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Is Driver on Phone Call? Mobile Device
Localization using Cellular Signal

Shichen Zhang, Student Member, IEEE, Huacheng Zeng, Senior Member, IEEE, Y. Thomas Hou, Fellow, IEEE

Abstract—The use of mobile phones while driving is a major
source of distraction for vehicle drivers and has resulted in a large
number of car accidents. While surveillance cameras can be used
to detect the violation of phone use, they do not work well in some
scenarios (e.g., darkness and blockage) and may raise privacy
concerns. In this paper, we present PhoLoc, a roadside device
to detect the violation of phone use in personal vehicles using
the cellular signals emitted by cellphones. PhoLoc is equipped
with two sensors: a multi-antenna radio receiver and a low-
cost lidar. It jointly processes the multimodal data from the two
sensors to estimate the relative location of a phone in a vehicle.
The enabler of PhoLoc is a new near-field localization scheme,
which is capable of estimating the location of a moving phone
at a specific time moment by overhearing its cellular signals. We
have built a prototype of PhoLoc and evaluated its performance
in realistic scenarios. Experimental results show that PhoLoc
achieves 4.2% false positive rate and 13.8% false negative rate
in the detection of phone call violation.

Index Terms—Positioning over cellar networks, wireless local-
ization, violation of phone use, transportation safety

I. INTRODUCTION

According to the study carried out by the National Highway
Traffic Safety Administration (NHTSA), the prevalence of
drivers using mobile phones is the main cause of 553,000
property damage crashes, 248,000 injuries, 3,211 fatalities in
U.S. in 2021 [1]. Many countries and areas (e.g., UK, Europe,
and China) have legislated laws that prohibit vehicle drivers
from using mobile phones while driving. Roadside transporta-
tion infrastructure that can enforce the laws and alert distracted
drivers is critical to improve the safety of driving. A natural
approach is to deploy high-resolution surveillance cameras on
the roadside to detect drivers’ violations of phone use [2].
However, camera surveillance systems may not work well
in some scenarios such as darkness, bad weather conditions,
or driver’s intentional hiding of his/her phone device. More
importantly, camera surveillance in public areas may raise
serious concerns about the privacy of drivers and passengers.

The limitations and concerns of camera-based surveillance
systems in transportation have spurred research efforts that
explore alternatives for detecting driver’s phone use violations.
For example, smartphone sensors such as Global Positioning
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Fig. 1: Illustration of PhoLoc.

System (GPS) and Inertial Measurement Unit (IMU) have
been studied to detect distracted driving behaviors in an
increasing sophisticated manner [3], [4], [5], [6], [7], [8],
[9]. In-vehicle Radio Frequency Identification (RFID) based
sensing systems have also been developed to detect drivers’
distractive driving behaviors [10], [11], [12]. However, both
IMU and RFID sensors can only be used inside vehicles but
cannot be deployed on roadsides to enforce safety regulations.
It is desirable to have a roadside sensor that can detect the
violation of phone use while performing well in all weather
conditions and respecting drivers’ privacy.

In this paper, we present PhoLoc, a roadside device that
detects driver’s violation of phone use (being on a phone call
while driving) in personal vehicles. Fig. 1 shows the basic idea
and an application scenario of PhoLoc. It is equipped with two
sensors: a multi-antenna radio receiver and a low-cost (∼$40)
lidar. The radio receiver overhears the cellular signals emitted
by a phone to estimate its location at a given moment (e.g.,
(x0, y0) in Fig. 1), while the lidar is to measure the vehicle
distance ys and the time moment ts when vehicle’s front end is
firstly detected, which can be used to infer the vehicle length.
PhoLoc jointly processes the data from the two sensors to
estimate vehicle speed, vehicle length, and phone’s relative
location in vehicle (i.e., ∆x and ∆y in Fig. 1), and uses the
relative location to determine if the phone call is being made
by the vehicle driver.

The phone localization (estimating phone’s location at a
given moment) is the core component of PhoLoc. There are
three challenges in its design. The first one stems from the
high mobility of vehicle. For a stationary roadside device,
different vehicles may drive at different speeds in a wide
range (e.g., from 20 mph to 45 mph). Moreover, PhoLoc
does not have prior knowledge of vehicle speed. It must
jointly estimate vehicle speed and phone location. The second
challenge stems from the low packet rate of VoIP data traffic,
which is used to support phone calls in 4G LTE and beyond
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cellular networks. Per VoIP protocol (G.729 [13]), the VoIP
packet rate during a voice call could be as low as 25 packets
per second. This agrees with our experimental observations on
real-life phone calls. The sparsity of cellular signals makes it
difficult to accurately estimate the phone’s location at a given
time moment. The third challenge lies in the fact that vehicle
is a scattering-rich environment. Most surely, the radio signals
emitted by an in-vehicle phone will go through both light-of-
sight (LoS) and non-LoS (NLoS) paths before impinging on
PhoLoc’s antennas. Since the frame of most vehicles is made
of metal materials, the NLoS paths may not be negligible. The
presence of non-negligible NLoS paths makes it challenging
to accurately localize the phone at a high speed.

While many wireless localization techniques have been
developed for mobile devices (e.g., [14], [15], [16], [17], [18],
[19]), most of them are based on the estimate of AoA (angle of
arrival) or ToF (time of flight) to infer the location of signal
source. It is unclear, even if possible, how these techniques
can be used to localize a wireless device with high mobility
and traffic sparsity in multipath-rich scenarios. To address the
above challenges, we propose a new scheme that localizes
a moving device using a linear antenna array. Our design
was inspired by astronomical interferometer (specifically, VLA
in New Mexico [20]). The key idea behind our design is
to increase antenna spacing (e.g., 5 ft) so that the antenna
array has a large aperture. The large antenna aperture turns
a far-field localization problem to a near-field localization
problem, making it possible to leverage the movement of
vehicle (phone) to generate a concentrated location pattern
at a given time moment. Specifically, PhoLoc formulates the
localization problem as an optimization problem and searches
for the optimal values for the phone’s location at a given
moment (e.g., (x0, y0) in Fig. 1) by maximizing the cross
correlation between the measured channels and their projected
LoS components over vehicle trajectory.

A critical issue with the proposed near-field localization
scheme is channel estimation. In order for PhoLoc (an eaves-
dropper) to estimate the channel between itself and a phone,
it requires fine-grained timing and frequency synchronization
between the two devices as well as the knowledge of up-
link reference signals from the phone [21]. Moreover, the
dynamic resource allocation and user scheduling at cellular
base station add another challenge to the channel estimation
at PhoLoc. Even if possible, estimating channels will introduce
a heavy computational burden on PhoLoc. To address this
issue, PhoLoc exploits the signal phase difference over its
antennas to localize the target device, which can be extracted
from raw baseband signals and therefore eliminates the need
of channel estimation. Based on this idea, PhoLoc develops a
low-complexity signal processing pipeline for phone localiza-
tion, which requires neither timing/frequency synchronization
nor channel estimation. Since most of prior AoA- and ToF-
based localization techniques rely on channel state information
(CSI), it is another key difference between our scheme and
existing ones.

Based on the new localization scheme, PhoLoc performs
system integration and optimization by jointly processing the
multimodal data from the two sensors (radio and lidar). It

leverages the time duration of vehicle being detected and
the average length of personal vehicle to estimate vehicle
speed, which may not be accurate but can significantly reduce
the time of solving the formulated optimization problem. In
addition, PhoLoc analyzes the overheard Bluetooth signals
from the vehicle to determine if the driver is making a hand-
held or hand-free phone call.

We have built a prototype of PhoLoc using a USRP N310
radio device with 5 ft-separated four antennas and a low-cost
lidar sensor. We deployed PhoLoc on a local road’s side and
drove vehicles at different speeds (from 10 mph to 30 mph)
to evaluate its performance. In our experiments, the phone
call was made from a vehicle’s different seats (driver seat,
passenger seat, back-left and back-right seat). Experimental
results show that PhoLoc achieves 4.2% false positive rate
(FPR) and 13.8% false negative rate (FNR) in the detection
of driver’s phone call violation.

The contribution of this paper can be summarized as below.
• PhoLoc presents a near-field localization scheme to es-

timate the location of a moving device at a given time
moment. In contrast to prior localization schemes, the
proposed scheme does not require channel knowledge for
localization.

• PhoLoc combines two distinct sensors, radio and lidar, to
localize the relative location of a phone inside a vehicle.
To the best of our knowledge, it is the first work that
estimates the relative location of a mobile device at high
speed.

• PhoLoc has been evaluated in realistic scenarios. Experi-
mental results confirm the feasibility and effectiveness of
PhoLoc in real-life applications.

II. PRELIMINARIES

Most phone carriers in the U.S. (e.g., AT&T, Verizon, and T-
Mobile) have officially shut down their 3G networks in 2022
[22]. And after that, 4G and beyond became the dominant
cellular networks to provide phone services. In the following,
we describe the key features of 4G networks related to PhoLoc.
We note that 5G has similar signal structures and protocol
stacks as 4G. Therefore, PhoLoc also works with 5G mobile
devices.

Uplink Frequency and Bandwidth. Different phone car-
riers (e.g., AT&T, Verizon, and T-Mobile) have different
frequency channels to serve their subscribers. Fortunately,
the channel information of each phone carrier is public and
available on its website. In the US, the 4G uplink channel
frequencies are mainly in the ranges of 650-900 MHz and
1700-2100 MHz [23]. The bandwidth of each channel is
20 MHz, with a sampling rate of 30.72 MSps. While 4G
standard supports both TDD and FDD modes [24], most of
U.S. cellular networks work in FDD mode.

VoIP for Phone Call. When a phone is on voice call,
it will transmit signals to its cellular tower (a.k.a. uplink
transmission). Voice-over-Internet-Protocol (VoIP) [25] is used
in 4G and beyond networks to carry voice data. G.729 and
G.711 are two of the most popular codecs used by VoIP in
4G networks. Per 3GPP [26], mobile VoIP connection sends
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Fig. 2: A problem of localizing a mobile transmitter.

at least 25 VoIP packets per second; and VoIP packet size
ranges from 60 bytes to 280 bytes. As will be shown in our
experiments, the packet interval from a phone call could be
as large as 40 ms. VoIP uses a small bandwidth for RF signal
transmission. As it shall be clear, the small bandwidth of VoIP
is well suited for PhoLoc’s location estimation.

Uplink Signal Transmission. In 4G networks, each user
equipment (UE) obtains cell/sector ID and frame timing based
on the primary synchronization signal (PSS) and secondary
synchronization signal (SSS) that are periodically broadcasted
by the base station (BS). UE also uses PSS and SSS to
synchronize its carrier frequency with its serving BS. Timing
Advance (TA) is used by the BS to inform UE of the time
amount that it needs to advance its uplink transmission. The
uplink uses single-carrier FDMA (SC-FDMA) [27] modula-
tion scheme for signal transmission. Each UE uses one or
more resource blocks (RB, consisting of 12 subcarriers and
7 OFDM symbols) for its data transmission. Demodulation
reference signal (DMRS), which is generated based on cell and
sector IDs, is included in each RB for channel estimation at
BS. Given the complex nature of 4G networks, it is nontrivial
for an eavesdropper (PhoLoc) to estimate the channel between
itself and a phone.

Uplink Resource Allocation. Cellular networks are a cen-
tralized system. BS is the central controller. In uplink, the time
and frequency resources are allocated by a BS in a dynamic
way [28]. As a result, the frequency of signals emitted by a
phone changes over time. As will be shown later, the radio
signal emitted by a phone is narrowband in a short time
(∼0.1 ms), but its frequency spans over 20 MHz over a long
time (about 1 s).

III. NEAR-FIELD LOCALIZATION FOR MOBILE DEVICE

A. Problem Formulation

Consider a mobile single-antenna transmitter and a sta-
tionary multi-antenna detector (radio receiver) as shown in
Fig. 2.1 The transmitter is moving at a constant speed v
towards the direction in parallel with the detector’s linear
antenna array, starting from position (x0, y0). During its
movement, the transmitter sends a packet at time moment
ti, i = 0, 1, 2, . . . , Ns. The detector, at time ti, receives the
data packets and estimates the channel between itself and

1For ease of exposition, we assume that the transmitter has a single antenna.
In general, our approach works for the case where the transmitter has multiple
antennas.

the transmitter. Denote M as the number of antennas at the
detector. Denote h⃗i = [h1i, h2i, . . . , hMi] as the measured
channel at time ti. Then, we have

hmi = αmi0 · e−j2π
dmi0

λ +
L∑

l=1

αmil · e−j2π
dmil

λ , (1)

where αmil is the signal amplitude attenuation for the lth path
from the transmitter to the detector’s mth antenna at time
ti, dmil is the signal-traveling distance from the transmitter
to the detector’s mth antenna along the lth path at time ti.
Particularly, l = 0 denotes the LoS path. λ is the wavelength
of radio signal.

Denote f as the carrier frequency of the transmitter’s signal.
Denote (am, 0) as the coordinate of the detector’s mth antenna
(see Fig. 2). Then, Equation (1) can be rewritten as:

hmi = αmi0 · e−j 2πf
c

√
(x0+v(ti−t0)−am)2+y2

0+z2

+
L∑

l=1

αmil · e−j 2πf
c dmil ,

(2)

where c is the radio signal travel speed, z is the elevation
(height) difference between the phone and the antennas (not
shown in Fig. 2).

In this system, our objective is to estimate the initial location
of transmitter (i.e., x0 and y0) and its moving speed (i.e., v)
based on its observed channel coefficients over time (i.e., h⃗i

for i = 0, 1, 2, . . . , Ns). To attain this objective, we exploit
the LoS component of channel coefficients for the position
estimation. Specifically, we define b⃗i = [b1i, b2i, . . . , bMi] as
the steering vector at time ti, with its element being:

bmi = e−j 2πf
c

√
(x̂0+v̂(ti−t0)−am)2+ŷ2

0+ẑ2
. (3)

Then, the localization problem can be formulated as follows:

[x̂∗
0, ŷ

∗
0 , v̂

∗] = argmax
x̂0,ŷ0,v̂,ẑ

Ns∑
i=0

∣∣∣⃗hi⃗b
H
i

∣∣∣ , (4)

where (·)H is conjugate transpose operator.
We note that the observed channels at a detector include

not only over-the-air response but also RF circuitry response.
While the LoS component of over-the-air channel phase can
be inferred based on phone’s location, the radio frequency
(RF) circuitry response may randomly vary over packet trans-
missions. To eliminate this uncertainty, we exploit the relative
channel phases over antennas for the problem formulation.
That is the reason why the abs operation is used in Equa-
tion (4).

B. Antenna Spacing

For a given number of antennas at the detector, the solv-
ability of Equation (4) is determined by its antenna spac-
ing. In most prior works on both wireless localization and
communications, the antenna spacing is assumed to be less
than wavelength (e.g., half wavelength). With such a small
antenna spacing, the transmitter is considered to be in the far
field of the detector. The antenna aperture of the detector is
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(a) λ/2 antenna spacing in a LoS scenario.
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(b) 1.5 m antenna spacing in a LoS scenario.
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(c) 1.5 m antenna spacing in LoS+NLoS scenario.

Fig. 3: Localizing mobile device in far-field and near-field scenarios. In each subfigure, a large black area means that the
localization is not feasible. A small black area (dot) means that the vehicle can be accurately localized.

small and, as a result, the angular resolution of the detector
is very limited. In such a case, the problem in Equation (4)
easily becomes unsolvable. This is because the LoS-path
phase difference over antennas lacks dynamic range, making
it impossible to infer the starting location of transmitter based
on channel observations.

To show the relationship between the antenna spacing and
the solvability of Equation (4), let us consider the case in
Fig. 2 for example. Assume that the carrier frequency is f =
1890 MHz. The starting location of the transmitter (phone)
is (x0, y0) = (−10.0, 3.0). The speed is v = 10.0 m/s. The
detector and transmitter are on the same height (i.e., z = 0
and ẑ = 0). The number of antennas at the detector is M = 4.
The antenna spacing is half wavelength (λ/2). Let us further
assume that there exists only LoS path between transmitter
and detector (i.e., no NLoS path between them). In such a
setting, we simulate the channels from the M antennas (i.e.,
h⃗i for i = 1, 2, . . . , Ns) and then solve Equation (4) to find
the initial location of the transmitter. Fig. 3a shows the results
of exhaustive search for the optimal solution to Equation (4).
Evidently, when the antenna spacing is small, it is hard to find
the optimal solution to Equation (4).

To make the problem solvable, we transform the far-field
localization problem to a near-field localization problem by
increasing the detector’s antenna spacing. Specifically, we set
the antenna spacing to 1.5 m. Fig. 3b shows the results of
exhaustive search for the optimal solution to Equation (4). It
is clear to see that the optimal solution can be found, and
the corresponding values of x̂∗

0, ŷ∗0 , and v̂∗ can be accurately
estimated. In the above cases, we assumed that the channel has
only LoS path (i.e., no NLoS path). A natural question to ask
is whether the problem is solvable when the channel has non-
negligible NLoS paths. To explore the answer to this question,
we consider a case where there are both LoS and NLoS paths
between transmitter and detector. The strength of LoS path is
1; and the strength of three NLoS paths are [0.5, 0.25, 0.125].
The three NLoS paths are caused by three objects around the

transmitter, with coordinate offsets (2, 0), (0, 1), and (1, 2).
Fig. 3c shows the numerical results. It can be seen that the
optimal values of x̂∗

0, ŷ∗0 , and v̂∗ can still be clearly identified.
This can be attributed to the fact that LoS and NLoS paths
are typically uncorrelated over time.

C. Impact of Antenna Height

The problem in Equation (4) involves four optimization
variables (x̂0, ŷ0, v̂, and ẑ), leading to a computational
challenge in finding their optimal variables. For PhoLoc, the
antenna height information is not needed for determining the
relative location of phone in a vehicle. Hence, we study
the impact of antenna height z on the estimation of other
variables (i.e., x0 and y0). If the estimation of those variables
is not sensitive to z, we can replace it with an estimated
value in Equation (4). Doing so will reduce the optimization
search space from four to three dimensions, thereby reducing
the required computation. For personal vehicles, the average
height of a sedan car is about 1.4 m, the average height of an
SUV is about 1.9 m, and the average height of a pick-up is
about 1.9 m. If we fix the antenna height of PhoLoc to 1.65 m,
then the height error in Equation (4) should be less than 0.5 m
for most cases. We therefore use 0.5 m as the upper bound
of antenna height error to study its impact on the correlation
value and the estimates of other parameters.

Consider the detector with four antennas as shown in Fig. 2,
with the same parameters listed in §III-B. The detector has
four linear antennas with a spacing of 1.5 m. In this case, we
study the impact of antenna height error (error of z) on the
estimates of (x0, y0, v), as well as its impact on the correlation
result. Fig. 4 presents our numerical results. It is evident that
the search of x0, y0, and v is not sensitive to the antenna
height error in both LoS and NLoS scenarios. The antenna
height error has a negligible impact on the estimates of x0

and v. It has a slight impact on the estimate of y. A 0.5 m
error of z will introduce 0.04 m error of y, which is tolerable
in practice.
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To see the reason why the estimates of (x0, y0, v) are
resilient to the error of z, let us focus on the sqrt term in
Equation (3). In practice, since (x̂0+ v̂(ti−t0)−am)2+ ŷ20 ≫
ẑ2, the removal of ẑ will generate a negligible impact on
the final results, as demonstrated in Fig. 4. Therefore, we
redefine the element of steering vector b⃗i = [b1i, b2i, . . . , bMi]
as follows:

bmi = e−j 2πf
c

√
(x̂0+v̂(ti−t0)−am)2+ŷ2

0 . (5)

The removal of ẑ will significantly reduce the optimization
space to find the optimal values of (x0, y0, v), thereby reducing
the computation of PhoLoc.

D. Impact of Speed Change

Our model to find the location of a mobile device is based on
the assumption that the driving speed of the vehicle is constant.
To fulfill this assumption, PhoLoc should not be installed at the
locations close to intersections or STOP sign. Rather, it should
be installed at road segments where vehicles drive straightly
and smoothly. As a roadside detection device designed to assist
traffic management authorities in implementing safety policies,
being placed in these locations is not an extravagant request.
In this part, we study the impact of vehicle speed change on
the estimate of its location. We consider two most common
cases: vehicle acceleration and vehicle braking. To minimize
the impact of various speeds, we do not estimate the starting
location of phone. Instead, we estimate the middle location of
phone when its trajectory intersects with y axis (see Fig. 2).2

Since it is hard to analytically characterize the impact of
speed change, we resort to the numerical method again. We
consider the scenario described in §III-B. The detector collects
radio signals from the transmitter (phone in vehicle) when
x ∈ [−15, 15]. The moving distance of vehicle is modeled as
d = vt+ 1

2at
2, where v ∈ {10, 20, 30} and a is the acceleration

rate of vehicle ranging from -2 m/s2 to 2 m/s2. Fig. 5 depicts

2As we will show in the next section, the middle location (not the starting
location x0) will be adopted in our design to minimize the cumulative errors
from various sources.
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Fig. 5: Impacts of vehicle acceleration on the estimates of x
and y in two scenarios: LoS channel and NLoS channel.

the estimation error of x (the estimated horizontal coordinate
of phone) and y (the estimated vertical coordinate of phone)
in LoS and NLoS scenarios. The discrete estimation errors in
the figure stem from the fixed search steps, i.e., 0.01 m for x
and 0.001 m for y. It can be seen that the estimation error of
x is less than 0.04 m for both LoS and NLoS scenarios. It can
also be seen that the estimation error of y is less than 0.005 m
for both scenarios. The numerical results, albeit from a single
case study, indicate that the proposed approach is resilient to
vehicle acceleration and braking.

In practice, PhoLoc collects cellular signal from phone for
localization only when it is within its proximity. The time
duration of signal collection is typically less than 2 seconds.
During such a short time, there are many road segments where
vehicles drive straightly and smoothly with speed change
less than 2 m/s2. However, a vehicle may not simply be
accelerating or braking. The speed change is still a main source
of estimation error for PhoLoc.

IV. DESIGN

A. Basic Idea

PhoLoc aims to determine if the driver of a vehicle is on a
phone call. To do so, it needs to know the relative location of
a phone in a vehicle rather than its absolute location. To find
out the phone’s relative location, PhoLoc is equipped with two
sensors: i) a lidar sensor, and ii) a multi-antenna radio receiver.
The lidar sensor serves for two main purposes. First, it records
the time moment when the vehicle is initially detected (i.e.,
the vehicle’s front end being detected). We denote this time
moment as ts, which will be used to calculate the relative
horizontal location of the phone. Second, it measures the
distance between itself and the one side (either left or right
side) of vehicle. We denote the measured distance as ys, which
will be used to infer the relative vertical location of phone. An
illustration of ys can be found in Fig. 1.

The multi-antenna radio receiver will be used to overhear
cellular radio signals emitted by the phone. We increase its
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antenna spacing (5 ft in our experiments) to turn the far-
field localization problem to a near-field localization problem.
Then, based on the overheard cellular signal, it estimates
(x0, y0, v) by solving the problem in Equation (4). Combining
the measurement results from the two sensors, the relative
location of the phone within a vehicle, which we denote as
(∆x,∆y), can be calculated as follows:

∆x = (ts − t0)v − x0, (6a)
∆y = (y0 − ys), (6b)

where x0, y0, v, and t0 are obtained from the multi-antenna
radio detector, while ts and ys are obtained from the lidar
sensor.

B. Phone Localization Without CSI

Challenges and Approaches. Solving the problem in Equa-
tion (4) to obtain (x0, y0, v) requires the channel knowledge
h⃗i at time ti, i = 0, 1, 2, · · · . However, since PhoLoc acts as an
eavesdropper and does not perform direct communication with
the phone, it is challenging for PhoLoc to estimate the channel
coefficients between the phone and itself. This is because
estimating the channel coefficients requires the knowledge
of demodulation reference signals embedded in the phone’s
signal frames. It also needs to compensate the timing and fre-
quency offsets of each signal frame. These requirements pose
a grand challenge in the design of PhoLoc. Even if possible,
estimating channel coefficients will impose an intimidating
computational requirement on the implementation of PhoLoc.
It is worth noting that, for PhoLoc, synchronizing itself with
a phone is much more difficult than synchronizing itself with
a base station. This is because a base station periodically
broadcasts PSS and SSS, but a phone does not broadcast such
signals for synchronization.

To address this challenge, we revisit the problem formula-
tion in Equation (4) with the aim of eliminating the need of
channel knowledge. Based on Equation (2) and Equation (3), it
can be seen that the correlation (inner product) in Equation (4)
is to exploit the signal phase difference over different antenna
elements. Fortunately, the signal phase difference over anten-
nas can be estimated based on the received baseband signal,
requiring neither timing/frequency synchronization nor chan-
nel estimation. Inspired by this observation, we will propose a
practical scheme to estimate the signal phase difference over
largely-separated antenna elements.

To estimate the relative signal phases at PhoLoc, there is
another challenge that stems from the time-varying frequency
of phone signal. A base station and its serving phones are
working in master-slave mode. The base station dynamically
allocates one or more resource blocks (12 OFDM subcarriers
× 7 OFDM symbols) for the uplink transmission of its serving
phones so as to improve the spectral efficiency. The allocated
resource blocks for a phone change rapidly over time. Fig. 6
shows an example of a real-life T-Mobile phone’s signal
frequency when making a voice call. It can be seen that the
signal frequency is not fixed but changes rapidly. To address
this challenge, the time-varying signal frequency needs to be
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Fig. 6: An example of phone signal’s frequency and times-
tamp. The phone uses T-mobile networks, and it works on
two frequency bands: 1720 MHz and 1890 MHz.

taken into account in the problem formulation; and its impact
should be eliminated.

Phone Localization. Based on the results in §III, we
propose a phone localization scheme that requires neither tim-
ing/frequency synchronization nor channel estimation, while
accounting for the time-varying frequency of phone signals.
Fig. 7 depicts the diagram of our proposed phone location
scheme, which consists of the following three components.
• Phone signal search. When a vehicle is approaching,

PhoLoc first needs to figure out two questions: i) is there an
active phone call in the vehicle? and ii) what is the uplink
frequency channel used by the phone call? To find the answers
to these two questions, PhoLoc monitors the power level and
spectrum pattern of radio signals over all possible uplink
cellular channels (e.g., 1.5 GHz – 3.6 GHz). If cellular signals
are periodically detected above a predefined power threshold,
then it believes there is an active phone call in the vehicle
and its frequency channel can be identified accordingly. This
approach is effective in practice due to two facts. First, in
our problem setting, the vehicle of interest is very close to
PhoLoc (e.g., 10s meters). Hence, PhoLoc will consistently
observe distinctly strong phone signals if there is an active
phone in the vehicle. In addition, since the vehicle is driving
toward PhoLoc, the observed phone signal power at PhoLoc
is continuously increasing. These features make it easy for
PhoLoc to detect active phone calls in vehicles and their
associated frequency channels. Second, thanks to the advances
in software-defined radio (SDR) technologies, the spectrum
monitoring of multiple channels can be achieved in a rapid
manner. As PhoLoc only needs a small amount of phone
signal data for localization (e.g., less than 2 seconds for signal
collection in our experiments), there is ample time for PhoLoc
to monitor the spectrum of all uplink cellular channels when
a vehicle is driving toward PhoLoc. This feature makes it
possible for PhoLoc to localize multiple phones on different
frequency bands inside a vehicle.
• FFT. This module converts the phone signal from the time

domain to the frequency domain. PhoLoc uses 30.72 MHz
sampling rate and 2048 FFT points for this module. We
emphasize that PhoLoc does not have timing/frequency es-
timation and compensation before the FFT operations.
• Phone signal extraction. A phone may use one or more

resource blocks for its data transmission when making a
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Fig. 7: The schematic diagram of our signal acquisition
scheme for PhoLoc.

voice call. When a phone uses multiple resource blocks for
transmission, its wideband signal obscures the phase difference
over PhoLoc’s antennas. Hence, we select a subset of strong
adjacent subcarriers for signal phase difference estimation.
Denote ymik as the FFT results, where m is antenna index, i
is data sample index, and k is subcarrier index. Denote Ri as
the subset of subcarriers selected for phase estimation. Then,
we let

Ri =
{
k : |k − kmax| < NRB/2, |ymik| > ηymax

}
, (7)

where NRB is the number of subcarriers in a resource block
(NRB = 12 in 4G LTE); kmax and ymax are the index and
amplitude of the strongest subcarrier, respectively; η is an
empirically-selected threshold (η = 0.3 in our experiments).

After selecting the subset of subcarriers, we construct the
signal vector as follows:

s⃗i = [s1i, s2i, · · · , sMi], (8)

where smi =
∑

k∈Ri
ymik

|
∑

k∈Ri
ymik| . The rationale behind the normal-

ization operation is that the signal phase carries the informa-
tion of interest while the signal amplitude does not.

The corresponding frequency of s⃗i can be approximately
written as:

fi = fc +

∑
k∈Ri

k

|Ri|
fs
Nfft

, (9)

where | · | is the cardinality of a set, fc is the center frequency,
fs is signal sampling rate, and Nfft is FFT size. In PhoLoc,
fs = 30.72 MHz and Nfft = 2048.

With signal vector s⃗i, its frequency fi, and its timestamp
ti, we reformulate the localization problem in Equation (4) as
follows:

[x̂∗
0, ŷ

∗
0 , v̂

∗] = arg max
x̂0,ŷ0,v̂

Ns∑
i=0

∣∣∣s⃗i⃗bHi ∣∣∣ , (10)

where the element of steering vector b⃗i = [b1i, b2i, · · · , bMi]
is rewritten as:

bmi = e−j
2πfi

c

√
(x̂0+v̂(ti−t0)−am)2+ŷ2

0 . (11)

For the operations in Fig. 7, we have the following two
remarks.

Remarks. We have two remarks for the above signal
acquisition for phone localization. First, without frequency
and timing offset compensation before FFT, the estimated
frequency-domain symbols (the output of FFT in Fig. 7)
will not follow the classic wireless communication model of
y = hx+n, where y is received signal, h is channel coefficient,
and x is the transmission signal. Neither can they represent the
real channels. Nevertheless, the phase difference of frequency-

domain signals (s⃗i) is an approximation of their channels’
phase difference. Second, as shown in Fig. 7, PhoLoc is
different from a typical multi-antenna receiver. It does not
have frame detection, frequency/timing estimation and com-
pensation, and channel estimation. Removal of these signal
processing blocks significantly simplifies the implementation
of PhoLoc.

C. Joint Optimization for Lidar and Radio Receiver

Using Equation (6) to estimate (∆x,∆y) faces two chal-
lenges. First, radio receiver and lidar sensor have very different
data sample rates. Per 3GPP, the VoIP packet interval is up to
40 ms, yielding a data sample rate of 25 Hz. If lidar measures
the distance at VoIP packet rate, the measurement error could
be as large as 1 m when vehicle is driving at 25 m/s. Therefore,
the measurement data from radio receiver and lidar sensor
should be synchronized for phone localization. Second, per
Equation (6a), if v is not a constant, a cumulative error will be
generated for the estimate of ∆x. To minimize the cumulative
error, we use the near-field localization algorithm to estimate
the phone location at time ts instead of time t0. Doing so will
not only resolve the low packet rate issue but also reduce the
cumulative error from the inaccurate speed estimation.

Mathematically, we define (xp, yp) as the phone’s coordi-
nate at the moment ts (i.e., the vehicle’s front end is just
detected by lidar). Per Equation (6), we have ∆x = −xp and
∆y = yp − ys. Then, based on Equation (11), we rewrite the
elements of steering vector b⃗i = [b1i, b2i, · · · , bMi] as follows:

bmi = e−j
2πfi

c

√
(−∆x̂+v̂(ti−ts)−am)2+(∆ŷ+ys)2 , (12)

where ∆x, ∆y, and ys are illustrated in Fig. 1.
Finally, the phone localization problem can be expressed as:

[∆x̂∗,∆ŷ∗, v̂∗] = arg max
∆x̂,∆ŷ,v̂

∑
i

∣∣∣s⃗i⃗bHi ∣∣∣ , (13)

where s⃗i is given in Equation (8) and b⃗i is given in Equa-
tion (12).

To solve Equation (13), there are three variables that need
to be searched. For most personal vehicles (Sedan and SUV),
their length is less than 5 m and their width is less than 2 m.
Therefore, we empirically set the search range of ∆x̂ to [0, 5]
and the search range of ∆ŷ to [−0.5, 2.5]. A question to ask is
what is the range of v̂. In practice, the speed of vehicles may
be very different at the same location (e.g., from 20 mph to
45 mph). To reduce the search space, we leverage the data from
lidar. Denote τ as the time duration of vehicle passing the lidar.
Since the average length of personal vehicles is 4.6 m, we set a
reference speed as vref = 4.6/τ . Then, we empirically set the
search range of v̂ to [0.7vref , 1.3vref ]. As the search problem
in Equation (13) is naturally suitable for parallel computing,
we use exhaustive search to pursue its optimal solution in
our experiments. By using 8 threads on an i7-10700 CPU, it
takes less than 2 seconds to find the optimal solution in our
experiments.
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Fig. 8: PhoLoc’s decision tree of detecting the violation of
phone call.
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Fig. 9: Bluetooth traffic intensity and relative signal power in
different modes.

Denote c∗ as the optimal normalized correlation value.
Then, it can be written as:

c∗ =
1

M(Ns + 1)

[
Ns∑
i=0

∣∣∣s⃗i⃗bHi ∣∣∣
]
∆x̂=∆x̂∗,∆ŷ=∆ŷ∗,v̂=v̂∗

, (14)

where M is the number of antennas and Ns+1 is the number
of data samples.

D. Put it All Together

Fig. 8 depicts the overall diagram of PhoLoc to detect the
violation of driver’s phone call. Some steps are described as
follows.

Bluetooth Hand-Free Detection. Bluetooth-based hand-
free phone call while driving is permitted in some countries
and areas. Fortunately, hand-free phone calls can be easily
detected by the roadside infrastructure, thanks to the different
frequency bands of cellular and Bluetooth signals. Fig. 9
shows the Bluetooth signals collected by a roadside radio
receiver (5 m distance) from a Toyota vehicle. It can be
seen that the traffic intensity is significantly different when
vehicle Bluetooth is in different modes. It can also be seen
that the Bluetooth power decays rapidly over distance. These
observations indicate that the use of Bluetooth for hand-
free phone call can be reliably detected through monitoring
Bluetooth’s traffic intensity and frequency.

Decision Making. After computing the optimal values for
Equation (13) and Equation (14), PhoLoc detects the violation
of driver’s phone call as follows:

Lidar sensor
& USRP N310

Lidar sensor
& USRP N310

Fig. 10: Photos of PhoLoc with lifted antennas (left) and on-
ground antennas (right).

D =

{
violation of phone call if ∆x∗ ≥ xth, ∆y∗ ≤ yth, c

∗ ≥ cth,
no violation otherwise,

(15)
where xth, yth, and cth are the thresholds used to make
the decision. Threshold cth can be used to balance the false
positive and negative rates of PhoLoc. In our experiments,
we empirically set cth = 0.61. For xth and yth, PhoLoc
does not simply set them to fixed values. Instead, it first
estimates the vehicle length by Lveh = v̂∗τ , where τ is the
time duration of vehicle being detected by lidar sensor. Based
on the vehicle length, PhoLoc empirically sets their values
as follows: (xth, yth) = (2.70, 0.93) if Lveh ≤ 4.9 m and
(xth, yth) = (2.80, 0.96) otherwise. Note that PhoLoc targets
the detection for personal vehicles only (e.g., sedan and SUV).
More sophisticated methods can be exploited to set values for
those three thresholds.

V. EXPERIMENTAL EVALUATION

A. Implementation

Fig. 10 shows our prototype of PhoLoc, which was built
using a USRP N310, a lidar, a PC, and four LTE antennas.

Radio Device. We have built a prototype of PhoLoc’s radio
receiver using USRP N310 device, which has 4 channels
with frequency ranging from 10 MHz to 6 GHz and supports
100 MHz instantaneous bandwidth. The USRP device is
connected with a Dell XPS desktop (i7-10700 CPU, 16 G
RAM) via 10 Gigabit SFP+ Ethernet. Four low-cost LTE
antennas with 8 ft cables are installed on USRP N310 for
cellular signal reception.

Lidar Sensor. We use MakerFocus TFmini-s module ($43
on Amazon [29]) as PhoLoc’s lidar sensor to measure the
distance between itself and a vehicle. Per its manual, this
module offers a 0.1 m–12 m measurement range with 1000 Hz
measurement frequency. Its distance resolution is 1 cm, and its
ranging accuracy is 6 cm or 1% of its measurement distance.
Our lab tests show that the max measurement frequency is
876 Hz. The lidar sensor is connected with the same Dell
computer via USB interface, and their communication protocol
is UART.

Software. We implement the software of PhoLoc using
GNU Radio Out-of-Tree (OOT) module [30]. The signal pro-
cessing blocks in Fig. 7 was implemented in C++. Each block
in Fig. 7 was implemented in a separate thread for parallel
computing to realize real-time computation. The distance data
acquired from the lidar sensor is sent to GNU Radio [31] for
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Fig. 11: Phone caller is on different seats.

data fusion. All radio and lidar data samples are timestamped
using the radio sampling rate (30.72 MHz).

Experimental Setup. As shown in Fig. 10, two antenna
configurations are considered in our experiments: i) antennas
are fixed at 3.5 ft height, and ii) antennas are placed on the
ground. Three persons (two drivers and one passenger) were
involved in our experiments. The driver or a passenger held
a T-Mobile phone for voice calls (via VoLTE) by placing the
phone at three different spots: left ear, right ear, and in front of
the mouth, as shown in Fig. 11. Another T-Mobile phone was
also placed inside the vehicle to play online music. It served
as a potential interference source, generating bursty data traffic
other than VoIP traffic. We note that we did not intentionally
turn off other data traffic generated by these two phones from
their other apps. During the tests, vehicle windows remain
closed. Throughout our experiments, we used two vehicles
for testing: Toyota RAV4 and Toyota Camry. PhoLoc does not
have prior knowledge of vehicles when detecting the violation
of phone calls.

B. In-Lab Validation

Before we conduct on-road tests, we first validate the pro-
posed near-field localization scheme in lab. We place PhoLoc
and a phone on a laboratory floor. PhoLoc has four antennas
and the antenna spacing is 1 m. The antenna coordinates are
(-1.5, 0), (-0.5, 0), (0.5, 0), and (1.5, 0). We move a T-Mobile
phone, which is on an active voice call, from (-2.5, 0) to (2.5,0)
with a step size of 5 cm, as illustrated in Fig. 12. A total of
101 data samples are collected. Based on the collected data, we
use the formulation in Equation (10) to search for the starting
position of the phone (i.e., x0 and y0).

Fig. 13 shows the inverse heatmap of search results. The
estimated start location is (-2.520, 0.995). This means that the
estimated error of x0 is 2 cm and the estimated error of y0
is 0.5 cm. Fig. 13 also shows the normalized coordination
along the x and y axes. It can be seen that the correlation
peak is evident along both x and y axes. The results reveal the
robustness of the proposed near-field localization scheme.

C. A Case Study on Road

We deployed PhoLoc on the roadside as shown in Fig. 10.
The four antennas were lifted to 3.5 ft (1.07 m), and the
antenna spacing was 5 ft (1.524 m). The lidar sensor was

x

y

USRP N310

Start position
(-2.5, 1)

Stop at
(2.5, 1)

(a) Setup.

USRP N310

cellphone 

(b) A photo of experimental setup.

Fig. 12: Experimental setup for in-lab validation.
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Fig. 13: Experimental results of finding the starting location
of phone. [Left]: Inverse correlation heatmap generated by
PhoLoc. [Right]: Normalized correlation along the x and
y axes.

Fig. 14: Lidar’s distance output (left), signal sample interval
(middle), signal frequency (right).

placed in the exact middle of four antennas, facing to the
road. A person drove a vehicle (Toyota RAV4) on the road
from the right to the left. The driver was on a phone call, and
his cellphone used T-Mobile 4G service. He held his cellphone
on his left ear, without Bluetooth for a hand-free connection.
The vehicle’s speedometer reads 20 mph.

Lidar Measurement. Fig. 14 (left) shows the lidar’s data.
PhoLoc reads the lidar’s measurement once per millisec-
ond. The lidar sensor detected the vehicle for a duration
of τ = 0.47 s. Hence, the vehicle’s speed is estimated to
4.6/0.47 = 9.78 m/s, where 4.6 is the average length of all
personal vehicles on market. Based on the estimated speed,
we set the search range of v̂ to [0.70× 9.78, 1.3× 9.78], with
a step size of 0.02 m/s. The optimal value turns out to be
9.47 m/s, which is very close to the estimated value. Then,
let us zoom in the distance measured by lidar on Fig. 14
(left). It can be seen that the measured distance varies from
2.8 m to 3.0 m. To reduce the measurement error, we exclude
the measurements on the two sides and take average of the
remaining measurements. The result is used as ys, which is
2.86 m for this case.
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Fig. 15: Collected signal samples from radio receiver.

Signal Interval and Frequency. Fig. 14 (middle) shows the
signal intervals of phone’s transmissions measured by PhoLoc.
It can be seen that, for most of time, the signal time interval
is 40 ms. This is consistent with the VoIP standard. For this
case, signal samples of 1.49 s time duration were used by
PhoLoc to estimate the phone location, corresponding to 14 m
moving distance of the vehicle. The right figure in Fig. 14
plots the frequency of phone signals. It is centered around
1725 MHz, spanning over 20 MHz. It can be seen that the
transmission frequency of phone’s packets changes rapidly
over time. This is because the transmission frequency of a
phone is dynamically scheduled by its associated base station.

Signal Amplitude and Phase. Fig. 15a shows the signal
amplitude ratio of the receiver’s four antennas. Fig. 15b shows
their phase difference. It can be seen that the signal amplitudes
are very dynamic. We normalize the signal amplitudes so the
phase of each signal sample carries the same weights. While
the phase looks noisy, it actually bears some patterns caused
by the movement of vehicle. The inherent pattern plays a key
role in the inference of phone location.

Correlation Heatmap. Based on the collected data from
radio and lidar, PhoLoc did a brutal-force search to find the
optimal solution to Equation (13). The resultant optimal values
are ∆x̂∗ = 2.09 m, ∆ŷ∗ = 0.46 m, v̂∗ = 9.48 m/s, and
c∗ = 0.7. Fig. 16a shows the generated inverse heatmap of
correlation from PhoLoc, where dark pixels represent high
correlation while light pixels represent low correlation. The
inverse heatmap clearly manifests its peak, which is concen-
trated in a small area.

Decision and Estimation Errors. Based on the optimized
vehicle speed, the vehicle length is estimated to be Lveh =
v̂∗τ = 9.48 × 0.47 = 4.45 m, where τ is the time duration
of vehicle being detected by lidar. Since Lveh ≤ 4.9, we
let (xb, yb) = (2.7, 0.93) based on our predefined criteria.
Then, per Equation (15), the phone location in this case will
be classified to driver seat. Our manual measurements show
that ∆x = 2.25 m and ∆y = 0.36 m. While they are not very
accurate, we use them as the ground truth. Then, the errors of
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Fig. 16: Inverse correlation heatmap generated by PhoLoc
when its antennas are of different heights.

PhoLoc is Ex = 16 cm and Ey = 10 cm in this case.
Impact of Antenna Height. Previously we showed that

PhoLoc is not sensitive to antenna height via simulation. We
now test this hypothesis using experiments. We repeated the
above case study but placing antennas on ground as shown
in Fig. 10. This setup brings about 1.5 m error for antenna
height z in the search of phone’s location. Fig. 16b shows the
heatmap generated by PhoLoc. Comparing the two figures in
Fig. 16, it can be seen that the large error of antenna height
does degrade PhoLoc’s performance. Therefore, in the rest of
our experiments, we use the experimental setup where the four
antennas are fixed to 3.5 ft height.

D. Impact of Antenna Spacing

We repeated the experiment described in the above case
study when PhoLoc has different antenna spacings: 2 ft, 3 ft,
4 ft, and 5 ft. For each case, we conducted 15 tests. The driver
is the same, and the vehicle is the same. The driver placed his
phone on his left ear. The vehicle speed is around 20 mph.
Fig. 17 shows inverse heatmap examples when PhoLoc has
different antenna spacings. Fig. 18 shows the measurement
results for the first five tests in each case. It is evident
that PhoLoc performs poorly when the antenna spacing is
small. Increasing the antenna spacing tends to improve the
performance of PhoLoc. Of the 15 tests, the standard deviation
of (∆x,∆y) is (0.11, 0.72) in the 2 ft spacing case, (0.10,
0.16) in the 3 ft spacing case, (0.12, 0.10) in the 4 ft spacing
case, and (0.06, 0.08) in the 5 ft spacing case.

A question to ask is if a larger antenna spacing is always
better. Our observation is no. A larger antenna spacing requires
a vehicle to maintain a constant speed in a longer distance.
In addition, the vehicle’s trajectory should be in stricter
parallel with antenna array. That means that PhoLoc with a
larger antenna spacing is more sensitive to vehicle’s speed
change and direction error. In addition, it will require more
spacing for deployment. Based on the above considerations,
we recommend that PhoLoc use 5 ft as its antenna spacing.

E. Impact of Vehicle Speed

We repeated the above tests under different vehicle speeds:
10 mph (4.5 m/s), 15 mph (6.7 m/s), 20 mph (8.9 m/s), and
30 mph (13.4 m/s). Unfortunately, we were not allowed to test
at a higher speed due to the speed limit. We conducted 20 tests
for each case. In our tests, the antenna spacing was 5 ft and
the phone was on driver’s left ear.
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(c) 4 ft antenna spacing.
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(d) 5 ft antenna spacing.

Fig. 17: Inverse correlation heatmap generated by PhoLoc
when it uses different antenna spacings.
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Fig. 18: The estimated phone location when PhoLoc uses
different antenna spacings.

Fig. 19 shows an example of inverse heatmap for each case.
Fig. 20 shows the results of first five tests in each case. Of all
the tests, the standard deviation of (∆x,∆y) is (0.24, 0.24)
in the 10 mph case, (0.12, 0.25) in the 15 mph case, (0.12,
0.13) in the 20 mph case, and (0.07, 0.14) in the 30 mph case.
Two observations could be made based on the experimental
results: i) PhoLoc performs well at all tested vehicle speeds;
and ii) a high vehicle speed tends to offer a better performance.
The second observation can be attributed to the fact that, in
practice, vehicle speed is more stable at a higher speed. That
is, a/v decreases as v increases, where v is vehicle speed and
a is vehicle acceleration.

F. Impact of Driver’s Phone-Holding Style

In this study, we repeat the above experiments when the
driver is on a voice phone call. We consider three cases: i)
driver holds phone on his left ear; ii) driver holds phone in
front of his mouth; and iii) driver holds phone on his right
ear (see Fig. 11). For each case, we conducted 20 tests. For
these tests, the antenna spacing is 5 ft, and the vehicle speed
is about 20 mph.

Fig. 21 shows the results of the first 10 tests in each case. Of
all the tests, the standard deviation of (∆x,∆y) is (0.09,0.17)
when driver holds phone on his left ear, (0.13,0.10) when
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(a) 10 mph speed.
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(b) 15 mph speed.
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(c) 20 mph speed.
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(d) 30 mph speed.

Fig. 19: Inverse correlation heatmap generated by PhoLoc
when the vehicle drives at different speeds.
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Fig. 20: PhoLoc’s results when vehicle is driving at different
speeds.

driver holds phone in front of his mouth, and (0.49,0.41)
when driver holds phone on his right ear. Apparently, PhoLoc
has the best performance when phone is in front of mouth,
an acceptable performance when phone is on left ear, and a
poor performance when phone is on right ear. This is because
PhoLoc has a LoS path to reach phone in the first two cases
while it does not have LoS path to reach phone in the third
case. When a driver holds phone on his ear, his head blocks
the signal, leading to a poor performance of PhoLoc.
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Fig. 21: PhoLoc’s results when phone is held at different
positions.
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(a) Driver seat.
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(b) Passenger seat.
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(c) Back-left seat.
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(d) Back-right seat.

Fig. 22: Inverse correlation heatmap generated by PhoLoc
when the caller is on different seats and the caller holds phone
on his left ear.
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Fig. 23: PhoLoc’s results when the phone call was made by a
caller on different seats in a vehicle.

G. Impact of Phone Location in Vehicle

We conducted tests to evaluate the performance of PhoLoc
when the caller is on different seats in a vehicle. Specifically,
we considered four spots for the caller: driver seat, passenger
seat, back-left seat, and back-right seat. For each case, we did
10 tests for caller’s left ear, 10 tests for caller’s mouth, and
10 tests for caller’s right ear. The experiment setup is shown
in Fig. 11. Two people were in the vehicle at the same time
for these tests.

Similar to the observations in §V-F, PhoLoc performs well
when phone is on caller’s left ear and in front of caller’s mouth,
but it does not perform well when phone is on right ear. The
reason is the same, i.e., when phone is on right ear, caller’s
head blocks the signal. A simple treatment to this issue is to
deploy two PhoLoc devices on roadside: one is on vehicle’s
left side and the other is on vehicle’s right side. Therefore, we
only present the results when phone is on caller’s left ear and
in front of caller’s mouth.

Fig. 22 shows inverse correlation heatmap from the four

TABLE I: The overall performance of PhoLoc.

Driver’s phone call
violation detection

False positive rate (4/96 =) 4.2%
False negative rate (8/58 =) 13.8%

Phone location
classification

Invalid data ratio (23/103 =) 22.3%
Classification accuracy (69/80 =) 86.3%

cases when the phone is on caller’s left ear. Fig. 23 presents
the results of the four cases when phone is either on caller’s
left ear or in front of caller’s mouth. Overall, the standard
deviation of (∆x,∆y) is (0.15,0.18) when caller is on driver’s
seat, (0.21,0.21) when caller is on passenger seat, (0.11,0.19)
when caller is on back-left seat, and (0.28,0.24) when caller
is on back-right seat.

H. Extensive Experimental Results

Driver’s Phone Call Violation Detection. Recall that our
objective is to detect vehicle driver’s phone call violation. In
total, we did 58 tests for the event that a vehicle driver was
on a phone call. PhoLoc made an incorrect decision for 8 of
them, most of which correspond to the case of driver holding
the phone on his right ear. Therefore, the false negative rate
is (8/58=) 13.8%. On the other hand, we did 96 tests in total
for the event that the phone call is made by a passenger (on
passenger seat or back seats) rather than the driver. PhoLoc
made an incorrect decision for 4 tests. Therefore, the false
positive rate is (4/96) = 4.2%. Additionally, we note that,
when a passenger holds phone on his right ear, the resulting
correlation value in Equation (14) is typically less than the
threshold (cb = 0.61) and, therefore, PhoLoc would not make
an incorrect decision for those cases. Table I summarizes the
overall results of PhoLoc.

Phone/Caller In-Vehicle Location Classification. A natu-
ral extension of PhoLoc is to classify the location of an active
phone caller in a vehicle: driver seat, passenger seat, back-
left seat, or back-right seat. For this problem, we assume that
there are two PhoLoc devices deployed on road’s two sides.
We use the above measurement results to infer the accuracy of
position detection. Specifically, we exclude the data from the
case where driver or passenger holds phone on his right ear,
as this case can be handled by the other PhoLoc device. Data
analysis shows that, among a total of 103 tests, 23 tests yields a
correlation less than cb (i.e., 0.61). Therefore, the invalid data
rate is (23/103=) 22.3%. Among those valid measurements,
the correct position was found by PhoLoc in 69 tests. So the
classification accuracy is (69/80=) 86.3%. Table I summarizes
our overall results.

VI. LIMITATIONS AND DISCUSSIONS

Computation-Efficient Algorithms. To find the relative
location of a mobile phone, we formulated an optimization
problem and employed brute-force search for the pursuit of
its optimal solution. While brute-force search can be done in
a few seconds, efficient solving algorithms are desirable. A
possible approach is to disentangle the coupling of ∆x, ∆y,
and v, so that the optimal values of these three variables can
be found through a 3-dimensional FFT operation (following
the idea of Omega-K algorithm [32]).
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Other Violations of Phone Use. Driver’s violation of
phone use includes making phone call, sending text message,
browsing website, and others. While PhoLoc was designed and
evaluated for the detection of driver’s phone call violation, it
can also be used to detect other phone use violations. For
example, the intermittent signal transmission of a phone will
last for seconds when sending a single text message. The
phone signals can be collected and processed in the same way
as we presented to classify the phone location in a vehicle
and detect the driver’s violation of phone use. In our future
work, we will use the radio signals emitted by a phone to: i)
classify its user’s activities (e.g., texting, web browsing, and
listening to music), and ii) estimate its relative location in a
vehicle. Based on the classification and estimation results, we
will design a learning-based approach to determine if there is
a violation of phone use in a vehicle.

Vehicle-Dense Scenarios. In the scenarios where a road
has dense vehicles, the LoS path between PhoLoc and a
target vehicle might be blocked by another vehicle. In this
case, a single PhoLoc detector may not work well due to the
inaccurate distance measurement of its lidar sensor. Given the
short time duration of lidar’s effective measurement (less than
1 s) for a vehicle, this problem can be alleviated by deploying
multiple PhoLoc detectors on both sides of a road. We
anticipate that increasing the number of PhoLoc detectors on
roadsides will significantly increase the accuracy of detecting
a vehicle driver’s violation of phone use.

Error Sources. The primary sources of localization error
in our system can be attributed to several factors: (i) Inaccu-
rate Radio Frequency: The frequency utilized by PhoLoc to
estimate radio signal wavelength is an average from multiple
subcarriers. The carrier frequency of radio signal is an estima-
tion and not accurate. (ii) Variation in Vehicle Speed: During
the time period of measurement, the speed of a vehicle may
not be constant. The variation of vehicle speed may contribute
to the localization error of PhoLoc. (iii) Noise and Other
Imperfections: PhoLoc implemented the proposed localization
approach on an SDR testbed, which is not optimized for
out-of-band interference and noise suppression. The noise
and other imperfections of the SDR platform contribute to
the localization error of PhoLoc. (iv) Lidar Measurement
Error: Variations in lidar measurements of ys due to vehicle
movement, along with the averaging of ys from continuous
measurements, is another source of PhoLoc’s localization
error.

VII. RELATED WORK

We review the related work in two areas: distracted driving
detection and wireless localization.

Camera-Based Distracted Driving Detection. Camera,
together with AI-based computer vision techniques, has been
widely studied to monitor vehicle driver’s status and detect
his/her violation of phone use [33], [4], [34], [35], [36], [37],
[38], [7], [39]. However, most of these works require the
camera to be installed inside a vehicle. Therefore, the proposed
camera-based detection systems are mainly limited to private
use (e.g., commercial vehicles). Recently, deploying high-
resolution cameras on road side to detect distracted drivers

has emerged as a new approach to enforce driving-safety-
related laws [2]. Some countries such as UK and Austria have
experimented this approach and demonstrated its feasibility
in practice [2]. Despite the recent advances in computer
vision, camera-based approaches may not work well in some
scenarios (e.g., darkness and bad weather condition) and may
raise privacy concerns.

Phone Monitoring While Driving. In addition to cameras,
other sensors (e.g., smartphone’s accelerometers and gyro-
scopes) have been studied to limit drivers’ phone use in unsafe
conditions and improve driving safety [40], [41], [6], [5].
PhoLoc differs and complements the results along this research
line. In particular, [42] presents a roadside radio device that
detects a vehicle driver’s phone use by analyzing the overheard
radio signals from a phone. However, it is impossible for this
approach to figure out if the phone call is made by a driver
or someone else in vehicle.

WiFi Localization. Another research line closely related
to our work is wireless localization, which has generated
many results in the past two decades. Particularly, wireless
localization has been intensively studied in 802.11 networks
to localize a WiFi device [14], [15], [16], [17], [18], [19],
[43]. Most of these works rely on the acquisition of CSI to
estimate the AoA (angle-of-arrival) and/or ToF (time-of-flight)
of the signals from a target device. The estimated AoA and/or
ToF information is then used to infer the location of the target
device. These approaches, however, only work for a stationary
or semi-stationary target device. They cannot apply to our
localization problem for two additional reasons: i) PhoLoc
does not have CSI; and ii) PhoLoc has only one radio receiver.

Cellular Localization. Phone localization has been studied
and developed as a function of cellular networks to enable
location-based applications and public safety services. Fea-
tures used for phone localization in cellular networks include
cell proximity, signal strength, AoA, time of arrival (TOA),
time difference of arrival (TDOA) [44]. Recently, machine
learning has been applied to phone localization in cellular
networks and achieved sub-meter accuracy in some test sce-
narios [45], [46], [47], [48]. However, given the nature of its
large scale, cellular localization cannot achieve the required
accuracy of PhoLoc, let alone estimating phone’s relative
location in a vehicle.

Near-Field Localization. Research on near-field source lo-
calization has been around for many years, at least dating back
to 1990s [49]. However, existing works focus on localizing
stationary device and remain in theoretical study [50], [51],
[52]. In contrast, PhoLoc considers a moving device and
focuses on its practical realization.

VIII. CONCLUSION

This paper focuses on the design of a roadside sensing
device for transportation infrastructure to improve driving
safety by taking advantage of recent advances in wireless
technologies. It presented a roadside device called PhoLoc to
detect the violation of driver’s phone use in personal vehicles.
PhoLoc is made of two distinct sensors: radio and lidar. It
jointly processes the multi-modal data from the two sensors to
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estimate the relative phone location in a vehicle. The novelty of
PhoLoc is a near-field localization scheme, which is capable
of estimating the location of a mobile device at a specific
time moment by overhearing its radio signals. We have built a
prototype of PhoLoc and evaluated its performance in realistic
scenarios. Experimental results show that PhoLoc achieves
4.2% false positive rate and 13.8% false negative rate in the
detection of driver’s phone call violation.
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