'x0)I?.

qoq’<Qx (mod ¢")
q>1

We break up this sum according to ¢’ < Qg = (log X)? and ¢ > Q. For ¢’ < Qq, we apply
the S-W condition (1.12), giving a bound of the form

7(q0)? X|of? (k+1)2 A X|of?
o5 < (log Q)
qOZSQ (o) 1<q,Z<QO (log X)?" (log X)#

The terms with Qy < ¢’ < Q /qo are bounded by

< Z Y RTARX) D o

qo<Q Q <R<Q/qo ht(n)<X
dyadic (n,q0)=1

For R < (XQ)Y1°, we use the “e-free” bound A(R, X) < (R* + X log X) (see (1.5)), while
for R > (XQ)"1°, we use Theorem 1.1. In total, we obtain the following bound for the
terms with ¢’ > Qo:

1 < X X
Q 2 Q1+€ + > < <Q1+€ + > o 2.
" 2w (log X) P01 (log x)70-52) 1!

Choosing B(1 —€) — 2 > A completes the proof of Proposition 1.8.

4. PROOF OF THEOREM 1.5
4.1. Miscellany. We begin with some miscellaneous results that will be useful later.

Definition 4.1 (A partition of unity). Let 7" > 1, ¢ > 0. Choose smooth and even functions
wo and wy (1) = w(r/T") so that for all |r| < T we have

(4.1) wo(r) + Z wr(r) =1,

T' dyadic
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where wq(r) is supported on r < T¢, w is supported on [1,2] U [-2,—1], and 7" runs over
O(log T') real numbers with 7° < T" < T.

It is convenient to re-write the left hand side of (4.1) as ), wys, where 7" runs over the
dyadic numbers from Definition 4.1, along with an additional value 7" = 1 giving rise to wy.

Lemma 4.2. Let w be an integrable function supported on [U,2U], with 1 < U < 2T.
Suppose B; € L*(R), supported on [T/2,T]. Then

(42) / / ﬁtlﬁ_tgw@l — tg)dtldtg

22U
= Z / Br—v+Uj1 40 Pr—0+Ujs4+0.W(U (1 — J2) + v1 — v2)dvidus.
v Ju

0<51,j2<10T/U
l71—72]<1

Proof. We cover the interval [T'/2, T] without overlaps by smaller intervals [1/2,T/2 + U],

T/2+4U,T/2+2U], ..., giving
(4.3)
) ) . T/24+Uj1+U T/24Uja+U .
/ / B, Br,w(ts —t2)dt dty = / B, / Br,w(ty —ta)dtdts.
—ooJ oo o<1 or/u T/ U T/24Uja

Next change variables t; = T'/2 — U 4+ Uj; + v; for i = 1,2, where U < v; < 2U. Note that
the integrand vanishes unless |j; — jo| < 1. The result follows. 0

Lemma 4.3 (Archimedean separation of variables). For s = o+iy with o > 0 fized, |r| < T,
and |y| < |r|*/?, let

Ir(o + iy + ir)T'r(o + iy — ir)
l—o—iwy+ir)lg(l—0o —iy—ir)

(14) ) = 70r) =

Let w and wy be as in Definition 4.1. Then for T satisfying 1 + |s|> < T" < T, there exists
a function n = np satisfying

45 () < CPQHWT Y ad [ e P

so that
(4.6) y(r)wr: (r) = / nr (w)e(ur)du.
If |s| < T¢ and T' =1 (that is, wp = wy), then (4.6) holds with
ey
(4.7) m(u) < T (1 + T-) .
Proof. A tedious but straightforward calculation with Stirling’s approximation gives
ri\ 2s—1 15
1) = () o+ v

where the ¢; are some polynomials in s, of degree at most 2:+4 1. This provides an asymptotic
expansion as r — oo provided s < |r|'/2, say. From this, one may derive

(4.8) Ay < |r)?e7 ) for || > |s|? + 1.
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By Fourier inversion, we have

A(P)w(r/T") = / T @elur)dy, () = / (Pl /T e(—ur)dr.

—00 [e.9]

Integration by parts, aided with (4.8), gives (4.5). For 7" = 1 and |s| < T%, then the
asymptotic Stirling formula does not hold, yet we can claim a crude but uniform upper
bound of the form v (r) < (T¢)7, which suffices to give (4.7). O

Corollary 4.4. Let v =, be as in (4.4), and suppose by € L*(R), supported on [T/2,T).
Suppose s < T°V . Suppose wr is as in Definition 4.1 for some 1 < T' < T. Then

(4.9) /_ /_ BBy (b — ta)wri (b — ta)dtrdts = ) / nr(w)e(uI”(ji — j2))

0<]1,]2<10T/T/
[71—J2|<1

2T/ 2Tl
X ( 6T/2—T’+T’j1+v1€<U1u)d1}1> (
T/
with nr as in Lemma 4. 3.

Proof. This follows from Lemma 4.2 followed by (4.6). O

ﬁT/2—T’+T’j2+1;2 6(—U1U)d?)2> du,
T/

4.2. Preparation. Here we begin the proof of Theorem 1.5. Choose a nonnegative smooth
weight function w, with w(x) > 1 for 1/2 <z <1, and w(z) =0 for z < 1/4 and for z > 2.
From (1.4), we have A*(Q, k,T, N) < max|g—1 S, where

(4.10) 5= 3 wlab/N) A . SO Y Budedan)|

(a,b)=1 Q/2<q<QX (mod gq) 6 (mod k)
(g.k)=

We will assume that 3, ¢+ is supported on
(411) cond(x)=¢, Q/2<q¢=<Q, (¢k)=1 0 (modk), T/2<t<T,

and that an otherwise un-labeled integral /sum over t,q,x,0 is implied to run over this domain.
In particular, we will often suppress these conditions and recall them only when needed.
To prove Theorem 1.5, it suffices to prove the bound for x and 6 of fixed parities, so for
convenience we also assume that this condition is enforced by the support of 3, g ;.

Let 1 <Y < m be a parameter to be chosen later. Then S < S.y, where

(4.12) Sov= w(ab/N)‘/T/KKT S Y Y Bueab)]

( abb)2 SY = Q(/2<)q<QX (mod ¢) 6 (mod k)
a, q k

by positivity, since if (a,b) = 1, then the condition ab > Y is redundant to the support of
w(ab/N). By simple inclusion-exclusion, we have

S>Y - Sgoo - SSY’

where for * € {Y, 00}, S<. corresponds to the sum over (a‘fé’)Q < x. We will often write Sy
as an alias for S<.

One of the main issues with applying the functional equation is that, after opening the
square, we obtain a character of the form y;x2616> which may be imprimitive. In order to
facilitate the problem of controlling the conductor, we will apply some combinatorial-type
decompositions. These preparatory results are bookended by Lemmas 4.5 and 4.11.
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Lemma 4.5 (Detecting primitivity). Let ¢ > 1 be an integer. There exist complex numbers
co = ¢¢(q) supported on a finite set of integers with the following two properties:
e For each ¢ (mod q), the sum Y, cp(€) is 1 if ¢ is primitive, and is 0 if ¢ is im-
primitive.
o We have ), |ce| < 7(q), where 7(q) denotes the number of divisors of q.

Proof. Suppose 1 has conductor ¢*. Consider the expression

Su(; X v+ Iy).

dlq y (mod d)

The inner sum inside the parentheses is 1 if ¢* divides ¢/d (equivalently, d divides ¢/¢*), and
0 otherwise. Hence the above sum evaluates as ;.. u(d), which by Mébius inversion is
the indicator function that ¢* = ¢, i.e., that v is primitive. To finish the proof, we can let ¢,
be supported on 1 < ¢ < g+ 1, and let

(4.13) E—ZM Y= Y ula/e)

e
dlq 1<y<d el(g,t—1) q/
1+dy 74

so that ), |co| < 7(q). O

Suppose ¢, > 1 are integers with r|g. Let G, (resp. G,) be the group of Dirichlet
characters modulo ¢ (resp. r). By a slight abuse of notation, we can view G, as a subgroup
of G4, by multiplying every element of G, by the trivial character modulo g.

Lemma 4.6. Let q, v, G,, and G, be as above. Let F(x1,x2) be a function defined on pairs
of Dirichlet characters modulo q. Then

> Flaxa)= ), > Py, i)

X1,X2 (mod q) Y€Gq/Gr 1,92 (mod 1)
xX1X2 modulus r

Remark. Lemma 4.6 is analogous to Lemma 4.2.

Proof. The condition that x;x2 has modulus r means that x:xz € G,. Now say Gy = U,7G,,
where v runs over G,/G,. By basic group theory, we can write uniquely x; = 7 and
Xz = Ytz with 5 € G, /G, and 1,13 € G 0

Corollary 4.7 (Separation of variables). Let notation be as in Lemma 4.6. Then

Z F(xi,x2) = Z co(r) Z Z (U12) (O F (v, 7¢2).

x1,X2 (mod q) Y€Gq/Gr ¥1,92 (mod r)
X1Xx2 conductor r

Proof. We first apply Lemma 4.6 to detect that x;x2 has modulus r, and then use Lemma
4.5 to detect that 111, is primitive. 0

Definition 4.8. Let £ > 1 be an integer. Define the set Dj to consist of tuples k =
(ko, k1,K',0), where kg, ki, k' run over divisors of k with kok1k’ = k, (ko, k') = 1, and
k1|(k")>°, and where § runs over coset representatives of Gy /Gy .
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Lemma 4.9. Let k > 1 be an integer, and let by be any sequence of complex numbers indexed
by Dirichlet characters @ modulo k. Then we have a decomposition of the form

(414) ’ Z bG)Q = Z ch(k;/) Z b(gglgl(f)

0 (mod k) keDy /£ 0’ (mod k')

)2

Y

which can alternatively be written as

(4.15) IDIR D S SR o

0 (mod k) keDy, 0,0 (mod k')
cond(9,05)=k'

Proof. Begin by opening the square, obtaining a double sum Zéhﬂz(mo dk) bo, bg,. Parameter-

izing the sum according to the conductor (say k') of 0105, we obtain

PP

0 (mod k k'|k 601,02 (mod k)
cond(#102)=k’

Next we apply Corollary 4.7 with F(6y,05) = b, by,, giving

IDNTEED ) SEIIND SR SRR CTAG om

0 (mod k) KNk £ 0€Gy /Gy 67,04 (mod k')
With a further factorization kok, = 1 with (ko, k') = 1 and ko|(k’)>, we obtain (4.14). The
variant (4.15) is similar. O

We also need more elaborate versions of Definition 4.8 and Lemma 4.9 to handle y of
varying modulus.

Definition 4.10. For ¢ = 1, 2, suppose Y; is primitive of conductor ¢;. Factor

(4.16) g =daq qr,  and  xi=xxixa

where X! has conductor ¢/, x;” has conductor ¢;°, and so on, and the factorization is defined
in terms of local information as follows.

(i) The primes making up ¢, are those that divide ¢; but do not divide go, and likewise
the primes in ¢} are those that divide g, but not ¢;.
(ii) The factors ¢ and g, are characterized by 1 < v,(qy ) < v,(qf") for all p|g; . Similarly,
gy and g; are characterized by 1 < v,(q;) < v,(gy) for all p|gs .
(ili) The remaining factor r corresponds to the primes where v,(¢1) = v,(g2).

Definition 4.10 is motivated by the fact that

(4.17) xz= X e (0ag) axd) xxy,
U5 a3 q1 D}

which has conductor ¢,¢}q; ¢ cond(x\" ).
Let b, be any sequence of complex numbers indexed by primitive Dirichlet characters x

modulo ¢, with ¢ varying over a finite set of positive integers. Consider the sum | ax by |2

Opening the square gives a sum of the form ) by, by, Definition 4.10 shows that the

q1,92,X1,X2
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parameters ¢}, ¢;", etc., are uniquely determined. We can then arrange the sum according to
the values of these parameters, giving

2 .
4.18 = E E b, E b _
( ) ot xr xd” Xoxixa xS )
fo— - - _
g R P A A i @ xXhoXd Xa XS
(Def. 4.10) (Def. 4.10) (Def. 4.10)

where the reference to (Def. 4.10) in the summation conditions indicates the conditions
translated into appropriate summation form

We further develop the sums over X ) and X2 , using (4.15). Specifically, write
(4.19) r=rorir,

where XY)XS“) has conductor ', (ro,7’) = 1, and r1|(1')*°. We then write X = 'ywz, Where

v runs over G,/G, and 1; run over characters modulo /. The property that X1 X2 ) has
conductor 7’ is equivalent to 1)y is primitive (of modulus r’). Applying this to (4.18), w
obtain that )= [by[* equals

(4.20) Z < Z byinctar m) ( Z m) (cond(eh11hy) = 1').

ayar.as s dxhxa xT @b X5 XS X5 b2
(ro,r1,7',¥)EDy (Def. 4.10) (Def. 4.10)
(Def. 4.10)
Now let

a=(a"4,% % r071,7.7)
where the integers ¢ satisfy Def. 4.10(ii), 7 is coprime to the ¢, and (ro,r1,7’,7) € D,
(as in Def. 4.8). The two sums in parentheses in (4.20) have only the following conditions
between each other: ¢, and ¢, are coprime, and the conductor of 1,10, is 7. We have thus
derived the following.

Lemma 4.11. Let b, be any sequence of complex numbers indexed by primitive Dirichlet
character x modulo q, with q varying over a finite set of positive integers. Then

Z Z bX’1X1 X1 YY1 bX2X2 X2 o VY2

@G i

(q},95)=1,v1%2 prim.
(Def. 4.10)

(4.21)

In reference to (4 17), now X§ Xz = 91105|7|?, which has conductor 1/, so x;1Xz has
conductor ¢{ghqi q5
We are now ready to apply the preceding decompositions to S<, (see (4.12) to infer the

definition). Specifically, we apply Lemma 4.9 (in the form (4.15)) and Lemma 4.11, giving

(4.22) Sev= Y Y. Su(kaq),

k q
(Def 4.8) (Def 4.10)

where
— ab
. <\K,q) = 192 w a 10t2
(4.23) S<.(k,q) 515 N d( b)dt dt
01,05 (mod k') gl ! xF x; s tt2 (a";’)z <x
9l19’2 prim. (Q17QQ) 1 1[)11112 prim. (ab,koro)=1

(Def 4.10)
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with
(4.24) Bi = Bxgxfvawiﬁ%ti’
and where ® = &, ®,, with
®i(m) = (Xixi x; i) (m)m™
We remind the reader that there are additional conditions encoded in the support of the

coefficients, as recorded in (4.11), which will be recalled as needed. Observe that the finite

part of ® (i.e., omitting m™ ~2) is primitive of modulus ¢;q¢4q; g5 7'k’. Tt is convenient to

record here for later purposes that for i =1, 2,

(4.25) S 1B = Z/ >, Byt xrvussotnt
k,q

t
ka "7 gl X o a0

At this point our treatments of S<, for x =Y and * = oo diverge.

JPdt: < (kQ)|BI.

4.3. Elementary side. In this section we develop S<y (k, q).

Proposition 4.12. We have S<y (k,q) = Sg,(k, q) + Sty (k,q), where S(SO%(k, q) is given
by (4.30) below, and where

(4.26) Sty (k)| S T[A (

=1

o 1/2
TR TY) B,
qZ q,L’I"’I"T’

Proof. Let g = (a,b), and change variables a — ga and b — gb, getting

Sovlka)= >, 2

(9:kor0)=101,05 (mod k') ¢/ X! .\ X7 i

067 prim. (¢},45)=1, 12 prim.
(Def 4.10)

= gaby o
B152 g w< N )<I>(abgg)dt1dt2.
bt ab<y
(CL,ESZI
(ab,koro)=1

Next we apply the Mellin inversion formula and evaluate the g-sum as a Dirichlet L-function
of principal character to modulus ¢}¢bq; ¢4 k'r"koro. We further write

(4.27) L(2s, xo q;ng;q; wrake) = C(28)D4, Pay Py Py PrivoProio:
where p, = pn(s) = [, (1 — p~?*). This gives

SSY(k? CI) = Z Z

9/1,9/27(11’10(1 kl) QLXLX;‘—:XL,T/%
0105 prim.  (q},q5)=1,%1¢2 prim.

(Def 4.10)
— NN\sw(s _
/ pemopne | BB D (—b> #C(Qs)cb(ab)dtldtgds,
(2) t1,to sy a T
(a,b)=1
(ab,koro)=1

with 3] = ﬁlp‘ﬁqu’ and ﬁ_é = Eﬂquq;.
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Next we use Lemma 4.5 to detect the condition that 6,0} is primitive, and again to
detect that 1) is primitive (modulo 7'). We additionally use M&bius inversion to detect
(q1,d2) =1, via 3 e o0y 1(9")- Altogether, this gives

(4.28) S<y(k,q) Zu )Y cn(K)en ()

£1,02

Lw(s) — ds
/(2)N o O (28) Pt 2 A1A2W7
(a,b)

ai)SY
(ab,kgro):l

where

A= / > B10g; 301 ()11 (€2) @1 (ab)dty,
t1 ,

and A, is similarly-defined.
Now we shift the s-contour of integration to Re(s) = ¢, crossing a pole at s = 1/2 only.

Write S<y(k,q) = S(Sog/(k, q) + SLy(k,q), where Sg/ denotes the polar term, and S,

denotes the new line of integration. Note that A;|s—1/2 = A§°), where

(129) A= [ s g ) Bt
b @& g 0l o
¢}=0 (mod g')
(Def 4.10)

since p,(1/2) = @ Therefore, using (k'kq,r'rg) = 1 for a slight simplification (recalling
(4.11)), we have

(0) . (k/l{?(ﬂ”/ro) ﬁ 1/2 (O)W
(430) SSplloq) =3 2(e) 3 eaK)eu )02 kS () A AD.

01,02 (a,b):l
ab<Y
(ab,koro)=1

Now we estimate S_y (k,q). We arrange the expression to most closely resemble (4.10),
specifically

(4.31) ‘S (k q ’ < QkN ZZ |Cg1 052 ‘ max Z ‘./41./42
g 01,0 ~(a bb)yl
ab<

Referring back to (1.4), and noting that our new family has varying modulus ¢, of size

—_— o=
PR and fixed modulus ¢; ¢; 7'k’, we see

12 € Q + =1 /) 12
(4.32) ;(%:1 |A;|* < (QEN) lg’&’t%(YA(—qfqi_r’roﬁ’q’ q 'K, TY )87
aég;

Using Cauchy’s inequality and monotonicity (Lemma 2.1) leads quickly to (4.26). O
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4.4. Functional equation side. In this section we will apply the functional equation of
Dirichlet L-functions to S, (k, q), picking up from the expression (4.23). To facilitate this,
we first apply Mobius inversion, in the form

433) Y w(“ﬁb)@(aﬁ)

(ab,koro)=1
= 33 ol is(9n) (g1 g57) 3w ( LB )

g1|ko g3|ro ab
g2|ko galro

To continue the theme of concise notation, let g = (g1, 92, g3, 94), 11(8) = p(g1)p(g2) 11(g3)1(g4),
®(g) = P(g1939204), and |g| = ¢1929394. The summation condition on g is that

(4.34) gilko,  g2lko,  gslro,  galro,
though we will usually suppress this and only recall it as needed. Then S (k,q) equals

>ooue) Y 3 B |g|)q>(ga5)dt1dt2.

t1,t
(4.34) holds 01,05 (mod k') gl X x X i B
) 00! :
105 prim. (¢} ,q5)=1,%1¢2 prim.
(Def 4.10)

We also have need to decompose the t;-integrals to help pin down the archimedean conductor.
Applying the partition from Definition 4.1, we obtain that S (k, q) equals

@3) Y 3 ) 0B (1 —12) 3 w( B ) (bt

I ab
0705 prim.  (g},q5)=1, 12 prim.
(Def 4.10)

Define quantities

QT o QAT QTN

(Q)’lg|
— (QkTN)= 2 L8l
45 G5 T'rarikoks N(qy g3 r'rérikok;)? (@ )

N

and note that among the variables of summation, Q* depends only on the outer variables q,
k, and 7", while N* depends only on q, k, 7", and g.

(4.36) Q' =

Proposition 4.13. We have a decomposition
(4.37) Soo(k,q) = S (k, q) + Sk (k, q) + S5k, q) + Exc,

with the following properties. The term Ség)(k, q) is given by (4.43) below, and S!_(k,q)
satisfies
2

(4.38) 15! kq|NZQ|gH (qlqlTTr,quZrk’T’N) 18i].

The diagonal term satisfies the bound
(4.39) > 152k, q)| S NP,
k,q

and the term E, is negligibly small.
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Proof of Proposition 4.13. Applying the Mellin inversion formula to w and writing the sum
over a and b as a product of Dirichlet L-functions in (4.35) gives

Slkoa) = > plg) Y, >,

g1’ 01,0 (mod k') g} xj xiF xi ¥
elleé prlm (ql17q/2):17w1’¢2 prlm
(Def 4.10)

By Nye — ds
[ rto=tw@a [ () 5000 w0 By

We shift contours to the line —e, crossing a pair of poles at s = 1 £ i(t; — t3), which exist
only when @ is trivial, and let S’_(k,q) be the new integral on the line —e. Recall that the
finite part of ® is primitive of modulus

(4.40) 4= g4 g5 7'K'.

In particular, ® being trivial forces ¢ = ¢4 = ¢ =q5 =q = ¢, =71 =k =1, and the
rapid decay of w(s) practically forces |t; — t5] < T°. It is easy to see that the contribution
of this diagonal polar term is consistent with (4.39).

On the line —¢ we change variables s — 1 — s. Note that L(s, ®)L(s, ®) satisfies the
asymmetric functional equation

(4.41) L(1—s,®)L(1 —s,®) = q** 'y,L(s, ®)L(s, D),

where v, = v,5(t; — t3) (recall (4.4) for the definition), which is holomorphic for Re(s) > 0.
Recall that the parity of the y; and 6; was assumed to be fixed, so that y1x260:6s is even,
and hence the gamma factor is as stated in (4.4). For later use, note that 7|12 = 1. In
addition, recall the bound (4.8), which in the present context means ~,(r) < (77)%7~!. We
then obtain

soia) =Y e S 3 / ot~ t)b(g)h

g,T’ Gi,eﬂmod ]{2’) q;:X;:Xj:X;7¢i
0105 prim.  (q},q5)=1,%1¢2 prim.
(Def 4.10)
~ N\1=s — ds
/ w(l —s) (—> g% 1y, L(s, ®)L(s, @) ——dt,dt,.
(14¢) [ 2m

Next we will re-open the Dirichlet series expansions of the Dirichlet L-functions. A small
modification is that we write

L<57 (I)) = P2 koro Z aisq)<a>7 where P& koro = H (1 - (I)(p>pis)71>

(a,koro)=1 plkoTo

and likewise for L(s, ®). This gives

s =% e ¥ 3 /ttw,(tl—m)@(g)/s@

g, T’ 0’1,9/27(m0d k') q§7X27xj7>£7qr/,i
6395 prlm (ql17q/2):17w1¢2 prlm
(Def 4.10)
N _ g\ o 7 ds
= w1—s( ) D(ab)po s 95 tt1dts,
DS /() (1= 5) (L) 0B 2 el

(ab,koro)=1
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We then factor out the ged of @ and b, by writing ¢’ = (a, b) and changing variables a — ¢'a
and b — ¢'b. The sum over ¢’ forms a Dirichlet L-function of principal character of modulus
qkoro, which is given by (4.27). Then S/_(k, q) equals

Sue Y 3 / wrlt ~ t)b(g)5i /(H)fa(l—s)

g1’ 01,05 (mod ) g x} X X i
0105 prim.  (qf,q)=1, ¢1%2 prim.
(Def 4.10)

N q°[g[\* - ds
2l (;_1 (Nab> C(28)Pg; Pat Pyt Pot PR'17 koo Po, koroﬁ,kom%@(ab)%dtldtz-

(ab,koro)=1
Shifting the integral far to the right shows that the portion of the sum with ab >
2 1\2
%(QkTN)E is very small. Note

(4.42) _ Q4 4 7Tor1 4303 @ T'rory KKk Q’k _ @
G Vrrort g Vrrorn koki T qrgar'rgrikoky T
and hence

*Igl(T)* _ (@)°|g]
N N
Thus we can truncate the sum at ab < N*. Let S” (k, q) denote the contribution to S’_(k, q)
from the terms with ab < N*. Let q = q1qs, where q; = ¢}q; ¢, V7'k'.
Next we apply Lemma 4.5 to detect the condition that 6,8} is primitive of modulus &/,
and likewise for 1110, of modulus 7. We also apply Mobius inversion to detect (¢}, ¢b) = 1,

as preceding (4.28). Our final arithmetical separation of variables step is to write

Pd korg = Z d™®, By (dy),

di|(koro)>

and likewise for pg . (indexing the sum with the letter dy). We need an archimedean sepa-
ration of variables as well, and this is provided by Corollary 4.4. With this, and rearranging,
we then obtain

stea)= 3 o) @) S / e (w)e(uT' (s — o)

g 1.9 £y,l2 dl,dz kOT'O
l71—72|<1
w(l —s) (N)l—s ds
——— (=) C(25) Pk B1Bz—du
(a,b)=1 /1+6) (abd1d2)s |g‘ o
ab<N*
(ab,koro)=1
where
2U B B
Bi = Bis :/ ) B 01 (010) 1 (L) P1 (8d1d2) a7 py pyr @1 (ab)e(ut ) dt,
v a4 X oxa ,0)
¢;=0 (mod g")
(Def 4.10)

with 3, taking the form B, r_7//o477j, 41, (i-e., with a linear change of variables as in
Corollary 4.4), and B, is given by a similar definition.
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We next shift the contour of integration back to the line Re(s) = e, crossing a pole at

s = 1/2 only. Let Ség)(k, q) denote this polar term, and let S”(k,q) be the new integral.
We record the polar term:

w(1/2) ¢(K'r"koro)
(443) SQk,q)= > peuld)d c(®)ent’) D —
eT' g 01,6 dy,dz| (koro) > dydy  2K'r"Koro

\j1—j2|S1
[ mwearGi-i Y () BB

G ablgl
(ab,koro)=1
ab<N*
where BZ@ = Bils=1/2 is given by
o _
t; AN / qlql
9 Xis xl Xq Wint;
;=0 (mod g")
(Def 4.10)

Now we turn to S”(k,q). By the triangle inequality, and using (4.5) to bound the L'
norm of ny/, we obtain

(4.45) 157 (k,q)| < Z |g|Q Re(s Z |q—25+16 N |q—25+18 .
T/ ! b 1
|Jlg 32|<1 el zQ Ezbg)N*

Analogously to (4.32), on the line Re(s) = ¢, we obtain the bound

—2s+1 2 N Q + — 110 ! * 2
(4.46) Z Bl $ B Sl K2 N B
ab<N
We note that >, 51,5 |> = |B1]?, since this simply re-assembles the integral to all of [T'/2,T]
(also, for each j;, the number of js with |j; — jo| < 1 is at most 3). Applying (4.46) to (4.45)
via Cauchy’s inequality and using (4.25) (and the previous sentence to handle the sum over
the j;) completes the proof of Proposition 4.13. O

4.5. Conclusion. Now we use Propositions 4.12 and 4.13 to prove Theorem 1.5. We have
a decomposition

(447)  S(k,q) = S¥(k, @) + Sl (k@) — Sy (k. a) + (S (k q) — 58 (k. )) + Ex
The diagonal term is acceptable for Theorem 1.5, as is the small error term £..
Next we turn to the terms S’ (k, q), where x refers to <Y or co. We choose
ap2p2
with the same value of ¢ as in the definition of N* (see (4.36)). First consider S.,., where
Cauchy’s inequality implies
2

Z\S;Y<k,q>|5H(ZA(

/ 1/2
,qzqzrk TY |BZ| i

i1 qz q,LT’T’T
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Recall from (4.25) that 3, 6> < (kQ)*|B]*. Hence
2
_ Q - 1/2
S.v(k,q)| < (ma A(—, fo KT, Y)) 2
;I ik aq)l 5 11 W A\ Frrr B 18]

Recalling the definition (1.8), it is easy to see that

maxZ(_F_L, q q 'K, T, Y) < AN(Q,k,T,Y).
k,q q; q; T'rory

In summary, we have shown

41,22
> st ()] £ B (Q.k 1, L) 2

which is consistent with Theorem 1.5.
The case of S is fairly similar to that of SLy, though the details are more complicated.
Following similar steps as the case of SLy,, and using the AM-GM inequality, we derive

( Q
as Qg = \gf qr 'ror:

D1 5 138 TR TN,

plus a similar term with the i = 2 variables (¢, ¢, , etc.). By symmetry, this latter term
will give the same bound as the displayed one. Substituting the values of Q* and N* from
(4.36), we obtain

/ N 2
(4.49) ; S5, @) S !

sios itk T 5O op 1, LT PIBIQRN Y

“wagr gl

— ) q
4y gy r'ror ra " N(qy gy r'rgrikoks)?

A bit of checking, recalling ¢, < ¢;", shows this is consistent with Theorem 1.5.

Finally, we consider the polar terms from s = 1/2, namely Ség)(k, q) — S(SOX)/(k, q). We
need to show there is substantial cancellation between these two terms. To aid in this, we
first simplify Sc(g)(k, q) which recall is defined in (4.43). Observe that

g|(T")°
(g1 gy r'r3rikoky)?T?’

(4.50) N*=Y

and since |g| divides k272 (recalling (4.34)), then N* < Y. Then in the definition of S we
extend the sum over ab < N* to ab <Y, and subtract back the terms between N* and Y.
Write S (0) for the terms with ab <Y, and let S (O)Y* I S (which represents the

terms Wlth N* < ab <Y). We claim that S O)Y = S . To see this, we sum over g and d;
and ds in (4.43) (though modified to read ab <Y in place of ab < N*). The sum over g is
not constrained, and we have

S =TT () (-7

plkoro
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For d; and ds, we have

> van - L0 0

d1,dz|(koro)>® plkoro

Therefore, these two evaluations perfectly cancel. The sums over j; and js can be simplified
by using Lemma 4.2 in the reverse order. Moreover, since vs(t; —t3) = 1 at s = 1/2, we can
write Y wyi(t; — t2) = 1. Hence, the partition of unity is fully re-assembled.

Comparing (4.29) and (4.44), it is not hard to see that Bi(o) agrees with AEO) after removal
of ®;(gdydy)e(ut;). This shows the claim that Sﬁﬂ?y = S(SO}),. Hence S — S(So% = —SQY*,
which for ease of reference we write directly as follows:

w(1/2) ¢(k'r'koro)
SO k)= Y w@uld)d co(K)ew) > il
,Y ( ) gT’ g/ ( ) ( )51742 é( )EZ( )d17d2|(k07‘0)°° m 2]?’7”/{07’0

12l <1
o0 N N2 o=
1 : (0) 2(0)
|t (i~ ) (%_:1 (g) BB du

N*<ablY
(ab,koro)=1

Now the estimations are similar to those of SLy and S, , though the details are a little
different. Following the same initial steps as in SZ,-, we obtain

N1/2
(@51) 3159 (k)| S 6P max, max N
k,q

+ — / /
atarr 'K T M),
kag D' N~<M<Y (|g|M)Y2~ \qfqrr'ror R

N1/2 N

We claim this is bounded consistently with Theorem 1.5. To see this, first note $77 < Grr-

Then the condition “X R*(U < Q?*kT” from (1.8) is deduced from

Q*kT N'/? ( Q*K'T’ > - Q*kT

N (lglM) > \gf gy rrgri gl

The condition “X < C” from (1.8) is easy to check, by setting M = Y/C. This completes
the proof of Theorem 1.5.

< Q?*kT.

5. PROOF OF THEOREM 1.6

5.1. Miscellany. Here we present a couple tools with self-contained proofs.

Lemma 5.1. Let ¢, d be positive integers, and define the Dirichlet series

(5.1) Zoals) = 3 — L Re(s) > 1.

P IO
m|c™>®
Then
(5.2) Zea(s) = Z11(s)ve(s)da(s),
where Zy 1(s) has meromorphic continuation to Re(s) > 0 with a simple pole at s =1 only,
and where
—s—1 1 —S -1
p b
uc(s):H(1+1_p_1> , _ (1+ 1-p )1_p_5) .

plc pld
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Proof. A routine calculation gives
_ —s\—1 -1 P
Zeate) =T =17 Hl(”“_p )
ple (¢

from which the lemma follows with a bit of calculation. O

Lemma 5.2 (Separation of variables). Let w = wy be a smooth, even, function supported
on [—2V,2V], where V > 0, satisfying w‘(f)(x) <V, forall j=0,1,.... Let w(z,y, z,w)
be smooth of compact support on RL. Let g be a Schwartz-class function. Define F : R,
by

xly2> (Il Y1 T2 y2)
w )

F(x1,y1,02,12) = wy(T1y2 — nyl)g<Tlog ST
Toly1

X'Y' XY
where T', X, Y are positive parameters. Let R = %, and set U = max(T, R™'). Then
F(xq,y1, 29, = ——° ,
(1, Y1, T2, Y2) /IR4 zoy /) gyl gl

where G (depending on T,V, X,Y ) satisfies the bound for any A > 0

it
G(U17u2,U3,t)($1y2) duldUQdU;; di

£\ A
(5.3) |G (u1, ug, us, t)| <Ka U*1(1 + |_U|) H(1 +lug]) A

i=1

Remark. If s € C and w(z,s) = 2" 'wy(x), then one may apply the lemma to w(z, s),
giving rise to a family of functions G = G5. The proof shows that G satisfies (5.3) with an
implied constant depending polynomially on s.

Proof. By Mellin inversion,

~ dsiduidsyd
(54) F<x1ayl7$27y2) = /F(Slaula527u2)x1_51y1_UIx2_82y2_u2%7

where ﬁ(sl,ul, So,ug) is defined by

(5.5) /R

In (5.5), change variables z; — x;glxl, giving that ﬁ(sl, Sg, S2, S4) equals

/ N (%M) (Tlogary (P22 U1 22 12)
o, XY RV )T R U, Y XY

931y2> (-’Bl Y1 T2 y2> S1. Ul .82 uzdil?ldyldl"zdyz
w A e E—

wy (2199 — xZ%)g(T log Tt XY X'y L1 Y1 T2 Ya 11 T2Ys

4
>0

dxydy dzadys
T1Y1T2Y2 .

Now in (5.4), change variables u; — u; — s1, Sg — S9 — s1, and ug — ug + s1, giving

$1,,81tu1 .81+s2,,—s1+u2
1Yy ) Yo

~ T1Y2\ ~51 dSlduldSQdUQ
(5.6) F(z1,y1,2,92) = /F(51,U1 — 81,82 — 81, Uz + 51) <x2y1> e (2
where now ﬁ(sl, uy — 81,82 — S1, U + S1) takes the form of f[(sl, U1, Sa, Uz), Where
Loy (21 — 1))
TG P
Yy gy 9T sz

T1T2Y1 Y1 T2 y2>

H<m1ay1>$27y2):wv< Xy2 7?7?7?
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It is easy to check that
]_[(1'1,1€1J2J€2)<x17 Y1, Ta, y2> < Ule*jQY*klfk/?’

and that z; is concentrated on x; = 1 + O(min(R,T~1)), from whence integration by parts
gives

3
fl(_itaulau&u?) <4 U_1< | ‘> YRe UI—HLQ)XRG(UJ) H(l + ’uj|)_A
Jj=1
Taking Re(u;) = 0 and defining G' on R* appropriately completes the proof. OJ

5.2. Preparation. It is convenient to work with a couple modified norms that are closely
related to (1.3). Define

(5:7) A(QIT.N) = max /T/QSKT S OY Y| Y awhedan]a

/2<q<QX (mod q) 6 (mod k) N/2<ab<N
(¢,k)= (a,b)=

Clearly, A1(Q,k, T,N) < A(Q,k,T, N), and in the other direction, we have
A(Q? k7T7 N) S ZAI(Q7j7T7 N)

Jlk

Secondly, define

« 2
(5.8) Ay(Q,k,T,N) = max/ E E ‘ E Qg pAype(a,b)| dt.
lal=1 Jr/e<i<T

Q/2<q<Q (mod gk) N/2<ab<N
(a,b)=1
It is easy to see that A1(Q,k,T,N) < Ay(Q,k,T,N), since when (¢,k) = 1, the map
(x,0) — x0 is a bijection onto the set of primitive characters modulo gk. After having done
this, we then arrive at (5.8) by dropping the condition (g, k) = 1, by positivity. For the proof
of Theorem 1.6, we will bound the norm As,. Indeed, we can deduce Theorem 1.6 from the
bound

QQkTN<

N QT
Let w be a nonnegative smooth weight function with w(z) > 1 for 1/2 < z < 1, and

w(x) =0 for v < 1/4 and for x > 2. Then Ay(Q, k,T, N) < max|,=1 S, where

_ [T t q « gk 7 itl?
S = /_Oow<T> zq:w<Q>w(H%;qk) —80 qk)‘ (a%; Qg p(ab)(a/b)”| dt
N/2<ab<N

kT, N).

We will assume that a4 is supported on
(5.10) N/2 <ab< N, (ab,k) =1, and (a,b) =

A simple argument with a dyadic partition of unity and Cauchy’s inequality shows that

’Zaab —‘ Z Zaab < log N Z ‘Zaab

NiNo=<N axN; NiNo<N  axN;
dyadic b=<N2 dyadic b= Ny

Hence, in the proof of Theorem 1.6, we may assume that a and b are each supported in

dyadic ranges, say a < N; and b < N,.
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Let 1 <Y < 1%0 be a parameter to be chosen later. For ¢ (mod ¢k), say ¢k = ¢'(dk)
where d|k> and (¢',k) = 1, and write ¢ = ;)" where 1)y has modulus dk and ¢’ has
modulus ¢’. Let my(¢) = dk denote the modulus of the k-part of ¢, and cond, (1) denote
the conductor of ¢, i.e., the coprime to k part of ¢». Then S < S.y, where

Ssy = / w(—) Zw<g> > q—‘ > aapt(ab)(a/b)*| dt,
L) 2mg) 2 )
mod gk) a,b
COndql(’lﬁ)mk(dJ)>Yk

by positivity, since if ¢ is primitive modulo gk, then condy (¢)my () = cond(¢) = gk. This
uses that the condition gk > Yk is redundant to the support of w(q/Q).

By inclusion-exclusion, we have Sy = S<o —S<y, where for x € {Y, 00}, S<, corresponds
to the sum over cond, (¢)mg(v)/k < x. We will write S, as an alias for S<.

We begin with some arithmetic manipulations that are in common between S, and S<y.
Opening the square, we have

o t q qk
o [T T
o NTIAZNQS e elak)

cond s (v)my (1) [ k<x

> it ababian) (22) at.

o bias
az,b2

Define

(5.11) g1 = (a1, az), g2 = (b1, b2), g3 = (a1,by), ga = (b1, a2),

and note that the g; are pairwise coprime since (ay,b,) = (az2,b2) = 1 by the support of «
(recall (5.10)). Then change variables

ar — g1gzhiihiza, where (a1, 9193) =1
(5.12) az = g1gahaihasas, where (as, g194) = 1

b1 — gagahsahsaaby, where (b1, g294) = 1

by — gagahazhasba, where (b, g2g3) = 1
and where
(5.13) hijlg;e  for all 4, j, and (hij, hij) =1 for i # k.

The conditions (5.11) translate into
(&1b1,a2b2) =1.

Moreover, the conditions (a1, g193) = 1,..., (b2, gag3) = 1 in (5.12) may be expressed suc-
cintly as (a1a2b1bs, g1929394) = 1, since prior to (5.12) we had (a;,b;) = 1 from (5.10). Let

(5-14) g = (91792;937947 hi1, has, haot, hog, hsa, haa, has, h43),
where the h;; satisfy (5.13). In addition, let

Bz = gi1gshiihis, Bia = g1Gaho1hoa, Baa = g2gahsahaa, B2z = g2g3hashas,

and

Prob and Y2 = gih21h32h24h34 = P1aP

"= 9§h11h42h13h43 = .
9192 9192
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Observe that (71,72) = 1 since the g; are pairwise coprime, and using (5.13). With these
substitutions, we obtain

q qk
o s o(7) TG T
(q g192)=1 ¥ (mod gk)
cond s (1) (1) /K<

Le)—(2, Ya1ba\ (y1a1by\
S ol (20 (o,

(albl a2b2):1 f}/leaQ 72[)1&2
(a7g):1

where

(1g)=(2,8) _ =
(5'16) Q01 Xas by — ABi1sar,Baabs XBraaz,Basbas

and where the condition (a,g) = 1 is shorthand for (ajasbibs, g1929394) = 1. There are
additional conditions that are implicitly enforced by (5.10), which we will recall only as
needed. For later use, note

(5.17) Y1a1by < Y2a2by <
9192
Moreover, we claim that
1)
(5.18) > a5 <o,
g,a1,b1
and similarly for 0‘1(1227,%2' To see this, note that the variables g1, g2, g3, g4 appear as divisors of

Br3 or [ag, and similarly for half of the h;; variables (namely, hi1, his, hse, and hsy). For the
remaining h;; variables, we recall from (5.13) that his|gs, etc., so these variables range over
a set of cardinality << N°. Then (5.18) follows easily.

5.3. Direct method. In this section we estimate S<y by reducing to an instance of the
original norm, but with smaller parameters.

Proposition 5.3. We have S<y = S + 8Ly, where Sg, is given by (5.22) below, and
where

(5.19) Sy < g/lg);A(Y'/rk,rkkﬂT, N)laf.
|k

Proof. We pick up from (5.15). Write ¢ = ¢’ where 7|k and (¢, k) = 1, and write ¢ = x0
where # runs modulo 7,k and y runs modulo ¢’. Then

(5.20) S<y =) Z/ w(%> 2 2 w(q?;];(k)

g rglk>® q’ kglgg) 1 0 (mod rgk) x (mod ¢’)
cond(x)<Y/r,

1,g)—(2, Y1a1bo\ [ y1a1by\
> algalee( ) (E2) ar.

((llbl azbg):l fYlea/Q '72b1a2
(a,g):l
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We next replace ¢’ by ¢’ q0q1 where ¢’ is the conductor of Yy, (qo, ")y =1, and ¢|(¢')>, and
correspondingly write x = x'xo where x’ is primitive modulo ¢’, and g is trivial modulo qo-
Applying this substitution in (5.20), we obtain

so=2 2 [ e(p) XY Y s

g 7|k (q kglgg) 160 (mod rik) x (mod ¢’)
q'<Y/ry,

! b b it
Z w(Q Qqurc) qo0 Z a((lll,%za((i,gngle(hﬁ 2) <’Y1CL1 2> .
(q0,0'kg)=1 Q ©(q0) (arbrazbs)=1 ’ ’ Yebiraz/ \yabras
ql(¢")> (a,q08)=1

By Mellin inversion, and evaluating the sums over ¢y and ¢; with Lemma 5.1, the second
line above equals

b ba\it 1 §
Z af)bla((zi,ax@(%% 2> (71CL1 2) _/ ( Q/) W(8) Zy pga(s)dsdt.
’ ’ ’72()1 ao ’)/le (o)) 211 (2) Trq

(a1b1,a2b2)=1
(a,g)=1

Since k, g1, g2, 93, g4, a1, a2, by, by are pairwise coprime, we have
(5.21) Zy kga(s) = Z1,1(5)vq (5)0kg(5)0a,b, (5)daz, (),

which is an important separation of variables.

Using the meromorphic continuation of Z; ;(s) provided by Lemma 5.1, we shift the con-
tour of integration to the line Re(s) = ¢, passing a pole at s = 1. Let S(<0}), denote the residue
term, which is given by -

(5.22) SO = ZZ%/ w(%) > 2 Z el leyg;k

relk> 8 0 (mod rik) (¢’ k:glgz) 1x’ (mod ¢’)
q'<Y/ry,

b bo \ it
Z 5‘11‘710‘((111’%35@21)25((122’%;)(’9(71&1 2) <’Y1CL1 2) dt.
(a1b1,a2b2)=1 ’ ’ Yabias/ \yabias
(a7g):1

where Z; ; denotes Ress—1Z11(s), vy denotes vy (1), and 4, = 6,(1).
By the triangle inequality, and some simple bounds, we have

CENCRED SIS 3 WD SRED SIp O

rio [k ?T0 (mod rih) (¢' kg1 g2)=1x' (mod ¢')
q¢<Y/ry

B ab abg\ it
‘ > 5a1b1(5)04211’%35@52<5)O‘gi’%ixle<% : 2)(% 1 2>
, ; Yobiag/ \yabyas
(a1b1,a2b2)=1
(a,g)=1

dt.

Note |X'0(717%2)(71/72)%| < 1, which may be used to simplify this bound. To show the desired
bound (5.19), we state and prove Lemma 5.4 just below, as it will be useful later as well. [
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Lemma 5.4. Let ’yélg and 7(222 be sequences of complex numbers supported on ab =< M,

(a,b) = 1. Consider an expression of the form S,(Q,k,T, M) defined by

1) —(2 a1bs a1by\
[ Y 5 S| 5 (i)
TB mod k) (g,k)=1 x(mod q) (a1b1,a2b2)= e e
Q/2<¢<Q

dt.

Then
8,(Q. k. T, M) SA(Q. k, T, M) max |y

Proof. To separate the inner variables, we use Mobius inversion in the form
(524) 5((@1[)1, agbg = 1 Z Z Z Z (63)#( )
e1l(a1,a2) e2|(a1,b2) e3|(b1,a2) ea|(b1,b2)

The e; are pairwise coprime, by the support of . Thus

S,(Q.k, T, M) < Z/ Sy YT A,

enez,esea’ ~T g (mod k) (g,k)=1 x (mod q)
Q/2<q¢<Q

where

Al= D> YamxBlaib) (Z—i)#,

a1=0 (mod ejez)
b1=0 (mod ezeq)

and A, has a similar definition. Lemma 5.4 follows by using |A;As| < | Ai]* + |As]? and
monotonicity (Lemma 2.1). O

5.4. Divisor switching method.
Proposition 5.5. We have a decomposition
Soo =S + 8+ S%es 1 g,

with the following properties. The term SO s given by (5.34) below, and S._ satisfies the
bound

Q’kT—1 N 9
2 "< A/ T,N .
(5.25) 5] £ 5 & (g #o TV o
The diagonal term satisfies the bound
(5.26) |92 < QKT |af?,

and the term E 1is negligibly small.

Proof. We carry on with (5.15) and apply orthogonality of characters to the sum over .
This picks out the congruence via1bs = 72a2b; (mod kq), however with a side condition
(7172G1a2b1b2, kq) = 1. This side condition can be dropped, since the congruence yia1by =
Yaa9by (mod kq), combined with (y1a1bs, y2a2b1) = 1, implies that (vy1y2a1b9a2b1, kq) = 1.
Additionally evaluating the ¢-integral, in all we obtain

oY ¥ ow(g) Y alfaima(rilin)

2020,
(9,9192)=1 (a1b1,a2b2)=(a,g)=1 7
~y1a1ba=7y2a2b1 (mod kq)
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where wy (z) = zw(x) and W(z) = [ w(t)e dt.
Let S4i8¢ he the contribution to Sy, from the diagonal via1by = Yaagby. Since (yia1by, y2a2b1) =
1, this forces 7; = a; = b; = 1 for i = 1,2. Hence recalling (5.16), we obtain

(5.27) S L QKT Y |ag, l” = Q*KT o,
91,92
Let S7 = So — Sgéag be the non-diagonal portion of S,,. Write yya1bs = Yoa2b1 + gk,

where r # 0. Additionally, we detect the condition (q,g192) = 1 by Mdbius inversion in the
form 3~ 1, 410) #4(d), and substitute ¢ = de. This gives

d
SL=QKTY Y uf Z (5) 3
g d|9192 TEZ\{O}
~ b
> &gi’%zaii’gbiw(T log 19172 2>.

7 7 Yaazby

(a1b1,a2b2)=(a,g)=1

v1a1ba —y2a2b1=dekr

Now we perform the divisor switch: re-write yia1b9 — Yoa2b; = dekr as

_ Yiaiby — y2a2b;
dkr '

(5.28) Y1a1by = Yoa2b;  (mod dk|r|),
It is convenient to record that the side condition
(529) (7172&1@2[)1()2, dkT) =1

follows from the congruence (5.28) together with the coprimality (yia1b2,72a2b1) = 1. We
also factor r as

r=ror, ol (kg192)>, (r1,kg192) = 1.
With these substitutions, we obtain

SLoTY Y ) Y w (R

g d|g192 r1€Z\{0}
rol(kg1g2)>° (r1,kg192)=1

(Lg) (2.8 narbyy
Z aal’blaamew(Tl og —— ~oiiah
(a1b1,a2b2)=(a,g)=1 2021
71&11725“{2[12()1 (mod dk?"o)
"ylaleE’yQale (mod |T1|)
Next we express the congruences using Dirichlet characters modulo dkry and |rq|; this is
enabled by the side condition (5.29). This leads to

d 1
so—ary, Y M sy >
g d|g192 @(dkro) 0 (mod dkrg) r1€Z\{0} g0(|7‘1|) x (mod |r1])
ro|(kg1g2)>° (r1,kg192)=1

b by — b1\ b
Z O‘EulljizafﬁixQ(%&l 2>w1<’)’1a1 2 — 7202 1>w<Tlog 71a1 2>.
’ ’ Yaa2by kror @ Yoa2by

(a1b1,a2b2)=1
(a,g)=1

The characters of varying modulus need to be primitive, so we substitute

/
Ty — T1T2q, X — XoX;
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where 71[(¢")*°, (r2,q') = 1, x is primitive of modulus |¢'|, and g is trivial modulo r,. With
this, we obtain

" d
SL= @) D wéﬁd(kzo) 2o X

g dlg192 0 (mod dkro)  ¢'#0 r1l(q)*°
ro|(kg192)>° (¢'kg192)=1 (ra,q’ kg) 1
y1a1b2—7y2a2b1
* (Lg) ~(2.:8) Y1a1bo wl( krorir2q'Q ) N Y1a1be
Z Z Qo5 X b2xﬁ - w(Tlo .
’ ’ Yaa2by (riralq’]) Yaa2by

x (mod |¢'])  (a1b1,a2b2)=1
(a1a2b1b2,gra)=1

Let wy(z) = 27wy (), so we(z) = z?w(x), and ws(—s) = w(2 — s). In addition, apply the
Mellin inversion formula to wy. Then we obtain that S equals

pu(d)kro _neld]
Q*kT w(2 — s)
20 2 iy 2 2 Zm EEAE Y Z |
g d|g1g2 0 (mod dkro) (¢',kg192)=1 71|(q") mod |¢'|)
ol (kg192)>° (r2,d'kg)=
Y1a1by — Yaagby \ ¢ (Sgn)ail’%)@f’%) Yia1b2\ maibe\ ds
> ) Ty (e o (Tlos ) o

krorireq'@ |y1a1b2 — 202D | Yaa2bq Yoagby / 2mi’

(a1b1,a2b2)=1
(a1a2b1b2,gr2)=1

where the summand (sgn) is shorthand for the indicator function that
(5.30) sgn(q’) = sgn(y1a1by — Yoa2b1).

Prior to the Mellin inversion formula, (5.30) was enforced by the support of ws.
The sums over r; and 7o evaluate exactly as in (5.21). Thus

d)k’T’() |q *
s-gury. Y OMOm Y% )3
00 dk /
g d|g192 90( TO) 0 (mod dkro) q'#0 QO(|(] |)X (mod |¢'|)
rol(kg192)>° (¢ kg192)=1

g Yra1by — Yoasby \ 8
’ZU(2 — S)Zl,l(S)V ’(3)5gk(8) ( )
/(2) q (albl,%%g):l kroq'@
(a,g)=1

1,g)—(2,
(Sgn)5a1b1(8)5@1,2(8)@21%30422%2 9(71&1[92)@(77 o ’Yl%%)ﬁ
10102 — Yaazb: | V20201 Yotgby / 270
Now we apply a dyadic partition of unity of the form
Y1a1by — 20201
= > o )
P

V dyadic

where w is smooth, even, and supported on [1,2] U [-2, —1]. By the rapid decay of w, and
recalling (5.17), note that

b by — b\ -4 by — bily —A
@(Tlogm> < <1+T|%a1 2 7 a2 1‘) < <1+T|’Yla1 2 — 7202 1\)
Y2201 Yo2by N/(g192)
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Therefore, we may assume that

(5.31) 1<V < Vi = (QETN)7,

9192T

absorbing V' > V., into the error term &,..
With this partition, we obtain

1" 2 -1 dk‘T’o
Se=@RTY. 3 VD nglzro) 2 m

g 1<KV <Vmax d|g192 6 (mod dkro) q'#0

To\(kglgz)“ (¢ kg192)=1
> s L B2 5) 2 (s
X (mod |¢’]) 2w k?“0|q |Q (a1b1,a2b2)=1
(a,g):l
(1,8)—(2,g) Y1a1bs Y1a1b2 — V20201 Y1a1bs
(Sgn)(salbl (S)6a2b2 (S)aal,%l aag,%gxe <72a2b1 )ws < V )w (T 1Og ’YQCLQ 1 ) ds?
where w,(r) = x*"'w(x). By shifting the contour far to the right, ¢ may be truncated at
V
5.32 < = ETN)®.
(532 /]2 Q = 1 5(QKTN)
We next want to apply Lemma 5.2. Note that
Bizay Bazba Braas Baaby
Yai1by = ) Yoazby = )
g1 92 g1 92

where recall the support of o implies [i3a1 < [14a0 <X Ny and Pagby < [ogby <X Ny We may
then freely attach a redundant weight function of the form

w(ﬁlsal Poaby Praas 523172)

Ny, Ny, Ny Ny, /

Now this is set up to apply Lemma 5.2 with z; = g7 fi3a1, y1 = gy *Paab1, T2 = g7 ' Braas,
Yo = Gy LBys3by, X = % and Y = %, and with w = w,. Observe that with this substitution,
then v1a1bs — Y2a201 = x1y2 — x2y1, as desired. This gives

, dkT’Q
SL=Q%T> Y V- /Gs(ul,uQ,U:s,t) > ::Ed;m"o) >

g 1<KV <Vhax d‘glg? 0 (mod dk’r‘o)

TO\(kylgz)“’
2 : E A /
27TZ /2 ]{;Tolq |Q ( S) 1,1(S)I/q (3)5kg<5>
l'|<Q*

X (mod |¢'])
(q',kg1g2)=1

b boNit  dusduod
Z 5a1b1(3)5a2b2(S)Q(l’g)@@’g)xe<%al 2) (%al 2) dtwd&

a1,b1 “az,ba U], U2 zu3
(a1b1,a2b2)=1 72&2[)1 72@2[)1 Y1 Y2
(a,g)=1

(sgn)

<P

plus a small error term. Here G = G depends on s, via w,(z) = 25" 'w(x). We also record

N
Vorge — a U= (QKTN ),

5.33 R = ,
(5.33) N 9192V
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Now we shift the contour to the line Re(s) = €. In doing so we cross a pole at s = 1,

and we denote its residue by S There is a small but convenient simplification with the
sign condition (5.30), namely that all the summands are independent of sgn(yya1by — yoa2b1)
and sgn(q’), except for the indicator function that these signs agree. We may therefore take
¢ > 0. We also make a small modification by factoring rq = r,4ry where r,4](g192)>° and
r|k>°. With this simplification and others, we obtain

0 d
630 S-S Y 8 [ Glwmnt) 3

Tk|]€°° g 1KV <Vmax d\g1g2
rgl(9192)>°

f&?lleyq/(Skg *
Yy dZands s

/
0 (mod dkrgrr) ¢’ <Q* (P(q ) X (mod ¢’)
(¢',kg192)=1

Z Oayby (5a2b2a(1’g) a8y (71@152 > (’71a1b2 ) itdt duydusdus

b b
ai,b1 —a2,02 ,72a2b1 72&2191 yiulyuul_w;g

(a1b1,a2b2)=1

(avg)zl

Let S/ denote the remaining contour integral along Re(s) = €. Here we obtain

|S’|<QI<:T/ @2-s) > vt Y at

g 1K<V <Vhax d|9192
ro|(kg192)>

|G(ur, us, ug, )| dugdusdug Y > Z

0 (mod dkrg) ¢'<Q* x(mod ¢’)
(' ;kg1g2)=1

Z Oarby (8 ) Ao, lee(albl)<bl>it'5a2b2( )or az’gnge(bQ az ( ) ‘dt|d3|

(a1b1,a2b2)=1
(a,g)=1

Rél

A small issue here concerns the dependence of G on s. By the rapid decay of |w(2 — s)|,
we may truncate the s-integral at |s| < 1. The remark following Lemma 5.2 shows that the
family of functions G4 have a good uniform bound. We may then truncate the t-integral
at U(QKTN)°™. Lemma 5.4 allows us to essentially remove the coprimality condition

(albl,agbg) = 1 we apply this lemma with M < — 9102 and V(SLZ,I)) = 6ab<8)af(ll;’bg)~ With these
steps, we may then estimate S’_ in terms of the original norm (1.3), giving

(5.35) |SLISQETY Y vty d!

g 1<<V§Vmax d\g192
ro|(kg192)*°

UTA(Q dkro, U, —>|a al®)|,

a1,b1 a2,b2

where recall U is given by (5.33) and Q* was defined by (5.32). Note UV = (QkTN)
It is convenient to write V' = Vj.x/P, where 1 < P < Vjax, in which case ( 5) sunphﬁes

‘Q
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as

< @ 1
(5.36) |5 5723 > > y

P<Vmax d\g1gz
ro|(kg192)*>

N N )
dkr,ry, PT, ) all®) o 28)
N <QkT91927"g7"k;P g 9192 2, bl oaral
Recalling the definition (1.8), this completes the proof. O

5.5. Conclusion. Now we use Propositions 5.3 and 5.5 to prove Theorem 1.6. Recall that
we need to show that Ssy satisfies (5.9), that is

Soy < \a\2<Q2kT+ Qj\];TN(kgT, kT, N))

where for convenience to the reader we recall the definition (1.8):

N
/ _ JE—
A(@ kT N) = X,R,U,Cnelﬂ%;,mzw XA (R’ 60, C>'
XRUU<Q2KT
X<C

We have a decomposition

Ssy = Sec — Scy = S 4+ 5 — Sty + (5% - S(<01)’) + oo

The diagonal term S48 is acceptable for Theorem 1.6, as is Ex.
Now we turn to the terms SZ,. Recall the definitions (5.32) and (5.31). We choose

N
5.37 Y =(QkTN)"——
with a value of € so that when V = V.., then Q* = Y __  Using the assumption

91927gTk

Q*kT > N'7¢ it is easy to check that (5.19) is acceptable for Theorem 1.6, and also that
Y < @Q/100, so this is a valid choice of Y. Moreover, (5.25) directly shows that S’ is
bounded in accord with the theorem.

Finally, consider the polar terms from s = 1, namely SO and Sg/ given by (5.34) and
(5.22). We simplify S continuing With (5.34). We reverse the orders of summation between
V and ¢'; the condition ¢’ < Q* = ri — (where C' here is shorthand for (QKT'N)*) becomes
instead V' > C~'¢/Qkryry (on the inside) and ¢’ < ——-— (on the outside). We then write

9Tk9192
SO = S Ség)% where S(O) has V unconstrained, and S(O) has V < C7'¢'Qkryr,. A

pleasant feature of 5 )1 is that the sum over V' re-assembles the partition of unity, since G
corresponds to ws(z)|s=1 = w(x). We also re-open the definition of w. Together, these steps
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give
39 sh=ar S5 [ wf oy, >
_ o(dkrgry)
rp|k>® 8 d|9192 6 (mod dkrgry,)
rgl(g192)>°
1 o
S o X e ¥
q *TkT;/ng x (mod ¢’) (a1b1,a2b2)=1
(¢ kg1g2)=1 (2.8)=1
_ arba\ (y1a1b2\%
asindaat b a0 (T2 ) (122 gy,
1b1 szQal,bl aa2,b2 72a2b1 7261261
Next we further cut this sum into four pieces, via
(5.39) I D D VL DD
_ Yy Y 1< Y Y <g'< Y
7< *rwgng 7< *T;@ Tkng ¢ *Tk Trrgdgigz 1 STrg19a TRrgda192 =1 STpTgg192

Call the corresponding sums 5;, for 1 = 1,2, 3,4. There is a pleasant simplification available
for Sy, Sa, and Ss. In these three sums, both the summation conditions in (5.39), as well as
all the summands in (5.38), depend only on the product dr, = D (say), with the exception
of the presence of p(d). Mobius inversion means that the sum over d|D detects D = 1. This
immediately implies S5 = 0. Moreover, we see that S§; = 5 (<01)/, which is a crucial cancellation.
The sum S5 becomes -

S=-0k S 30 [ uf

2.

relk® g k)e(modk:rk)
1 ko
X Tzt 3
st Pt e
(¢',kg192)=1 (&=t
_ a1y (r1a1by\
Sarb,Ougpy B T2 9(% )( ) dt.
11 OaobaYay by Faz by Ya@2b1/ \ 20201

Similarly to the estimation of S, using Lemma 5.4 we obtain

1 1 N
So| < | k maX o max ( kry, T, )
52l S ol relk> kg X< Q b 9192

Write Q' = TkLP, where 1 < P < g1g9, giving

QQkT __ N
S5 < Jaf? PA(—,k T )
2~ ‘a’ N g%?]g(oo QkTTkP "k gi192
1<P<gi1g2

This is consistent with Theorem 1.6. The sum Sy is similar in shape, and we obtain

2kT P — N N
@ max max 9192A< ,dkrirg, T, _>7
grilk® 1<P<d d QkTryrgg192 P g192

rg1(g192)>°

Sy S el

which is acceptable.
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Next we turn to estimating Ség?z. Our expression for this is identical to (5.38), except we
have an additional weight function of the form

X .
(5.40) Qz) := Z w(v), with x = y1a1by — Yoa9b;.
1<KV S Qkryry
The function Q(z) is identically 1 for 1 < |z| < ¢ Qkrgry, but it vanishes at @ = 0. Let
Qo(z) = 1 - Q(z) for [x| < 1, and such that Qy(x) = 0 for || > 1. Let S._, denote the

same expression as SQ?Q but with 2 replaced by {2y := 2 + Q, and let Sgéan = — S
Indeed, Sgéan is supported only on vyia1by = Ysa9b;. By similar reasoning as in (5.27),
obtain ’
[SE| S QRTY|af* S Nlaf?,
Since N < Q*kT, this is no worse than (5.27).
Finally, consider S/ ,. The function {2, meets the conditions of Lemma 5.2, with V' taking

the value C~1¢'Qkryr,. Hence we obtain an expression of the form
g

002_QkTZZ/ Z dkr rk,) Z

re|k>® g d|g1g2 0 (mod dkrgry,)

Tgl(g192)>°
1 *
Z o(q) Z W(1) 21,1V Okg Z G(t, u1, ug, uz)
q _Wﬁ X (mod ¢’) (a1b1,a2b2)=1
(¢’ kg1g2)=1 (a.g)=1
b bo\?  dujdusd
5a1b15a2b2at(111’%za((1227%2 9(71011 2)<71a1 2) dt 711;1 322 333‘
’ ’ Yoa2b1 / \ Y2020 Y1 Y27 T2
The bound on G is given by (5.3), with now
N
=———(QKTN)"W.
q'Qkrerggi 9 )

The estimations are similar to those of S._, Sy, and 54, and we obtain

N
<Q’, dkryry, U, —> .
g192

1Sl S 1aPQRT  max

grplk  dkr,ry o Q’
o T OE @S Ry
This simplifies as
2kT — N
|5 2\ < |a]2Q max max 9192A( ,dkryry, TP, )
grklk> 1P e QkTrirgg1g2 P’ 9192

One checks this is consistent with Theorem 1.6, which completes its proof.
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