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Collagen scaffolds seeded with human chondrocytes have shown
great potential for cartilage repair and regeneration.However,
these porous scaffolds buckle under low compressive forces, cre-
ating regions of highly localized deformations that can cause cell
death and deteriorate the integrity of the engineered tissue.We
perform three-dimensional (3D) tomography-based characteri-
zation to track the evolution of collagen scaffolds’ microstruc-
ture under large deformation.The results illustrate how insta-
bilities produce a spatially varying compaction across the speci-
mens, with more pronounced collapse near the free boundaries.
We discover that, independent of differences in pore-size distri-
butions, all collagen scaffolds examined displayed strong auxetic
behavior i.e.,their transverse area contracts under compres-
sion, as a result of the instability cascade. This feature, typically
characteristic of engineered metamaterials, is of critical impor-
tance for the performance of collagen scaffolds in tissue engi-
neering, especially regarding the persistent challenge of lateral
integration in cartilage constructs.
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Introduction
Over the past three decades, tissue-engineered cartilage con-
structs have exhibited promising potential in restoring native
tissue functionality (1). Currently available, or at a late-stage
clinical trial, cartilage products (such as MACI@, NeoCart@,
and CMI) employ softporous materials,such as collagen
foams,to serve as scaffolding microstructures thatprovide
initial attachment sites and mechanical support for chondro-
cytes (2–4).These scaffolds are designed to contain verti-
calpores to promote the generation of a matrix thatmim-
ics the oriented microstructure of native cartilage.The re-
sulting mechanical properties of these collagen scaffolds are
of significant importance in these biofabrication approaches,
given thatthe tissue-engineered products undergo in vivo
compression following implantation.Additionally, the Food
and Drug Administration (FDA) guidance suggests that the
mechanical characterization of engineered cartilage products
is important in understanding implant performance (5).De-
spite the known importance of the underlying mechanics, no

tissue-engineered cartilage products to this date have been
able to recapitulate all mechanical properties of native tissue
(6).Previous studies have highlighted the significant impact
of morphologicalfeatures of tissue-engineered cartilage on
its micromechanical behavior and failure modes in the form
of localstrain concentrations (7,8). The latter have been
shown to affect the viability of the cells seeded in the con-
struct (9, 10).Collectively, these results indicate the need to
quantify the effect of key microstructural features of colla-
gen scaffolds on the resulting mechanical behavior of tissue-
engineered cartilage constructs.
While previous findings have shed lighton the correlation
between the micromechanicalenvironmentand cellhealth,
they primarily explored this behavior via two-dimensional
(2D)analysis,where 2D imaging and sample preparation
impartartifacts on materialbehavior (7,8). For example,
buckling thatoccurs outof plane with respectto the field
of view cannot be captured by the experimental 2D imaging
technique.Further,to enable 2D imaging,samples must be
sectioned, which changes the boundary conditions compared
to the intact specimen.To overcome these challenges,non-
destructive 3D imaging techniques utilizing micro-computed
tomography (µCT) have been used to measure 3D deforma-
tion fields of porous material in situ (11, 12). However, these
techniques have not been extensively applied to understand
the mechanics of soft collagen foams.
The objective ofthis study is to investigate the interplay
between the 3D porous microstructure and the correspond-
ing nonlinear mechanics of collagen scaffolds through µCT
imaging.We focus on commercially available porous colla-
gen scaffolds made from bovine dermal type I collagen with
honeycomb and sponge architectures (13, 14) manufactured
from a freeze-drying process and examine their compressive
behavior.In particular, we first perform microstructure char-
acterization and use image analysis to extract key morpho-
logicalfeatures for both honeycomb and sponge scaffolds.
In-situ compressive experiments with sequential µCT scans
are used to highlight deformation patterns, identify the corre-
sponding critical buckling modes, and quantify the evolution
of key microstructural features at different levels of macro-
scopic strain.Further, the µCT technique enables us to iden-
tify the microscopic mechanisms through which an emerg-
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ing macroscopic auxetic response manifests.Establishing
this auxetic response enables the identification of novel mi-
cromechanical mechanisms for implant failure in vivo.The
reported data are vital for inverse-engineering cartilage con-
structs with tailored behavior at the post-buckling regime for
optimal tissue regeneration.

Results
Microstructure characterization of collagen scaffolds.
We first focus on quantifying key morphological features of
collagen constructs with honeycomb and sponge microstruc-
tures.Figure 1(a) and Figure 1(b) show the reconstructed
solid models extracted from the µCT scans.Although both
scaffolds share a similarquasi-2D tubularmicrostructure,
the associated pores have distinct characteristics.Using 2D
section images from approximately the mid-heightof each
specimen,we extract the distributions of four structural de-
scriptors that have been shown (15–17) to greatly influence
the resulting mechanical properties of porous materials:(i)
wall thickness, (ii) pore area, (iii) pore compactness, and (iv)
neighbor distance. Figure 1(c) illustrates the mean wall thick-
ness for each scaffold across the specimen height. The results
revealthatthere are no significantdensity gradients across
each specimen,with the wallthickness for both scaffolds
being nearly constant throughout their domain.The honey-
comb constructis shown to have a slightly higher average
wall thickness (6.42µm) than the sponge scaffold (6.34µm).
Dividing the height of each specimen (∼1.2mm) with the cor-
responding mean wall thickness gives a slenderness ratio of
175 and 189 for the honeycomb and the sponge respectively.
These values confirm that under compression,elastic buck-
ling will be the governing deformation mechanism.The dis-
tribution of pore areas for the two collagen constructs is dis-
played in Figure 1(d).The honeycomb scaffold exhibits two
notable peaks atapproximately 39520µm2 and 16750µm2.
On the contrary,there is a significantly largernumberof
smaller pores within the sponge scaffolds, resulting in a sin-
gle peak of the distribution at 5025µm2 pore area. Despite the
differences in pore-size distributions, the shape of the pores
in both structures is similar, as indicated by the compactness
metric distribution shown in Figure 1(e).The honeycomb
demonstrates an average compactness of 0.68±0.16,thatis
slightly higher than the corresponding values for the sponge
(0.66±0.14).These values indicate that most of the pores in
the collagen scaffolds are not quite circular, since their com-
pactness is closer to the one of a square i.e.,π/4. Finally,
in Figure 1(f) we report the pore neighbor distance distribu-
tion for both types of scaffolds.The honeycomb displays
a smoother distribution than the sponge scaffold due to the
larger and more uniform size of its pores.Furthermore,in
both honeycomb and sponge scaffolds the neighbor distance
seems to be independent of location within the sectional area,
indicating homogeneous pore distributions within the struc-
tures.

In-situ Testing and Deformation.Figure 2(a)illustrates
the evolution of collapse for a collagen scaffold with hon-

eycomb structure at six levels of applied macroscopic strain.
To capture the complex and multi-scale nature ofthe in-
volved deformations,we extractimages ofthe 3D recon-
structed specimens (top),as wellas 2D sections across all
three directions (bottom) for all increments of the compres-
sive loads.Initially,the walls of the undeformed scaffold
remain nearly straight,though at an inclined angle with re-
spectto the compressive direction.In step 2,with an ap-
plied strain close to 8.5%, the walls of certain cells near the
boundary start buckling into the scaffold,as observed from
the 1-1 and 2-2 sections (see circled regions). Contrary, most
cell walls within the structure retain their initial orientation.
With increasing compression (22.5%),the collapse of pores
propagates towards the interior of the cellular microstructure.
These deformations at the cell level cause a notable reduction
in the cross-sectional area of the whole specimen, as clearly
evident from the corresponding top view.As the compaction
of pores grows significantly (>30%), contact between neigh-
boring walls provides additional support and prevents the fur-
ther propagation of collapse near the center of the scaffold.
To examine the local deformation of scaffold walls and their
spatial dependence, we extract two clusters of cells, one near
the center (marked with red) and one close to the boundary
(marked with yellow) and monitor their individual structural
evolution during compression (Figure 2(b)).It is seen that
the centralpores mainly maintain their overallshape,even
for large macroscopic strains,depicting a uniform manner
of collapse through the wrinkling of the scaffold walls.In
contrast, the boundary cells show significant local and global
deformations at similar levels of compression, which in turn
result in increased pore compaction.
We subsequently repeatthe in-situ testing and monitoring
process for scaffolds with a sponge microstructure (Figure 3).
It is again observed that the thin walls of the scaffold are ini-
tially straight,however in this case they also appear to be
nearly vertical i.e.,displaying a less pronounced inclination
with respect to the loading axis than the walls of the honey-
comb scaffold. At imaging level 3, corresponding to a macro-
scopic strain of approximately 30%,we clearly observe the
buckling of boundary cells in the 1-1 and 2-2 sections. Inter-
estingly,the deformation of the cell walls varies in the ver-
ticaldirection too,with the appearance of walls thathave
localized near the bottom,as well as ones that collapsed at
mid-height.As compression progresses,the bottom region
continues to collapse due to buckling,causing a shift of the
scaffold,as evidenced in the 1-1 section.Imaging in the 2-
2 sections reveals an inward-type of folding thatagain re-
sults in an overall decrease of the specimen cross-sectional
area.Figure 3(b) illustrates the corresponding evolution of
pore morphology for clusters close to the center (top,red)
and boundary (bottom,yellow).In a similar manner to the
honeycomb construct,the pores located closer to the center
maintain their shape to a greater extent than those near the
boundary that experience significant compaction and appear
nearly densified at 47% strain.
We further exploit the tomography imaging from the in-situ
tests to extractthe evolution of structure characteristics at
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Fig.1. Tomography-based structure characterization ofcollagen constructs.(a) Reconstructed 3D solid model(left) and cross-sectionalslice atmid-height(right) for a
scaffold with honeycomb structure.(b) Reconstructed 3D solid model(left) and cross-sectionalslice at mid-height (right) for a collagen scaffold with sponge structure.(c)
Mean wall thickness across the specimens’ heights. (d) Pore area distributions. (e) Pore compactness distributions. (f) Neighbor distance as a function of radial distance.
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Fig. 2.In-situ buckling and localization in honeycomb construct.(a) Imaging of large deformation evolution through (top to bottom):reconstructed 3D solid models, cross-
sectionalslices at mid-height, and transverse slices at six levels of applied macroscopic strain.(b) Buckling of cellwalls and deformation of pores near the center (red) and
the boundary (yellow).

different levels of deformation for both the honeycomb Fig-
ure 4(a-d) and sponge (Figure 4(e-h)) scaffolds.To exam-
ine the spatially varying collapse of pores,we measure the
pore area (Figure 4(a/e)) and pore neighbor distance (Fig-
ure 4(b/f)) as a function of radialdistance from the center.
In both cases,the corresponding distributions for the unde-
formed and highly deformed scaffold are compared.It is
evident that the collapse of pores results in a significant re-
duction in both morphological descriptors,regardless of the
particular scaffold morphology.Furthermore,this decrease
is more pronounced at distances larger than 1mm from the
center of the specimens.These findings provide quantitative
evidence of the observations made based on the 3D recon-
structed images shown in Figure 2(a) and Figure 3(a).Fig-
ure 4(c) and Figure 4(c) depict the specimens’ cross-sectional
areas, corresponding to the domain enclosed by the red curve

in Figure 2(a)-Figure 3(a), as a function of height, for six in-
crements of the applied strain. A key observation that is com-
mon for both microstructures involve the decrease of macro-
scopic area with increasing deformation.However,there is
a notable difference between them.The honeycomb struc-
ture displays a non-uniform cross-sectionalarea across its
height, characterized by a clear dip in the middle.This vari-
ation arises from buckling occurring at the structure’s mid-
height, leading to a significant area reduction in these regions.
Conversely, the sponge structure maintains a more consistent
cross-sectional area distribution throughout its height but has
the lowest area near the bottom boundary. The sponge’s even
distribution is attributed to its buckling location near the base
and slanted shape in post-buckling,which concentrates the
buckling at its lower boundary. This results in a uniform area
reduction in the other regions. As a result, the distribution of
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Fig. 3. In-situ buckling and localization in sponge construct. (a) Imaging of large deformation evolution through (top to bottom): reconstructed 3D solid models, cross-sectional
slices at mid-height, and transverse slices at six levels of applied macroscopic strain. (b) Buckling of cell walls and deformation of pores near the center (red) and the boundary
(yellow).

the cross-sectionalarea highly correlates with the buckling
location and post-buckling behavior and can be used to probe
the deformation of the scaffold.
To furtherexamine the compaction ofthe scaffold under
compression, we analyzed the volume fraction in various re-
gions based on the radial distance for both honeycomb and
sponge, as shown in Figure 4(d) and Figure 4(h). Both struc-
tures share one key observation ofheterogeneous volume
compaction in the radial direction.Initially,both structures
exhibit nearly uniform volume fractions radially. However, as
compression continues,the volume fraction increases more
significantly farther from the center. Specifically, regions be-
yond a radial distance of 700µm display a pronounced jump
in volume fractions when highly compressed.In the hon-
eycomb structure,regions up to 700µm from the center see
an average volume fraction increase of 74% from its original
state to a 40% compressed state.In contrast,areas beyond
700µm experience a much higher volume fraction increase of

122%.For sponges, the central regions only exhibit an aver-
age 91% growth in volume fraction,while the volume frac-
tion shows a 133% increase in the outer regions.This find-
ing quantitatively confirms the scaffold’s non-uniform com-
paction and concentrated deformation caused by the instabil-
ity at the boundary and the post-buckling behavior observed
in Figure 2 and Figure 3.
Nonetheless, the significant reduction of specimen area with
increasing compaction seems to be a feature that is indepen-
dent of the specific scaffold morphology.To highlight this
feature, we plot for all collagen scaffolds tested, their cross-
sectional area at mid-height A, normalized by its undeformed
value A0, as a function of the applied strain (see Figure 5(a)).
It is obvious that all specimens see a decrease that for a 40%
strain varies between 5-25%,This resultindicates a strong
auxetic behavior of collagen constructs,thatis very differ-
ent than typical monolithic solids that expand in the direction
normalto the compressive loads.To illustrate the striking
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Fig. 4.Evolution of microstructuralfeatures of a honeycomb construct with increasing deformation.(a) Macroscopic area as a function of specimen height.(b) Pore area
distribution as a function of radialdistance in the undeformed (‘ = 0) and deformed (‘ = 30.5%) configurations.(c) Neighbor distance as a function of radialcoordinate in
the undeformed (‘ = 0) and deformed (‘ = 30.5%) configurations.(d) Spatialdistribution of volume fraction in different strain levels.Evolution of microstructuralfeatures
of a sponge construct with increasing deformation.(e) Macroscopic area as a function of specimen height.(f) Pore area distribution as a function of radialdistance in the
undeformed (‘ = 60%) and deformed (‘ = 0) configurations.(g) Neighbor distance as a function of radialcoordinate in the undeformed (‘ = 0) and deformed (‘ = 60%)
configurations. (h) Spatial distribution of volume fraction in different strain levels.
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difference between a typicalsoftmaterialand these colla-
gen constructs we include in Figure 5(a) the corresponding
area evolution of a Neo-Hookean materialunder compres-
sion.The associated deformations for a 40% nominal strain
are shown in Figure 5(b).Even though many softcellular
materials,including elastomeric foams (18) and 3D-printed
porous media (19),show negligible expansion in the trans-
verse direction when compressed,the strong area reduction
that the collagen scaffolds display, corresponding to a nega-
tive tangent Poisson’s ratio, is a characteristic seen in a cer-
tain class of mechanical metamaterials (20–22) and is often
associated with improved energy absorption characteristics.

Discussion
In summary,here we presenta complete 3D microstruc-
tural analysis of soft collagen scaffolds with honeycomb and
sponge microstructures under compressive loads.We find
that the resulting deformation is highly heterogeneous across
the specimen area with the emergence of regions with in-
creased pore compaction driven by elastic instabilities.This
compaction is attributed to the microstructural design of col-
lagen scaffolds and the vertically oriented pores with a length
scale of∼100µm.While native cartilage shares a simi-
lar vertical alignment, the associated length scales are much
smaller,with collagen fiber sizes of ∼100nm,a feature that
could alter the resulting mechanical behavior.Typically,in
low-density lattices and porous materials under compression,
localization leads to bands of collapsed pores forming ata
certain slope with respect to the loading surface (18).Con-
trary, in this work the collapsing pores form peripherally and
divide the scaffold in highly deformed pore clusters near the
free boundary,and much less distorted regions in the inte-
rior of the specimen.This behavior is reminiscentof the
presence of floppy modes on the free boundaries of lattice
structures (23).The increased compaction of the collapsed
pores nearthe specimen lateralboundary,and the associ-
ated contact between neighboring walls could be responsible
for obstructing the propagation of buckling towards the in-
terior of the scaffold.More importantly,the cross-sectional
area of the collagen scaffolds decreases gradually as com-
pression increases and the collapse of pores progresses. This
area reduction is attributed to the inward buckling and fold-
ing of the pore walls.At large deformations, corresponding
to effective macroscopic strains of 40%,the scaffolds’ area
at their mid-section is reduced by 5-25%.This auxetic be-
havior, i.e.the displayed contraction/elongation of the mate-
rial in the transverse direction when compressed/stretched in
the longitudinal one, has been reported extensively in cellu-
lar solids and in particular those with re-entrant members (24)
or chiral mesostructures (25). Since in these materials the re-
sulting negative Poisson’s ratio is driven by geometry, there
have been efforts (26–28) to exploit these microstructural fea-
tures in additively manufactured scaffolds for tissue engineer-
ing.In contrast to these material systems, the auxetic behav-
ior in the collagen scaffolds examined here is deformation-
dependent and generated by the elastic instabilities that gov-
ern the associated large deformations.Even though these in-

stabilities can potentially lead to beneficialproperties (20–
22),in the case of collagen scaffolds in cartilage constructs
the auxetic behavior may well impede implant integration.
To date,the lateral integration of engineered cartilage con-
structs with hosttissue has proven to be a consistentchal-
lenge (29).Surprisingly,pastin vivo studies have demon-
strated that the lateral integration of tissue-engineered carti-
lage constructs using porous collagen scaffolds is not signif-
icantly superior to that achieved through microfracture surg-
eries (30–32).In microfracture surgeries, insufficient lateral
integration often results from the disparity in cartilage types
between the newly formed fibrocartilage and the native host
hyaline cartilage,or incomplete defectfill (33–37).Con-
versely,tissue-engineered cartilage constructs created from
porous scaffolds do notencounter these issues,as they are
composed of hyaline cartilage and fully occupy the defect.
Therefore,the fundamentalreason for the persistentchal-
lenge in lateralintegration ofimplanted tissue-engineered
cartilage constructs remains poorly understood.The lateral
contraction of the collagen scaffolds reported here due to aux-
etic behavior, could result in the formation of a physical gap
between the engineered cartilage constructs and the native
host tissue.In addition,the increased compaction near the
boundary pores can induce cell death (10), resulting in signif-
icantly lower cell viability at the vicinity of the free boundary
compared to the interior of the engineered construct.Previ-
ous studies have indicated thatthe low cellviability atthe
interface between the graft and the host tissue can hinder the
integration process (29, 38, 39).Overall, the auxetic behav-
ior observed in collagen scaffolds provides valuable insights
into the underlying reasons for the persistent challenge of lat-
eral integration in tissue-engineered cartilage constructs. It is
important to note that the experiments reported here do not
aim to replicate the behavior of the complete cartilage con-
structs in vivo. Doing so would require a different testing set-
up as well as filling partially the pores of the scaffolds with
chondrocytes and matrix,which are leftfor future studies.
Nonetheless,understanding the effectof microstructure on
the resulting elastic instability cascade and evolution of col-
lapse,in an uncoupled manner from the complex microme-
chanical environment during implantation is deemed imper-
ative.Furthermore,high-fidelity numerical models that are
able to reproduce experimental data and facilitate the explo-
ration of the vast parameter space are also essential for de-
signing novel microstructures.Towards this goal,advances
in 3D bio-printing are expected to provide increased control
over the structure of synthesized scaffolds,and potentially
enable the tailoring of morphological features that yield pre-
determined targetdeformation modes atthe post-buckling
regime.

Materials and Methods
Collagen scaffold preparation.Honeycomb (Histogenics
Corp., Waltham, MA) and sponge (Koken CO., LTD, Tokyo,
Japan) collagen scaffolds were obtained.Both honeycomb
and sponge scaffolds were made from type I bovine dermis
collagen and had pore sizes ranging from 100 - 200µm in
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Fig. 5. (a) Evolution of normalized macroscopic area with increasing macroscopic strain for collagen scaffolds with honeycomb and sponge microstructures. For comparison,
the corresponding area evolution of a monolithic soft solid is included.(b) The gradualreduction in the cross-sectionalarea shows the strong auxetic metamaterialbehavior
of collagen constructs i.e., the presence of lateral contraction when vertically compressed, instead of the expansion observed in typical soft solids.

diameter and 1.5mm in height,according to manufacturing
specifications.A total of 6 samples (3 honeycomb scaffolds
and 3 sponge scaffolds) were cut using 4mm and 6mm biopsy
punches (Integra York PA, Inc., York, PA) with pores aligned
in the axial direction.

Micro-computed tomography.The cellular microstructure
of collagen constructs is characterized through µCT using a
Skyscan 1172 system (by Bruker). The scanning and imaging
settings adopted, based on maximizing accuracy and perfor-
mance, include 67kV and 174µA power for the X-ray source,
projection images over a 180° rotation without any filtering,
2.3µm image pixelsize. The projection images underwent
flat-field and dark-field corrections for better contrast.After
scanning, projection images are reconstructed by the NRecon
software with default post-alignment, smoothing, and ring ar-
tifact correction settings.

Image analysis and extraction of microstructural char-
acteristics.2D slices obtained from the reconstructed im-
ages are imported into MATLAB for further imaging analysis
and extraction of key morphological characteristics.We em-
ploy the hysteresis thresholding method to differentiate be-
tween collagen and void regions.Following this approach,
pixels with intensity values above a user-setupper thresh-
old are classified as solid, while pixels with intensity values
below a corresponding low threshold are classified as voids.
All pixels with intermediate intensity values are then evalu-
ated based on their connectivity to the pixels corresponding
to the solid phase. Here, a pixel connectivity parameter equal
to four is chosen.We extract next the distributions of four
microstructuralcharacteristics,namely the wallthickness,
pore area,compactness,and pore neighbor distance along
the height of the scaffold, at four equidistant increments. The
wall thickness t around each pore is determined by the bwdist
function in MATLAB.The size and shape of each pore are
characterized by calculating the corresponding area A and
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compactness. The latter is estimated using a ratio of the pore
area A and the pore perimeter P i.e., "compactness=4π×A

P ".
The pore “density” is evaluated through the neighbor distance
metric i.e., the length between the centroids of two adjacent
pores.All of the above calculations require distinct bound-
aries for all pores, that we achieve here by skeletonizing the
binary 2D images using the bwboundaries function in MAT-
LAB. For the 3D visualization and image analysis,each bi-
nary image stack is exported to ImageJ where, using the 3D
viewer function with a resampling factor of two,a surface
mesh is generated.The mesh is then exported as an STL file
into Rhino3D for visualization.

In-situ testing.We conduct a series of in-situ compressive
experiments under displacement control using an MTS load-
ing stage with a 44N load cell.In each test,the specimen
is placed in the center of the stage and subsequently an up-
ward displacement with a rate (∼0.5mm/min) is prescribed
on the bottom platen to ensure quasi-static compaction. Once
the specimen comes to full initial contact with the platen, the
scaffold is scanned and its undeformed microstructure is ex-
tracted. Subsequently each specimen is compressed in incre-
ments of average macroscopic strain of 7-9%.At the end of
each loading increment, testing is paused, and the specimen
is scanned, keeping the image acquisition settings consistent.
These steps are iterated until each specimen reaches an aver-
age macroscopic compaction of 40-70%.We use here a set
of three samples for each cellular microstructure i.e., for the
honeycomb and sponge constructs.

Deformation-dependentmorphological features.
Through the in-situ testing of the collagen scaffolds, we fur-
ther calculate the evolution of morphological characteristics
as a function of the applied loading and resulting deforma-
tion.In addition to the aforementioned pore-related features,
here we also measure how increased compression affects
two additionalmicrostructure properties:(a) the sectional
area of each specimen across their height and (b) the volume
fraction as a function of radialdistance from the specimen
center.Regarding the former, we first calculate the sectional
area centroid of the scaffold by averaging the binary image
with its position, and then create 100 circumferential curves
from the center to the image boundary.Subsequently,we
calculate the outer intersection point between each curve and
the scaffold.We connectall these intersection points in a
right-handed order to form a closed domain and measure the
corresponding area. For the latter part, the spatial distribution
of the volume fraction was quantitatively assessed using a
sliding box approach on binary image stacks of the scaffold
from the scanning.A three-dimensional box of a predefined
x-y size (460µm) was systematically slid across this binary
domain in the x-y plane with a specific stride (230µm),
spanning the entire depth ofthe stack in the z-dimension
to ensure comprehensive assessmentacross the scaffold’s
height.For each box,the volume fraction was determined
as the ratio of voxels of the scaffold to the total number of
voxels in the box.Simultaneously,the Euclidean distance
between the center ofeach box and the scaffold’s central

point was calculated.This approach enabled a quantitative
analysis ofthe heterogeneous compaction ofthe scaffold
during the compression.
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