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Abstract. We prove an essentially optimal large sieve inequality for self-dual Eisenstein
series of varying levels. This bound can alternatively be interpreted as a large sieve inequality
for rationals ordered by height. The method of proof is recursive, and has some elements
in common with Heath-Brown’s quadratic large sieve, and the asymptotic large sieve of
Conrey, Iwaniec, and Soundararajan.

1. Introduction

1.1. Setting up the problem. A general large sieve inequality is an upper bound on the
operator norm of an arithmetically-defined matrix Λ = (¼m,n), with ¼m,n ∈ C. Define the
norm of Λ, denoted ∥Λ∥, by

∥Λ∥ = max
|³|=1

∑

m

∣∣∣
∑

n

³n¼m,n

∣∣∣
2

, ³ = (³n).

The duality principle implies that ∥Λ∥ = ∥Λt∥, where Λt = (¼n,m).
A particularly interesting choice of ¼m,n is ¼f (n), where f ranges over a family F of

automorphic forms or L-functions, n ranges over an interval of positive integers, say N/2 <
n f N , and ¼f (n) is the n-th Dirichlet series coefficient of the L-function L(f, s). In this
case, we write ∆(F , N) for the norm of this large sieve matrix, namely

(1.1) ∆(F , N) = max
|³|=1

∑

f∈F

∣∣∣
∑

N/2<nfN

³n¼f (n)
∣∣∣
2

.

The dual norm ∆∗(F , N) is given by

(1.2) ∆∗(F , N) = max
|´|=1

∑

N/2<nfN

∣∣∣
∑

f∈F

´f¼f (n)
∣∣∣
2

.

The classical multiplicative large sieve inequality concerns the case where ¼f (n) = Ç(n),
and where the family runs over primitive Dirichlet characters Ç modulo q, with q f Q. Ap-
plications include the Bombieri-Vinogradov theorem, estimates for moments of L-functions,
zero density estimates, and a variety of sieving problems. See [M] for details.
There are many works on large sieve inequalities for other families. For instance, Deshouillers

and Iwaniec [DI] obtained a sharp bound for cusp forms on GL2, which in turn has been a
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powerful tool in studying statistical properties of the Riemann zeta function on the critical
line. Heath-Brown [H-B] showed an essentially optimal upper bound on the sparse sub-family
of quadratic Dirichlet characters. Many state of the art works on quadratic twists of modular
forms, with elliptic curves being of particular interest, have relied on Heath-Brown’s bound.
In this paper, we are interested in the following family F . For any Dirichlet character È

modulo r and real number t, define

¼È,t(a, b) = È(a)È(b)(a/b)it.

Here
∑

ab=n ¼È,t(a, b) =: ¼È,t(n) is the n-th Hecke eigenvalue of a self-dual Eisenstein series
on Γ0(r

2), and when È is primitive, the Eisenstein series is a newform. Let k be a positive
integer, and let ¹ run over all Dirichlet characters modulo k. Let Q g 1 be a real number,
and for each Q/2 < q f Q with (q, k) = 1, let Ç run over primitive Dirichlet characters
modulo q. Finally, let T g 1 be a real number, and let |t| f T . Then define F to consist of
the characters Ç¹, with corresponding data ¼Ç¹,t(a, b), with N/2 < ab f N and (a, b) = 1.
We write

(1.3) ∆(Q, k, T,N) = max
|³|=1

∫

T/2ftfT

∑

Q/2<qfQ
(q,k)=1

∑∗

Ç (mod q)

∑

¹ (mod k)

∣∣∣
∑

N/2<abfN
(a,b)=1

³a,b¼Ç¹,t(a, b)
∣∣∣
2

dt,

which agrees with ∆(F , N) for this family F . The dual norm ∆∗(Q, k, T,N) is given by

(1.4) ∆∗(Q, k, T,N) = max
|´|=1

∑

N/2<abfN
(a,b)=1

∣∣∣
∫

T/2ftfT

∑

Q/2<qfQ
(q,k)=1

∑∗

Ç (mod q)

∑

¹ (mod k)

´Ç,¹,t¼Ç¹,t(a, b)dt
∣∣∣
2

.

As a ‘trivial’ bound, which we mainly state for a frame of reference, one may deduce from
the classical large sieve inequality the bound

(1.5) ∆(Q, k, T,N) j (Q2kT
√
N +N logN).

Deducing the estimate (1.5) uses the idea of the Dirichlet hyperbola method, by summing

over a f
√
N trivially, and applying the classical large sieve to the sum over bj N/a.

The condition (a, b) = 1 may be easily overlooked, yet it is vital. The above sketch shows
that the trivial bound (1.5) holds even without the condition (a, b) = 1. In fact, if the

condition (a, b) = 1 were to be omitted in (1.3), then the term of size Q2kT
√
N in (1.5)

would not be removable, because one could choose ³a,b to be the indicator function that
a = b in (1.3). For this, note ¼Ç,t(a, a) = 1 for a coprime to the modulus of Ç. Therefore,
any substantial improvement over this trivial bound must use the condition (a, b) = 1.
The restriction (a, b) = 1 is similar in spirit to the (necessary) square-free restriction when
studying quadratic characters, as in [H-B]; for more on this point, see Section 1.4.1. We also
observe that choosing ³a,b = ³ab to depend only on the product ab would give rise to sums
of the form

∑
n ³n¼È,t(n) appearing in (1.3). Then considering n = p2 would lead to a large

term as discussed above.

1.2. Main results, and discussion.

Theorem 1.1. We have

(1.6) ∆(Q, k, T,N) jε (QkTN)ε(Q2kT +N).
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This estimate is optimal (up to the ε-aspect) by general principles (see [IK, Chapter 7]).
We may interpret this as a spectral large sieve inequality for the family of trivial nebentypus
newform Eisenstein series on Γ0(q

2k2), with varying level q. Theorem 1.1 appears to be the
first sharp large sieve inequality for a GL2 family with varying levels. The classical large sieve
inequality can be interpreted as a GL1 large sieve inequality, while Heath-Brown’s celebrated
quadratic large sieve can be viewed as an estimate for the sub-family of self-dual GL1 forms.
The GL2 families of varying nebentypus do not seem to have strong orthogonality properties,
as shown by Iwaniec and Li [IL].

We also have an additive character variant on Theorem 1.1.

Theorem 1.2. Define a norm

∆add.(Q,N) = max
|³|=1

∑

Q/2<qfQ
(q,k)=1

∑∗

t (mod q)

∣∣∣
∑

N/2<abfN
(a,b)=1
(ab,q)=1

³a,beq(tab)
∣∣∣
2

dt.

Then ∆add.(Q,N) j (Q2 +N)1+ε.

Theorem 1.2 follows quickly from Theorem 1.1, by the method in [IK, Section 7.5]. We
have omitted the T and k aspects solely to simplify the expressions; hybrid bounds analogous
to (1.6) hold for the additive characters as well.

We may interpet Theorem 1.1 as a large sieve inequality for rationals, which we now
explain. Let vp be the usual p-adic valuation. For q g 1, let Q(q) = {x ∈ Q : vp(x) g
0 for all p | q}, which is a ring. Indeed, with the multiplicative set S defined by S = {n ∈
Z : (n, q) = 1}, then Q(q) = S−1Z, the localization of Z by S. There exists a natural
reduction map redq : Qq → Z/qZ. The reduction map may be restricted to Q×

(q) = {x ∈
Q : vp(x) = 0 for all p | q}, which is a multiplicative subgroup of Q×. If Ç is a Dirichlet
character modulo q, and n ∈ Q×

(q), then define Ç(n) by Ç(redq(n)). That is, if n = a/b ∈ Q×
(q),

then Ç(n) = Ç(ab). For n = a/b ∈ Q× in lowest terms, define ht(n) = |ab|, which is a cousin
of a height function. Note that |{n ∈ Q× : ht(n) f X}| = X1+o(1).

Theorem 1.3. We have

(1.7)
∑

qfQ

∑∗

Ç (mod q)

∣∣∣
∑

n∈Q×
(q)

ht(n)fN

³nÇ(n)
∣∣∣
2

j (Q2 +N)1+ε
∑

n∈Q×

ht(n)fN

|³n|2.

This is simply a restatement of Theorem 1.1 in this notation, with k = 1 and the omis-
sion of T . These specializations are not necessary, and are only in place to de-clutter the
statement.

From Theorem 1.3 one can also easily derive results about rationals ordered by the more
standard height function. For n = a/b ∈ Q× in lowest terms, let Ht(n) = max(|a|, |b|). Note
that ht(n) f Ht(n)2, from which we immediately deduce:

Corollary 1.4. We have

∑

qfQ

∑∗

Ç (mod q)

∣∣∣
∑

n∈Q×
(q)

Ht(n)fN

³nÇ(n)
∣∣∣
2

j (Q2 +N2)1+ε
∑

n∈Q×

Ht(n)fN

|³n|2.
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This is sharp, since |{n ∈ Q× : Ht(n) f X}| = X2+o(1). Since Theorem 1.3 easily implies
Corollary 1.4, but not vice-versa, this supports our usage of ht in place of Ht.
For n ∈ Q×, one may define ³n = e(n), or ³a/b = eb(a), etc. These examples illustrating

Theorem 1.3 are somewhat similar to the quantities studied in [DFI].
The proof of Theorem 1.1 attacks the problem from both sides, via ∆ and ∆∗. In this

sense, the proof has new features not seen in previous large sieve inequality bounds. Very
briefly, the strategy of proof is as follows. If N k Q2kT , then we study the dual norm ∆∗

and apply the functional equation of Dirichlet L-functions. The dual side is effective in this
range of parameters because the functional equation will shorten the lengths of summation.
On the other hand, if N j Q2kT , then we more directly study the family average. The main
tool on this side is the divisor-switching method used by Conrey-Iwaniec-Soundararajan on
the asymptotic large sieve [CIS] (see also [H, p.210]). On both sides, we derive a recursive
bound which relates the norm to itself, but with different (smaller) parameters.
When N ≈ Q2kT , then both methods are essentially circular. The key to breaking out of

this deadlock is to use monotonicity, lengthening one of the sums. The use of the functional
equation and monotonicity were both crucial tools in Heath-Brown’s quadratic large sieve.
A major difference between our method and Heath-Brown’s is that in the quadratic case,
the norm was almost self-dual by quadratic reciprocity. This property completely fails in
our situation.

We now discuss the two main workhorse results used to prove Theorem 1.1, both of which
require defining some variants on ∆. Let

(1.8) ∆′(Q, k, T,N) = max
X,R,U,C∈Rg1,ℓ∈Z>0

XR2ℓUfQ2kT
XfC

X∆
(
R, ℓ, U,

N

C

)
.

Note trivially ∆(Q, k, T,N) f ∆′(Q, k, T,N), by taking X = 1, R = Q, ℓ = k, U = T ,
C = 1. Theorem 1.1 will show these norms are essentially the same order of magnitude.
On a first pass, the reader is encouraged to think of ∆′(Q, k, T,N) as ∆(Q, k, T,N) itself.
Another notational convenience is to write

(1.9) ∆(Q, k, T,N) = max
QfRfQ(Q2kTN)ε

TfUfT (Q2kTN)ε

NfMfN(Q2kTN)ε

∆(R, k, U,M),

and similarly for other norms, such as ∆′. In practice, the choices of ε will be either unim-
portant, or apparent from the context, and no confusion should arise from suppressing them
on the left hand side of (1.9).

Theorem 1.5 (Recursive functional equation). Suppose N k Q2kT (QkT )−ε. Then

(1.10) ∆(Q, k, T,N) j (QkTN)ε
[
N +

N

Q2kT
∆′

(
Q, k, T,

Q4k2T 2

N

)]
.

We also derive a recursive bound on ∆ by the family average approach.

Theorem 1.6 (Recursive family average). Suppose Q2kT k N(QkT )−ε. Then

(1.11) ∆(Q, k, T,N) j (QkTN)ε
[
Q2kT +

Q2kT

N
∆′

( N

kQT
, k, T,N

)]
.
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The proofs of Theorems 1.5 and 1.6, appearing in Sections 4 and 5, respectively, are logi-
cally independent, and can be read in either order. Although very different in the fine details,
the two proofs have important structural similarities. Because of the logical independence of
these two sections, and due to the strong analogies, we have deliberately chosen to ‘refresh’
notation when passing from Section 4 to Section 5. Even more, we have structured the
proofs in a similar way, and chosen notation to help draw the reader’s attention to analogous
quantities in the two proofs.

Our main interest in Theorem 1.1 is with k = T = 1. However, the recursive nature of
the proof and the appearance of the generalized norm ∆′ in Theorems 1.5 and 1.6 forces us
to consider more general values of k and T .

1.3. Applications. The classical large sieve has a wealth of important applications, and
we consider some variants for the new rational large sieve (Theorem 1.1). The literature
in analytic number theory on sieving problems for the rational numbers is relatively sparse.
The authors of [EEHK,Z] give versions of Gallagher’s larger sieve for rationals, and deduce
some impressive algebraic applications. More applications could be of great interest.
Consider the following sieving problem. Let N = {n ∈ Q>0 : ht(n) f N}. Let P be a

finite set of prime numbers. For each p ∈ P , let Ωp ¢ Z/pZ. Define the sifted set

S(N ,P ,Ω) = {n ∈ N : for all p with vp(n) = 0, redp(n) ̸∈ Ωp}.

Note that if vp(n) ̸= 0, then redp(n) may not be defined. Let É(p) = |Ωp|, and suppose that

É(p) < p for all p ∈ P . Let h(p) = É(p)
p−É(p)

for p ∈ P , and h(p) = 0 for p ̸∈ P , and extend h

multiplicatively on the squarefree integers. Define H =
∑

qfQ h(q).

Proposition 1.7. With the above notation, we have

|S(N ,P ,Ω)| j (N +Q2)1+ε

H
.

One can prove this following the method of [IK, Theorem 7.14]. Alternatively, see [K,
Proposition 2.3] for a proof in much greater generality. For a nontrivial result, one needs
H k N ε, which is more restrictive than in the classical arithmetic large sieve.

A standard application of the classical large sieve is to let Ωp consist of p−1
2

residue

classes chosen arbitrarily, for all p f Q. Then H k Q, and taking Q =
√
N gives that

|S(N ,P ,Ω)| j N1/2+ε.
We also present a Barban-Davenport-Halberstam type theorem. Suppose that ³n is a se-

quence supported on Q>0, with ht(n) f X. We assume a weak Siegel-Walfisz type condition
for the sequence, as follows. Define

S(X,Ç) =
∑

ht(n)fX

³nÇ(n).

For Ç = Ç′Ç0 with Ç′ of conductor r > 1, and Ç0 trivial modulo s, we assume

(1.12) |S(X,Ç)| jB,k |³|
X1/2Äk(s)

(logX)B
,

for some k-fold divisor function Äk, and all r f (logX)B.
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Proposition 1.8. Suppose that ³ satisfies the S-W condition (1.12), for any B > 0. Then

∑

qfQ

∑∗

a (mod q)

∣∣∣
∑

ht(n)fX
n≡a (mod q)

³n −
1

φ(q)

∑

ht(n)fX
(n,q)=1

³n

∣∣∣
2

j X|³|2
(logX)A

,

for any A > 0, provided Qj X1−ε.

We prove Proposition 1.8 in Section 3.

1.4. Proof sketches. Here we present some overly-simplified outlines of the proofs. In this
section we freely drop factors of size (Q2kTN)ε, as if they were 1.

1.4.1. Theorem 1.5. For simplicity, we omit the t-aspect, and write ∆(Q, k,N) for the norm.
For a bump function w supported on [1/2, 2], consider

S =
∑

(a,b)=1

w
(ab
N

)
|T (a, b)|2, where T (a, b) =

∑

q,Ç,¹

´Ç,¹Ç¹(ab).

The condition (a, b) = 1 is necessary but difficult to use. In comparison to the quadratic large
sieve, this condition is analogous to the restriction to fundamental discriminants. Inspired by
this similarity, and following [H-B], let 1 f Y < N/10 to be chosen later, and note S f S>Y
where

S>Y =
∑

ab
(a,b)2

>Y

w
(ab
N

)
|T (a, b)|2.

We then write S>Y = S∞−SfY , where SfY has ab
(a,b)2

f Y , and S∞ has a and b unconstrained.

These two sums are treated in completely different ways. For SfY , let g = (a, b) and change
variables a→ ga and b→ gb. Ignoring coprimality issues, then T (ga, gb) ≈ T (a, b), and so

SfY ≈
∑

abfY
(a,b)=1

∑

g

w
(g2ab
N

)
|T (a, b)|2 =

∫

(2)

w̃(s)·(2s)
∑

abfY
(a,b)=1

(N
ab

)s
|T (a, b)|2 ds

2Ãi
.

Next shift contours to the line ε, passing a pole at s = 1/2. The contribution to SfY from
the new contour is essentially j N ε∆(Q, k, Y )|´|2. The pole at s = 1/2 gives

(1.13) 1
2
w̃(1/2)

∑

abfY
(a,b)=1

(N
ab

)1/2

|T (a, b)|2.

This term (1.13) is not satisfactorily bounded on its own. Indeed, even if we accept Theorem
1.1, then by breaking up into dyadic segments M/2 < ab fM , with 1 fM f Y , we can at
best bound (1.13) by

max
1fMfY

(N
M

)1/2

(Q2k +M)|´|2 j (Q2k
√
N +N1/2Y 1/2)|´|2.

The former term of size Q2k
√
N is the culprit, and matches with (1.5). Luckily, and crucially,

the term (1.13) will partially cancel with another term from S∞. This cancellation property
also appeared in [H-B].
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Next consider S∞. Opening |T (a, b)| and applying the Mellin inversion formula gives

S∞ =
∑

q1,q2,Ç1,Ç2,¹1,¹2

´1´2

∫

(2)

w̃(s)N sL(s,Φ)L(s,Φ)
ds

2Ãi
,

where Φ = Ç1Ç2¹1¹2. Unfortunately, Φ may not be primitive, and this complicates the
application of the functional equation. For this sketch, we consider the two extremes, where
either Φ is primitive of conductor q1q2k, or where Φ is trivial. The trivial case is easy to
control, since this means Ç1 = Ç2 (whence q1 = q2) and ¹1 = ¹2. This gives rise to a diagonal
term of acceptable size O(N |´|2). For the primitive characters, we shift contours to the line
−1, change variables s→ 1− s, and apply the functional equation. This gives (roughly)

∑

q1,q2,Ç1,Ç2,¹1,¹2

´1´2

∫

(2)

w̃(1− s)
(q1q2k)

2s−1

N s−1

µ(s)

µ(1− s)
L(s,Φ)L(s,Φ)

ds

2Ãi
,

where µ(s) is the product of gamma factors in the completed L-function of L(s,Φ)L(s,Φ).
Next re-open the Dirichlet series and rearrange, giving

∑

a,b

∫

(2)

w̃(1− s)
µ(s)

µ(1− s)

∑

q1,q2,Ç1,Ç2,¹1,¹2

´1´2
(q1q2k)

2s−1

(ab)sN s−1
Ç1Ç2¹1¹2(ab)

ds

2Ãi
.

Letting g = (a, b), replacing a by ga and b by gb, and summing over g, we obtain

∑

abfQ4k2

N
(a,b)=1

∫

(2)

w̃(1− s)
µ(s)

µ(1− s)
·(2s)

∑

q1,q2,Ç1,Ç2,¹1,¹2

´1´2
(q1q2k)

2s−1

(ab)sN s−1
Ç1Ç2¹1¹2(ab)

ds

2Ãi
,

as the sum can be truncated at ab f Q4k2

N
(by shifting the contour far to the right). Next

we shift contours back to the line ε, crossing a pole at s = 1/2. This polar term has a nice

simplification, and takes the same form as (1.13), but with ab truncated at Q4k2

N
instead of

Y . Taking Y = Q4k2

N
then causes these two polar terms to cancel! The contribution on the

line ε essentially becomes bounded by N
Q2k

∆(Q, k, Q
4k2

N
), in line with Theorem 1.5.

1.4.2. Theorem 1.6. For simplicity take k = 1 and omit t, and write ∆(Q,N) for the norm.
For a bump function w, let

S =
∑

q

w(q/Q)
∑∗

Ç (mod q)

|T (Ç)|2, T (Ç) =
∑

N/2<abfN
(a,b)=1

³a,bÇ(ab).

The condition that Ç is primitive is necessary but difficult to use. In analogy with the proof
of Theorem 1.5, let Y < Q/10, and define

S>Y =
∑

q

w(q/Q)
∑∗

Ç (mod q)
cond(Ç)>Y

|T (Ç)|2.

Then S f S>Y , by positivity. Again, write S = S∞−SfY where SfY has characters modulo
q with cond(Ç) f Y and S∞ has Ç ranging over all characters of modulus q.
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For SfY , replace q by qq0 and Ç by ÇÇ0 where (the new) Ç has conductor q, and Ç0 is
trivial. Ignoring coprimality, we have T (ÇÇ0, t) ≈ T (Ç, t). Applying Mellin inversion, and
summing over q0 to form a zeta function, we obtain

SfY ≈
∑

qfY

∫

(2)

w̃(s)
(Q
q

)s
·(s)

∑∗

Ç (mod q)

|T (Ç)|2 ds
2Ãi

.

We shift contours to the line ε, passing a pole at s = 1 only. This polar term takes the form

(1.14) Qw̃(1)
∑

qfY

q−1
∑∗

Ç (mod q)

|T (Ç)|2.

On the new line ε, we essentially obtain an expression of size ∆(Y,N)|´|2. This polar term
is the analog of (1.13), and as before, it is not satisfactorily bounded on its own. Indeed,
Theorem 1.1 would imply that at best it is bounded by

Qmax
RfY

R−1(R2 +N)|³|2 = (QY +QN)|³|2.

Here the term QN is the culprit, and as before, we will cancel this polar term with one
arising within S∞.
Now consider S∞. Opening the square and applying orthogonality of characters gives

S∞ ≈ Q
∑

q

w1(q/Q)
∑

(a1,b1)=(a2,b2)=1
a1b2≡a2b1 (mod q)

³a1,b1³a2,b2 ,

where w1(x) = xw(x). The range of possible values of gcd(a1b2, a2b1) causes some arithmeti-
cal difficulties. For this sketch, we consider the two extreme cases, where either they are
coprime, or where a1b2 = a2b1, which we call the diagonal case. Since (a1, b1) = (a2, b2) = 1,
the diagonal reduces to a1 = a2 and b1 = b2, giving a term of size O(Q2|³|2), which is
acceptable.

We now focus on the case (a1b2, a2b1) = 1. Write a1b2 = a2b1+ qr, which we now interpret
as a1b2 ≡ a2b1 (mod r), with q = a1b2−a2b1

r
. Note typically r j N/Q, so this reduces the

modulus when Q2 k N . This leads to

S∞ ≈ Q
∑

r

∑

(a1,b1)=(a2,b2)=1
a1b2≡a2b1 (mod r)

w1

(a1b2 − a2b1
Qr

)
³a1,b1³a2,b2 .

Next we detect the congruence with characters modulo r, as in [CIS], giving

S∞ ≈ Q
∑

r

∑

Ç (mod r)

r−1
∑

(a1,b1)=(a2,b2)=1

w1

(a1b2 − a2b1
Qr

)
³a1,b1³a2,b2Ç(a1b2a2b1).

Since the characters are not primitive, replace Ç by ÇÇ0 and r by rr0 where the new Ç has
conductor r, and Ç0 is trivial modulo r0. Applying Mellin inversion, and evaluating the
r0-sum in terms of a zeta function, we obtain that S∞ is roughly

Q

∫

(1)

w̃1(−s)
∑

rfN/Q

∑∗

Ç (mod r)

r−1
∑

(a1,b1)=1
(a2,b2)=1

(a1b2 − a2b1
Qr

)s
·(s+ 1)³a1,b1³a2,b2Ç(a1b2a2b1)

ds

2Ãi
.

Next we shift contours to the line −1 + ε, passing a pole at s = 0 only. Note that w̃1(0) =
w̃(1). This polar term nicely simplifies, and takes the same form as (1.14), but with r
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truncated at N/Q instead of Y . Taking Y = N/Q causes the two polar terms to cancel.
Next consider the integral along the line −1 + ε. The variables ai, bi are not separated, but
one might hope that this is only a technical issue solvable with integral transform techniques
(indeed, see Lemma 5.2). We might then expect that the contribution from the new line of

integration to be bounded by Q2

N
∆(N/Q,N)|³|2, which is consistent with Theorem 1.6.

The wealth of extra parameters in the definition of ∆′ in (1.8) are there to account for the
overlooked conditions (both arithmetical and archimedean).

1.4.3. Reflections. The similarities between the proofs are remarkable, even if the fine details
are different. We also observe that the divisor-switching method used in the proof of Theorem
1.6 is analogous to the functional equation of the Dirichlet L-functions used for Theorem
1.5. At the cost of some exaggeration, one might call the divisor switch itself a functional
equation. In support of this, consider the family of functions Äs(n) =

∑
ab=n(a/b)

s, which
does indeed satisfy the functional equation Ä−s(n) = Äs(n), by the divisor switch. Moreover,
these coefficients Äs(n) appear as Fourier coefficients of the level 1 Eisenstein series, and the
functional equation of the Eisenstein series is entwined with the functional equation of its
Fourier coefficients.

1.4.4. Theorem 1.1. Theorem 1.1 is deduced from Theorems 1.5 and 1.6 in Section 2. The
proof uses that the norm ∆ is monotonic, and applies the two self-referential theorems in
a recursive manner. In retrospect, some of these ideas have similarities to elements used
in [BI1,BI2].

1.5. Notation and conventions. Let ΓR(s) = Ã−s/2Γ(s/2). If Ç is a Dirichlet character
and a/b ∈ Q in lowest terms, we may interchangeably write

(1.15) Ç(a)Ç(b) = Ç(ab) = Ç(a/b).

We use the notation A ≲ B as a synonym for

(1.16) A f C(ε)(Q2kTN)εB.

1.6. Acknowledgments. I thank Henryk Iwaniec and Emmanuel Kowalski for valuable
comments. I am also grateful to the referee for a careful reading which uncovered several
inaccuracies.

2. Deduction of Theorem 1.1

In this section, we use Theorems 1.5 and 1.6 to prove Theorem 1.1.

2.1. Monotonicity. As in the quadratic large sieve [H-B], it is vital that the norm ∆(Q, k, T,N)
is essentially monotonic in the N - and Q-components. The proofs differ a bit depending on
the case, but the overall theme is similar, and based on an idea of Forti and Viola [FV].

Lemma 2.1. Suppose P k logQN with a large (but absolute) implied constant. Then there
exists a prime p ∈ [P, 2P ] so that

∆(Q, k, T,N) f 8∆(Q, k, T,Np).
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Proof. Since k and T are frozen, we suppress them from the discussion, writing ∆(Q,N)
in place of ∆(Q, k, T,N). Let µa,b be complex numbers supported on N/2 < ab f N , and
(a, b) = 1. Let P g 1 be a parameter to be chosen, and let P ∗ denote the number of primes
p ∈ [P, 2P ]. The prime number theorem implies P ∗ ∼ P

logP
. Now we have

∑

q,Ç

∣∣∣
∑

(a,b)=1
N/2<abfN

µa,bÇ(a)Ç(b)
∣∣∣
2

=
∑

q,Ç

1

P ∗

∑

Pfpf2P

∣∣∣
∑

(a,b)=1
N/2<abfN

µa,bÇ(a)Ç(b)
∣∣∣
2

=
∑

q,Ç

1

P ∗

( ∑

Pfpf2P
p∤q

+
∑

Pfpf2P
p|q

)∣∣∣
∑

(a,b)=1
N/2<abfN

µa,bÇ(a)Ç(b)
∣∣∣
2

.

For the terms with p|q, we simply use 1
P ∗

∑
Pfpf2P

p|q
1 f logQ

P ∗ logP
. Taking P k logQ large

enough so that P ∗ logP g 2 logQ, and rearranging, we obtain

∆(Q,N) f max
µ ̸=0

2

|µ|2
∑

q,Ç

1

P ∗

∑

Pfpf2P
p∤q

∣∣∣
∑

(a,b)=1
N/2<abfN

µa,bÇ(a)Ç(b)
∣∣∣
2

.

Next we separate the values of a and b to make two sub-sums corresponding to (p, ab) = 1
and p|ab. This gives

∆(Q,N) f max
µ ̸=0

4

|µ|2
∑

q,Ç

1

P ∗

∑

Pfpf2P
p∤q

(∣∣∣
∑

(ab,p)=1

∣∣∣
2

+
∣∣∣
∑

p|ab

∣∣∣
2)
.

We bound the terms with p|ab similarly to the treatment of p|q, giving

max
µ ̸=0

4

|µ|2
∑

q,Ç

1

P ∗

∑

Pfpf2P
p∤q

∣∣∣
∑

p|ab

∣∣∣
2

f max
µ ̸=0

4

|µ|2P ∗

∑

Pfpf2P

∆(Q,N)
∑

p|ab

|µa,b|2

f 4 logN

P ∗ logP
∆(Q,N).

We choose P k logN large enough so that 4 logN
P ∗ logP

f 1
2
, whence

∆(Q,N) f max
µ ̸=0

8

|µ|2
∑

q,Ç

1

P ∗

∑

Pfpf2P
p∤q

∣∣∣
∑

(a,b)=1
(ab,p)=1

µa,bÇ(ab)
∣∣∣
2

.

Now we freely multiply by |Ç(p)|2, which has absolute value 1 since p ∤ q. In addition, we
change variables A = ap, let ¶A,b = µA/p,b, make note that Np/2 < Ab f Np, |¶| = |µ|, and
(A, b) = 1. Thus

∆(Q,N) f 8

P ∗

∑

Pfpf2P

∆(Q,Np) f 8 max
Pfpf2P

∆(Q,Np). □

Lemma 2.2. Suppose P k logNQ with a large (but absolute) implied constant. Then there
exists a prime p ∈ [P, 2P ] so that

∆(Q, k, T,N) f 8∆(Qp, k, T,N).
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Proof. Since k and T are frozen, we suppress them in the notation. Let P g 10 to be chosen,

and let P ∗∗ =
∑

Pfpf2P

∑∗

È(mod p)
1, so P ∗∗ ≍ P 2

logP
. We have

∑

(a,b)=1
N/2<abfN

∣∣∣
∑

q,Ç

´ÇÇ(a)Ç(b)
∣∣∣
2

=
∑

(a,b)=1
N/2<abfN

1

P ∗∗

∑

Pfpf2P

∑∗

È (mod p)

∣∣∣
∑

q,Ç

´ÇÇ(a)Ç(b)
∣∣∣
2

=
∑

(a,b)=1
N/2<abfN

1

P ∗∗

( ∑

p,È
(p,ab)=1

+
∑

p,È
p|ab

)∣∣∣
∑

q,Ç

´ÇÇ(a)Ç(b)
∣∣∣
2

.

For the terms with p|ab, we simply use 1
P ∗∗

∑
p,È
p|ab

1 f 2P logN
P ∗∗ logP

, and choose P k logN large

enough so that 2P logN
P ∗∗ logP

f 1
2
. For the terms with p ∤ ab, we freely multiply by |È(a)È(b)|2,

which is 1 for such primes. This gives

∆(Q,N) f max
´ ̸=0

2

|´|2
∑

(a,b)=1
N/2<abfN

1

P ∗∗

∑

p,È

∣∣∣
∑

q,Ç

´ÇÇÈ(a)ÇÈ(b)
∣∣∣
2

.

Next we separate the values of q to make two sub-sums corresponding to (p, q) = 1 and p|q.
This gives

∆(Q,N) f max
´ ̸=0

4

|´|2
∑

(a,b)=1
N/2<abfN

1

P ∗∗

∑

p,È

(∣∣∣
∑

q,Ç
(q,p)=1

∣∣∣
2

+
∣∣∣
∑

q,Ç
p|q

∣∣∣
2)
.

We upper bound the terms with p|q, giving
∑

(a,b)=1
N/2<abfN

4

P ∗∗

∑

p,È

∣∣∣
∑

q,Ç
p|q

∣∣∣
2

f 4

P ∗∗

∑

p,È

∆(Q,N)
∑

q,Ç
p|q

|´Ç|2 f
4P logQ

P ∗∗ logP
∆(Q,N)|´|2.

We choose P k logQ large enough so that 4P logQ
P ∗∗ logP

f 1
2
, whence

∆(Q,N) f max
´ ̸=0

8

|´|2
∑

(a,b)=1
N/2<abfN

1

P ∗∗

∑

p,È

∣∣∣
∑

q,Ç
(q,p)=1

´ÇÇÈ(ab)
∣∣∣
2

.

Now ÇÈ is a character of conductor pq, with pQ/2 f pq f pQ, so we obtain

∆(Q,N) f 8

P ∗∗

∑

p,È

∆(pQ,N) f 8 max
Pfpf2P

∆(pQ,N). □

Remark. The norm ∆ is also monotonic in the k and T -aspects, but this property is not
needed in this work, so we do not give proofs.

2.2. Relations between norms. To simplify the recursive steps in the proof of Theorem
1.1, it is convenient to have the following relations.

Lemma 2.3. Suppose that there exists e > 1 such that

∆(Q, k, T,N) ≲ Q2kT +N e,

for all Q, k, T , N . Then we have for all Q, k, T , N that

∆′(Q, k, T,N) ≲ Q2kT +N e.
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Lemma 2.4. Suppose that there exists e > 1 such that

∆(Q, k, T,N) ≲ (Q2kT )e +N,

for all Q, k, T , N . Then we have for all Q, k, T , N that

∆′(Q, k, T,N) ≲ (Q2kT )e +N.

Proof. The proofs of both lemmas follow from the definitions (1.8) and (1.9). □

2.3. The recursions.

Proposition 2.5. Suppose that there exists e > 1 such that

(2.1) ∆(Q, k, T,N) ≲ Q2kT +N e,

for all Q, k, T,N . Then with e′ = 2− 1
e
, we have for all Q, k, T,N that

∆(Q, k, T,N) ≲ (Q2kT )e
′

+N.

Proof. Let F = Q2kT , which is the size of the family. By monotonicity (Lemma 2.1), we
have ∆(Q, k, T,N) j ∆(Q, k, T,N1) for N1 k N log(FN). Let N1 ≍ N logN+F ³ for some
³ > 1, so that F j N1. By Theorem 1.5,

∆(Q, k, T,N) j ∆(Q, k, T,N1) ≲ N1 +
N1

F
∆′

(
Q, k, T,

F 2

N1

)
.

By Lemma 2.3, we can use the assumption (2.1) to obtain

∆(Q, k, T,N) ≲ N1 +
N1

F

(
F +

(F 2

N1

)e)
j N1 +

F 2e−1

N e−1
1

≲ N + F ³ + F 2e−1−³(e−1).

We choose ³ optimally so that ³ = 2e− 1− ³(e− 1), which simplifies as ³ = 2− 1
e
. Since

e > 1 by assumption, this means ³ > 1, and completes the proof. □

We also have a complementary version:

Proposition 2.6. Suppose that there exists e > 1 such that

(2.2) ∆(Q, k, T,N) ≲ (Q2kT )e +N,

for all Q, k, T,N . Then with e′ = 2− 1
e
we have for all Q, k, T,N

∆(Q, k, T,N) ≲ Q2kT +N e′ .

Proof. Let F = Q2kT . By monotonicity (Lemma 2.2), we have ∆(Q, k, T,N) j ∆(Q1, k, T,N)
for Q1 k Q log(FN). We take F1 := Q2

1kT ≍ Q2kT log2(FN) +N³ for some ³ > 1, so that
N j Q2

1kT . By Theorem 1.6, we have

∆(Q, k, T,N) j ∆(Q1, k, T,N) ≲ F1 +
F1

N
∆′

( N

kQ1T
, k, T,N

)
.

By Lemma 2.4, we can use the assumption (2.2) to obtain

∆(Q, k, T,N) ≲ F1 +
F1

N

((N2

F1

)e
+N

)
j F1 +

N2e−1

F e−1
1

≲ F +N³ +N2e−1−³(e−1).

Choosing ³ = 2− 1
e
completes the proof. □
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2.4. Proof of Theorem 1.1. Using the trivial bound (1.5), we have

∆(Q, k, T,N) ≲ Q2kT
√
N +N f (

√
N +Q2kT )2 j N + (Q2kT )2,

which is (2.2) with exponent e = e0 = 2. Applying Proposition 2.6 gives (2.1) with e1 =
2− 1

e0
= 3/2. Continuing this process, we obtain a sequence of exponents ei, with ei+1 = 2− 1

ei
,

for which either (2.2) or (2.1) holds (in an alternating fashion). It is easy to check that the
ei are monotonically decreasing, with limit 1, whence Theorem 1.1 holds.

3. Proof of Proposition 1.8

The following proof is based on [IK, Section 17.2]. Decomposing with Dirichlet characters
and applying orthogonality gives

(3.1)
∑

qfQ

∑∗

a (mod q)

∣∣∣
∑

ht(n)fX
n≡a (mod q)

³n −
1

φ(q)

∑

ht(n)fX
(n,q)=1

³n

∣∣∣
2

=
∑

qfQ

∑

Ç (mod q)
Ç ̸=Ç0

1

φ(q)
|S(X,Ç)|2.

Write q = q0q
′ and Ç = Ç0Ç

′, where Ç has conductor q′. Then (3.1) is at most
∑

q0q′fQ
q′>1

∑∗

Ç′ (mod q′)

1

φ(q0)φ(q′)
|S(X,Ç′Ç0)|2.

We break up this sum according to q′ f Q0 = (logX)B and q′ > Q0. For q
′ f Q0, we apply

the S-W condition (1.12), giving a bound of the form

∑

q0fQ

Äk(q0)
2

φ(q0)

∑

1<q′fQ0

X|³|2
(logX)2B

j (logQ)(k+1)2 X|³|2
(logX)B

.

The terms with Q0 < q′ f Q/q0 are bounded by

j
∑

q0fQ

1

φ(q0)

∑

Q0fRfQ/q0
dyadic

R−1+ε∆(R,X)
∑

ht(n)fX
(n,q0)=1

|³n|2.

For R f (XQ)1/10, we use the “ε-free” bound ∆(R,X) j (R4 +X logX) (see (1.5)), while
for R > (XQ)1/10, we use Theorem 1.1. In total, we obtain the following bound for the
terms with q′ > Q0:

|³|2
∑

q0fQ

1

φ(q0)

(
Q1+ε +

X

(logX)B(1−ε)−1

)
j

(
Q1+ε +

X

(logX)B(1−ε)−2

)
|³|2.

Choosing B(1− ε)− 2 > A completes the proof of Proposition 1.8.

4. Proof of Theorem 1.5

4.1. Miscellany. We begin with some miscellaneous results that will be useful later.

Definition 4.1 (A partition of unity). Let T g 1, ε > 0. Choose smooth and even functions
É0 and ÉT ′(r) = É(r/T ′) so that for all |r| j T we have

(4.1) É0(r) +
∑

T ′ dyadic

ÉT ′(r) = 1,
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where É0(r) is supported on r j T ε, É is supported on [1, 2] ∪ [−2,−1], and T ′ runs over
O(log T ) real numbers with T ε j T ′ j T .

It is convenient to re-write the left hand side of (4.1) as
∑

T ′ ÉT ′ , where T ′ runs over the
dyadic numbers from Definition 4.1, along with an additional value T ′ = 1 giving rise to É0.

Lemma 4.2. Let w be an integrable function supported on [U, 2U ], with 1 f U f 2T .
Suppose ´t ∈ L2(R), supported on [T/2, T ]. Then

(4.2)

∫ ∞

−∞

∫ ∞

−∞

´t1´t2w(t1 − t2)dt1dt2

=
∑

0fj1,j2f10T/U
|j1−j2|f1

∫ 2U

U

∫ 2U

U

´T−U+Uj1+v1´T−U+Uj2+v2w(U(j1 − j2) + v1 − v2)dv1dv2.

Proof. We cover the interval [T/2, T ] without overlaps by smaller intervals [T/2, T/2 + U ],
[T/2 + U, T/2 + 2U ], . . . , giving
(4.3)∫ ∞

−∞

∫ ∞

−∞

´t1´t2w(t1−t2)dt1dt2 =
∑

0fj1,j2f10T/U

∫ T/2+Uj1+U

T/2+Uj1

´t1

∫ T/2+Uj2+U

T/2+Uj2

´t2w(t1−t2)dt1dt2.

Next change variables ti = T/2 − U + Uji + vi for i = 1, 2, where U f vi f 2U . Note that
the integrand vanishes unless |j1 − j2| f 1. The result follows. □

Lemma 4.3 (Archimedean separation of variables). For s = Ã+iy with Ã > 0 fixed, |r| f T ,
and |y| f |r|1/2, let

(4.4) µ(r) = µs(r) =
ΓR(Ã + iy + ir)ΓR(Ã + iy − ir)

ΓR(1− Ã − iy + ir)ΓR(1− Ã − iy − ir)
.

Let É and É0 be as in Definition 4.1. Then for T ′ satisfying 1 + |s|2 j T ′ f T , there exists
a function ¸ = ¸T ′ satisfying

(4.5) ¸T ′(u) j (T ′)2Ã(1 + |u|T ′)−A, and

∫ ∞

−∞

|¸T ′(u)|duj (T ′)2Ã−1,

so that

(4.6) µ(r)ÉT ′(r) =

∫ ∞

−∞

¸T ′(u)e(ur)du.

If |s| j T ε and T ′ = 1 (that is, ÉT ′ = É0), then (4.6) holds with

(4.7) ¸1(u) j T ε
(
1 +

|u|
T ε

)−A

.

Proof. A tedious but straightforward calculation with Stirling’s approximation gives

µ(r) =
( |r|
2

)2s−1

(c0 +
c1
r2

+ . . . ),

where the ci are some polynomials in s, of degree at most 2i+1. This provides an asymptotic
expansion as r → ∞ provided sj |r|1/2, say. From this, one may derive

(4.8) µ(j)(r) j |r|2Ã−1−j, for |r| k |s|2 + 1.
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By Fourier inversion, we have

µ(r)É(r/T ′) =

∫ ∞

−∞

¸T ′(u)e(ur)du, ¸T ′(u) =

∫ ∞

−∞

µ(r)É(r/T ′)e(−ur)dr.

Integration by parts, aided with (4.8), gives (4.5). For T ′ = 1 and |s| j T ε, then the
asymptotic Stirling formula does not hold, yet we can claim a crude but uniform upper
bound of the form µ(j)(r) j (T ε)j, which suffices to give (4.7). □

Corollary 4.4. Let µ = µs be as in (4.4), and suppose bt ∈ L2(R), supported on [T/2, T ].
Suppose sj T o(1). Suppose ÉT ′ is as in Definition 4.1 for some 1 j T ′ j T . Then

(4.9)

∫ ∞

−∞

∫ ∞

−∞

´t1´t2µ(t1 − t2)ÉT ′(t1 − t2)dt1dt2 =
∑

0fj1,j2f10T/T ′

|j1−j2|f1

∫ ∞

−∞

¸T ′(u)e(uT ′(j1 − j2))

×
(∫ 2T ′

T ′

´T/2−T ′+T ′j1+v1e(v1u)dv1

)(∫ 2T ′

T ′

´T/2−T ′+T ′j2+v2e(−v1u)dv2
)
du,

with ¸T ′ as in Lemma 4.3.

Proof. This follows from Lemma 4.2 followed by (4.6). □

4.2. Preparation. Here we begin the proof of Theorem 1.5. Choose a nonnegative smooth
weight function w, with w(x) g 1 for 1/2 f x f 1, and w(x) = 0 for x < 1/4 and for x g 2.
From (1.4), we have ∆∗(Q, k, T,N) f max|´|=1 S, where

(4.10) S =
∑

(a,b)=1

w(ab/N)
∣∣∣
∫

T/2ftfT

∑

Q/2<qfQ
(q,k)=1

∑∗

Ç (mod q)

∑

¹ (mod k)

´Ç,¹,t¼Ç¹,t(a, b)
∣∣∣
2

.

We will assume that ´Ç,¹,t is supported on

(4.11) cond(Ç) = q, Q/2 < q f Q, (q, k) = 1, ¹ (mod k), T/2 f t f T,

and that an otherwise un-labeled integral/sum over t,q,Ç,¹ is implied to run over this domain.
In particular, we will often suppress these conditions and recall them only when needed.
To prove Theorem 1.5, it suffices to prove the bound for Ç and ¹ of fixed parities, so for
convenience we also assume that this condition is enforced by the support of ´Ç,¹,t.

Let 1 f Y f N
100

be a parameter to be chosen later. Then S f S>Y , where

(4.12) S>Y =
∑

ab
(a,b)2

>Y

w(ab/N)
∣∣∣
∫

T/2ftfT

∑

Q/2<qfQ
(q,k)=1

∑∗

Ç (mod q)

∑

¹ (mod k)

´Ç,¹,t¼Ç¹,t(a, b)
∣∣∣
2

,

by positivity, since if (a, b) = 1, then the condition ab > Y is redundant to the support of
w(ab/N). By simple inclusion-exclusion, we have

S>Y = Sf∞ − SfY ,

where for ∗ ∈ {Y,∞}, Sf∗ corresponds to the sum over ab
(a,b)2

f ∗. We will often write S∞

as an alias for Sf∞.
One of the main issues with applying the functional equation is that, after opening the

square, we obtain a character of the form Ç1Ç2¹1¹2 which may be imprimitive. In order to
facilitate the problem of controlling the conductor, we will apply some combinatorial-type
decompositions. These preparatory results are bookended by Lemmas 4.5 and 4.11.
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Lemma 4.5 (Detecting primitivity). Let q g 1 be an integer. There exist complex numbers
cℓ = cℓ(q) supported on a finite set of integers with the following two properties:

• For each È (mod q), the sum
∑

ℓ cℓÈ(ℓ) is 1 if È is primitive, and is 0 if È is im-
primitive.

• We have
∑

ℓ |cℓ| f Ä(q), where Ä(q) denotes the number of divisors of q.

Proof. Suppose È has conductor q∗. Consider the expression

∑

d|q

µ(d)
(1
d

∑

y (mod d)

È(1 +
q

d
y)
)
.

The inner sum inside the parentheses is 1 if q∗ divides q/d (equivalently, d divides q/q∗), and
0 otherwise. Hence the above sum evaluates as

∑
d|q/q∗ µ(d), which by Möbius inversion is

the indicator function that q∗ = q, i.e., that È is primitive. To finish the proof, we can let cℓ
be supported on 1 f ℓ f q + 1, and let

(4.13) cℓ =
∑

d|q

µ(d)

d

∑

1fyfd
1+ q

d
y=ℓ

1 =
∑

e|(q,ℓ−1)

µ(q/e)

q/e
,

so that
∑

ℓ |cℓ| f Ä(q). □

Suppose q, r g 1 are integers with r|q. Let Gq (resp. Gr) be the group of Dirichlet
characters modulo q (resp. r). By a slight abuse of notation, we can view Gr as a subgroup
of Gq, by multiplying every element of Gr by the trivial character modulo q.

Lemma 4.6. Let q, r, Gq, and Gr be as above. Let F (Ç1, Ç2) be a function defined on pairs
of Dirichlet characters modulo q. Then

∑

Ç1,Ç2 (mod q)
Ç1Ç2 modulus r

F (Ç1, Ç2) =
∑

µ∈Gq/Gr

∑

È1,È2 (mod r)

F (µÈ1, µÈ2).

Remark. Lemma 4.6 is analogous to Lemma 4.2.

Proof. The condition that Ç1Ç2 has modulus r means that Ç1Ç2 ∈ Gr. Now say Gq = ∪µµGr,
where µ runs over Gq/Gr. By basic group theory, we can write uniquely Ç1 = µÈ1 and
Ç2 = µÈ2 with µ ∈ Gq/Gr and È1, È2 ∈ Gr. □

Corollary 4.7 (Separation of variables). Let notation be as in Lemma 4.6. Then
∑

Ç1,Ç2 (mod q)
Ç1Ç2 conductor r

F (Ç1, Ç2) =
∑

ℓ

cℓ(r)
∑

µ∈Gq/Gr

∑

È1,È2 (mod r)

(È1È2)(ℓ)F (µÈ1, µÈ2).

Proof. We first apply Lemma 4.6 to detect that Ç1Ç2 has modulus r, and then use Lemma
4.5 to detect that È1È2 is primitive. □

Definition 4.8. Let k g 1 be an integer. Define the set Dk to consist of tuples k =
(k0, k1, k

′, ¶), where k0, k1, k
′ run over divisors of k with k0k1k

′ = k, (k0, k
′) = 1, and

k1|(k′)∞, and where ¶ runs over coset representatives of Gk/Gk′ .
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Lemma 4.9. Let k g 1 be an integer, and let b¹ be any sequence of complex numbers indexed
by Dirichlet characters ¹ modulo k. Then we have a decomposition of the form

(4.14)
∣∣∣

∑

¹ (mod k)

b¹

∣∣∣
2

=
∑

k∈Dk

∑

ℓ

cℓ(k
′)
∣∣∣

∑

¹′ (mod k′)

b¶¹′¹
′(ℓ)

∣∣∣
2

,

which can alternatively be written as

(4.15)
∣∣∣

∑

¹ (mod k)

b¹

∣∣∣
2

=
∑

k∈Dk

∑

¹′1,¹
′
2 (mod k′)

cond(¹′1¹
′
2)=k

′

b¶¹′1b¶¹′2 .

Proof. Begin by opening the square, obtaining a double sum
∑

¹1,¹2(mod k) b¹1b¹2 . Parameter-

izing the sum according to the conductor (say k′) of ¹1¹2, we obtain
∣∣∣

∑

¹ (mod k)

b¹

∣∣∣
2

=
∑

k′|k

∑

¹1,¹2 (mod k)

cond(¹1¹2)=k′

b¹1b¹2 .

Next we apply Corollary 4.7 with F (¹1, ¹2) = b¹1b¹2 , giving
∣∣∣

∑

¹ (mod k)

b¹

∣∣∣
2

=
∑

k′|k

∑

ℓ

cℓ(k
′)

∑

¶∈Gk/Gk′

∑

¹′1,¹
′
2 (mod k′)

(¹′1¹
′
2)(ℓ)b¶¹′1b¶¹′2 .

With a further factorization k0k1 =
k
k′

with (k0, k
′) = 1 and k0|(k′)∞, we obtain (4.14). The

variant (4.15) is similar. □

We also need more elaborate versions of Definition 4.8 and Lemma 4.9 to handle Ç of
varying modulus.

Definition 4.10. For i = 1, 2, suppose Çi is primitive of conductor qi. Factor

(4.16) qi = q′iq
+
i q

−
i r, and Çi = Ç′

iÇ
+
i Ç

−
i Ç

(r)
i ,

where Ç′
i has conductor q

′
i, Ç

+
i has conductor q+i , and so on, and the factorization is defined

in terms of local information as follows.

(i) The primes making up q′1 are those that divide q1 but do not divide q2, and likewise
the primes in q′2 are those that divide q2 but not q1.

(ii) The factors q+1 and q−2 are characterized by 1 f vp(q
−
2 ) < vp(q

+
1 ) for all p|q+1 . Similarly,

q+2 and q−1 are characterized by 1 f vp(q
−
1 ) < vp(q

+
2 ) for all p|q+2 .

(iii) The remaining factor r corresponds to the primes where vp(q1) = vp(q2).

Definition 4.10 is motivated by the fact that

(4.17) Ç1Ç2 = Ç′
1︸︷︷︸
q′1

Ç′
2︸︷︷︸
q′2

(Ç+
1 Ç

−
2 )︸ ︷︷ ︸

q+1

(Ç−
1 Ç

+
2 )︸ ︷︷ ︸

q+2

Ç
(r)
1 Ç

(r)
2 ,

which has conductor q′1q
′
2q

+
1 q

+
2 cond(Ç

(r)
1 Ç

(r)
2 ).

Let bÇ be any sequence of complex numbers indexed by primitive Dirichlet characters Ç
modulo q, with q varying over a finite set of positive integers. Consider the sum |∑q,Ç bÇ|2.
Opening the square gives a sum of the form

∑
q1,q2,Ç1,Ç2

bÇ1bÇ2 . Definition 4.10 shows that the
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parameters q′i, q
+
i , etc., are uniquely determined. We can then arrange the sum according to

the values of these parameters, giving

(4.18)
∣∣∣
∑

q,Ç

bÇ

∣∣∣
2

=
∑

q+1 ,q
−
1 ,q

+
2 ,q

−
2 ,r

(Def. 4.10)

( ∑

q′1,Ç
′
1,Ç

+
1 ,Ç

−
1 ,Ç

(r)
1

(Def. 4.10)

b
Ç′
1Ç

+
1 Ç

−
1 Ç

(r)
1

)( ∑

q′2,Ç
′
2,Ç

+
2 ,Ç

−
2 ,Ç

(r)
2

(Def. 4.10)

b
Ç′
2Ç

+
2 Ç

−
2 Ç

(r)
2

)
,

where the reference to (Def. 4.10) in the summation conditions indicates the conditions
translated into appropriate summation form.

We further develop the sums over Ç
(r)
1 and Ç

(r)
2 , using (4.15). Specifically, write

(4.19) r = r0r1r
′,

where Ç
(r)
1 Ç

(r)
2 has conductor r′, (r0, r

′) = 1, and r1|(r′)∞. We then write Ç
(r)
i = µÈi, where

µ runs over Gr/Gr′ and Èi run over characters modulo r′. The property that Ç
(r)
1 Ç

(r)
2 has

conductor r′ is equivalent to È1È2 is primitive (of modulus r′). Applying this to (4.18), we
obtain that

∑
q,Ç |bÇ|2 equals

(4.20)
∑

q+1 ,q
−
1 ,q

+
2 ,q

−
2 ,r

(r0,r1,r′,µ)∈Dr

(Def. 4.10)

( ∑

q′1,Ç
′
1,Ç

+
1 ,Ç

−
1 ,È1

(Def. 4.10)

bÇ′
1Ç

+
1 Ç

−
1 µÈ1

)( ∑

q′2,Ç
′
2,Ç

+
2 ,Ç

−
2 ,È2

(Def. 4.10)

bÇ′
2Ç

+
2 Ç

−
2 µÈ2

)
¶(cond(È1È2) = r′).

Now let
q = (q+1 , q

−
1 , q

+
2 , q

−
2 , r0, r1, r

′, µ)

where the integers q±i satisfy Def. 4.10(ii), r is coprime to the q±i , and (r0, r1, r
′, µ) ∈ Dr

(as in Def. 4.8). The two sums in parentheses in (4.20) have only the following conditions
between each other : q′1 and q′2 are coprime, and the conductor of È1È2 is r′. We have thus
derived the following.

Lemma 4.11. Let bÇ be any sequence of complex numbers indexed by primitive Dirichlet
character Ç modulo q, with q varying over a finite set of positive integers. Then

(4.21)
∣∣∣
∑

q,Ç

bÇ

∣∣∣
2

=
∑

q

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.

(Def. 4.10)

bÇ′
1Ç

+
1 Ç

−
1 µÈ1

bÇ′
2Ç

+
2 Ç

−
2 µÈ2

.

In reference to (4.17), now Ç
(r)
1 Ç

(r)
2 = È1È2|µ|2, which has conductor r′, so Ç1Ç2 has

conductor q′1q
′
2q

+
1 q

+
2 r

′.
We are now ready to apply the preceding decompositions to Sf∗ (see (4.12) to infer the

definition). Specifically, we apply Lemma 4.9 (in the form (4.15)) and Lemma 4.11, giving

(4.22) Sf∗ =
∑

k
(Def 4.8)

∑

q
(Def 4.10)

Sf∗(k,q),

where

(4.23) Sf∗(k,q) =
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)

∫

t1,t2

´1´2
∑

ab
(a,b)2

f∗

(ab,k0r0)=1

w
(ab
N

)
Φ(ab)dt1dt2
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with

(4.24) ´i = ´Ç′
iÇ

+
i Ç

−
i µÈi,¶¹′i,ti

,

and where Φ = Φ1Φ2, with

Φi(m) = (Ç′
iÇ

+
i Ç

−
i Èi¹

′
i)(m)miti .

We remind the reader that there are additional conditions encoded in the support of the
coefficients, as recorded in (4.11), which will be recalled as needed. Observe that the finite
part of Φ (i.e., omitting mit1−it2) is primitive of modulus q′1q

′
2q

+
1 q

+
2 r

′k′. It is convenient to
record here for later purposes that for i = 1, 2,

(4.25)
∑

k,q

|´i|2 :=
∑

k,q

∫

ti

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi,¹′i

|´Ç′
iÇ

+
i Ç

−
i µÈi,¶¹′i,ti

|2dti j (kQ)ε|´|2.

At this point our treatments of Sf∗ for ∗ = Y and ∗ = ∞ diverge.

4.3. Elementary side. In this section we develop SfY (k,q).

Proposition 4.12. We have SfY (k,q) = S
(0)
fY (k,q) + S ′

fY (k,q), where S
(0)
fY (k,q) is given

by (4.30) below, and where

(4.26) |S ′
fY (k,q)| ≲

2∏

i=1

∆
( Q

q+i q
−
i r

′r0r1
, q+i q

−
i r

′k′, T, Y
)1/2

|´i|.

Proof. Let g = (a, b), and change variables a→ ga and b→ gb, getting

SfY (k,q) =
∑

(g,k0r0)=1

∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10) ∫

t1,t2

´1´2
∑

abfY
(a,b)=1

(ab,k0r0)=1

w
(g2ab
N

)
Φ(abgg)dt1dt2.

Next we apply the Mellin inversion formula and evaluate the g-sum as a Dirichlet L-function
of principal character to modulus q′1q

′
2q

+
1 q

+
2 k

′r′k0r0. We further write

(4.27) L(2s, Ç0,q′1q
′
2q

+
1 q

+
2 r

′k′r0k0
) = ·(2s)Äq′1Äq′2Äq+1 Äq

+
2
Är′r0Äk′k0 ,

where Än = Än(s) =
∏

p|n(1− p−2s). This gives

SfY (k,q) =
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)∫

(2)

Är′r0Äk′k0

∫

t1,t2

´′
1´

′
2

∑

abfY
(a,b)=1

(ab,k0r0)=1

(N
ab

)s w̃(s)
2Ãi

·(2s)Φ(ab)dt1dt2ds,

with ´′
1 = ´1Äq′1Äq+1 and ´′

2 = ´2Äq′2Äq+2 .
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Next we use Lemma 4.5 to detect the condition that ¹′1¹
′
2 is primitive, and again to

detect that È1È2 is primitive (modulo r′). We additionally use Möbius inversion to detect
(q′1, q

′
2) = 1, via

∑
g′|(q′1,q

′
2)
µ(g′). Altogether, this gives

(4.28) SfY (k,q) =
∑

g′

µ(g′)
∑

ℓ1,ℓ2

cℓ1(k
′)cℓ2(r

′)

∫

(2)

N s w̃(s)

2Ãi
·(2s)Är′r0Äk′k0

∑

(a,b)=1
abfY

(ab,k0r0)=1

A1A2
ds

(ab)s
,

where

A1 =

∫

t1

∑

q′1,Ç
′
1,Ç

+
1 ,Ç

−
1 ,È1,¹′1

q′1≡0 (mod g′)
(Def 4.10)

´1Äq′1Äq+1 ¹
′
1(ℓ1)È1(ℓ2)Φ1(ab)dt1,

and A2 is similarly-defined.
Now we shift the s-contour of integration to Re(s) = ε, crossing a pole at s = 1/2 only.

Write SfY (k,q) = S
(0)
fY (k,q) + S ′

fY (k,q), where S
(0)
fY denotes the polar term, and S ′

fY

denotes the new line of integration. Note that Ai|s=1/2 = A(0)
i , where

(4.29) A(0)
i =

∫

ti

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi,¹

′
i

q′i≡0 (mod g′)
(Def 4.10)

´i
ϕ(q′iq

+
i )

q′iq
+
i

¹′i(ℓ1)Èi(ℓ2)Φi(ab)dti,

since Än(1/2) = ϕ(n)
n

. Therefore, using (k′k0, r
′r0) = 1 for a slight simplification (recalling

(4.11)), we have

(4.30) S
(0)
fY (k,q) =

∑

g′

µ(g′)
∑

ℓ1,ℓ2

cℓ1(k
′)cℓ2(r

′)w̃(1/2)
ϕ(k′k0r

′r0)

2k′k0r′r0

∑

(a,b)=1
abfY

(ab,k0r0)=1

(N
ab

)1/2

A(0)
1 A(0)

2 .

Now we estimate S ′
fY (k,q). We arrange the expression to most closely resemble (4.10),

specifically

(4.31) |S ′
fY (k,q)| j (QkN)ε

∑

g′

∑

ℓ1,ℓ2

|cℓ1(k′)cℓ2(r′)| max
Re(s)=ε

∑

(a,b)=1
abfY

|A1A2|.

Referring back to (1.4), and noting that our new family has varying modulus q′i of size
Q

q+i q
−
i r

′r0r1
, and fixed modulus q+i q

−
i r

′k′, we see

(4.32)
∑

g′

∑

(a,b)=1
abfY

|Ai|2 j (QkN)ε max
1fY ′fY

∆
( Q

q+i q
−
i r

′r0r1
, q+i q

−
i r

′k′, T, Y ′
)
|´i|2.

Using Cauchy’s inequality and monotonicity (Lemma 2.1) leads quickly to (4.26). □
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4.4. Functional equation side. In this section we will apply the functional equation of
Dirichlet L-functions to S∞(k,q), picking up from the expression (4.23). To facilitate this,
we first apply Möbius inversion, in the form

(4.33)
∑

(ab,k0r0)=1

w
(ab
N

)
Φ(ab)

=
∑

g1|k0
g2|k0

∑

g3|r0
g4|r0

µ(g1)µ(g2)µ(g3)µ(g4)Φ(g1g3g2g4)
∑

a,b

w
(g1g2g3g4ab

N

)
Φ(ab).

To continue the theme of concise notation, let g = (g1, g2, g3, g4), µ(g) = µ(g1)µ(g2)µ(g3)µ(g4),
Φ(g) = Φ(g1g3g2g4), and |g| = g1g2g3g4. The summation condition on g is that

(4.34) g1|k0, g2|k0, g3|r0, g4|r0,
though we will usually suppress this and only recall it as needed. Then S∞(k,q) equals

∑

g
(4.34) holds

µ(g)
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)

∫

t1,t2

´1´2
∑

a,b

w
(ab|g|

N

)
Φ(gab)dt1dt2.

We also have need to decompose the ti-integrals to help pin down the archimedean conductor.
Applying the partition from Definition 4.1, we obtain that S∞(k,q) equals

(4.35)
∑

g,T ′

µ(g)
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)

∫

t1,t2

´1´2ÉT ′(t1−t2)
∑

a,b

w
(ab|g|

N

)
Φ(gab)dt1dt2.

Define quantities

(4.36) Q∗ =
Q2kT ′

q−1 q
−
2 r

′r20r
2
1k0k1

N∗ =
Q4k2(T ′)2|g|(QkTN)ε

N(q−1 q
−
2 r

′r20r
2
1k0k1)

2
= (QkTN)ε

(Q∗)2|g|
N

,

and note that among the variables of summation, Q∗ depends only on the outer variables q,
k, and T ′, while N∗ depends only on q, k, T ′, and g.

Proposition 4.13. We have a decomposition

(4.37) S∞(k,q) = S(0)
∞ (k,q) + S ′

∞(k,q) + Sdiag
∞ (k,q) + E∞,

with the following properties. The term S
(0)
∞ (k,q) is given by (4.43) below, and S ′

∞(k,q)
satisfies

(4.38) |S ′
∞(k,q)| ≲

∑

g,T ′

N

Q∗|g|
2∏

i=1

∆
( Q

q+i q
−
i r

′r0r1
, q+i q

−
i r

′k′, T ′, N∗
)1/2

|´i|.

The diagonal term satisfies the bound

(4.39)
∑

k,q

|Sdiag
∞ (k,q)| ≲ N |´|2,

and the term E∞ is negligibly small.
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Proof of Proposition 4.13. Applying the Mellin inversion formula to w and writing the sum
over a and b as a product of Dirichlet L-functions in (4.35) gives

S∞(k,q) =
∑

g,T ′

µ(g)
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)∫

t1,t2

ÉT ′(t1 − t2)Φ(g)´1´2

∫

(2)

(N
|g|

)s
w̃(s)L(s,Φ)L(s,Φ)

ds

2Ãi
dt1dt2.

We shift contours to the line −ε, crossing a pair of poles at s = 1 ± i(t1 − t2), which exist
only when Φ is trivial, and let S ′

∞(k,q) be the new integral on the line −ε. Recall that the
finite part of Φ is primitive of modulus

(4.40) q = q′1q
′
2q

+
1 q

+
2 r

′k′.

In particular, Φ being trivial forces q′1 = q′2 = q+1 = q+2 = q−1 = q−2 = r′ = k′ = 1, and the
rapid decay of w̃(s) practically forces |t1 − t2| j T ε. It is easy to see that the contribution
of this diagonal polar term is consistent with (4.39).

On the line −ε we change variables s → 1 − s. Note that L(s,Φ)L(s,Φ) satisfies the
asymmetric functional equation

(4.41) L(1− s,Φ)L(1− s,Φ) = q
2s−1µsL(s,Φ)L(s,Φ),

where µs = µs(t1 − t2) (recall (4.4) for the definition), which is holomorphic for Re(s) > 0.
Recall that the parity of the Çi and ¹i was assumed to be fixed, so that Ç1Ç2¹1¹2 is even,
and hence the gamma factor is as stated in (4.4). For later use, note that µs|s=1/2 = 1. In
addition, recall the bound (4.8), which in the present context means µs(r) j (T ′)2Ã−1. We
then obtain

S ′
∞(k,q) =

∑

g,T ′

µ(g)
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)

∫

t1,t2

ÉT ′(t1 − t2)Φ(g)´1´2

∫

(1+ε)

w̃(1− s)
(N
|g|

)1−s

q
2s−1µsL(s,Φ)L(s,Φ)

ds

2Ãi
dt1dt2.

Next we will re-open the Dirichlet series expansions of the Dirichlet L-functions. A small
modification is that we write

L(s,Φ) = ÄΦ,k0r0
∑

(a,k0r0)=1

a−sΦ(a), where ÄΦ,k0r0 =
∏

p|k0r0

(1− Φ(p)p−s)−1,

and likewise for L(s,Φ). This gives

S ′
∞(k,q) =

∑

g,T ′

µ(g)
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)

∫

t1,t2

ÉT ′(t1 − t2)Φ(g)´1´2

N

|g|q
∑

(ab,k0r0)=1

∫

(1+ε)

w̃(1− s)
(
q
2|g|
Nab

)s
µsΦ(ab)ÄΦ,k0r0ÄΦ,k0r0

ds

2Ãi
dt1dt2.
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We then factor out the gcd of a and b, by writing g′ = (a, b) and changing variables a→ g′a
and b→ g′b. The sum over g′ forms a Dirichlet L-function of principal character of modulus
qk0r0, which is given by (4.27). Then S ′

∞(k,q) equals

∑

g,T ′

µ(g)
∑

¹′1,¹
′
2 (mod k′)

¹′1¹
′
2 prim.

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi

(q′1,q
′
2)=1, È1È2 prim.
(Def 4.10)

∫

t1,t2

ÉT ′(t1 − t2)Φ(g)´1´2

∫

(1+ε)

w̃(1− s)

N

|g|q
∑

(a,b)=1
(ab,k0r0)=1

(
q
2|g|
Nab

)s
·(2s)Äq′1Äq′2Äq+1 Äq

+
2
Äk′r′k0r0ÄΦ,k0r0ÄΦ,k0r0µsΦ(ab)

ds

2Ãi
dt1dt2.

Shifting the integral far to the right shows that the portion of the sum with ab k
q
2(T ′)2|g|
N

(QkTN)ε is very small. Note

(4.42) q =
q′1q

+
1 q

−
1 r

′r0r1

q−1
√
r′r0r1

q′2q
+
2 q

−
2 r

′r0r1

q−2
√
r′r0r1

k′k0k1
k0k1

≍ Q2k

q−1 q
−
2 r

′r20r
2
1k0k1

=
Q∗

T ′
,

and hence
q
2|g|(T ′)2

N
≍ (Q∗)2|g|

N
.

Thus we can truncate the sum at ab f N∗. Let S ′′
∞(k,q) denote the contribution to S ′

∞(k,q)

from the terms with ab f N∗. Let q = q1q2, where qi = q′iq
+
i q

−
i

√
r′k′.

Next we apply Lemma 4.5 to detect the condition that ¹′1¹
′
2 is primitive of modulus k′,

and likewise for È1È2 of modulus r′. We also apply Möbius inversion to detect (q′1, q
′
2) = 1,

as preceding (4.28). Our final arithmetical separation of variables step is to write

ÄΦ,k0r0 =
∑

d1|(k0r0)∞

d−sΦ1Φ2(d1),

and likewise for ÄΦ,k0r0 (indexing the sum with the letter d2). We need an archimedean sepa-
ration of variables as well, and this is provided by Corollary 4.4. With this, and rearranging,
we then obtain

S ′′
∞(k,q) =

∑

g,T ′,g′

|j1−j2|f1

µ(g)µ(g′)
∑

ℓ1,ℓ2

cℓ1(k
′)cℓ2(r

′)
∑

d1,d2|(k0r0)∞

∫ ∞

−∞

¸T ′(u)e(uT ′(j1 − j2))

∑

(a,b)=1
abfN∗

(ab,k0r0)=1

∫

(1+ε)

w̃(1− s)

(abd1d2)s

(N
|g|

)1−s

·(2s)Äk′r′k0r0B1B2
ds

2Ãi
du,

where

B1 = B1,s =

∫ 2U

U

∑

q′1,Ç
′
1,Ç

+
1 ,Ç

−
1 ,È1,¹′1

q′1≡0 (mod g′)
(Def 4.10)

´1,j1¹
′
1(ℓ1)È1(ℓ2)Φ1(gd1d2)q

2s−1
1 Äq′1Äq+1 Φ1(ab)e(ut1)dt1,

with ´1,j1 taking the form ´∗,T−T ′/2+T ′j1+t1 (i.e., with a linear change of variables as in
Corollary 4.4), and B2 is given by a similar definition.



24 MATTHEW P. YOUNG

We next shift the contour of integration back to the line Re(s) = ε, crossing a pole at

s = 1/2 only. Let S
(0)
∞ (k,q) denote this polar term, and let S ′′′

∞(k,q) be the new integral.
We record the polar term:

(4.43) S(0)
∞ (k,q) =

∑

g,T ′,g′

|j1−j2|f1

µ(g)µ(g′)
∑

ℓ1,ℓ2

cℓ1(k
′)cℓ2(r

′)
∑

d1,d2|(k0r0)∞

w̃(1/2)√
d1d2

ϕ(k′r′k0r0)

2k′r′k0r0

∫ ∞

−∞

¸T ′(u)e(uT ′(j1 − j2))
∑

(a,b)=1
(ab,k0r0)=1
abfN∗

( N

ab|g|
)1/2

B(0)
1 B(0)

2 du,

where B(0)
i = Bi|s=1/2 is given by

(4.44) B(0)
i =

∫

ti

∑

q′i,Ç
′
i,Ç

+
i ,Ç

−
i ,Èi,¹

′
i

q′i≡0 (mod g′)
(Def 4.10)

´i,ji
ϕ(q′iq

+
i )

q′iq
+
i

¹′i(ℓ1)Èi(ℓ2)Φi(gd1d2ab)e(uti)dti.

Now we turn to S ′′′
∞(k,q). By the triangle inequality, and using (4.5) to bound the L1

norm of ¸T ′ , we obtain

(4.45) |S ′′′
∞(k,q)| ≲

∑

g,T ′,g′

|j1−j2|f1

N

|g|Q∗
max

Re(s)=ε
u∈R
ℓ1,ℓ2

∑

(a,b)=1
abfN∗

|q−2s+1
1 B1,s| |q−2s+1

2 B2,s|.

Analogously to (4.32), on the line Re(s) = ε, we obtain the bound

(4.46)
∑

(a,b)=1
abfN∗

|q−2s+1
i Bi,s|2 ≲ ∆

( Q

q+i q
−
i r

′r0
, q+i q

−
i r

′k′, 2T ′, N∗
)
|´i,ji |2.

We note that
∑

j1
|´1,j1 |2 = |´1|2, since this simply re-assembles the integral to all of [T/2, T ]

(also, for each j1, the number of j2 with |j1− j2| f 1 is at most 3). Applying (4.46) to (4.45)
via Cauchy’s inequality and using (4.25) (and the previous sentence to handle the sum over
the ji) completes the proof of Proposition 4.13. □

4.5. Conclusion. Now we use Propositions 4.12 and 4.13 to prove Theorem 1.5. We have
a decomposition

(4.47) S(k,q) = Sdiag
∞ (k,q) + S ′

∞(k,q)− S ′
fY (k,q) + (S(0)

∞ (k,q)− S
(0)
fY (k,q)) + E∞.

The diagonal term is acceptable for Theorem 1.5, as is the small error term E∞.
Next we turn to the terms S ′

∗(k,q), where ∗ refers to f Y or ∞. We choose

(4.48) Y = (QkTN)ε
Q4k2T 2

N
,

with the same value of ε as in the definition of N∗ (see (4.36)). First consider S ′
fY , where

Cauchy’s inequality implies

∑

k,q

|S ′
fY (k,q)| ≲

2∏

i=1

(∑

k,q

∆
( Q

q+i q
−
i r

′r0r1
, q+i q

−
i r

′k′, T, Y
)
|´i|2

)1/2

.
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Recall from (4.25) that
∑

k,q |´i|2 j (kQ)ε|´|2. Hence

∑

k,q

|S ′
fY (k,q)| ≲

2∏

i=1

(
max
k,q

∆
( Q

q+i q
−
i r

′r0r1
, q+i q

−
i r

′k′, T, Y
))1/2

|´|2.

Recalling the definition (1.8), it is easy to see that

max
k,q

∆
( Q

q+i q
−
i r

′r0r1
, q+i q

−
i r

′k′, T, Y
)
f ∆′(Q, k, T, Y ).

In summary, we have shown

∑

k,q

|S ′
fY (k,q)| ≲ ∆′

(
Q, k, T,

Q4k2T 2

N

)
|´|2,

which is consistent with Theorem 1.5.
The case of S ′

∞ is fairly similar to that of S ′
fY , though the details are more complicated.

Following similar steps as the case of S ′
fY , and using the AM-GM inequality, we derive

∑

k,q

|S ′
∞(k,q)| ≲ |´|2 max

k,q,g,T ′

N

Q∗|g|∆
( Q

q+1 q
−
1 r

′r0r1
, q+1 q

−
1 r

′k′, T ′, N∗
)
,

plus a similar term with the i = 2 variables (q+2 , q
−
2 , etc.). By symmetry, this latter term

will give the same bound as the displayed one. Substituting the values of Q∗ and N∗ from
(4.36), we obtain

(4.49)
∑

k,q

|S ′
∞(k,q)| ≲ N

Q2kT
|´|2

× max
k,q,g,T ′

q−1 q
−
2 r

′r20r
2
1k0k1T

|g|T ′
∆
( Q

q+1 q
−
1 r

′r0r1
, q+1 q

−
1 r

′k′, T ′,
Q4k2(T ′)2|g|(QkN)ε

N(q−1 q
−
2 r

′r20r
2
1k0k1)

2

)
.

A bit of checking, recalling q−2 f q+1 , shows this is consistent with Theorem 1.5.

Finally, we consider the polar terms from s = 1/2, namely S
(0)
∞ (k,q) − S

(0)
fY (k,q). We

need to show there is substantial cancellation between these two terms. To aid in this, we

first simplify S
(0)
∞ (k,q) which recall is defined in (4.43). Observe that

(4.50) N∗ = Y
|g|(T ′)2

(q−1 q
−
2 r

′r20r
2
1k0k1)

2T 2
,

and since |g| divides k20r20 (recalling (4.34)), then N∗ f Y . Then in the definition of S
(0)
∞ , we

extend the sum over ab f N∗ to ab f Y , and subtract back the terms between N∗ and Y .

Write S
(0)
∞,Y for the terms with ab f Y , and let S

(0)
∞,Y ∗ = S

(0)
∞,Y − S

(0)
∞ (which represents the

terms with N∗ < ab f Y ). We claim that S
(0)
∞,Y = S

(0)
fY . To see this, we sum over g and d1

and d2 in (4.43) (though modified to read ab f Y in place of ab f N∗). The sum over g is
not constrained, and we have

∑

g

µ(g)Φ(g)√
|g|

=
∏

p|k0r0

(
1− Φ(p)√

p

)(
1− Φ(p)√

p

)
.
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For d1 and d2, we have

∑

d1,d2|(k0r0)∞

Φ(d1d2)√
d1d2

=
∏

p|k0r0

(
1− Φ(p)√

p

)−1(
1− Φ(p)√

p

)−1

.

Therefore, these two evaluations perfectly cancel. The sums over j1 and j2 can be simplified
by using Lemma 4.2 in the reverse order. Moreover, since µs(t1 − t2) = 1 at s = 1/2, we can
write

∑
T ′ ÉT ′(t1 − t2) = 1. Hence, the partition of unity is fully re-assembled.

Comparing (4.29) and (4.44), it is not hard to see that B(0)
i agrees with A(0)

i after removal

of Φi(gd1d2)e(uti). This shows the claim that S
(0)
∞,Y = S

(0)
fY . Hence S

(0)
∞ − S

(0)
fY = −S(0)

∞,Y ∗ ,
which for ease of reference we write directly as follows:

S
(0)
∞,Y ∗(k,q) =

∑

g,T ′,g′

|j1−j2|f1

µ(g)µ(g′)
∑

ℓ1,ℓ2

cℓ1(k
′)cℓ2(r

′)
∑

d1,d2|(k0r0)∞

w̃(1/2)√
d1d2

ϕ(k′r′k0r0)

2k′r′k0r0

∫ ∞

−∞

¸T ′(u)e(uT ′(j1 − j2))
∑

(a,b)=1
N∗<abfY
(ab,k0r0)=1

( N

ab|g|
)1/2

B(0)
1 B(0)

2 du.

Now the estimations are similar to those of S ′
fY and S ′

∞, though the details are a little
different. Following the same initial steps as in S ′

fY , we obtain

(4.51)
∑

k,q

|S(0)
∞,Y ∗(k,q)| ≲ |´|2 max

k,q,g,T ′
max

N∗jMjY

N1/2

(|g|M)1/2
∆
( Q

q+1 q
−
1 r

′r0r1
, q+1 q

−
1 r

′k′, T ′,M
)
.

We claim this is bounded consistently with Theorem 1.5. To see this, first note N1/2

Y 1/2 f N
Q2kT

.

Then the condition “XR2ℓU f Q2kT” from (1.8) is deduced from

Q2kT

N

N1/2

(|g|M)1/2

( Q2k′T ′

q+1 q
−
1 r

′r20r
2
1

)
f Q2kT

|g| f Q2kT.

The condition “X f C” from (1.8) is easy to check, by setting M = Y/C. This completes
the proof of Theorem 1.5.

5. Proof of Theorem 1.6

5.1. Miscellany. Here we present a couple tools with self-contained proofs.

Lemma 5.1. Let c, d be positive integers, and define the Dirichlet series

(5.1) Zc,d(s) =
∑

(n,cd)=1
m|c∞

n

φ(n)

1

(mn)s
, Re(s) > 1.

Then

(5.2) Zc,d(s) = Z1,1(s)¿c(s)¶d(s),

where Z1,1(s) has meromorphic continuation to Re(s) > 0 with a simple pole at s = 1 only,
and where

¿c(s) =
∏

p|c

(
1 +

p−s−1

1− p−1

)−1

, ¶d(s) =
∏

p|d

(
1 + (1− p−1)

p−s

1− p−s

)−1

.
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Proof. A routine calculation gives

Zc,d(s) =
∏

p|c

(1− p−s)−1
∏

p∤cd

(
1 + (1− p−1)−1 p−s

1− p−s

)
,

from which the lemma follows with a bit of calculation. □

Lemma 5.2 (Separation of variables). Let É = ÉV be a smooth, even, function supported

on [−2V, 2V ], where V > 0, satisfying É
(j)
V (x) j V −j, for all j = 0, 1, . . . . Let w(x, y, z, w)

be smooth of compact support on R4
>0. Let g be a Schwartz-class function. Define F : R4

>0

by

F (x1, y1, x2, y2) = ÉV (x1y2 − x2y1)g
(
T log

x1y2
x2y1

)
w
(x1
X
,
y1
Y
,
x2
X
,
y2
Y

)
,

where T , X, Y are positive parameters. Let R = V
XY

, and set U = max(T,R−1). Then

F (x1, y1, x2, y2) =

∫

R4

G(u1, u2, u3, t)
(x1y2
x2y1

)it du1du2du3
yiu11 yiu22 xiu32

dt,

where G (depending on T, V,X, Y ) satisfies the bound for any A > 0

(5.3) |G(u1, u2, u3, t)| jA U
−1
(
1 +

|t|
U

)−A
3∏

i=1

(1 + |ui|)−A.

Remark. If s ∈ C and É(x, s) = xs−1ÉV (x), then one may apply the lemma to É(x, s),
giving rise to a family of functions G = Gs. The proof shows that Gs satisfies (5.3) with an
implied constant depending polynomially on s.

Proof. By Mellin inversion,

(5.4) F (x1, y1, x2, y2) =

∫
F̃ (s1, u1, s2, u2)x

−s1
1 y−u11 x−s22 y−u22

ds1du1ds2du2
(2Ãi)4

,

where F̃ (s1, u1, s2, u2) is defined by

(5.5)

∫

R4
>0

ÉV (x1y2 − x2y1)g
(
T log

x1y2
x2y1

)
w
(x1
X
,
y1
Y
,
x2
X
,
y2
Y

)
xs11 y

u1
1 x

s2
2 y

u2
2

dx1dy1dx2dy2
x1y1x2y2

.

In (5.5), change variables x1 → x2y1
y2
x1, giving that F̃ (s1, s2, s2, s4) equals

∫

R4
>0

ÉV

(x2y1
XY

(x1 − 1)

R/V

)
g(T log x1)w

(x1x2y1
Xy2

,
y1
Y
,
x2
X
,
y2
Y

)

xs11 y
s1+u1
1 xs1+s22 y−s1+u22

dx1dy1dx2dy2
x1y1x2y2

.

Now in (5.4), change variables u1 → u1 − s1, s2 → s2 − s1, and u2 → u2 + s1, giving

(5.6) F (x1, y1, x2, y2) =

∫
F̃ (s1, u1 − s1, s2 − s1, u2 + s1)

(x1y2
x2y1

)−s1 ds1du1ds2du2
yu11 x

s2
2 y

u2
2 (2Ãi)4

,

where now F̃ (s1, u1 − s1, s2 − s1, u2 + s1) takes the form of H̃(s1, u1, s2, u2), where

H(x1, y1, x2, y2) = ÉV

(x2y1
XY

(x1 − 1)

R/V

)
g(T log x1)w

(x1x2y1
Xy2

,
y1
Y
,
x2
X
,
y2
Y

)
.
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It is easy to check that

H(j1,k1,j2,k2)(x1, y1, x2, y2) j U j1X−j2Y −k1−k2 ,

and that x1 is concentrated on x1 = 1 + O(min(R, T−1)), from whence integration by parts
gives

H̃(−it, u1, u3, u2) jA U
−1
(
1 +

|t|
U

)−A

Y Re(u1+u2)XRe(u3)

3∏

j=1

(1 + |uj|)−A.

Taking Re(ui) = 0 and defining G on R4 appropriately completes the proof. □

5.2. Preparation. It is convenient to work with a couple modified norms that are closely
related to (1.3). Define

(5.7) ∆1(Q, k, T,N) = max
|³|=1

∫

T/2ftfT

∑

Q/2<qfQ
(q,k)=1

∑∗

Ç (mod q)

∑∗

¹ (mod k)

∣∣∣
∑

N/2<abfN
(a,b)=1

³a,b¼Ç¹,t(a, b)
∣∣∣
2

dt.

Clearly, ∆1(Q, k, T,N) f ∆(Q, k, T,N), and in the other direction, we have

∆(Q, k, T,N) f
∑

j|k

∆1(Q, j, T,N).

Secondly, define

(5.8) ∆2(Q, k, T,N) = max
|³|=1

∫

T/2ftfT

∑

Q/2<qfQ

∑∗

È (mod qk)

∣∣∣
∑

N/2<abfN
(a,b)=1

³a,b¼È,t(a, b)
∣∣∣
2

dt.

It is easy to see that ∆1(Q, k, T,N) f ∆2(Q, k, T,N), since when (q, k) = 1, the map
(Ç, ¹) 7→ Ç¹ is a bijection onto the set of primitive characters modulo qk. After having done
this, we then arrive at (5.8) by dropping the condition (q, k) = 1, by positivity. For the proof
of Theorem 1.6, we will bound the norm ∆2. Indeed, we can deduce Theorem 1.6 from the
bound

(5.9) ∆2(Q, k, T,N) ≲ Q2kT +
Q2kT

N
∆′

( N

kQT
, k, T,N

)
.

Let w be a nonnegative smooth weight function with w(x) g 1 for 1/2 f x f 1, and
w(x) = 0 for x < 1/4 and for x g 2. Then ∆2(Q, k, T,N) f max|³|=1 S, where

S =

∫ ∞

−∞

w
( t
T

)∑

q

w
( q
Q

) ∑∗

È (mod qk)

qk

φ(qk)

∣∣∣
∑

(a,b)=1
N/2<abfN

³a,bÈ(ab)(a/b)
it
∣∣∣
2

dt.

We will assume that ³a,b is supported on

(5.10) N/2 < ab f N, (ab, k) = 1, and (a, b) = 1.

A simple argument with a dyadic partition of unity and Cauchy’s inequality shows that
∣∣∣
∑

a,b

³a,b

∣∣∣
2

=
∣∣∣

∑

N1N2≍N
dyadic

∑

a≍N1
b≍N2

³a,b

∣∣∣
2

j logN
∑

N1N2≍N
dyadic

∣∣∣
∑

a≍N1
b≍N2

³a,b

∣∣∣
2

.

Hence, in the proof of Theorem 1.6, we may assume that a and b are each supported in
dyadic ranges, say a ≍ N1 and b ≍ N2.
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Let 1 f Y f Q
100

be a parameter to be chosen later. For È (mod qk), say qk = q′(dk)
where d|k∞ and (q′, k) = 1, and write È = ÈkÈ

′ where Èk has modulus dk and È′ has
modulus q′. Let mk(È) = dk denote the modulus of the k-part of È, and condq′(È) denote
the conductor of È′, i.e., the coprime to k part of È. Then S f S>Y , where

S>Y =

∫ ∞

−∞

w
( t
T

)∑

q

w
( q
Q

) ∑

È (mod qk)
condq′ (È)mk(È)>Y k

qk

φ(qk)

∣∣∣
∑

a,b

³a,bÈ(ab)(a/b)
it
∣∣∣
2

dt,

by positivity, since if È is primitive modulo qk, then condq′(È)mk(È) = cond(È) = qk. This
uses that the condition qk > Y k is redundant to the support of w(q/Q).
By inclusion-exclusion, we have S>Y = Sf∞−SfY , where for ∗ ∈ {Y,∞}, Sf∗ corresponds

to the sum over condq′(È)mk(È)/k f ∗. We will write S∞ as an alias for Sf∞.
We begin with some arithmetic manipulations that are in common between S∞ and SfY .

Opening the square, we have

Sf∗ =

∫ ∞

−∞

w
( t
T

)∑

q

w
( q
Q

) ∑

È (mod qk)
condq′ (È)mk(È)/kf∗

qk

φ(qk)

∑

a1,b1
a2,b2

³a1,b1³a2,b2È(a1b2b1a2)
(a1b2
b1a2

)it
dt.

Define

(5.11) g1 = (a1, a2), g2 = (b1, b2), g3 = (a1, b2), g4 = (b1, a2),

and note that the gi are pairwise coprime since (a1, b1) = (a2, b2) = 1 by the support of ³
(recall (5.10)). Then change variables

a1 → g1g3h11h13a1, where (a1, g1g3) = 1

a2 → g1g4h21h24a2, where (a2, g1g4) = 1

b1 → g2g4h32h34b1, where (b1, g2g4) = 1

b2 → g2g3h42h43b2, where (b2, g2g3) = 1

(5.12)

and where

(5.13) hij|g∞j for all i, j, and (hij, hkj) = 1 for i ̸= k.

The conditions (5.11) translate into

(a1b1, a2b2) = 1.

Moreover, the conditions (a1, g1g3) = 1, . . . , (b2, g2g3) = 1 in (5.12) may be expressed suc-
cintly as (a1a2b1b2, g1g2g3g4) = 1, since prior to (5.12) we had (ai, bi) = 1 from (5.10). Let

(5.14) g = (g1, g2, g3, g4, h11, h13, h21, h24, h32, h34, h42, h43),

where the hij satisfy (5.13). In addition, let

´13 = g1g3h11h13, ´14 = g1g4h21h24, ´24 = g2g4h32h34, ´23 = g2g3h42h43,

and

µ1 = g23h11h42h13h43 =
´13´23
g1g2

and µ2 = g24h21h32h24h34 =
´14´24
g1g2

.
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Observe that (µ1, µ2) = 1 since the gi are pairwise coprime, and using (5.13). With these
substitutions, we obtain

(5.15) Sf∗ =
∑

g

∫ ∞

−∞

w
( t
T

) ∑

(q,g1g2)=1

w
( q
Q

) ∑

È (mod qk)
condq′ (È)mk(È)/kf∗

qk

φ(qk)

∑

(a1b1,a2b2)=1
(a,g)=1

³
(1,g)
a1,b1

³
(2,g)
a2,b2

È
(µ1a1b2
µ2b1a2

)(µ1a1b2
µ2b1a2

)it
dt,

where

(5.16) ³
(1,g)
a1,b1

³
(2,g)
a2,b2

= ³´13a1,´24b1³´14a2,´23b2 ,

and where the condition (a,g) = 1 is shorthand for (a1a2b1b2, g1g2g3g4) = 1. There are
additional conditions that are implicitly enforced by (5.10), which we will recall only as
needed. For later use, note

(5.17) µ1a1b2 ≍ µ2a2b1 ≍
N

g1g2
.

Moreover, we claim that

(5.18)
∑

g,a1,b1

|³(1,g)
a1,b1

|2 ≲ |³|2,

and similarly for ³
(2,g)
a2,b2

. To see this, note that the variables g1, g2, g3, g4 appear as divisors of
´13 or ´24, and similarly for half of the hij variables (namely, h11, h13, h32, and h34). For the
remaining hij variables, we recall from (5.13) that h12|g2, etc., so these variables range over
a set of cardinality j N ε. Then (5.18) follows easily.

5.3. Direct method. In this section we estimate SfY by reducing to an instance of the
original norm, but with smaller parameters.

Proposition 5.3. We have SfY = S
(0)
fY + S ′

fY , where S
(0)
fY is given by (5.22) below, and

where

(5.19) S ′
fY ≲ max

Y ′fY
rk|k

∞

∆(Y ′/rk, rkk, 2T,N)|³|2.

Proof. We pick up from (5.15). Write q = rkq
′ where rk|k∞ and (q′, k) = 1, and write È = Ç¹

where ¹ runs modulo rkk and Ç runs modulo q′. Then

(5.20) SfY =
∑

g

∑

rk|k∞

∫ ∞

−∞

w
( t
T

) ∑

(q′,kg1g2)=1

w
(q′rk
Q

) ∑

¹ (mod rkk)

∑

Ç (mod q′)
cond(Ç)fY/rk

q′k

φ(q′)φ(k)

∑

(a1b1,a2b2)=1
(a,g)=1

³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2b1a2

)(µ1a1b2
µ2b1a2

)it
dt.
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We next replace q′ by q′q0q1 where q′ is the conductor of Ç, (q0, q
′) = 1, and q1|(q′)∞, and

correspondingly write Ç = Ç′Ç0 where Ç
′ is primitive modulo q′, and Ç0 is trivial modulo q0.

Applying this substitution in (5.20), we obtain

SfY =
∑

g

∑

rk|k∞

∫ ∞

−∞

w
( t
T

) ∑

(q′,kg1g2)=1
q′fY/rk

∑

¹ (mod rkk)

∑∗

Ç (mod q′)

q′k

φ(q′)φ(k)

∑

(q0,q′kg)=1
q1|(q′)∞

w
(q′q0q1rk

Q

) q0
φ(q0)

∑

(a1b1,a2b2)=1
(a,q0g)=1

³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç′¹
(µ1a1b2
µ2b1a2

)(µ1a1b2
µ2b1a2

)it
dt.

By Mellin inversion, and evaluating the sums over q0 and q1 with Lemma 5.1, the second
line above equals

∑

(a1b1,a2b2)=1
(a,g)=1

³
(g)
a1,b1

³
(2,g)
a2,b2

Ç′¹
(µ1a1b2
µ2b1a2

)(µ1a1b2
µ2b1a2

)it 1

2Ãi

∫

(2)

( Q

rkq′

)s
w̃(s)Zq′,kga(s)dsdt.

Since k, g1, g2, g3, g4, a1, a2, b1, b2 are pairwise coprime, we have

(5.21) Zq′,kga(s) = Z1,1(s)¿q′(s)¶kg(s)¶a1b1(s)¶a2b2(s),

which is an important separation of variables.
Using the meromorphic continuation of Z1,1(s) provided by Lemma 5.1, we shift the con-

tour of integration to the line Re(s) = ε, passing a pole at s = 1. Let S
(0)
fY denote the residue

term, which is given by

(5.22) S
(0)
fY =

∑

rk|k∞

∑

g

¶kg

∫ ∞

−∞

w
( t
T

) ∑

¹ (mod rkk)

∑

(q′,kg1g2)=1
q′fY/rk

∑∗

Ç′ (mod q′)

Qw̃(1)Z1,1¿q′k

rkφ(q′)φ(k)

∑

(a1b1,a2b2)=1
(a,g)=1

¶a1b1³
(1,g)
a1,b1

¶a2b2³
(2,g)
a2,b2

Ç′¹
(µ1a1b2
µ2b1a2

)(µ1a1b2
µ2b1a2

)it
dt,

where Z1,1 denotes Ress=1Z1,1(s), ¿q′ denotes ¿q′(1), and ¶n = ¶n(1).
By the triangle inequality, and some simple bounds, we have

(5.23) |S ′
fY | ≲

∑

rk|k∞

r−εk max
Re(s)=ε

∑

g

∫ 2T

−2T

∑

¹ (mod rkk)

∑

(q′,kg1g2)=1
q′fY/rk

∑∗

Ç′ (mod q′)

∣∣∣
∑

(a1b1,a2b2)=1
(a,g)=1

¶a1b1(s)³
(1,g)
a1,b1

¶a2b2(s)³
(2,g)
a2,b2

Ç′¹
(µ1a1b2
µ2b1a2

)(µ1a1b2
µ2b1a2

)it∣∣∣dt.

Note |Ç′¹(µ1µ2)(µ1/µ2)
it| f 1, which may be used to simplify this bound. To show the desired

bound (5.19), we state and prove Lemma 5.4 just below, as it will be useful later as well. □
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Lemma 5.4. Let µ
(1)
a,b and µ

(2)
a,b be sequences of complex numbers supported on ab ≍ M ,

(a, b) = 1. Consider an expression of the form Sµ(Q, k, T,M) defined by
∫ T

−T

∑

¹ (mod k)

∑

(q,k)=1
Q/2<qfQ

∑∗

Ç (mod q)

∣∣∣
∑

(a1b1,a2b2)=1

µ
(1)
a1,b1

µ
(2)
a2,b2

Ç¹
(a1b2
b1a2

)(a1b2
b1a2

)it∣∣∣dt.

Then
Sµ(Q, k, T,M) ≲ ∆(Q, k, T,M)max

i=1,2
|µ(i)|2.

Proof. To separate the inner variables, we use Möbius inversion in the form

(5.24) ¶((a1b1, a2b2) = 1) =
∑

e1|(a1,a2)

∑

e2|(a1,b2)

∑

e3|(b1,a2)

∑

e4|(b1,b2)

µ(e1)µ(e2)µ(e3)µ(e4).

The ei are pairwise coprime, by the support of µ. Thus

Sµ(Q, k, T,M) j
∑

e1,e2,e3,e4

∫ T

−T

∑

¹ (mod k)

∑

(q,k)=1
Q/2<qfQ

∑∗

Ç (mod q)

|A1A2|dt,

where

A1 =
∑

a1≡0 (mod e1e2)
b1≡0 (mod e3e4)

µa1,b1Ç¹(a1b1)
(a1
b1

)it
,

and A2 has a similar definition. Lemma 5.4 follows by using |A1A2| j |A1|2 + |A2|2 and
monotonicity (Lemma 2.1). □

5.4. Divisor switching method.

Proposition 5.5. We have a decomposition

S∞ = S(0)
∞ + S ′

∞ + Sdiag
∞ + E∞,

with the following properties. The term S
(0)
∞ is given by (5.34) below, and S ′

∞ satisfies the
bound

(5.25) |S ′
∞| ≲ Q2kT

N
∆′

( N

kQT
, k, T,N

)
|³|2.

The diagonal term satisfies the bound

(5.26) |Sdiag
∞ | j Q2kT |³|2,

and the term E∞ is negligibly small.

Proof. We carry on with (5.15) and apply orthogonality of characters to the sum over È.
This picks out the congruence µ1a1b2 ≡ µ2a2b1 (mod kq), however with a side condition
(µ1µ2a1a2b1b2, kq) = 1. This side condition can be dropped, since the congruence µ1a1b2 ≡
µ2a2b1 (mod kq), combined with (µ1a1b2, µ2a2b1) = 1, implies that (µ1µ2a1b2a2b1, kq) = 1.
Additionally evaluating the t-integral, in all we obtain

S∞ = QkT
∑

g

∑

(q,g1g2)=1

w1

( q
Q

) ∑

(a1b1,a2b2)=(a,g)=1
µ1a1b2≡µ2a2b1 (mod kq)

³
(1,g)
a1,b1

³
(2,g)
a2,b2

ŵ
(
T log

µ1a1b2
µ2a2b1

)
,
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where w1(x) = xw(x) and ŵ(x) =
∫∞

−∞
w(t)eixtdt.

Let Sdiag
∞ be the contribution to S∞ from the diagonal µ1a1b2 = µ2a2b1. Since (µ1a1b2, µ2a2b1) =

1, this forces µi = ai = bi = 1 for i = 1, 2. Hence recalling (5.16), we obtain

(5.27) Sdiag
∞ j Q2kT

∑

g1,g2

|³g1,g2 |2 = Q2kT |³|2.

Let S ′′
∞ = S∞ − Sdiag

∞ be the non-diagonal portion of S∞. Write µ1a1b2 = µ2a2b1 + qkr,
where r ̸= 0. Additionally, we detect the condition (q, g1g2) = 1 by Möbius inversion in the
form

∑
d|(q,g1g2)

µ(d), and substitute q = de. This gives

S ′′
∞ = QkT

∑

g

∑

d|g1g2

µ(d)
∑

e

w1

(de
Q

) ∑

r∈Z\{0}

∑

(a1b1,a2b2)=(a,g)=1
µ1a1b2−µ2a2b1=dekr

³
(1,g)
a1,b1

³
(2,g)
a2,b2

ŵ
(
T log

µ1a1b2
µ2a2b1

)
.

Now we perform the divisor switch: re-write µ1a1b2 − µ2a2b1 = dekr as

(5.28) µ1a1b2 ≡ µ2a2b1 (mod dk|r|), e =
µ1a1b2 − µ2a2b1

dkr
.

It is convenient to record that the side condition

(5.29) (µ1µ2a1a2b1b2, dkr) = 1

follows from the congruence (5.28) together with the coprimality (µ1a1b2, µ2a2b1) = 1. We
also factor r as

r = r0r1, r0|(kg1g2)∞, (r1, kg1g2) = 1.

With these substitutions, we obtain

S ′′
∞ = QkT

∑

g

∑

d|g1g2
r0|(kg1g2)∞

µ(d)
∑

r1∈Z\{0}
(r1,kg1g2)=1

w1

(µ1a1b2 − µ2a2b1
kr0r1Q

)

∑

(a1b1,a2b2)=(a,g)=1
µ1a1b2≡µ2a2b1 (mod dkr0)
µ1a1b2≡µ2a2b1 (mod |r1|)

³
(1,g)
a1,b1

³
(2,g)
a2,b2

ŵ
(
T log

µ1a1b2
µ2a2b1

)
.

Next we express the congruences using Dirichlet characters modulo dkr0 and |r1|; this is
enabled by the side condition (5.29). This leads to

S ′′
∞ = QkT

∑

g

∑

d|g1g2
r0|(kg1g2)∞

µ(d)

φ(dkr0)

∑

¹ (mod dkr0)

∑

r1∈Z\{0}
(r1,kg1g2)=1

1

φ(|r1|)
∑

Ç (mod |r1|)

∑

(a1b1,a2b2)=1
(a,g)=1

³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)
w1

(µ1a1b2 − µ2a2b1
kr0r1Q

)
ŵ
(
T log

µ1a1b2
µ2a2b1

)
.

The characters of varying modulus need to be primitive, so we substitute

r1 → r1r2q
′, Ç→ Ç0Ç,
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where r1|(q′)∞, (r2, q
′) = 1, Ç is primitive of modulus |q′|, and Ç0 is trivial modulo r2. With

this, we obtain

S ′′
∞ = QkT

∑

g

∑

d|g1g2
r0|(kg1g2)∞

µ(d)

φ(dkr0)

∑

¹ (mod dkr0)

∑

q′ ̸=0
(q′,kg1g2)=1

∑

r1|(q′)∞

(r2,q′kg)=1

∑∗

Ç (mod |q′|)

∑

(a1b1,a2b2)=1
(a1a2b1b2,gr2)=1

³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)w1

(
µ1a1b2−µ2a2b1
kr0r1r2q′Q

)

φ(r1r2|q′|)
ŵ
(
T log

µ1a1b2
µ2a2b1

)
.

Let w1(x) = x−1w2(x), so w2(x) = x2w(x), and w̃2(−s) = w̃(2 − s). In addition, apply the
Mellin inversion formula to w2. Then we obtain that S ′′

∞ equals

Q2kT
∑

g

∑

d|g1g2
r0|(kg1g2)∞

µ(d)kr0
φ(dkr0)

∑

¹ (mod dkr0)

∑

(q′,kg1g2)=1

∑

r1|(q′)∞

(r2,q′kg)=1

r2|q′|
φ(r2)φ(|q′|)

∑∗

Ç (mod |q′|)

∫

(2)

w̃(2− s)

∑

(a1b1,a2b2)=1
(a1a2b1b2,gr2)=1

(µ1a1b2 − µ2a2b1
kr0r1r2q′Q

)s (sgn)³(1,g)
a1,b1

³
(2,g)
a2,b2

|µ1a1b2 − µ2a2b1|
Ç¹

(µ1a1b2
µ2a2b1

)
ŵ
(
T log

µ1a1b2
µ2a2b1

) ds
2Ãi

,

where the summand (sgn) is shorthand for the indicator function that

(5.30) sgn(q′) = sgn(µ1a1b2 − µ2a2b1).

Prior to the Mellin inversion formula, (5.30) was enforced by the support of w2.
The sums over r1 and r2 evaluate exactly as in (5.21). Thus

S ′′
∞ = Q2kT

∑

g

∑

d|g1g2
r0|(kg1g2)∞

µ(d)kr0
φ(dkr0)

∑

¹ (mod dkr0)

∑

q′ ̸=0
(q′,kg1g2)=1

|q′|
φ(|q′|)

∑∗

Ç (mod |q′|)

∫

(2)

w̃(2− s)Z1,1(s)¿q′(s)¶gk(s)
∑

(a1b1,a2b2)=1
(a,g)=1

(µ1a1b2 − µ2a2b1
kr0q′Q

)s

(sgn)¶a1b1(s)¶a2b2(s)³
(1,g)
a1,b1

³
(2,g)
a2,b2

|µ1a1b2 − µ2a2b1|
Ç¹

(µ1a1b2
µ2a2b1

)
ŵ
(
T log

µ1a1b2
µ2a2b1

) ds
2Ãi

.

Now we apply a dyadic partition of unity of the form

1 =
∑

V dyadic

É
(µ1a1b2 − µ2a2b1

V

)

where É is smooth, even, and supported on [1, 2] ∪ [−2,−1]. By the rapid decay of ŵ, and
recalling (5.17), note that

ŵ
(
T log

µ1a1b2
µ2a2b1

)
j

(
1 + T

|µ1a1b2 − µ2a2b1|
µ2a2b1

)−A

j
(
1 + T

|µ1a1b2 − µ2a2b1|
N/(g1g2)

)−A

.
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Therefore, we may assume that

(5.31) 1 j V f Vmax =
N

g1g2T
(QkTN)ε,

absorbing V > Vmax into the error term E∞.
With this partition, we obtain

S ′′
∞ = Q2kT

∑

g

∑

1jVfVmax

V −1
∑

d|g1g2
r0|(kg1g2)∞

µ(d)kr0
φ(dkr0)

∑

¹ (mod dkr0)

∑

q′ ̸=0
(q′,kg1g2)=1

|q′|
φ(|q′|)

∑∗

Ç (mod |q′|)

1

2Ãi

∫

(2)

( V

kr0|q′|Q
)s
w̃(2− s)Z1,1(s)¿q′(s)¶gk(s)

∑

(a1b1,a2b2)=1
(a,g)=1

(sgn)¶a1b1(s)¶a2b2(s)³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)
És

(µ1a1b2 − µ2a2b1
V

)
ŵ
(
T log

µ1a1b2
µ2a2b1

)
ds,

where És(x) = xs−1É(x). By shifting the contour far to the right, q′ may be truncated at

(5.32) |q′| f Q∗ :=
V

kr0Q
(QkTN)ε.

We next want to apply Lemma 5.2. Note that

µ1a1b2 =
´13a1
g1

´23b2
g2

, µ2a2b1 =
´14a2
g1

´24b1
g2

,

where recall the support of ³ implies ´13a1 ≍ ´14a2 ≍ N1 and ´23b2 ≍ ´24b1 ≍ N2. We may
then freely attach a redundant weight function of the form

w
(´13a1
N1

,
´24b1
N2

,
´14a2
N1

,
´23b2
N2

)
.

Now this is set up to apply Lemma 5.2 with x1 = g−1
1 ´13a1, y1 = g−1

1 ´24b1, x2 = g−1
1 ´14a2,

y2 = g−1
2 ´23b2, X = N1

g1
and Y = N2

g2
, and with É = És. Observe that with this substitution,

then µ1a1b2 − µ2a2b1 = x1y2 − x2y1, as desired. This gives

S ′′
∞ = Q2kT

∑

g

∑

1jVfVmax

V −1

∫

R4

Gs(u1, u2, u3, t)
∑

d|g1g2
r0|(kg1g2)∞

µ(d)kr0
φ(dkr0)

∑

¹ (mod dkr0)

∑

|q′|fQ∗

(q′,kg1g2)=1

|q′|
φ(|q′|)

∑∗

Ç (mod |q′|)

1

2Ãi

∫

(2)

( V

kr0|q′|Q
)s
w̃(2− s)Z1,1(s)¿q′(s)¶kg(s)

∑

(a1b1,a2b2)=1
(a,g)=1
(sgn)

¶a1b1(s)¶a2b2(s)³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)(µ1a1b2
µ2a2b1

)it
dt
du1du2du3

yiu11 yiu22 xiu32

ds,

plus a small error term. Here G = Gs depends on s, via És(x) = xs−1É(x). We also record

(5.33) R =
V g1g2
N

, and U =
N

g1g2V
(QkTN)o(1).
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Now we shift the contour to the line Re(s) = ε. In doing so we cross a pole at s = 1,

and we denote its residue by S
(0)
∞ . There is a small but convenient simplification with the

sign condition (5.30), namely that all the summands are independent of sgn(µ1a1b2−µ2a2b1)
and sgn(q′), except for the indicator function that these signs agree. We may therefore take
q′ > 0. We also make a small modification by factoring r0 = rgrk where rg|(g1g2)∞ and
rk|k∞. With this simplification and others, we obtain

(5.34) S(0)
∞ = QkT

∑

rk|k∞

∑

g

∑

1jVfVmax

∫

R4

G1(u1, u2, u3, t)
∑

d|g1g2
rg |(g1g2)∞

µ(d)

φ(dkrgrk)

∑

¹ (mod dkrgrk)

∑

q′fQ∗

(q′,kg1g2)=1

w̃(1)Z1,1¿q′¶kg
φ(q′)

∑∗

Ç (mod q′)

∑

(a1b1,a2b2)=1
(a,g)=1

¶a1b1¶a2b2³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)(µ1a1b2
µ2a2b1

)it
dt
du1du2du3

yiu11 yiu22 xiu32

.

Let S ′
∞ denote the remaining contour integral along Re(s) = ε. Here we obtain

|S ′
∞| ≲ Q2kT

∫

(ε)

|w̃(2− s)|
∑

g

∑

1jVfVmax

V −1
∑

d|g1g2
r0|(kg1g2)∞

d−1

∫

R4

|Gs(u1, u2, u3, t)|du1du2du3
∑

¹ (mod dkr0)

∑

q′fQ∗

(q′,kg1g2)=1

∑∗

Ç (mod q′)

∣∣∣
∑

(a1b1,a2b2)=1
(a,g)=1

¶a1b1(s)³
(1,g)
a1,b1

Ç¹(a1b1)
(a1
b1

)it
· ¶a2b2(s)³(2,g)

a2,b2
Ç¹(b2a2)

( b2
a2

)it∣∣∣dt|ds|.

A small issue here concerns the dependence of Gs on s. By the rapid decay of |w̃(2 − s)|,
we may truncate the s-integral at |s| ≲ 1. The remark following Lemma 5.2 shows that the
family of functions Gs have a good uniform bound. We may then truncate the t-integral
at U(QkTN)o(1). Lemma 5.4 allows us to essentially remove the coprimality condition

(a1b1, a2b2) = 1; we apply this lemma with M j N
g1g2

and µ
(i)
a,b = ¶ab(s)³

(i,g)
a,b . With these

steps, we may then estimate S ′
∞ in terms of the original norm (1.3), giving

(5.35) |S ′
∞| ≲ Q2kT

∑

g

∑

1jVfVmax

V −1
∑

d|g1g2
r0|(kg1g2)∞

d−1

U−1∆
(
Q∗, dkr0, U,

N

g1g2

)
|³(1,g)
a1,b1

³
(2,g)
a2,b2

|,

where recall U is given by (5.33) and Q∗ was defined by (5.32). Note UV = N
g1g2

(QkTN)o(1).

It is convenient to write V = Vmax/P , where 1 j P j Vmax, in which case (5.35) simplifies
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as

(5.36) |S ′
∞| ≲ Q2kT

N

∑

g

∑

1jPjVmax

∑

d|g1g2
r0|(kg1g2)∞

1

d

g1g2∆
( N

QkTg1g2rgrkP
, dkrgrk, PT,

N

g1g2

)
|³(1,g)
a1,b1

³
(2,g)
a2,b2

|.

Recalling the definition (1.8), this completes the proof. □

5.5. Conclusion. Now we use Propositions 5.3 and 5.5 to prove Theorem 1.6. Recall that
we need to show that S>Y satisfies (5.9), that is

S>Y ≲ |³|2
(
Q2kT +

Q2kT

N
∆′

( N

kQT
, k, T,N

))
,

where for convenience to the reader we recall the definition (1.8):

∆′(Q, k, T,N) = max
X,R,U,C∈Rg1,ℓ∈Z>0

XR2ℓUfQ2kT
XfC

X∆
(
R, ℓ, U,

N

C

)
.

We have a decomposition

S>Y = S∞ − SfY = Sdiag
∞ + S ′

∞ − S ′
fY + (S(0)

∞ − S
(0)
fY ) + E∞.

The diagonal term Sdiag
∞ is acceptable for Theorem 1.6, as is E∞.

Now we turn to the terms S ′
f∗. Recall the definitions (5.32) and (5.31). We choose

(5.37) Y = (QkTN)ε
N

QkT
,

with a value of ε so that when V = Vmax, then Q∗ = Y
g1g2rgrk

. Using the assumption

Q2kT k N1−ε, it is easy to check that (5.19) is acceptable for Theorem 1.6, and also that
Y f Q/100, so this is a valid choice of Y . Moreover, (5.25) directly shows that S ′

∞ is
bounded in accord with the theorem.

Finally, consider the polar terms from s = 1, namely S
(0)
∞ and S

(0)
fY given by (5.34) and

(5.22). We simplify S
(0)
∞ , continuing with (5.34). We reverse the orders of summation between

V and q′; the condition q′ f Q∗ = CV
Qkrgrk

(where C here is shorthand for (QkTN)ε) becomes

instead V > C−1q′Qkrkrg (on the inside) and q′ f Y
rgrkg1g2

(on the outside). We then write

S
(0)
∞ = S

(0)
∞,1 − S

(0)
∞,2, where S

(0)
∞,1 has V unconstrained, and S

(0)
∞,2 has V f C−1q′Qkrkrg. A

pleasant feature of S
(0)
∞,1 is that the sum over V re-assembles the partition of unity, since G1

corresponds to És(x)|s=1 = É(x). We also re-open the definition of ŵ. Together, these steps
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give

(5.38) S
(0)
∞,1 = Qk

∑

rk|k∞

∑

g

∫ ∞

−∞

w
( t
T

) ∑

d|g1g2
rg |(g1g2)∞

µ(d)

φ(dkrgrk)

∑

¹ (mod dkrgrk)

∑

q′f Y
rkrgg1g2

(q′,kg1g2)=1

1

φ(q′)

∑∗

Ç (mod q′)

w̃(1)Z1,1¿q′¶kg
∑

(a1b1,a2b2)=1
(a,g)=1

¶a1b1¶a2b2³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)(µ1a1b2
µ2a2b1

)it
dt.

Next we further cut this sum into four pieces, via

(5.39)
∑

q′f Y
rkrgg1g2

=
∑

q′f Y
rk

−
∑

Y
rkg1g2

<q′f Y
rk

−
∑

Y
rkrgdg1g2

<q′f Y
rkg1g2

+
∑

Y
rkrgdg1g2

fq′f Y
rkrgg1g2

.

Call the corresponding sums Si, for i = 1, 2, 3, 4. There is a pleasant simplification available
for S1, S2, and S3. In these three sums, both the summation conditions in (5.39), as well as
all the summands in (5.38), depend only on the product drg = D (say), with the exception
of the presence of µ(d). Möbius inversion means that the sum over d|D detects D = 1. This

immediately implies S3 = 0. Moreover, we see that S1 = S
(0)
fY , which is a crucial cancellation.

The sum S2 becomes

S2 = −Qk
∑

rk|k∞

∑

g

∫ ∞

−∞

w
( t
T

) 1

φ(krk)

∑

¹ (mod krk)

∑

Y
rkg1g2

<q′f Y
rk

(q′,kg1g2)=1

1

φ(q′)

∑∗

Ç (mod q′)

w̃(1)Z1,1¿q′¶kg
∑

(a1b1,a2b2)=1
(a,g)=1

¶a1b1¶a2b2³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)(µ1a1b2
µ2a2b1

)it
dt.

Similarly to the estimation of S ′
∞, using Lemma 5.4 we obtain

|S2| ≲ |³|2Qk max
g,rk|k

∞

1

krk
max

Y
g1g2rk

fQ′f Y
rk

1

Q′
∆
(
Q′, krk, T,

N

g1g2

)
.

Write Q′ = Y
rkP

, where 1 f P f g1g2, giving

S2 ≲ |³|2Q
2kT

N
max

g,rk|k
∞

1fPfg1g2

P∆
( N

QkTrkP
, krk, T,

N

g1g2

)
.

This is consistent with Theorem 1.6. The sum S4 is similar in shape, and we obtain

S4 ≲ |³|2Q
2kT

N
max

g,rk|k
∞

rg |(g1g2)∞

max
1fPfd

Pg1g2
d

∆
( N

QkTrkrgg1g2P
, dkrkrg, T,

N

g1g2

)
,

which is acceptable.
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Next we turn to estimating S
(0)
∞,2. Our expression for this is identical to (5.38), except we

have an additional weight function of the form

(5.40) Ω(x) :=
∑

1jV ≲q′Qkrkrg

É
( x
V

)
, with x = µ1a1b2 − µ2a2b1.

The function Ω(x) is identically 1 for 1 f |x| ≲ q′Qkrkrg, but it vanishes at x = 0. Let
Ω0(x) = 1 − Ω(x) for |x| f 1, and such that Ω0(x) = 0 for |x| g 1. Let S ′

∞,2 denote the

same expression as S
(0)
∞,2 but with Ω replaced by Ω1 := Ω + Ω0, and let Sdiag

∞,2 = S ′
∞,2 − S

(0)
∞,2.

Indeed, Sdiag
∞,2 is supported only on µ1a1b2 = µ2a2b1. By similar reasoning as in (5.27), we

obtain
|Sdiag

∞,2 | ≲ QkTY |³|2 ≲ N |³|2.
Since N ≲ Q2kT , this is no worse than (5.27).

Finally, consider S ′
∞,2. The function Ω1 meets the conditions of Lemma 5.2, with V taking

the value C−1q′Qkrkrg. Hence we obtain an expression of the form

S ′
∞,2 = QkT

∑

rk|k∞

∑

g

∫

R4

∑

d|g1g2
rg |(g1g2)∞

µ(d)

φ(dkrgrk)

∑

¹ (mod dkrgrk)

∑

q′f Y
rkrgg1g2

(q′,kg1g2)=1

1

φ(q′)

∑∗

Ç (mod q′)

w̃(1)Z1,1¿q′¶kg
∑

(a1b1,a2b2)=1
(a,g)=1

G(t, u1, u2, u3)

¶a1b1¶a2b2³
(1,g)
a1,b1

³
(2,g)
a2,b2

Ç¹
(µ1a1b2
µ2a2b1

)(µ1a1b2
µ2a2b1

)it
dt
du1du2du3
yu11 y

u2
2 x

u3
2

.

The bound on G is given by (5.3), with now

U =
N

q′Qkrkrgg1g2
(QkTN)o(1).

The estimations are similar to those of S ′
∞, S2, and S4, and we obtain

|S ′
∞,2| ≲ |³|2QkT max

g,rk|k
∞

rg |(g1g2)∞

1

dkrgrk
max

Q′f Y
rkrgg1g2

1

UQ′
∆
(
Q′, dkrkrg, U,

N

g1g2

)
.

This simplifies as

|S ′
∞,2| ≲ |³|2Q

2kT

N
max

g,rk|k
∞

max
1jP≲ N

QkTrkrgg1g2

g1g2
d

∆
( N

QkTrkrgg1g2P
, dkrkrg, TP,

N

g1g2

)
.

One checks this is consistent with Theorem 1.6, which completes its proof.
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