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Abstract— This paper presents the first stabilization result for
almost periodic piecewise linear systems (APPLSs) with both
norm-bounded additive modeling uncertainty and dwell-time
uncertainty. The technique employs a mixed-mode time-varying
Lyapunov function to generate a sequence of controller gains
that stabilize the uncertain APPLS. This modelling structure
aligns with the R2R dry transfer of patterned two-dimensional
(2D) materials, an emerging technology for continuous,
chemical-free flexible material and device transfer. Thus, the
proposed controller synthesis method provides stabilization
guarantees for a novel modeling framework with applications in
the expanding realm of advanced 2D device manufacturing.

Index Terms — Periodic systems, dwell-time
uncertainty, modeling uncertainty, exponential stability

I. INTRODUCTION

Roll-to-roll (R2R) manufacturing involves processing thin
films using a series of rollers [1]. Over the past two decades, it
has been extensively used to fabricate flexible electronic
components and advanced two-dimensional (2D) materials
[2]. A critical procedure in R2R manufacturing is transferring
the product from the substrate that it is grown on to a target
one for its end-use application. This transfer process is often
batch-style and discrete, which can hinder throughput relative
to fully continuous processes [3]. To address this issue,
continuous R2R-compatible transfer processes for 2D
materials, especially graphene, have been developed.
However, they suffer from drawbacks such as the use of toxic
chemical etchants and slow delamination speeds [4].

The R2R dry transfer process offers a promising solution
to the transfer issue, enabling high-quality 2D material transfer
at a high throughput without using chemical etchants [5]-[7].
This method involves sandwiching the 2D material between
the donor (typically the growth) substrate and the target
substrate. The stack passes through nipping rollers and is
peeled apart in such a way that the 2D material adheres to the
target and delaminates from the donor substrate. Successful
transfer relies on maintaining optimal peeling conditions,
including desired web tension and web speed values [6], [7].

2D materials often exhibit patterns, as exemplified in [6]
and [7], where 10 cm x 10 cm CVD graphene samples grown
on copper foil are spaced regularly on a carrier web and then
transferred to a polymer substrate, creating a peeling pattern.
In addition to graphene transfer, the 2D material itself may
have patterns, as in [8], where patterned MoS; strips are peeled
from their silicon substrate. When a peeling process has
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sections with different material properties, these abrupt
changes between modes naturally create a piecewise modeling
structure. If these sections follow a predictable pattern with an
error margin, the dry transfer process can be formulated as a
periodic piecewise system with bounded dwell-time
uncertainty, where dwell-time is the amount of time between
mode switches.

In addition, each mode in the R2R dry transfer of patterned
2D materials can be represented as a linear system with
additive, unstructured uncertainty. This modeling approach
involves using the web tensions and velocities near a desired
trajectory to build linear differential inclusion (LDI) system
representations for each mode [9]-[11]. Then, bounding
ellipse techniques can be used to represent each mode as a
linear system with additive, unstructured, norm-bounded
uncertainty [12]-[15]. This method elegantly integrates
bounds on modeling errors and nonlinearities into a convex
uncertainty structure that can be used to achieve the desired
control performance with reduced computational cost. A
similar method was used to bound the dynamics of R2R dry
transfer systems without patterning within a polytopic
uncertainty set [16]. Thus, to regulate the R2R dry transfer
process, control tools for periodic piecewise linear systems
(PPLSs) with dwell-time uncertainty and norm-bounded
modeling uncertainty need to be developed.

Deterministic PPLSs, defined as systems with a set of
modes with linear dynamics and a predetermined, periodic
switching signal between them, have been intensively
investigated [17]-[19]. Maintaining switching stability is the
essential first step to controlling PPLSs. Stabilizing controllers
have been developed for deterministic PPLSs using mode
dependent Lyapunov functions [18], [19]. These PPLS
stabilization techniques have been generalized to PPLSs with
mode-dependent additive norm-bounded uncertainty [20]. In
addition, the PPLS modeling structure has been extended to
almost periodic piecewise linear systems (APPLSs) that
consider bounded dwell-time uncertainty [21]. This extension
applies to systems where the switching sequence is known and
periodic, but each switching time is only guaranteed to occur
within a pre-defined time interval. While stabilization results
have been developed for APPLSs with deterministic
dynamics, the challenge of guaranteeing the stability of
APPLSs with modeling uncertainty has not been treated [21].

To address this challenge, this study uses a mixed-mode
time-varying Lyapunov function technique to prove that a pre-
calculated set of switched state feedback controllers stabilize
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APPLSs with norm-bounded modeling and dwell time
uncertainties. A practical controller synthesis algorithm is
presented along with the theoretical result. This method is
innovative in that, to the best of our knowledge, this is the first
published stabilization result for APPLSs with both norm-
bounded modeling and dwell time uncertainty. Additionally,
the sequence of stabilizing controller gains is formulated with
the knowledge that the exact switching times, within given
bounds, are unknown a-priori but can be measured in real time.
Utilizing this online measurement information enables more
precise stabilization of the switched system than existing
research on APPLSs [21]. This information structure aligns
with the R2R dry transfer system, where the switching times
are only known beforehand to exist within bounded intervals,
yet the switching events can be measured in real-time.

The paper is organized as follows. Section IIA presents the
APPLS with norm-bounded modeling uncertainty and dwell-
time uncertainty, while IIB presents the stabilizing controller
synthesis result. Section IIIA summarizes the R2R dry transfer
system dynamics, IIIB formulates the system as an APPLS
with bounded modeling and dwell-time uncertainty, and I1IC
presents simulation results using the proposed controller to
stabilize the R2R dry transfer of CVD-grown graphene.
Concluding thoughts are provided in Section IV.

II. STABILIZATION OF APPLSS wWITH BOUNDED MODELING
AND DWELL-TIME UNCERTAINTY

A. APPLS Problem Formulation

Let there be an APPLS with norm-bounded modeling
uncertainty, bounded dwell-time uncertainty, S modes with a
known switching sequence, and a set of state feedback gains
defined as follows. For t € [lT; +t-1, 1T + tz,i),

x(t) = Aix(t) + Bau(t) + Fr (D), (1)
r(OTm(t) < (Gx(D) (Gx(®)). ®)
Additionally,

( K;x(t),t € [lT;: +ti 1, ITp + ﬂ)
u(t) =\ K;qx(t),t € [lT;: +t;,ITs + t,_i) 3)
Kiy1,41%(), t € [IT5 + 1,15 + T)

In (1)-(3), x(t) € R" is the state variable and m(t) € R™
contains the unstructured uncertainty in (2). 4; € R™"™ and
B; € R™™ are the nominal linear dynamics of the i mode,
and K;, K;;y1, and K;,q1;41 are the state feedback gains
associated with the three mode-dependent time segments in
(3) Deﬁne Adi,i = Ai + BiKi! Adi,i+1 = Ai + BiKi,i+19 and

Cliprisr = Aiv1 T Bis1Kiva 41 as the switched closed-loop
nominal linear dynamics. F; and G; are the weights of the
additive norm-bounded uncertainty of the i mode. T5 is the
fundamental period of the system, and ITp + t;; is the actual
switching instant from the i to the (i + 1)* mode in the I™
period. ITp + t; is the lower bound on that switching instant

and IT; + t; is the upper bound. Since the system is periodic,
IT; + t, s represents the switching instant from the S™ mode to
the 1 mode. Let T; =t; —t;_, and T;;4; =t; —t;. The
switching rule defined for the APPLS in (1)-(3) is illustrated
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Figure 1. A 1D APPLS with bounded dwell-time and modeling uncertainty
for a 1-dimensional system in Figure 1. In the figure, the grey
shaded regions represent admissible system dynamics at a

given time, while the solid black line is an example trajectory.
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Remark 1: The presented almost periodic switching structure
combines time segments with known active subsystems and
transitional segments where switching between subsystems
occurs [21]. This study considers the effect of adding modeling
uncertainty with the structure represented in (2) to that
formulation.

B. Stabilization

The main objective of this study, a set of stabilizing controller
gains for APPLSs with norm-bounded modeling and dwell-
time uncertainty, is developed in Theorem 1.

Theorem 1: Consider the following mixed-mode time-
varying Lyapunov function for system (1)-(3),

V() = x(®)"P(t)x(t), “
P, t€[ITp +t;_1,1Tp + ;)

. —_— (%)
Piivr tE[ITE +t,1Tf + 1))

P(t) ={

Additionally, define the following matrix function:

T =T
M@ W,Y,E p,0) = |FMO FOVETEYE | )

where sym(Q) denotes Q + Q7. Let there be a; = 0, §; = 0,
¥i20, Q;>0, Qiv1>0, Y, Vi1, Yiyri41 and given
constants A;, A; ;1, f;, and y; ;4 such that,

M(A;Q; + B,Y;, F;,Q;,GiQ;, A, ;) < 0 (7
M(A;Qijs1 + BiYiis1, Fi Qiier, GiQijrs Aijen, Bi) <O (8)
M(Ai11Q;i41 +

Biv1Yieriet Fiars Quinrs Gir1 Qi Aiier, ¥i) <0 C)
Qss+1 < 10 (10)
Qi-1; < 1 Q; (11)
Qi < tii+1Qii41 (12)

S AT+ Aggea Toir —Inpy —Inpg g 2 20T, (13)

Then, system (1)-(3) is A*-exponentially stable with K; =

-1 _ -1
Y0, Kiiv1 = Yie1Qpiv1 7> and
-1

Ki+1,i+1 =
Yit1i+1Qiis1

Proof. Equations (7)-(9) imply the following,



M(PiAcl”, G, Pi,FiTPi,Ai,ai) <0 (14)

M(Pi,i+1Acli_i+1'GiT' Piiv1, Fi Pyjia, /li,i+1'bi) <0 (15)

M(Pi,i+1Acli+1’i+1' Giv1' ) Pi,i+1'Fi+1TPi,i+1'/1i,i+1'Ci) <0
(16)

where P; = Q; ™", Pyiyr = Quiv1 ' 4 = 1/a;, by =1/B;,
¢; = 1/y;. In addition, (10)-(12) imply the following,

P < piPsgyq (17)
P s uiPiq; (18)
Piiv1 < i P (19)

Equation (15), in turn, implies the following. For t € [ITp +
L ITp + t10),

V =sym (x(t)TPi,HlAcli_in(t)) + 2x(O)" Py iy Fime(t)

<x(@®OF (Sym(Pi,HlAcli,Hl) +b;G,"G; + Ai,i+1pi,i+1) x(t)
+2x()" Py Fyme(t) — bym(£) ' m(t) — A4V (£)

< i1V (). (20)
Analogously, (16) implies, for t € [Ty + t,;, ITf + &),
V<=2V (0). (21)
Thus, for t € [T + t;, ITp + t;),

V<=2V (0). (22)

By similar logic, (14) implies, for t € [ITp + t;_1, [T + t,),

V< -A4V(). (23)
Additionally, (17)-(19) imply the following inequalities,

V(T3 +5) < e~ ssnTssny (IT5 + t ) (24)
V(T +5) < pyqe MinTuny (IT5 + t;) (25)
V(I + t;) < e MMV (ITE + ) (26)

Equations (22)-(26) then imply,
V(ITp + t5) < e tssalssvapg s e~ *sTsV(ITy + t5_,)
< (T pattiyn)e™ B AT AnTiny (L= DT; + )

< e_lZi'g:lAiTi+Ai,i+1Ti,i+1_lnNi_lnﬂi,i+1V(E) (27)
Thus, by (13),
V(IT; +t5) < e 2XTry (%5). (28)

In addition, since V(5) = x(E)TP(E)x(E) and V(IT; +
%) = x(IT5 + &) P(&)x(IT3 + ).

(@) _yor;

(i + 6l < 7))

x(ts)|-

Thus, the state norm at the end of each period decreases
exponentially. Next, we show that the state norm within each

(29)

period is exponentially bounded. By Coppel’s inequality [22],
[23], the following relationships can be guaranteed,

Ol < (x5 + Gl exp (fig vy (At +
FiA(T)Gi)dT), t € [T} + Tip, T3 + t) (30)
x| < ”x (lT,Z= + ﬁ) | exp (fl;;+EM(ACli,i+1 +
FiA(r)Gi)dr), t € [IT5 + t, 1T5 + t,,) 31)
(Ol < (175 + )| exp (S, #(Actiysinn +
FiraB(@)Gir )d). £ € [IT5 + 1, 1T + ). (32)

where ||A(t)|| < 1 is a compact way to represent the additive,
unstructured, norm-bounded uncertainty in (1) and (2).
Additionally, according to matrix measure results [22], and

noting that u is an operator defined as p(Q) = %/T(QT +Q),

#(Aclm,n + FmA(t)Gm) =< ﬂ(Aclm,n) + ”Fm””Gm”a

where (m,n) = (i, i),(i,i +1),(i+1,i + 1). Thus, for t €
[ITs + ti, ITp +t;;), (31) and (33) imply the following,

| max (1, exp ((P‘(Aﬂlz,i+1) +

(33)

el < [|x (173 + &)

IFG) Tosen ) (34)
Similarly, for t € [ITp + t;;, [Tp + t;), (31)-(33) imply,
lx(OIl < ||x (lT;‘ + E) | max (1, exp ((/,L(Adi,m) +
IFINGN) Toton ) xp ( (et ) +
1FeallGerall) oo )) = [|x (173 + &) | s G39)
Thus,
tE[lT;iltlgT;+t_i)”x(t)” = fuin ”x (lT; * E)” o
Also, by similar logic,

sup  llx@Il < ¢l lx (175 + T ), (37)

te[ITp+t;—1,ITp+t;)

0 = max (L exp ((u(ay,) + IEMG) T, )).

where
Thus,

eIl < o1 ||lx((1 = DTp +55)||

sup
te[(I-1)Tp+tsITp+t1)

(Ol < o |2 (175 + 1) <
te[ip ey 1Tp+EL

P20 |lx(U - DT +T)|| .. (3%
sup  [lx@ll < TI didpuian [Ix(C = DT + ).

te[iTp+ts ITp+Es)

sup

where, by definition, ¢;, ¢; ;.1 = 1. Thus,

sup  [Ix(@®Il < max sup  |lx(O)l
te[(I-1)Tp+ts,ITp+ts) te[l_T;+ti_1,lT;+ti)
< Ty idiian |x (= DT + ). (39)



Therefore, for t € [(l — 1)Tp + ts, ITp + tg), we get,
el < Ty dipiien [|x (L= DT + )|

@e—ﬁ(l—l)ﬁ; x(s) ||

A(P(ts))
x(2s)|l;

1B (40)

e

IA

i(r()
A(P(Es))
()l < re=1E=8)||x (&),

where k¥ > 1, A" = 0. Thus, the system is A"-exponentially
stable. O

where k = [T32; $iPii1 e’'Tr. Since t — t5 < T},

(41)

Remark 2: Unlike in previous works, where the switching
times are known a-priori [18]-[20] or unmeasurable within the
transition regions [21], this study assumes that the switching
times are measurable, but unknown a-priori within the
transition regions. This information structure enables a tighter
exponential convergence bound than is achievable with
unmeasurable switching times, and it allows the results to
apply to a broader class of applications than when the
switching times are exactly pre-determined.

Theorem 1 shows how to guarantee stability for the APPLS
defined in (1)-(3) for a given A;, A;;41, M;, and pi4q.
However, determining these constants is non-trivial. In
addition, it is desirable for the rate of convergence, 1*, to be
high. The following stabilizing controller design (SCD)
algorithm gives a systematic method to design a stabilizing
controller with a high 1* for the APPLS (1)-(3).

Remark 3: The weighting factor w, accounts for the In y;
terms in (13) using a linear approximation, as minimizing In y;
is non-convex.

Algorithm 1, utilizing the stability certification developed
in Theorem 1, is the first method that can generate a set of
stabilizing state feedback gains for the robust APPLS (1)-(3).

Algorithm 1: Stabilizing Controller Design (SCD)
Step 1: Given € > 0, My > 0, M, > 0,and w, > 0; A{%,, =

My, 1(” = M,, ugll =M, ¥ = +o0, and k = 1.If (42),
A9 = 0; Else, A = —M;; where (42) is,

M(A;Q; + B;Y;, F;,Q;,G;Q;,0, ;) < 0.(42)

k-1 k-1 k-1 k
06, and 5D ind 0,

and YU such that (7)-(12).

Step 2: With 2%V, 2
0%y y

pivro L o Yiieao i+1,
. k) Ak I K k
Sep 3 Wi 0 Q11 7, 10 ant 15 A
’15131 ui(k), and ul(lfll that minimize y® = - Y5, (Agk)Ti +

k k k .
Ag,i-)l—lTi.i‘Fl —w, (ul( )+ #i(,ill)) subject to (7)-(12).
Step 4: If [y® — y*=D| <e: STOP. Else: Set k =k + 1,
return to Step 2.
Step 5: Using A(k), /1(1(‘3_1 ,ul.(k), and u(k) ; if A* > 0 according

i 1,0 i,i+1°
to (13), then Qi(k), Q(k) y® v and v i+1 can be used to

Lt i o Thivne i+1,
build a set of stabilizing controller gains.

III. R2R DRY TRANSFER EXAMPLE

The usefulness of Algorithm 1 will be demonstrated by
applying it to stabilize web tension and velocity in the R2R dry
transfer system for patterned flexible devices and materials.

A. R2R Dry Transfer Dynamic System Model

First, the dynamics of the R2R dry transfer system, as
formulated in [24] and [25], will be presented here in the
context of patterned peeling. The system is illustrated in Figure
2, and the key physical parameters are listed in Table 1.

The R2R dry transfer process has two sets of dynamics
connected through the web tensions: the web transfer
dynamics dominated by the rewinding rollers, and the peeling
front dynamics dominated by an energy balance. When
peeling is occurring, and neglecting higher-order terms, the
constraint on the three web tensions due to the energy balance
at the peeling front can be summarized as follows [24]:
tz + t3 - tl =1, (43)
where t;, a pattern section-dependent parameter, is defined,

7y = bl — 2 [Ealyi(Ki® — Kp?) + Esls o (Ky® — K5?)]. (44)

Roller 3~

Section
v Numbers
S R

i+1 i i—1

Web 1

Roller 1

Figure 2. The R2R dry transfer peeling front of a patterned 2D material

TABLE 1. KEY R2R DRY TRANSFER PARAMETERS
Symbol Meaning
t,j=1,2,3 Tension in web j (N)
v;,j=1,2,3 Velocity of web j (m/s)
L,j=1,2,3 Unstretched length web j (m)
g,j=1,2,3 Strain in web j (m/m)
u,j=2,3 Motor torque inputs (N-m)
Uy Peeling front velocity (m/s)
K;,j= 1,23 Bending Curvature of web j (1/m)
E,j= 1,23 Elastic Modulus of web j (N/m?)
Ar;,j = 1,2,3 | Cross-sectional Area of web j (m?)
R;,j=1,2,3 Radius of roller j (m)
Ji»j=1,2,3 Moment of inertia roller j (kg-m?)
fi,i=1,2,3 Friction coefficient of roller j (m/s)
b Width of the contact surface (m)
Pattern Section-Dependent Parameters
Lii,j = 1,2,3 | Moment of Inertia of web j section i (m®)
I Adhesion Energy of section i (J/m?)




In this study, t; will be treated as a constant parameter. Then,
the web dynamics can be defined accordingly:

. R? R; fj .

v;(t) = —]—’_tj(t) + ]—{uj(t) - R—{v,-(t), j=2,3, (45)
j j j

t =% eyl 2%y 2y =

tj - ol (t) ll al, (t) lZ als (t) l3' ] = 2! 3! (46)

: _ n(®)-vp(®) ; _ o w@® v _

L) = 1+e,(0) L) = 1+&4(0) 1+£j(t)'] =23 (47)

tj . . at;
—L—. The partial derivatives — can be defined
r ]E Ji dly

numerically [16], [25].

where g =
A

Thus, (43)-(47) define a piecewise nonlinear, state-space
model of the R2R dry transfer system for patterned materials.
These equations can be written in the following form. When
section i is being peeled,

J‘C = fi(xt w, u)’ X = [172, 173, tz, t3]T,W = ]]p’

u = [uy, uz]", y = [vy,v3, ty, by, t3]7, (48)

where it is assumed that the four system states, v,, v, t,, and
t; are measurable. In addition, t;, and thus 7;, is measurable
through (43).

B. Formulating the R2R Dry Transfer System as an APPLS
with Bounded Modeling and Dwell-Time Uncertainty

This section presents how the R2R dry transfer dynamics
naturally transform into an APPLS with bounded modeling
and dwell-time uncertainties.

First, it is typical to define a physically realizable reference
trajectory to regulate the system around. Define the following
state, control, and exogenous input deviations:

Sx(t) = x(t) — x(t), bu(t) = u(t) — ii(t),
Sw(t) = w(t) — w(t), (49)

where %(t), ti(t), and W(t) represent the reference trajectory
with desirable web tension and velocity characteristics. Using
the piecewise nonlinear system dynamics (48) and LDI
techniques like those outlined in [9], [11], the nonlinear
system dynamics can be represented as follows.

8x € Co(A;)6x + B;6u + B, 0w, (50)

9fi

0% x(6),u(t)w(t)
af; . af; .

B; = % is constant, B,,, = a—/;; is treated as constant, and Co(-)

where A; = {

te [lT,Z‘ +t-0, T + tz,i)},

denotes the convex hull operator. (50) is called an LDI [9]-
[11], [15]. If the following linear matrix inequality (LMI) is
satisfied V A;; € Co(A;),

V=0, W; =0, | _ Vi (dye = 4))' >0, (51
(Ai — A) W;

then, when section i is being peeled,

6x(t) = A;6x(t) + B;6u(t) + F;m,

r(O)T(t) < (G:6x(D)) (G:6x(2)), (52)

where V; = G;"G; and W; = F;F,. Also, the B,,;6w term has
been omitted since the reference trajectory w(t) is assumed to
be accurate. This method of transforming a nonlinear state

space system into a linear system with additive, unstructured,
norm-bounded uncertainty has been summarized here. The
benefit of this approach is that it allows control methods for
linear systems with additive uncertainty to be used on
nonlinear systems that operate within a known region in the
state and input space. See [9]-[15] and the references therein
for more details.

Next, the bounded dwell-time uncertainty will be
quantified. Suppose that there is a dry transfer process with a
constant unwinding speed v; and sequentially numbered
pattern sections, as in Figure 2. Let the closest and farthest
position, relative to the beginning of the pattern, that section i
can transition to section i+ 1 be denoted g; and g,

respectively. Thus, the minimum and maximum times that

. .\ .. . i
section i can transition to section i + 1 are t; = [Tp + —/ 2

and ; = IT; + 7 /V1’ respectively, where Tj = P [v,s ap
is the average length of the pattern, and [ is the number of
patterns that have been peeled since the process began .

Additionally, assume that the system is controlled using a
set of state feedback matrices with a gain schedule such that
Ki, Kii+1, or Kijy1:41 iS active when ¢ € [lT; + &1, T +
ti), [lT; +t, 1Ty + tl,i), or  [ITp + 6, 1T +5),
respectively. Note that switching the controller gain when a
mode switch occurs is feasible in the R2R dry transfer case,
since T; is assumed to be constant and measurable, so it can be
used to determine the active section. Thus, the switching times
are unknown a-priori within the uncertain time region, but they
are measurable in real time. Using this control strategy, (52) is
equivalent to (1) and the stabilizing control results developed
in Section 2.2 can be used to stabilize the R2R dry transfer
system for patterned materials. This control-oriented
modelling structure is more accurate than those of existing
control designs that do not consider both dwell time and
modeling uncertainty.

C. Simulations of Dry Transfer of CVD Graphene

This section presents simulation results using the controller
generated by Algorithm 1 to stabilize the dry transfer of CVD
graphene from its copper growth substrate to a polymer target
substrate, PVA [7], [24]. The web contains a series of CVD
graphene sheets sandwiched between the growth substrate, the
target substrate, and various adhesives. The graphene samples
will alternate between long and short sizes. In addition, it is
assumed that between the graphene sheets that are being
transferred, the two PET transfer webs are laminated together
in a similar manner as in [25]. Thus, one pattern, or period, will
consist of four sections, or modes: an initial section of PET-
PET laminated together, a long section of graphene, another
section of PET-PET, and a short section of graphene. This
simulation setup is illustrated in Figure 3. The mode-
dependent parameters are given in Table 2. The physical
parameter values were taken from [7], [24]. Three periods, or
patterns, were simulated.

To ensure a statistically significant result, 100 simulations
were conducted, with the switching events occurring randomly
within the prescribed transition regions. Also, the initial
conditions for each simulation were randomly generated to be
near the reference trajectory. Figure 4 shows the norm of the
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Figure 3. Simulation Setup

TABLE II. SYSTEM PARAMETERS
Section Material 7, (/m?)| 4i,qi (cm) Lyt (5)
1 PET-PET 70 29,53 0.88, 1.60
2 Graphene Stack 80 11.9,14.3 3.60, 4.33
3 PET-PET 70 17.2,19.0 5.21,5.76
4 Graphene Stack 80 23.2,25.0 | 7.03,7.58
T12 T23 T34 T41 T12 T23 T34 TM T12 T23 T34 TM
2 ,T1’\ Ty LET 1 T, LS 1 T, LT
fi Mean [|ax(V)]|
15F! “ — Mean ||§x(t)|| + 1 standard deviation
[
E |
10 15 20

Time (s)
Figure 4. Norm of the state error over time

state error as defined in (49). The regions where the active
mode is known and the transition regions where switching can
occur are labeled and colored white and grey, respectively.
The figure shows that the developed controller gains stabilize

the R2R dry transfer system for patterned materials.

IV. CONCLUSION

This paper presents, for the first time, a stabilizing controller
synthesis solution for APPLSs with both norm-bounded
additive modeling uncertainty and dwell-time uncertainty.
The utility of this modeling and control framework has been
verified by using it to stabilize the R2R dry transfer system
for patterned 2D materials with an exponential convergence
rate. Future work will extend this framework to develop
controllers with £,-gain performance guarantees, in addition

to ensuring stability.
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