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Abstract— This paper presents the first stabilization result for 

almost periodic piecewise linear systems (APPLSs) with both 

norm-bounded additive modeling uncertainty and dwell-time 

uncertainty. The technique employs a mixed-mode time-varying 

Lyapunov function to generate a sequence of controller gains 

that stabilize the uncertain APPLS. This modelling structure 

aligns with the R2R dry transfer of patterned two-dimensional 

(2D) materials, an emerging technology for continuous, 

chemical-free flexible material and device transfer. Thus, the 

proposed controller synthesis method provides stabilization 

guarantees for a novel modeling framework with applications in 

the expanding realm of advanced 2D device manufacturing.  

 Index Terms – Periodic systems, dwell-time 

uncertainty, modeling uncertainty, exponential stability 

I. INTRODUCTION 

Roll-to-roll (R2R) manufacturing involves processing thin 
films using a series of rollers [1]. Over the past two decades, it 
has been extensively used to fabricate flexible electronic 
components and advanced two-dimensional (2D) materials 
[2]. A critical procedure in R2R manufacturing is transferring 
the product from the substrate that it is grown on to a target 
one for its end-use application. This transfer process is often 
batch-style and discrete, which can hinder throughput relative 
to fully continuous processes [3]. To address this issue, 
continuous R2R-compatible transfer processes for 2D 
materials, especially graphene, have been developed. 
However, they suffer from drawbacks such as the use of toxic 
chemical etchants and slow delamination speeds [4]. 

The R2R dry transfer process offers a promising solution 
to the transfer issue, enabling high-quality 2D material transfer 
at a high throughput without using chemical etchants [5]–[7]. 
This method involves sandwiching the 2D material between 
the donor (typically the growth) substrate and the target 
substrate. The stack passes through nipping rollers and is 
peeled apart in such a way that the 2D material adheres to the 
target and delaminates from the donor substrate. Successful 
transfer relies on maintaining optimal peeling conditions, 
including desired web tension and web speed values [6], [7]. 

2D materials often exhibit patterns, as exemplified in [6] 
and [7], where 10 cm × 10 cm CVD graphene samples grown 
on copper foil are spaced regularly on a carrier web and then 
transferred to a polymer substrate, creating a peeling pattern. 
In addition to graphene transfer, the 2D material itself may 
have patterns, as in [8], where patterned MoS2 strips are peeled 
from their silicon substrate. When a peeling process has 
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sections with different material properties, these abrupt 
changes between modes naturally create a piecewise modeling 
structure. If these sections follow a predictable pattern with an 
error margin, the dry transfer process can be formulated as a 
periodic piecewise system with bounded dwell-time 
uncertainty, where dwell-time is the amount of time between 
mode switches.  

In addition, each mode in the R2R dry transfer of patterned 
2D materials can be represented as a linear system with 
additive, unstructured uncertainty. This modeling approach 
involves using the web tensions and velocities near a desired 
trajectory to build linear differential inclusion (LDI) system 
representations for each mode [9]–[11]. Then, bounding 
ellipse techniques can be used to represent each mode as a 
linear system with additive, unstructured, norm-bounded 
uncertainty [12]–[15]. This method elegantly integrates 
bounds on modeling errors and nonlinearities into a convex 
uncertainty structure that can be used to achieve the desired 
control performance with reduced computational cost. A 
similar method was used to bound the dynamics of R2R dry 
transfer systems without patterning within a polytopic 
uncertainty set [16]. Thus, to regulate the R2R dry transfer 
process, control tools for periodic piecewise linear systems 
(PPLSs) with dwell-time uncertainty and norm-bounded 
modeling uncertainty need to be developed. 

Deterministic PPLSs, defined as systems with a set of 
modes with linear dynamics and a predetermined, periodic 
switching signal between them, have been intensively 
investigated [17]–[19]. Maintaining switching stability is the 
essential first step to controlling PPLSs. Stabilizing controllers 
have been developed for deterministic PPLSs using mode 
dependent Lyapunov functions [18], [19]. These PPLS 
stabilization techniques have been generalized to PPLSs with 
mode-dependent additive norm-bounded uncertainty [20]. In 
addition, the PPLS modeling structure has been extended to 
almost periodic piecewise linear systems (APPLSs) that 
consider bounded dwell-time uncertainty [21]. This extension 
applies to systems where the switching sequence is known and 
periodic, but each switching time is only guaranteed to occur 
within a pre-defined time interval. While stabilization results 
have been developed for APPLSs with deterministic 
dynamics, the challenge of guaranteeing the stability of 
APPLSs with modeling uncertainty has not been treated [21]. 

To address this challenge, this study uses a mixed-mode 
time-varying Lyapunov function technique to prove that a pre-
calculated set of switched state feedback controllers stabilize 
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APPLSs with norm-bounded modeling and dwell time 
uncertainties. A practical controller synthesis algorithm is 
presented along with the theoretical result. This method is 
innovative in that, to the best of our knowledge, this is the first 
published stabilization result for APPLSs with both norm-
bounded modeling and dwell time uncertainty. Additionally, 
the sequence of stabilizing controller gains is formulated with 
the knowledge that the exact switching times, within given 
bounds, are unknown a-priori but can be measured in real time. 
Utilizing this online measurement information enables more 
precise stabilization of the switched system than existing 
research on APPLSs [21]. This information structure aligns 
with the R2R dry transfer system, where the switching times 
are only known beforehand to exist within bounded intervals, 
yet the switching events can be measured in real-time. 

The paper is organized as follows. Section IIA presents the 
APPLS with norm-bounded modeling uncertainty and dwell-
time uncertainty, while IIB presents the stabilizing controller 
synthesis result. Section IIIA summarizes the R2R dry transfer 
system dynamics, IIIB formulates the system as an APPLS 
with bounded modeling and dwell-time uncertainty, and IIIC 
presents simulation results using the proposed controller to 
stabilize the R2R dry transfer of CVD-grown graphene. 
Concluding thoughts are provided in Section IV. 

II. STABILIZATION OF APPLSS WITH BOUNDED MODELING 

AND DWELL-TIME UNCERTAINTY 

A. APPLS Problem Formulation 

Let there be an APPLS with norm-bounded modeling 
uncertainty, bounded dwell-time uncertainty, 𝑆 modes with a 
known switching sequence, and a set of state feedback gains 

defined as follows. For 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖−1, 𝑙𝑇𝑃

∗ + 𝑡𝑙,𝑖), 

𝑥̇(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐹𝑖𝜋(𝑡),   (1) 

𝜋(𝑡)𝑇𝜋(𝑡) ≤ (𝐺𝑖𝑥(𝑡))
𝑇
(𝐺𝑖𝑥(𝑡)). (2) 

Additionally, 

𝑢(𝑡) =

{
 
 

 
 𝐾𝑖𝑥(𝑡), 𝑡 ∈ [𝑙𝑇𝑃

∗ + 𝑡𝑖−1, 𝑙𝑇𝑃
∗ + 𝑡𝑖) 

𝐾𝑖,𝑖+1𝑥(𝑡), 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑙,𝑖) 

𝐾𝑖+1,𝑖+1𝑥(𝑡), 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖)

 (3) 

In (1)-(3), 𝑥(𝑡) ∈ ℝ𝑛 is the state variable and 𝜋(𝑡) ∈ ℝ𝑛𝑝 
contains the unstructured uncertainty in (2). 𝐴𝑖 ∈ ℝ𝑛×𝑛 and 
𝐵𝑖 ∈ ℝ𝑛×𝑛𝑢 are the nominal linear dynamics of the 𝑖th mode, 
and 𝐾𝑖, 𝐾𝑖,𝑖+1, and 𝐾𝑖+1,𝑖+1 are the state feedback gains 

associated with the three mode-dependent time segments in 
(3). Define 𝐴𝑐𝑙𝑖,𝑖

= 𝐴𝑖 + 𝐵𝑖𝐾𝑖, 𝐴𝑐𝑙𝑖,𝑖+1
= 𝐴𝑖 + 𝐵𝑖𝐾𝑖,𝑖+1, and 

𝐴𝑐𝑙𝑖+1,𝑖+1
= 𝐴𝑖+1 + 𝐵𝑖+1𝐾𝑖+1,𝑖+1 as the switched closed-loop 

nominal linear dynamics. 𝐹𝑖 and 𝐺𝑖 are the weights of the 
additive norm-bounded uncertainty of the 𝑖th mode. 𝑇𝑃

∗ is the 
fundamental period of the system, and 𝑙𝑇𝑃

∗ + 𝑡𝑙,𝑖 is the actual 

switching instant from the 𝑖th to the (𝑖 + 1)th mode in the 𝑙th 
period. 𝑙𝑇𝑃

∗ + 𝑡𝑖 is the lower bound on that switching instant 

and 𝑙𝑇𝑃
∗ + 𝑡𝑖 is the upper bound. Since the system is periodic, 

𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑆 represents the switching instant from the 𝑆th mode to 

the 1st mode. Let 𝑇𝑖 = 𝑡𝑖 − 𝑡𝑖−1 and 𝑇𝑖,𝑖+1 = 𝑡𝑖 − 𝑡𝑖. The 

switching rule defined for the APPLS in (1)-(3) is illustrated 

for a 1-dimensional system in Figure 1. In the figure, the grey 
shaded regions represent admissible system dynamics at a 
given time, while the solid black line is an example trajectory.  

Remark 1: The presented almost periodic switching structure 
combines time segments with known active subsystems and 
transitional segments where switching between subsystems 
occurs [21]. This study considers the effect of adding modeling 
uncertainty with the structure represented in (2) to that 
formulation.  

B. Stabilization 

The main objective of this study, a set of stabilizing controller 
gains for APPLSs with norm-bounded modeling and dwell-
time uncertainty, is developed in Theorem 1. 

Theorem 1: Consider the following mixed-mode time-
varying Lyapunov function for system (1)-(3), 

𝑉(𝑡) = 𝑥(𝑡)𝑇𝑃(𝑡)𝑥(𝑡), (4) 

𝑃(𝑡) = {
𝑃𝑖 𝑡 ∈ [𝑙𝑇𝑃

∗ + 𝑡𝑖−1, 𝑙𝑇𝑃
∗ + 𝑡𝑖) 

𝑃𝑖,𝑖+1 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖).
 (5) 

Additionally, define the following matrix function: 

𝑴(Ω,Ψ, Υ, Ξ, ρ, ω) = [𝒔𝒚𝒎
(Ω) + ωΨΨ𝑇 + ρΥ Ξ𝑇

Ξ −ωI
] (6) 

where 𝒔𝒚𝒎(Ω) denotes Ω + Ω𝑇. Let there be 𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0, 
𝛾𝑖 ≥ 0, 𝑄𝑖 > 0, 𝑄𝑖,𝑖+1 > 0, 𝑌𝑖, 𝑌𝑖,𝑖+1, 𝑌𝑖+1,𝑖+1 and given 

constants 𝜆𝑖, 𝜆𝑖,𝑖+1, 𝜇𝑖, and 𝜇𝑖,𝑖+1 such that, 

𝑴(𝐴𝑖𝑄𝑖 + 𝐵𝑖𝑌𝑖 , 𝐹𝑖 , 𝑄𝑖 , 𝐺𝑖𝑄𝑖 , 𝜆𝑖 , 𝛼𝑖) < 0 (7) 

𝑴(𝐴𝑖𝑄𝑖,𝑖+1 + 𝐵𝑖𝑌𝑖,𝑖+1, 𝐹𝑖 , 𝑄𝑖,𝑖+1, 𝐺𝑖𝑄𝑖,𝑖+1, 𝜆𝑖,𝑖+1, 𝛽𝑖) < 0 (8) 

𝑴(𝐴𝑖+1𝑄𝑖,𝑖+1 +

𝐵𝑖+1𝑌𝑖+1,𝑖+1, 𝐹𝑖+1, 𝑄𝑖,𝑖+1, 𝐺𝑖+1𝑄𝑖,𝑖+1, 𝜆𝑖,𝑖+1, 𝛾𝑖) < 0 (9) 

𝑄𝑆,𝑆+1 ≤ 𝜇1𝑄1 (10) 

𝑄𝑖−1,𝑖 ≤ 𝜇𝑖𝑄𝑖 (11) 

𝑄𝑖 ≤ 𝜇𝑖,𝑖+1𝑄𝑖,𝑖+1 (12) 

∑ 𝜆𝑖𝑇𝑖 + 𝜆𝑖,𝑖+1𝑇𝑖,𝑖+1 − ln 𝜇𝑖 − ln 𝜇𝑖,𝑖+1
𝑆
𝑖=1 ≥ 2𝜆∗𝑇𝑃

∗. (13) 

Then, system (1)-(3) is 𝜆∗-exponentially stable with 𝐾𝑖 =
𝑌𝑖𝑄𝑖

−1, 𝐾𝑖,𝑖+1 = 𝑌𝑖,𝑖+1𝑄𝑖,𝑖+1
−1, and 𝐾𝑖+1,𝑖+1 =

𝑌𝑖+1,𝑖+1𝑄𝑖,𝑖+1
−1. 

Proof. Equations (7)-(9) imply the following,  

Figure 1. A 1D APPLS with bounded dwell-time and modeling uncertainty 
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𝑴(𝑃𝑖𝐴𝑐𝑙𝑖,𝑖
, 𝐺𝑖

𝑇 , 𝑃𝑖 , 𝐹𝑖
𝑇𝑃𝑖 , 𝜆𝑖 , 𝑎𝑖) < 0 (14) 

𝑴(𝑃𝑖,𝑖+1𝐴𝑐𝑙𝑖,𝑖+1
, 𝐺𝑖

𝑇 , 𝑃𝑖,𝑖+1, 𝐹𝑖
𝑇𝑃𝑖,𝑖+1, 𝜆𝑖,𝑖+1, 𝑏𝑖) < 0 (15) 

𝑴(𝑃𝑖,𝑖+1𝐴𝑐𝑙𝑖+1,𝑖+1
, 𝐺𝑖+1

𝑇, 𝑃𝑖,𝑖+1, 𝐹𝑖+1
𝑇𝑃𝑖,𝑖+1, 𝜆𝑖,𝑖+1, 𝑐𝑖) < 0 

 (16) 

where 𝑃𝑖 = 𝑄𝑖
−1, 𝑃𝑖,𝑖+1 = 𝑄𝑖,𝑖+1

−1, 𝑎𝑖 = 1/𝛼𝑖, 𝑏𝑖 = 1/𝛽𝑖, 
𝑐𝑖 = 1/𝛾𝑖. In addition, (10)-(12) imply the following, 

𝑃1 ≤ 𝜇1𝑃𝑆,𝑆+1  (17) 

𝑃𝑖 ≤ 𝜇𝑖𝑃𝑖−1,𝑖  (18) 

𝑃𝑖,𝑖+1 ≤ 𝜇𝑖,𝑖+1𝑃𝑖.  (19) 

Equation (15), in turn, implies the following. For 𝑡 ∈ [𝑙𝑇𝑃
∗ +

𝑡𝑖 , 𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖), 

𝑉̇ = 𝒔𝒚𝒎(𝑥(𝑡)𝑇𝑃𝑖,𝑖+1𝐴𝑐𝑙𝑖,𝑖+1
𝑥(𝑡)) + 2𝑥(𝑡)𝑇𝑃𝑖,𝑖+1𝐹𝑖𝜋(𝑡)  

≤ 𝑥(𝑡)𝑇 (𝒔𝒚𝒎(𝑃𝑖,𝑖+1𝐴𝑐𝑙𝑖,𝑖+1
) + 𝑏𝑖𝐺𝑖

𝑇𝐺𝑖 + 𝜆𝑖,𝑖+1𝑃𝑖,𝑖+1) 𝑥(𝑡)

+ 2𝑥(𝑡)𝑇𝑃𝑖,𝑖+1𝐹𝑖𝜋(𝑡) − 𝑏𝑖𝜋(𝑡)
𝑇𝜋(𝑡) − 𝜆𝑖,𝑖+1𝑉(𝑡) 

≤ −𝜆𝑖,𝑖+1𝑉(𝑡). (20) 

Analogously, (16) implies, for 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖), 

𝑉̇ ≤ −𝜆𝑖,𝑖+1𝑉(𝑡).  (21) 

Thus, for 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖), 

𝑉̇ ≤ −𝜆𝑖,𝑖+1𝑉(𝑡).   (22) 

By similar logic, (14) implies, for 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖−1, 𝑙𝑇𝑃

∗ + 𝑡𝑖), 

𝑉̇ ≤ −𝜆𝑖𝑉(𝑡).   (23) 

Additionally, (17)-(19) imply the following inequalities, 

𝑉(𝑙𝑇𝑃
∗ + 𝑡𝑆) ≤ 𝜇1𝑒

−𝜆𝑆,𝑆+1𝑇𝑆,𝑆+1𝑉 (𝑙𝑇𝑃
∗ + 𝑡𝑆)  (24) 

𝑉(𝑙𝑇𝑃
∗ + 𝑡𝑖) ≤ 𝜇𝑖+1𝑒

−𝜆𝑖,𝑖+1𝑇𝑖,𝑖+1𝑉 (𝑙𝑇𝑃
∗ + 𝑡𝑖)  (25) 

𝑉 (𝑙𝑇𝑃
∗ + 𝑡𝑖) ≤ 𝜇𝑖,𝑖+1𝑒

−𝜆𝑖𝑇𝑖𝑉(𝑙𝑇𝑃
∗ + 𝑡𝑖−1)  (26) 

Equations (22)-(26) then imply,  

𝑉(𝑙𝑇𝑃
∗ + 𝑡𝑆) ≤ 𝜇1𝑒

−𝜆𝑆,𝑆+1𝑇𝑆,𝑆+1𝜇𝑆,𝑆+1𝑒
−𝜆𝑆𝑇𝑆𝑉(𝑙𝑇𝑃

∗ + 𝑡𝑆−1)  

≤ (∏ 𝜇𝑖𝜇𝑖+1
𝑆
𝑖=1 )𝑒−∑ 𝜆𝑖𝑇𝑖+𝜆𝑖,𝑖+1𝑇𝑖,𝑖+1

𝑆
𝑖=1 𝑉 ((𝑙 − 1)𝑇𝑃

∗ + 𝑡𝑆)  

≤ 𝑒−𝑙 ∑ 𝜆𝑖𝑇𝑖+𝜆𝑖,𝑖+1𝑇𝑖,𝑖+1
𝑆
𝑖=1 −ln𝜇𝑖−ln𝜇𝑖,𝑖+1𝑉(𝑡𝑆)  (27) 

Thus, by (13),  

𝑉(𝑙𝑇𝑃
∗ + 𝑡𝑆) ≤ 𝑒−𝑙 𝜆∗𝑇𝑃

∗
𝑉(𝑡𝑆).  (28) 

In addition, since 𝑉(𝑡𝑆) = 𝑥(𝑡𝑆)
𝑇
𝑃(𝑡𝑆)𝑥(𝑡𝑆) and 𝑉(𝑙𝑇𝑃

∗ +

𝑡𝑆) = 𝑥(𝑙𝑇𝑃
∗ + 𝑡𝑆)

𝑇
𝑃(𝑡𝑆)𝑥(𝑙𝑇𝑃

∗ + 𝑡𝑆), 

‖𝑥(𝑙𝑇𝑃
∗ + 𝑡𝑆)‖ ≤ √

𝜆(𝑃(𝑡𝑆))

𝜆(𝑃(𝑡𝑆))
𝑒−𝜆∗𝑙𝑇𝑃

∗
‖𝑥(𝑡𝑆)‖.  (29) 

Thus, the state norm at the end of each period decreases 
exponentially. Next, we show that the state norm within each 

period is exponentially bounded. By Coppel’s inequality [22], 
[23], the following relationships can be guaranteed,  

‖𝑥(𝑡)‖ ≤ ‖𝑥(𝑙𝑇𝑃
∗ + 𝑡𝑖−1)‖ exp (∫ 𝜇(𝐴𝑐𝑙𝑖,𝑖

+
𝑡

𝑙𝑇𝑃
∗+𝑡𝑖−1

𝐹𝑖∆(𝜏)𝐺𝑖)𝑑𝜏), 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖−1, 𝑙𝑇𝑃

∗ + 𝑡𝑖)  (30) 

‖𝑥(𝑡)‖ ≤ ‖𝑥 (𝑙𝑇𝑃
∗ + 𝑡𝑖)‖ exp (∫ 𝜇(𝐴𝑐𝑙𝑖,𝑖+1

+
𝑡

𝑙𝑇𝑃
∗+𝑡𝑖

𝐹𝑖∆(𝜏)𝐺𝑖)𝑑𝜏), 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑙,𝑖)  (31) 

‖𝑥(𝑡)‖ ≤ ‖𝑥(𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖)‖ exp (∫ 𝜇(𝐴𝑐𝑙𝑖+1,𝑖+1

+
𝑡

𝑙𝑇𝑃
∗+𝑡𝑙,𝑖

𝐹𝑖+1∆(𝜏)𝐺𝑖+1)𝑑𝜏), 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖),  (32) 

where ‖∆(𝑡)‖ ≤ 1 is a compact way to represent the additive, 
unstructured, norm-bounded uncertainty in (1) and (2). 
Additionally, according to matrix measure results [22], and 

noting that 𝜇 is an operator defined as 𝜇(Ω) =
1

 
𝜆̅(Ω𝑇 + Ω), 

𝜇(𝐴𝑐𝑙𝑚,𝑛
+ 𝐹𝑚∆(𝑡)𝐺𝑚) ≤ 𝜇(𝐴𝑐𝑙𝑚,𝑛

) + ‖𝐹𝑚‖‖𝐺𝑚‖,  (33) 

where (𝑚, 𝑛) = (𝑖, 𝑖), (𝑖, 𝑖 + 1), (𝑖 + 1, 𝑖 + 1). Thus, for 𝑡 ∈
[𝑙𝑇𝑃

∗ + 𝑡𝑖 , 𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖), (31) and (33) imply the following, 

‖𝑥(𝑡)‖ ≤ ‖𝑥 (𝑙𝑇𝑃
∗ + 𝑡𝑖)‖max (1, exp ((𝜇(𝐴𝑐𝑙𝑖,𝑖+1

) +

‖𝐹𝑖‖‖𝐺𝑖‖)𝑇𝑖,𝑖+1)).  (34) 

Similarly, for 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖), (31)-(33) imply,  

‖𝑥(𝑡)‖ ≤ ‖𝑥 (𝑙𝑇𝑃
∗ + 𝑡𝑖)‖max (1, exp ((𝜇(𝐴𝑐𝑙𝑖,𝑖+1

) +

‖𝐹𝑖‖‖𝐺𝑖‖)𝑇𝑖,𝑖+1) , exp ((𝜇(𝐴𝑐𝑙𝑖+1,𝑖+1
) +

‖𝐹𝑖+1‖‖𝐺𝑖+1‖)𝑇𝑖,𝑖+1)) = ‖𝑥 (𝑙𝑇𝑃
∗ + 𝑡𝑖)‖𝜙𝑖,𝑖+1. (35) 

Thus, 

sup
 𝑡∈[𝑙𝑇𝑃

∗+𝑡𝑖,𝑙𝑇𝑃
∗+𝑡𝑖)

‖𝑥(𝑡)‖ ≤ 𝜙𝑖,𝑖+1 ‖𝑥 (𝑙𝑇𝑃
∗ + 𝑡𝑖)‖ (36) 

Also, by similar logic, 

sup
 𝑡∈[𝑙𝑇𝑃

∗+𝑡𝑖−1,𝑙𝑇𝑃
∗+𝑡𝑖)

‖𝑥(𝑡)‖ ≤ 𝜙𝑖‖𝑥(𝑙𝑇𝑃
∗ + 𝑡𝑖−1)‖, (37) 

where 𝜙𝑖 = max (1, exp ((𝜇(𝐴𝑐𝑙𝑖,𝑖
) + ‖𝐹𝑖‖‖𝐺𝑖‖)𝑇𝑖,)). 

Thus, 

sup
 𝑡∈[(𝑙−1)𝑇𝑃

∗+𝑡𝑆,𝑙𝑇𝑃
∗+𝑡1)

‖𝑥(𝑡)‖ ≤ 𝜙1‖𝑥((𝑙 − 1)𝑇𝑃
∗ + 𝑡𝑆)‖  

sup
 𝑡∈[𝑙𝑇𝑃

∗+𝑡1,𝑙𝑇𝑃
∗+𝑡1)

‖𝑥(𝑡)‖ ≤ 𝜙1, ‖𝑥 (𝑙𝑇𝑃
∗ + 𝑡1)‖ ≤

𝜙1, 𝜙1‖𝑥((𝑙 − 1)𝑇𝑃
∗ + 𝑡𝑆)‖ … (38) 

sup
 𝑡∈[𝑙𝑇𝑃

∗+𝑡𝑆,𝑙𝑇𝑃
∗+𝑡𝑆)

‖𝑥(𝑡)‖ ≤ ∏ 𝜙𝑖𝜙𝑖,𝑖+1
𝑆
1 ‖𝑥((𝑙 − 1)𝑇𝑃

∗ + 𝑡𝑆)‖, 

where, by definition, 𝜙𝑖, 𝜙𝑖,𝑖+1 ≥ 1. Thus,  

sup
 𝑡∈[(𝑙−1)𝑇𝑃

∗+𝑡𝑆,𝑙𝑇𝑃
∗+𝑡𝑆)

‖𝑥(𝑡)‖ ≤ max
𝑖

sup
 𝑡∈[𝑙𝑇𝑃

∗+𝑡𝑖−1,𝑙𝑇𝑃
∗+𝑡𝑖)

‖𝑥(𝑡)‖  

≤ ∏ 𝜙𝑖𝜙𝑖,𝑖+1
𝑆
𝑖=1 ‖𝑥((𝑙 − 1)𝑇𝑃

∗ + 𝑡𝑆)‖. (39) 



  

Therefore, for 𝑡 ∈ [(𝑙 − 1)𝑇𝑃
∗ + 𝑡𝑆, 𝑙𝑇𝑃

∗ + 𝑡𝑆), we get, 

‖𝑥(𝑡)‖ ≤ ∏ 𝜙𝑖𝜙𝑖,𝑖+1
𝑆
𝑖=1 ‖𝑥((𝑙 − 1)𝑇𝑃

∗ + 𝑡𝑆)‖  

≤ ∏ 𝜙𝑖𝜙𝑖,𝑖+1
𝑆
𝑖=1 √

𝜆(𝑃(𝑡𝑆))

𝜆(𝑃(𝑡𝑆))
𝑒−𝜆∗(𝑙−1)𝑇𝑃

∗
‖𝑥(𝑡𝑆)‖ (40) 

≤ 𝜅𝑒−𝜆∗𝑙𝑇𝑃
∗
‖𝑥(𝑡𝑆)‖, 

where 𝜅 = ∏ 𝜙𝑖𝜙𝑖,𝑖+1
𝑆
𝑖=1 √

𝜆(𝑃(𝑡𝑆))

𝜆(𝑃(𝑡𝑆))
𝑒𝜆∗𝑇𝑃

∗
. Since 𝑡 − 𝑡𝑆 ≤ 𝑙𝑇𝑃

∗, 

‖𝑥(𝑡)‖ ≤ 𝜅𝑒−𝜆∗𝑙(𝑡−𝑡𝑆)‖𝑥(𝑡𝑆)‖,  (41) 

where 𝜅 ≥ 1, 𝜆∗ ≥ 0. Thus, the system is 𝜆∗-exponentially 
stable. □  

Remark 2: Unlike in previous works, where the switching 
times are known a-priori [18]–[20] or unmeasurable within the 
transition regions [21], this study assumes that the switching 
times are measurable, but unknown a-priori within the 
transition regions. This information structure enables a tighter 
exponential convergence bound than is achievable with 
unmeasurable switching times, and it allows the results to 
apply to a broader class of applications than when the 
switching times are exactly pre-determined. 

Theorem 1 shows how to guarantee stability for the APPLS 
defined in (1)-(3) for a given 𝜆𝑖, 𝜆𝑖,𝑖+1, 𝜇𝑖, and 𝜇𝑖,𝑖+1. 

However, determining these constants is non-trivial. In 
addition, it is desirable for the rate of convergence, 𝜆∗, to be 
high. The following stabilizing controller design (SCD) 
algorithm gives a systematic method to design a stabilizing 
controller with a high 𝜆∗ for the APPLS (1)-(3). 

Remark 3: The weighting factor 𝑤𝜇 accounts for the ln 𝜇𝑖 

terms in (13) using a linear approximation, as minimizing ln 𝜇𝑖 
is non-convex.  

Algorithm 1, utilizing the stability certification developed 
in Theorem 1, is the first method that can generate a set of 
stabilizing state feedback gains for the robust APPLS (1)-(3). 

III. R2R DRY TRANSFER EXAMPLE 

The usefulness of Algorithm 1 will be demonstrated by 
applying it to stabilize web tension and velocity in the R2R dry 
transfer system for patterned flexible devices and materials.  

A.  R2R Dry Transfer Dynamic System Model 

First, the dynamics of the R2R dry transfer system, as 
formulated in [24] and [25], will be presented here in the 
context of patterned peeling. The system is illustrated in Figure 
2, and the key physical parameters are listed in Table I.  

The R2R dry transfer process has two sets of dynamics 
connected through the web tensions: the web transfer 
dynamics dominated by the rewinding rollers, and the peeling 
front dynamics dominated by an energy balance. When 
peeling is occurring, and neglecting higher-order terms, the 
constraint on the three web tensions due to the energy balance 
at the peeling front can be summarized as follows [24]: 

𝑡 + 𝑡3 − 𝑡1 = 𝜏𝑖, (43) 

where 𝜏𝑖, a pattern section-dependent parameter, is defined, 

𝜏𝑖 = 𝑏𝛤𝑖 −
1

 
[𝐸 𝐼 ,𝑖(𝐾1

 − 𝐾 
 ) + 𝐸3𝐼3,𝑖(𝐾1

 − 𝐾3
 )]. (44)  

 
Figure 2. The R2R dry transfer peeling front of a patterned 2D material 

TABLE I.  KEY R2R DRY TRANSFER PARAMETERS 

Symbol Meaning 

𝑡𝑗, 𝑗 = 1, 2, 3 Tension in web 𝑗 (N) 

𝑣𝑗, 𝑗 = 1, 2, 3 Velocity of web 𝑗 (m/s) 

𝑙𝑗, 𝑗 = 1, 2, 3 Unstretched length web 𝑗 (m) 

𝜀𝑗, 𝑗 = 1, 2, 3 Strain in web 𝑗 (m/m) 

𝑢𝑗, 𝑗 = 2, 3 Motor torque inputs (N-m) 

𝑣𝑝 Peeling front velocity (m/s) 

𝐾𝑗 , 𝑗 =  1, 2, 3 Bending Curvature of web 𝑗 (1/m) 

𝐸𝑗 , 𝑗 =  1, 2, 3 Elastic Modulus of web 𝑗 (N/m2) 

𝐴𝑟𝑗 , 𝑗 =  1, 2, 3 Cross-sectional Area of web 𝑗 (m2) 

𝑅𝑗, 𝑗 = 1, 2, 3 Radius of roller 𝑗 (m) 

𝐽𝑗, 𝑗 = 1, 2, 3 Moment of inertia roller 𝑗 (kg-m2) 

𝑓𝑗, 𝑗 = 1, 2, 3 Friction coefficient of roller 𝑗 (m/s) 

𝑏 

 

Width of the contact surface (m) 

Pattern Section-Dependent Parameters 

𝐼𝑗,𝑖 , 𝑗 =  1, 2, 3 Moment of Inertia of web 𝑗 section 𝑖 (m4) 

𝛤𝑖 Adhesion Energy of section 𝑖 (J/m2) 

 

Web 1

Web 3

Web 2

𝑣1

𝑣3

𝑣 

𝑢3

𝑢 

𝑖 + 1 𝑖 − 1𝑖

Section 

Numbers

𝑣𝑝

Roller 3

Roller 2

Roller 1

Algorithm 1: Stabilizing Controller Design (SCD) 

Step 1: Given 𝜖 > 0, 𝑀𝜆 > 0, 𝑀𝜇 > 0, and 𝑤𝜇 > 0; 𝜆𝑖,𝑖+1
(0)

=

−𝑀𝜆, 𝜇𝑖
(0)

= 𝑀𝜇, 𝜇𝑖,𝑖+1
(0)

= 𝑀𝜇, 𝜒(0) = +∞, and 𝑘 = 1. If (42), 

𝜆𝑖
(0)

= 0; Else, 𝜆𝑖
(0)

= −𝑀𝜆; where (42) is, 

𝑴(𝐴𝑖𝑄𝑖 + 𝐵𝑖𝑌𝑖 , 𝐹𝑖 , 𝑄𝑖 , 𝐺𝑖𝑄𝑖 , 0, 𝛼𝑖) < 0. (42) 

Step 2: With 𝜆𝑖
(𝑘−1)

, 𝜆𝑖,𝑖+1
(𝑘−1)

 , 𝜇𝑖
(𝑘−1)

, and 𝜇𝑖,𝑖+1
(𝑘−1)

; find 𝑄𝑖
(𝑘)

, 

𝑄𝑖,𝑖+1
(𝑘)

, 𝑌𝑖
(𝑘)

, 𝑌𝑖,𝑖+1
(𝑘)

, and 𝑌𝑖+1,𝑖+1
(𝑘)

 such that (7)-(12). 

Step 3: With 𝑄𝑖
(𝑘)

, 𝑄𝑖,𝑖+1
(𝑘)

, 𝑌𝑖
(𝑘)

, 𝑌𝑖,𝑖+1
(𝑘)

, and 𝑌𝑖+1,𝑖+1
(𝑘)

; find 𝜆𝑖
(𝑘)

, 

𝜆𝑖,𝑖+1
(𝑘)

 , 𝜇𝑖
(𝑘)

, and 𝜇𝑖,𝑖+1
(𝑘)

 that minimize 𝜒(𝑘) = −∑ (𝜆𝑖
(𝑘)𝑇𝑖 +

𝑆
𝑖=1

𝜆𝑖,𝑖+1
(𝑘) 𝑇𝑖,𝑖+1 −𝑤𝜇 (𝜇𝑖

(𝑘) + 𝜇𝑖,𝑖+1
(𝑘)

)) subject to (7)-(12). 

Step 4: If |𝜒(𝑘) − 𝜒(𝑘−1)| < 𝜖:  STOP. Else: Set 𝑘 = 𝑘 + 1, 

return to Step 2. 

Step 5: Using 𝜆𝑖
(𝑘)

, 𝜆𝑖,𝑖+1
(𝑘)

 , 𝜇𝑖
(𝑘)

, and 𝜇𝑖,𝑖+1
(𝑘)

; if 𝜆∗ > 0 according 

to (13), then 𝑄𝑖
(𝑘)

, 𝑄𝑖,𝑖+1
(𝑘)

, 𝑌𝑖
(𝑘)

, 𝑌𝑖,𝑖+1
(𝑘)

, and 𝑌𝑖+1,𝑖+1
(𝑘)

 can be used to 

build a set of stabilizing controller gains. 

 



  

In this study, 𝜏𝑖 will be treated as a constant parameter. Then, 
the web dynamics can be defined accordingly: 

𝑣̇𝑗(𝑡) = −
𝑅𝑗
2

𝐽𝑗
𝑡𝑗(𝑡) +

𝑅𝑗

𝐽𝑗
𝑢𝑗(𝑡) −

𝑓𝑗

𝑅𝑗
𝑣𝑗(𝑡),  𝑗 = 2, 3, (45) 

𝑡̇𝑗 =
𝜕𝑡𝑗

𝜕𝑙1
(t) ∙ 𝑙1̇ +

𝜕𝑡𝑗

𝜕𝑙2
(t) ∙ 𝑙 ̇ +

𝜕𝑡𝑗

𝜕𝑙3
(t) ∙ 𝑙3̇,   𝑗 = 2, 3, (46) 

𝑙1̇(𝑡) =
𝑣1(𝑡)−𝑣𝑝(𝑡)

1+𝜀1(𝑡)
, 𝑙𝑗̇(𝑡) =

𝑣𝑝(𝑡)

1+𝜀1(𝑡)
−

𝑣𝑗(𝑡)

1+𝜀𝑗(𝑡)
, 𝑗 = 2, 3 (47) 

where 𝜀𝑗 =
𝑡𝑗

𝐴𝑟𝑗𝐸𝑗
. The partial derivatives 

𝜕𝑡𝑗

𝜕𝑙𝑘
 can be defined 

numerically [16], [25].  

Thus, (43)-(47) define a piecewise nonlinear, state-space 
model of the R2R dry transfer system for patterned materials. 
These equations can be written in the following form. When 
section 𝑖 is being peeled, 

𝑥̇ = 𝑓𝑖(𝑥,  𝑤,  𝑢),  𝑥 = [𝑣 , 𝑣3, 𝑡 , 𝑡3]
𝑇, 𝑤 =  𝑣𝑝, 

𝑢 = [𝑢 , 𝑢3]
𝑇, 𝑦 = [𝑣 , 𝑣3, 𝑡1, 𝑡 , 𝑡3]

𝑇,  (48) 

where it is assumed that the four system states, 𝑣 , 𝑣3, 𝑡 , and 
𝑡3 are measurable. In addition, 𝑡1, and thus 𝜏𝑖, is measurable 
through (43).  

B. Formulating the R2R Dry Transfer System as an APPLS 

with Bounded Modeling and Dwell-Time Uncertainty 

This section presents how the R2R dry transfer dynamics 
naturally transform into an APPLS with bounded modeling 
and dwell-time uncertainties. 

First, it is typical to define a physically realizable reference 
trajectory to regulate the system around. Define the following 
state, control, and exogenous input deviations: 

δ𝑥(𝑡) = 𝑥(𝑡) − 𝑥̃(𝑡), δ𝑢(𝑡) = 𝑢(𝑡) − 𝑢̃(𝑡),  
δ𝑤(𝑡) = 𝑤(𝑡) − 𝑤̃(𝑡),  (49) 

where 𝑥̃(𝑡), 𝑢̃(𝑡), and 𝑤̃(𝑡) represent the reference trajectory 
with desirable web tension and velocity characteristics. Using 
the piecewise nonlinear system dynamics (48) and LDI 
techniques like those outlined in [9], [11],  the nonlinear 
system dynamics can be represented as follows. 

δ𝑥̇ ∈ 𝐶𝑜(𝒜𝑖)𝛿𝑥 + 𝐵𝑖𝛿𝑢 + 𝐵𝑤𝑖
𝛿𝑤,  (50) 

where 𝒜𝑖 = {
𝜕𝑓𝑖

𝜕𝑥 𝑥(𝑡),𝑢(𝑡),𝑤(𝑡)
|𝑡 ∈ [𝑙𝑇𝑃

∗ + 𝑡𝑙,𝑖−1, 𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖)}, 

𝐵𝑖 =
𝜕𝑓𝑖

𝜕𝑢
 is constant, 𝐵𝑤𝑖

=
𝜕𝑓𝑖

𝜕𝑤
 is treated as constant, and 𝐶𝑜(∙) 

denotes the convex hull operator. (50) is called an LDI [9]–
[11], [15]. If the following linear matrix inequality (LMI) is 

satisfied  ∀ 𝐴̃𝑖,𝑘 ∈ 𝐶𝑜(𝒜𝑖), 

𝑉𝑖 ≥ 0, 𝑊𝑖 ≥ 0, [
𝑉𝑖 (𝐴̃𝑖,𝑘 − 𝐴𝑖)

𝑇

(𝐴̃𝑖,𝑘 − 𝐴𝑖) 𝑊𝑖

] ≥ 0,  (51) 

then, when section 𝑖 is being peeled, 

𝛿𝑥̇(𝑡) = 𝐴𝑖𝛿𝑥(𝑡) + 𝐵𝑖𝛿𝑢(𝑡) + 𝐹𝑖𝜋,  

𝜋(𝑡)𝑇𝜋(𝑡) ≤ (𝐺𝑖𝛿𝑥(𝑡))
𝑇
(𝐺𝑖𝛿𝑥(𝑡)), (52) 

where 𝑉𝑖 = 𝐺𝑖
𝑇𝐺𝑖 and 𝑊𝑖 = 𝐹𝑖𝐹𝑖

𝑇. Also, the 𝐵𝑤𝑖
𝛿𝑤 term has 

been omitted since the reference trajectory 𝑤̃(𝑡) is assumed to 
be accurate. This method of transforming a nonlinear state 

space system into a linear system with additive, unstructured, 
norm-bounded uncertainty has been summarized here. The 
benefit of this approach is that it allows control methods for 
linear systems with additive uncertainty to be used on 
nonlinear systems that operate within a known region in the 
state and input space. See [9]–[15] and the references therein 
for more details. 

Next, the bounded dwell-time uncertainty will be 
quantified. Suppose that there is a dry transfer process with a 
constant unwinding speed 𝑣1 and sequentially numbered 
pattern sections, as in Figure 2. Let the closest and farthest 
position, relative to the beginning of the pattern, that section 𝑖 
can transition to section 𝑖 + 1 be denoted 𝑞𝑖 and 𝑞𝑖, 

respectively. Thus, the minimum and maximum times that 

section 𝑖 can transition to section 𝑖 + 1 are 𝑡𝑖 =  𝑙𝑇𝑃
∗ + 

𝑞𝑖 
𝑣1
⁄  

and  𝑡𝑖  =  𝑙𝑇𝑃
∗ +

𝑞𝑖 
𝑣1
⁄ , respectively, where 𝑇𝑃

∗ =
𝑞𝑃 

𝑣1⁄ , 𝑞𝑃 

is the average length of the pattern, and 𝑙 is the number of 
patterns that have been peeled since the process began . 

Additionally, assume that the system is controlled using a 
set of state feedback matrices with a gain schedule such that 

𝐾𝑖 , 𝐾𝑖,𝑖+1, or 𝐾𝑖+1,𝑖+1 is active when 𝑡 ∈ [𝑙𝑇𝑃
∗ + 𝑡𝑖−1, 𝑙𝑇𝑃

∗ +

𝑡𝑖), [𝑙𝑇𝑃
∗ + 𝑡𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑙,𝑖), or [𝑙𝑇𝑃
∗ + 𝑡𝑙,𝑖 , 𝑙𝑇𝑃

∗ + 𝑡𝑖), 

respectively. Note that switching the controller gain when a 
mode switch occurs is feasible in the R2R dry transfer case, 
since 𝜏𝑖 is assumed to be constant and measurable, so it can be 
used to determine the active section. Thus, the switching times 
are unknown a-priori within the uncertain time region, but they 
are measurable in real time. Using this control strategy, (52) is 
equivalent to (1) and the stabilizing control results developed 
in Section 2.2 can be used to stabilize the R2R dry transfer 
system for patterned materials. This control-oriented 
modelling structure is more accurate than those of existing 
control designs that do not consider both dwell time and 
modeling uncertainty. 

C. Simulations of Dry Transfer of CVD Graphene 

This section presents simulation results using the controller 
generated by Algorithm 1 to stabilize the dry transfer of CVD 
graphene from its copper growth substrate to a polymer target 
substrate, PVA [7], [24]. The web contains a series of CVD 
graphene sheets sandwiched between the growth substrate, the 
target substrate, and various adhesives. The graphene samples 
will alternate between long and short sizes. In addition, it is 
assumed that between the graphene sheets that are being 
transferred, the two PET transfer webs are laminated together 
in a similar manner as in [25]. Thus, one pattern, or period, will 
consist of four sections, or modes: an initial section of PET-
PET laminated together, a long section of graphene, another 
section of PET-PET, and a short section of graphene. This 
simulation setup is illustrated in Figure 3. The mode-
dependent parameters are given in Table 2. The physical 
parameter values were taken from [7], [24]. Three periods, or 
patterns, were simulated.  

To ensure a statistically significant result, 100 simulations 
were conducted, with the switching events occurring randomly 
within the prescribed transition regions. Also, the initial 
conditions for each simulation were randomly generated to be 
near the reference trajectory. Figure 4 shows the norm of the 



  

state error as defined in (49). The regions where the active 
mode is known and the transition regions where switching can 
occur are labeled and colored white and grey, respectively. 
The figure shows that the developed controller gains stabilize 
the R2R dry transfer system for patterned materials.  

IV. CONCLUSION 

This paper presents, for the first time, a stabilizing controller 

synthesis solution for APPLSs with both norm-bounded 

additive modeling uncertainty and dwell-time uncertainty. 

The utility of this modeling and control framework has been 

verified by using it to stabilize the R2R dry transfer system 

for patterned 2D materials with an exponential convergence 

rate. Future work will extend this framework to develop 

controllers with ℒ -gain performance guarantees, in addition 

to ensuring stability.  
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Figure 3. Simulation Setup 

TABLE II.  SYSTEM PARAMETERS 

Section Material 𝜏𝑖 (J/m2) 𝑞𝑖 , 𝑞𝑖 (cm) 𝑡𝑖 , 𝑡𝑖 (s) 

1 PET-PET 70 2.9, 5.3 0.88, 1.60 

2 Graphene Stack 80 11.9, 14.3 3.60, 4.33 

3 PET-PET 70 17.2, 19.0 5.21, 5.76 

4 Graphene Stack 80 23.2, 25.0 7.03, 7.58 

 

 
Figure 4. Norm of the state error over time 
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