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Abstract
Resource-constrained system-on-chips (SoCs) are increasingly het-
erogeneous with specialized accelerators for various tasks. Accel-
eration taxes due to control and data movement, however, dimin-
ish end-to-end speedups from hardware acceleration. Meanwhile,
emerging workloads are increasingly task-diverse with several,
potentially shared, fine-grained acceleration candidates. This moti-
vates a paradigm of parallel and disaggregated acceleration. Com-
pared to a monolithic accelerator, disaggregation provides higher
flexibility, reuse, and utilization, but at the cost of higher control
and data acceleration taxes.

We propose a novel SoC architecture, Mozart, that enables effi-
cient accelerator disaggregation by leveraging shared-memory to
tame control and data acceleration taxes. To address the control
tax, Mozart includes a lightweight, modular, and general accel-
erator synchronization interface (ASI). ASI eliminates the typical
CPU-centric accelerator control in favor of a decentralized, uniform
synchronization interface through shared-memory. This enables
accelerators to directly and transparently synchronize with each
other (or CPUs) using the same shared-memory interface as CPUs.
To address the data tax, Mozart leverages the Spandex-FCS het-
erogeneous coherence protocol, which supports decentralized data
movement and per-word coherence specialization. We demonstrate
the first RTL implementation of Spandex-FCS and the first evalu-
ation of its benefits for a heterogeneous SoC with fixed-function
accelerators, running real-world applications with Linux. Mozart
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simultaneously enables, for the first time, (1) finer-grained acceler-
ation than previously possible, (2) programmable and transparent
composition of fine-grained, disaggregated accelerators, (3) efficient
accelerator pipelining through shared-memory and decentraliza-
tion, and (4) a performance-competitive disaggregated alternative to
specialized monolithic accelerators. We demonstrate these capa-
bilities of Mozart with a comprehensive one-of-a-kind evaluation
of more than 70 hardware configurations prototyped on an FPGA
employing various accelerators, running real-world applications
on Linux, and a scalability analysis with up to 15 accelerators. We
also present an analytical performance model to understand and
explore system design choices and to validate the results.
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1 Introduction
With the end of Dennard Scaling, hardware specialization has
emerged as a key technique to improve performance. It is com-
mon to evaluate the benefit of a standalone hardware accelerator
and then use simple models like Amdahl’s Law to project end-to-
end application performance benefits from acceleration. However,
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when integrating such accelerators into a system-on-chip (SoC),
the end-to-end application performance benefits can diminish due
to system costs that are often not captured in standalone evalua-
tions. These costs include accelerator invocations, data movement
to and from the accelerator, pre- and post-processing of data for
accelerators, etc.

We refer to the above costs as the acceleration tax: the additional
cost paid by an application to offload a task to an accelerator. Prior
work has introduced taxes that impact end-to-end performance in
other domains like datacenter tax [41] and AI tax [64]. Our work in-
troduces acceleration taxes in a similar vein to highlight the impact
of these costs on end-to-end hardware accelerated performance.

Along with the rise in hardware specialization, emerging work-
loads are also showing high task diversity, covering multiple do-
mains [30, 38, 42, 43, 83]. These workloads do not exhibit a single
dominant task that can benefit from acceleration; instead, end-
to-end performance benefit requires accelerating several, often
fine-grained, tasks. For instance, Gonzalez et al. [30] advocate for
a sea of (fine-grained) accelerators for key datacenter and system
tax operations. Huzaifa et al. [38] show that a baseline extended
reality (XR) system consists of 27 high-level tasks, each of which
has several finer-grained kernels common across the high-level
tasks that could be specialized. Karageorgos et al. [42] propose a
brain-computer interface (BCI) system that includes processing
units for small kernels frequently used in BCI pipelines. Recent
works [43, 83] also highlight the importance of reusing multiple
accelerators across application domains.

Table 1 summarizes past work from diverse application domains
that can exploit multiple fine-grained accelerators for their con-
stituent tasks, each of which can be composed on-demand, reused
and shared among various tasks. This leads to a paradigm of parallel
and fine-grained disaggregated accelerators [23, 30, 43, 44, 54, 83],
analogous to the ideas of disaggregated compute, memory, storage,
and networking successfully deployed in other contexts [2, 24, 31,
49, 56, 68, 71]. Compared to using overly specialized monolithic
accelerators, disaggregation affords increased flexibility, reuse, and
utilization of the fine-grained accelerators. Unfortunately, while
monolithic accelerators achieve efficiency through custom hard-
ware interfaces and data paths to tightly integrate the constituent
fine-grained kernels [10, 51, 61], disaggregation can compromise
efficiency due to higher acceleration taxes.

This work seeks to leverage shared-memory to reduce the im-
pact of two acceleration taxes for an SoC: control taxes due to
bulky accelerator invocations, and data taxes due to additional data
movement.
Taming the Control Tax.We define the control tax as the over-
head to invoke the accelerator and ascertain its completion. Tra-
ditionally, accelerators are invoked by host CPUs through bulky
operating system (OS) calls such as ioctl [69]. The overhead of
such an invocation increases the overall accelerator execution time,
limiting the speedup from hardware acceleration (as also observed
by [7, 9, 48, 53]).

To reduce the control tax, we propose a lightweight Accelerator
Synchronization Interface (ASI) to synchronize with the CPU or
with other accelerators through shared-memory. We envision ASI
as a modular, general synchronization interface for accelerators
that eliminates the CPU-centric model of accelerator control, and
promotes accelerators as first-class system compute units. With ASI,

all units (accelerators or CPUs) have a uniform synchronization
interface mediated by shared-memory. Thus, we construct a view
of transparent acceleration where compute units are agnostic to
whether they synchronize with a CPU, a specialized monolithic
accelerator, or a sea of disaggregated accelerators (that synchronize
with each other).

To enable this vision, we design ASI as a modular shim that can
be seamlessly integrated with an accelerator, irrespective of its level
of programmability or specialization. We implement a lightweight
finite-state machine (with negligible area overhead) that performs
shared-memory reads and writes for synchronization, with the
option of leveraging benefits from the provided cache coherence
protocols.
Taming the Data Tax. We define the data tax as the overhead to
move data to and from accelerators (relative to without accelerator
offload). Traditionally, data movement to and from accelerators was
achieved through explicit data copying between different address
spaces through DRAM. Recently there has been a significant mo-
mentum towards systems where CPUs and accelerators are part of
a common cache-coherent shared-memory address space, fostered
by various industry standards [5, 19, 28, 70, 75, 76]. Such a solu-
tion eliminates the need for expensive data copies and improves
programmability and efficiency through implicit data orchestration.

Despite the benefits of coherent shared-memory, a coherence
protocol such as MESI can incur significant overhead when used
in heterogeneous systems [3, 4, 72]. To reduce this overhead, we
leverage the Spandex protocol [4] with fine-grained coherence spe-
cialization (FCS) [3]. Spandex-FCS is a state-of-the-art modular and
extensible protocol that allows per-access specialization of coher-
ence to meet the diverse needs of a heterogeneous system. Prior to
this work, Spandex-FCS was evaluated only for systems with GPUs
(and CPUs) and only in architectural simulation. This work, for the
first time, provides an RTL-level implementation of Spandex-FCS
for a heterogeneous SoC with several fixed-function accelerators
and RISC-V CPUs — enabling validation of its claimed flexibility,
modularity, and performance. We specifically use Spandex-FCS to
enable efficient data forwarding directly to a consumer’s cache,
virtually hiding all read latency (which is on the critical path).
Mozart.We propose a novel SoC architecture called Mozart that
combines the benefits of ASI and Spandex-FCS to tame control and
data taxes. Mozart leverages the benefits of shared-memory to pro-
vide a programmable, transparent, and performant interface for ac-
celerator synchronization and communication. As a result, Mozart
simultaneously enables, for the first time, (1) finer-grained acceler-
ation than previously possible, (2) programmable and transparent
composition of fine-grained, disaggregated accelerators, (3) efficient
accelerator pipelining through shared-memory and decentraliza-
tion, and (4) a performance-competitive disaggregated alternative to
specialized monolithic accelerators.
Evaluation.We leverage the ESP heterogeneous SoC platform [55]
which provides multiple accelerator designs and RISC-V CPU inte-
gration in a modular tiled architecture, with the option to include
private (L2) caches within the tile and a last-level cache (LLC) shared
by all tiles. ESP also supports MESI-based cache coherence and Co-
herent DMA – an implementation in ESP optimized for accelerator
communication. ESP has been used in prior work for FPGA proto-
typing [26, 94] and tape-outs [17, 18, 40]. We prototype multiple
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Table 1: Opportunities for disaggregated fine-grained accelerators in different domains.
Extended Reality [38] Reuse of Cholesky, Jacobian, GEMM, Gauss-Newton within Visual Intertial Odometry (VIO); Reuse of Cholesky, Jacobian, Gauss-Newton between

VIO and Scene Reconstruction; FMADDs and Trascendentals across Audio and Hologram; FFT within Audio.
Earable Computing [13] Reuse of FFT, GEMM and convolution across multiple applications (e.g., FFT in TinySR, Ambisonic, and HRTF).

Hyperscale
Computing [30]

Reuse of common microservices and components of the “datacenter tax” [29, 41, 74] across datacenter workloads.
Recent work [30] introduces the concept of a "sea of accelerators" for big data workloads that leverage accelerator reuse and
chaining (although no chained implementations are proposed).

Database Management Ser-
vices (DBMS) [86]

SQL queries used in DBMS can be decomposed into fine-grained producer-consumer tasks (Col Select, Col Filter, Joiner, Sorter, etc.) and reused
across different query types.

Genomics [33] Genomic data processing tasks can be represented as Extended SQL queries, reusing DBMS primitives.
Machine Learning [93] Deep learning workloads contain matrix multiply (MM) layers of different sizes and can be reused across different layers and networks.
Wearables [79] Finger-gesture recognition, CNN-based image recognition and transportation context-detection, etc., comprise producer-consumer chains of

fine-grained tasks like FFT, convolution, dynamic time warp (DTW), and AES encryption.
Brain-Computer Inter-
faces (BCI) [42, 73]

Frequently used BCI pipelines like Seizure Detection can reuse common primitives such as FFT, discrete wavelet transform
(DWT) and support vector machine (SVM).

Medical Imaging [23] Denoise, Deblur, Registration, Segmentation, etc. reuse FInv, FSqrt, FDiv, and Polynomial-16 (Poly16).
Cross-domain [43, 83] Several kernels like FFT, logistic regression (LR) and MPEG-decode are used across different domains like “memory-enhance" and “video-sync".

configurations of Mozart (with a RISC-V core and multiple accelera-
tors integrated over a mesh-based network-on-chip (NoC)) capable
of running Linux and evaluated on an FPGA.

We consider over 70 distinct hardware configurations in ourwork
– 9 different accelerator combinations (including 3 fine-grained sin-
gle accelerator systems, 3 fine-grained multi-accelerator systems, 2
coarse-grained monolithic accelerator systems and a configurable
synthetic accelerator system with up to 15 accelerators), 3 accelera-
tor invocation strategies (baremetal, OS, and ASI), and 3 coherence
protocols (MESI, Coherent DMA, and Spandex-FCS). For the single-
accelerator systems and a synthetic multi-accelerator system, we
perform parameter sweeps to explore the design space of workloads
at different acceleration granularities. For the multi-accelerator sys-
tems, we evaluate accelerator chaining and pipelining where appli-
cable, and explore the design space of varying chain and pipeline
lengths (1 to 15) with the synthetic multi-accelerator system. Finally,
we study the performance gap between monolithic and disaggre-
gated accelerators with 4 multi-accelerator systems.

The accelerators we study include FFT, FIR, Viterbi, Sort, GeMM,
and a synthetic accelerator for design space exploration. The ap-
plications we map to the multi-accelerator systems include audio,
3D spatial audio decoder [38]; Mini-ERA, a workload from the au-
tonomous driving domain [39]; FCNN, a fully connected neural
network inspired by the architecture of Instant-NGP [58]; and a
synthetic workload for further design space exploration. Together,
our workloads represent a large diversity, including acceleration
tasks ranging from very fine to very coarse granularities.
Contributions. Our major contributions and findings are:
• Impact of Acceleration Taxes: We highlight the impact of
control and data acceleration taxes on end-to-end performance
in shared-memory SoCs. Specifically, we show that these taxes
significantly degrade and often eliminate the potential performance
benefits from fine-grained acceleration.
• Taming the Control Tax: We propose ASI, a lightweight, mod-
ular and general interface that replaces expensive CPU-centric
accelerator control with efficient shared-memory synchronization
between accelerators (and CPUs). This constructs a view of trans-
parent acceleration where compute units are agnostic to the type of
entity they synchronize with. ASI supports these capabilities with
a low area overhead of just 1%.
• Taming the Data Tax: We show that supplementing ASI with
Spandex-FCS to reduce the data tax is effective at further improv-
ing the performance of fine-grained acceleration. This work is the

first RTL-level implementation and evaluation of Spandex-FCS (or
Spandex). We evaluate an FPGA prototype with RISC-V CPUs and
multiple fixed-function accelerators in an SoC capable of running
multi-core Linux OS. Our implementation has a modest area over-
head over MESI and confirms the performance benefits of Spandex-
FCS in a complex heterogeneous system, previously shown only
in simulation for a CPU-GPU system without an OS. Further, qual-
itatively, we also found that the claimed extensibility of Spandex
did indeed allow us to bring up the system in a modular way with
incrementally increasing specializations.
• Mozart, a Novel SoC Architecture: Combining our accelera-
tion tax mitigation techniques, we propose Mozart that enables
performance benefits for finer-grained acceleration than previously
seen. Mozart provides new opportunities for accelerator-level paral-
lelism by chaining and pipelining fine-grained accelerators through
shared-memory, with no additional hardware modifications.
• Disaggregated, Fine-grained Acceleration: Mozart, for the
first time, demonstrates programmable and transparent composi-
tion (through shared-memory) of fine-grained, disaggregated ac-
celerators as a performance-competitive alternative to specialized
monolithic accelerators. Furthermore, the capabilities of Mozart
are comprehensively evaluated in complex settings: with multiple
fixed-function disaggregated accelerators, real-world applications
running with an OS, and state-of-the-art coherence protocols, all
realized on an FPGA with RTL implementations.
• Significant Results: Our evaluation provides several surprising
new quantitative results. For half of the more than 70 configurations
with single and multiple disaggregated accelerators (Figures 4 and
5), the baseline system with OS invocation of accelerators and MESI
coherence provides virtually no benefit or a degradation relative to
pure software. Mozart enables speedup of 1.8X to 49X in these cases
(relative to pure software). For audio, disaggregated accelerators
with the baseline system see a 1.8X slowdown relative to a mono-
lithic accelerator; Mozart improves the performance of both and
reduces the slowdown to a minor 1.08X (Figure 7). Our scalability
study shows Mozart’s performance benefits scale well with increas-
ing accelerator-level parallelism. For 15 disaggregated accelerators
(the maximum number of coherent accelerators supported by ESP),
the slowdown compared to a monolithic accelerator is just 1.1X.
• Analytical Performance Model: In addition to a comprehensive
evaluation on an FPGAwith a variety of accelerators andworkloads,
we also provide an analytic model for additional insight into our
empirical results.
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Overall, our work reveals a wide new space of designs for ac-
celeration with little area cost and familiar shared-memory pro-
grammability, aligned with the needs of emerging applications with
many diverse tasks. Our work has significant implications for het-
erogeneous SoC design, including implications for the system archi-
tecture, design-space exploration tools, schedulers, and compilers.

2 Taming the Control Tax
2.1 Accelerator Synchronization Interface (ASI)
2.1.1 Concept. Traditionally, offloading computation to an accel-
erator requires the CPU to invoke the accelerator, typically through
heavyweight OS calls treating the accelerator as a device. This cen-
tralizes and elevates the role of the CPU, treating it effectively as a
master controlling the accelerators.

ASI departs from the above attributes in two ways. First, we
promote decentralized control, where accelerators are first-class
entities empowered to synchronize with and trigger computation
directly on other accelerators, without the need for CPU mediation.
Second, similar to synchronization among CPU cores, we enable ac-
celerators to synchronize with each other andwith the CPU through
shared-memory. This provides a lightweight and uniform synchro-
nization mechanism where a synchronizing entity is agnostic to
whether the other participating entity is an accelerator or a core.

Figure 1a shows the high-level view of ASI. It is a generalized
modular shim interface that can be integrated with an accelera-
tor without modifications to the accelerator design, and can be
adapted to the synchronization needs of any application. While pro-
grammable coarse-grained accelerators such as GPUs are already
becoming increasingly like CPUs, our work targets and elevates
finer-grained, fixed-function and limited-programmable accelera-
tors to be first-class compute units. ASI enables these accelerators to
circumvent CPU centralization, and independently and efficiently
synchronize with other compute units through a common shared-
memory abstraction. Finally, performing software-based shared-
memory synchronization within a fixed-function accelerator (e.g.,
as in HSA [28]) would require full instruction pipelines and incur
relatively large area and power overheads; therefore, ASI supports
these synchronizations directly in hardware with minimal design
complexity.

2.1.2 Design. The applications studied in this work mostly exhibit
producer–consumer interactions (as is often the case for hetero-
geneous SoCs). Specifically, these are single producer, single con-
sumer interactions, where an accelerator (repeatedly) consumes
(loads) data stored by a prior producer, computes, and then produces
(stores) data for a subsequent consumer. We therefore focus our
proposed design towards supporting these interactions efficiently.

Figure 1b illustrates our lightweight ASI design. It consists of
two finite state machines (FSMs), one for each producer-consumer
interaction described above, labeled as input and output ASI FSMs.
Each FSM relies on two shared-memory flags (flag_0/1)1. The in-
put ASI FSM of an accelerator uses p_flag_0 to determine whether
its producer has new data to send, and p_flag_1 to inform the
producer that it is ready to receive new data. Similarly, the output

1While our design uses two flags, alternate designs with a single flag for single producer,
single consumer interactions are also possible.

ASI FSM of the accelerator synchronizes with its consumer using
c_flag_0 and c_flag_1. We follow the RISC-V weak memory or-
dering (RVWMO) model [65], and treat the loads and stores of
the flags as acquires and releases2. To enforce acquire ordering,
all subsequent accesses in the accelerator are implicitly stalled by
ASI until the required load value 1 for the acquire is returned. To
enforce release ordering, we ensure all prior accesses have been
performed in shared-memory before the release is attempted.

ASI can be extended to support other scenarios; e.g., multiple
producer-consumer. Figure 1c illustrates a modified input ASI FSM
to support multiple consumers, where only one consumer at a
time consumes an input from the producer. We adapt the two-
flag implementation by replacing the store to flag_0 with a read-
modify-write to resolve concurrent updates to the same flag from
multiple consumers. This is only one possible design. ASI can also
be implemented with primitives better suited for other use cases
like queues or barriers.

2.1.3 Implementation. We leverage the ESP platform [17, 55] to
implement the ASI design for a heterogeneous SoC. (Our design is
not limited to the ESP platform.) Accelerators in ESP follow a load-
store architecture with three steps: (i) inputs are read from memory
into the accelerator’s local scratchpad using a DMA interface, (ii)
the accelerator computes using the inputs and produces outputs
stored into its scratchpad, and (iii) the outputs in the scratchpad
are written to memory using the DMA interface. The use of the
DMA interface for memory accesses is independent of the cache
hierarchy and coherence protocol implemented in the system; e.g.,
even accelerators with MESI-coherent private L2 caches use the
DMA interface for single loads and stores.

To implement ASI in ESP, we similarly use the accelerator DMA
interfaces (originally for bulk reads and writes) to implement the
fine-grained acquire and release synchronization accesses, avoiding
the design complexity of dedicating a specialized load-store unit
for the ASI. Thus, the accelerator’s load DMA engine reads the
appropriate flag in shared-memory, which is tested by the ASI FSM.
The FSM proceeds to the next phase if the flag is set to 1; if not
set, the ASI continues testing. Similarly, the ASI FSM uses the store
DMA engine to set flags in shared-memory.

2.1.4 Software Interface. We reserve configuration registers in the
accelerator to configure the virtual addresses of the shared-memory
flags. ESP offers support for address translation with the DMA en-
gine, and we rely on the same support for ASI. Figure 2a illustrates
the initialization for a system with a single CPU and accelerator.
During application startup, the CPU configures the mapping of
shared-memory flags for the CPU and accelerator, where the latter
is done by configuring ASI registers with the addresses of the ap-
propriate flags. To create a producer-consumer chain, p_flag_0/1
for the consumer and c_flag_0/1 for the producer are mapped
to the same shared-memory flag. This is an infrequent configura-
tion required only at application startup or upon reconfiguration
of the producer-consumer chain, as opposed to CPU intervention
through OS calls for every accelerator invocation. Our implemen-
tation leverages the ESP API and device drivers for configuration;

2Technically, only the synchronization stores that set the value 1 have release semantics,
but we conservatively ignore this distinction.
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bind(self.p_flag_0 -> flag_20)
bind(self.p_flag_1 -> flag_21)
bind(self.c_flag_0 -> flag_00)
bind(self.c_flag_1 -> flag_01)

wait_for_consumer:
while (*self.c_flag_1 != 1) {}
*self.c_flag_1 = 0
// produce input here
*self.c_flag_0 = 1

wait_for_producer:
while (*self.p_flag_0 != 1) {}
*self.p_flag_0 = 0
// consume output here
*self.p_flag_1 = 1

(a) High-level view.
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init:
// binding flags for accel 1
bind(accel_1.prod_vld -> flag_00)
bind(accel_1.prod_rdy -> flag_01)
bind(accel_1.cons_vld -> flag_10)
bind(accel_1.cons_rdy -> flag_11)
// binding flags for accel 2
bind(accel_2.prod_vld -> flag_10)
bind(accel_2.prod_rdy -> flag_11)
bind(accel_2.cons_vld -> flag_20)
bind(accel_2.cons_rdy -> flag_21)
// binding flags for CPU
bind(self.prod_vld -> flag_20)
bind(self.prod_rdy -> flag_21)
bind(self.cons_vld -> flag_00)
bind(self.cons_rdy -> flag_01)

wait_for_consumer:
while (*self.cons_rdy != 1) {}
if (amo_swap(self.cons_rdy, 0) != 1):

goto wait_for_consumer
// produce input here
*self.cons_vld = 1

wait_for_producer:
while (*self.prod_vld != 1) {}
if (amo_swap(self.prod_vld, 0) != 1):

goto wait_for_producer
// consume output here
*self.prod_rdy = 1
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init:
// binding flags for accel
bind(accel.p_flag_0 -> flag_00)
bind(accel.p_flag_1 -> flag_01)
bind(accel.c_flag_0 -> flag_10)
bind(accel.c_flag_1 -> flag_11)
// binding flags for CPU
bind(self.p_flag_0 -> flag_20)
bind(self.p_flag_1 -> flag_21)
bind(self.c_flag_0 -> flag_00)
bind(self.c_flag_1 -> flag_01)

wait_for_consumer:
while (*self.c_flag_1 != 1) {}
*self.c_flag_1 = 0
// produce input here
*self.c_flag_0 = 1

wait_for_producer:
while (*self.p_flag_0 != 1) {}
*self.p_flag_0 = 0
// consume output here
*self.p_flag_1 = 1

(b) ASI Finite State Machine (FSM) logic.
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init:
// binding flags for accel 1
bind(accel_1.prod_vld -> flag_00)
bind(accel_1.prod_rdy -> flag_01)
bind(accel_1.cons_vld -> flag_10)
bind(accel_1.cons_rdy -> flag_11)
// binding flags for accel 2
bind(accel_2.prod_vld -> flag_10)
bind(accel_2.prod_rdy -> flag_11)
bind(accel_2.cons_vld -> flag_20)
bind(accel_2.cons_rdy -> flag_21)
// binding flags for CPU
bind(self.prod_vld -> flag_20)
bind(self.prod_rdy -> flag_21)
bind(self.cons_vld -> flag_00)
bind(self.cons_rdy -> flag_01)

wait_for_consumer:
while (*self.cons_rdy != 1) {}
if (amo_swap(self.cons_rdy, 0) != 1):

goto wait_for_consumer
// produce input here
*self.cons_vld = 1

wait_for_producer:
while (*self.prod_vld != 1) {}
if (amo_swap(self.prod_vld, 0) != 1):

goto wait_for_producer
// consume output here
*self.prod_rdy = 1
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init:
// binding flags for accel
bind(accel.p_flag_0 -> flag_00)
bind(accel.p_flag_1 -> flag_01)
bind(accel.c_flag_0 -> flag_10)
bind(accel.c_flag_1 -> flag_11)
// binding flags for CPU
bind(self.p_flag_0 -> flag_20)
bind(self.p_flag_1 -> flag_21)
bind(self.c_flag_0 -> flag_00)
bind(self.c_flag_1 -> flag_01)

wait_for_consumer:
while (*self.c_flag_1 != 1) {}
*self.c_flag_1 = 0
// produce input here
*self.c_flag_0 = 1

wait_for_producer:
while (*self.p_flag_0 != 1) {}
*self.p_flag_0 = 0
// consume output here
*self.p_flag_1 = 1

(c) Support for multiple consumers.

Figure 1: ASI overview. (a) A high-level view of the interface between the accelerator, ASI, and shared-memory. (b) Input and
output ASI FSM logic for a single-producer single-consumer case, with initial state marked 1○. Here, p_flag_0/1 are used to
synchronize with the (upstream) producer. c_flag_0/1 are used to synchronize with the (downstream) consumer. (c) Modified
input ASI FSM to support multiple consumers, where a read-modify-write ( amo_swap [65]) is used to update a common flag.

however, subsequent CPU-initiated accelerator invocations replace
the ESP API with inexpensive shared-memory synchronization.
The latter can be placed directly in the user application or under-
lying scheduler using standard libraries (e.g., atomic_flag in C++,
Boost [14, 62]). Figure 2b illustrates the pseudocode to manipulate
these shared-memory flags to produce data for the consumer or con-
sume the data from the producer. Although Figure 2b demonstrates
a single accelerator system, the software interface is agnostic to
whether the synchronizing entity is a CPU, a monolithic accelerator,
or a sea of disaggregated accelerators.
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init:
// binding flags for accel 1
bind(accel_1.prod_vld -> flag_00)
bind(accel_1.prod_rdy -> flag_01)
bind(accel_1.cons_vld -> flag_10)
bind(accel_1.cons_rdy -> flag_11)
// binding flags for accel 2
bind(accel_2.prod_vld -> flag_10)
bind(accel_2.prod_rdy -> flag_11)
bind(accel_2.cons_vld -> flag_20)
bind(accel_2.cons_rdy -> flag_21)
// binding flags for CPU
bind(self.prod_vld -> flag_20)
bind(self.prod_rdy -> flag_21)
bind(self.cons_vld -> flag_00)
bind(self.cons_rdy -> flag_01)

wait_for_consumer:
while (*self.cons_rdy != 1) {}
if (amo_swap(self.cons_rdy, 0) != 1):

goto wait_for_consumer
// produce input here
*self.cons_vld = 1

wait_for_producer:
while (*self.prod_vld != 1) {}
if (amo_swap(self.prod_vld, 0) != 1):

goto wait_for_producer
// consume output here
*self.prod_rdy = 1
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init:
// mapping flags for accel
map(accel.p_flag_0 -> flag0_0)
map(accel.p_flag_1 -> flag0_1)
map(accel.c_flag_0 -> flag1_0)
map(accel.c_flag_1 -> flag1_1)
// mapping flags for CPU
map(cpu.p_flag_0 -> flag1_0)
map(cpu.p_flag_1 -> flag1_1)
map(cpu.c_flag_0 -> flag0_0)
map(cpu.c_flag_1 -> flag0_1)

wait_for_consumer:
while (*cpu.c_flag_1 != 1) {}
*cpu.c_flag_1 = 0
// produce data for consumer
*cpu.c_flag_0 = 1

wait_for_producer:
while (*cpu.p_flag_0 != 1) {}
*cpu.p_flag_0 = 0
// consume data from producer
*cpu.p_flag_1 = 1

(a) ASI initialization.
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init:
// binding flags for accel 1
bind(accel_1.prod_vld -> flag_00)
bind(accel_1.prod_rdy -> flag_01)
bind(accel_1.cons_vld -> flag_10)
bind(accel_1.cons_rdy -> flag_11)
// binding flags for accel 2
bind(accel_2.prod_vld -> flag_10)
bind(accel_2.prod_rdy -> flag_11)
bind(accel_2.cons_vld -> flag_20)
bind(accel_2.cons_rdy -> flag_21)
// binding flags for CPU
bind(self.prod_vld -> flag_20)
bind(self.prod_rdy -> flag_21)
bind(self.cons_vld -> flag_00)
bind(self.cons_rdy -> flag_01)

wait_for_consumer:
while (*self.cons_rdy != 1) {}
if (amo_swap(self.cons_rdy, 0) != 1):

goto wait_for_consumer
// produce input here
*self.cons_vld = 1

wait_for_producer:
while (*self.prod_vld != 1) {}
if (amo_swap(self.prod_vld, 0) != 1):

goto wait_for_producer
// consume output here
*self.prod_rdy = 1
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init:
// mapping flags for accel
map(accel.p_flag_0 -> flag0_0)
map(accel.p_flag_1 -> flag0_1)
map(accel.c_flag_0 -> flag1_0)
map(accel.c_flag_1 -> flag1_1)
// mapping flags for CPU
map(cpu.p_flag_0 -> flag1_0)
map(cpu.p_flag_1 -> flag1_1)
map(cpu.c_flag_0 -> flag0_0)
map(cpu.c_flag_1 -> flag0_1)

wait_for_consumer:
while (*cpu.c_flag_1 != 1) {;}
*cpu.c_flag_1 = 0
// produce data for consumer
*cpu.c_flag_0 = 1

wait_for_producer:
while (*cpu.p_flag_0 != 1) {;}
*cpu.p_flag_0 = 0
// consume data from producer
*cpu.p_flag_1 = 1

(b) Producer-consumer example.

Figure 2: ASI software interface for a single CPU and single
accelerator system. (a) CPUpseudocode formappingmemory
addresses of shared-memory flags for the CPU and accelera-
tor (with ASI registers). (b) CPU pseudocode for synchroniz-
ing with the accelerator.

2.2 Capabilities
ASI enables chaining and software-level pipelining of disaggregated
accelerators through shared-memory, without any CPU or OS in-
tervention. ASI also enables tiling large datasets across chained and
pipelined accelerators, as well as supporting streaming use cases.
Accelerator chaining. If theworkload exhibits producer-consumer
relationships among a sequence of accelerators, ASI enables com-
posing these accelerators into a producer-consumer chain using
shared-memory synchronization. No additional hardware or me-
diation from the CPU or OS is required (except when the CPU
itself is a producer or consumer in the chain), reducing the time for
accelerator invocation and synchronization while also freeing up
the CPU for other tasks. From a program’s perspective, the chain
of disaggregated accelerators transparently emulates a monolithic
accelerator.

Software pipelining across disaggregated accelerators.Chained
accelerators can be further optimized by pipelining them entirely
in software, requiring no hardware changes in ASI. The first accel-
erator (or CPU) in the pipeline can produce data for the next one,
even while subsequent accelerators in the chain are yet to com-
plete. The shared-memory flags in ASI allow a producer to indicate
data being ready and the consumer to indicate readiness to accept
data, independent of each other and the rest of the pipeline. As a
result, the accelerators in a chain can be pipelined — improving
the end-to-end application performance by improving the individ-
ual accelerator utilization (and any inefficiencies resulting from
pipeline imbalances).
Tiling and streaming. For large datasets, ASI enables producer-
consumer pairs to compute on and communicate data in smaller
tiles and inexpensively synchronize with each other for every tile.
This can improve data locality and avoid performance degradation
due to cache thrashing. ASI also supports streaming use cases,
where producer-consumer pairs synchronize with each other for
every new stream of data.

3 Taming the Data Tax
3.1 Background
Spandex-FCS provides state-of-the-art heterogeneous coherence
specialization with demonstrated low design complexity and high
performance. The original Spandex coherence interface [4] pro-
vides coherence specialization at a device granularity. The follow-
on Spandex-FCS (Spandex with fine-grained coherence specializa-
tion) [3] extends this flexibility to a per-request (or per-word) gran-
ularity. For example, a CPU application may use MESI (write owner-
ship and writer-initiated invalidation) for some accesses to ensure
high data locality while using GPU coherence (with write-through
and self-invalidation) for other accesses. Such fine-grained special-
ization can avoid unnecessary data movement on the NoC. The
FCS work introduces additional request types to the Spandex proto-
col, including write-through forwarding (ReqWTFwd), which relies
on the read-with-ownership (ReqO+data) request. The ReqO+data
request can be used to perform loads while allocating the data in
owned state in the private cache of the requestor. The ReqWTFwd
request can be used to perform write-through stores. If the data
is owned by another private cache upon the ReqWTFwd arriving at
the LLC, the update is forwarded to the current owner without
changing the coherence state at the LLC or the current owner. If the

187



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Suresh et al.

data is not owned in another private cache, this request is treated
like a typical write-through request (ReqWT).

3.2 Producer-consumer Data Forwarding
The producer-consumer forwarding capability in Spandex-FCS
lends itself well to our design goal of decentralized data move-
ment to reduce the data tax. A MESI-style protocol is inefficient at
supporting producer-consumer data movement as a result of need-
ing to (1) invalidate shared consumer lines during producer stores,
and (2) revoke ownership of producer lines during consumer loads,
all centralized via the directory. With Spandex-FCS, all loads from
consumers use the ReqO+data request to allocate the data in owned
state in the consumer’s cache, and all store accesses from producers
use the ReqWTFwd request to forward the update directly to the
owner (here, the consumer) cache. The consumer benefits from
ReqO+data because it eliminates read misses which are typically on
the critical path. The producer benefits from ReqWTFwd because it
avoids the overheads of transient states associated with stores using
a MESI-style protocol. Further, the producer is expected to exhibit
less reuse of the written data than the consumer; therefore, not
allocating the data in the producer’s cache avoids the cost of future
write-backs. Overall, the producer forwarding data directly into
the consumer’s cache models a dedicated peer-to-peer data trans-
fer interface in hardware, while providing the programmability of
coherent shared-memory.

The above capability of Spandex-FCS also benefits the ASI im-
plementation by enabling forwarded updates for shared-memory
synchronization flags as follows. First, each device uses ReqO+data
to own the two synchronization flags that it tests — for the flags
presented in Figure 1b, the device owns c_flag_1 and p_flag_0.
Second, all synchronization flag updates are forwarded directly to
the owner without unnecessary coherence overheads.

3.3 Implementation
Our Spandex-FCS cache implementation [92] with ESP comprises
designs for two separate controllers, one for the L2 cache for a com-
pute element (accelerator or CVA6 RISC-V core [27, 95]) and one for
the shared LLC. This subsection highlights important aspects of the
implementation that are necessary to support features of Spandex-
FCS in ESP. While the current Spandex-FCS implementation is for
a private cache for an accelerator, we plan to explore Spandex-FCS
for an accelerator’s private scratchpad as directly addressable yet
globally visible coherent memory, as in [45].
Fine-grained Coherence Specialization. One key feature of
Spandex-FCS is the ability to specialize coherence at the granu-
larity of individual requests. We augment the CVA6 RISC-V CPU
and accelerator DMA to support this feature in ESP. For CVA6,
we introduce custom load and store ISA extensions that contain
dedicated fields to specify Spandex-FCS request types for loads and
stores. These fields are included in the AXI [5] transaction to the
L2 cache as part of the AxUSER bit field. For accelerators, we add
Spandex-FCS options to the DMA control interface driven by soft-
ware configurable registers in ESP. Request types can be inferred
using static analysis during compilation or an offline tracing tool
from [3]. In this work, we determine request types manually and
focus on the types described in Section 3.1. Fine-grained special-
ization of request types are for performance and not correctness;

unspecified requests will default to MESI. Thus, programs can be
incrementally converted for performance and leverage the pro-
grammability advantages of shared-memory.
Write-Coalescing Buffer. Spandex-FCS offers support for word-
granularity requests. To improve spatial locality in the line (if
present) and reduce the number of word-granularity requests sent
on the network, we supplement the L2 cache controller with a
write-coalescing buffer that coalesces multiple word-granularity
writes. The write-buffer entries are evicted in a FIFO fashion, or
completely drained at a release synchronization. This enables the
Spandex-FCS cache to benefit from the spatial locality in the line,
while performing writes and tracking ownership at word gran-
ularity. This implementation shares commonalities with several
coalescing write buffer proposals such as QuickRelease [34] and
VIPS [66].
RISC-V Weak Memory Ordering (RVWMO). Our caches im-
plement the full RVWMO specification [65]. We support atomic
memory operations (AMO), load-reserve/store-conditional (LR-SC),
and all combinations of RISC-V fences. We enforce ordering using
a self-invalidation of valid data on an acquire (aq bit set or read in
the successor set of fence) and a write-buffer flush on a release (rl
bit set or write in the predecessor set of fence).
Lazy Self-Invalidation. In addition to writer-invalidated reads,
Spandex also supports self-invalidated reads by allocating words
in valid state using the ReqV request type. The directory does
not track which cache has a valid copy of the word since the
caching device is responsible for self-invalidating all valid words
in its cache.3 While this reduces the invalidation traffic from the
directory, a naive self-invalidation requires checking for cache lines
in valid state at every acquire synchronization. To address this,
we use a lazy scheme with versioning in the cache state [92].
Spandex directory.We implement the Spandex directory with the
LLC for holding the cache line states. The directory is similar to
the one for conventional protocols, but it does not need to track
which caches have valid state copies since they are self-invalidated.
Tracking ownership for a line also requires tracking which word is
owned in the line. To mitigate overhead, we reuse the data array
of the word to store the owner ID [4, 20], and track the ownership
status of each word in a separate set of entries in the directory.
These tradeoffs are analyzed in [20]. It is possible to support an
LLC non-inclusive of owned data by implementing a state-only
LLC using mechanisms similar to those for a conventional MESI
protocol.

4 Methodology
4.1 Evaluation Hardware
4.1.1 Hardware setup and flow. We implement Spandex-FCS caches
in SystemVerilog RTL. All evaluated accelerators are implemented
in SystemC, and ASI is implemented as a modular shim to be easily
integrated with the accelerators. We generate synthesizable RTL for
the accelerators using Cadence Stratus HLS [15]. We use ESP’s SoC
generator templates [55] to create our SoC design, synthesize using
Xilinx Vivado [87] and evaluate on a VCU118 FPGA board [88].

3DeNovo[20] uses regions to invalidate only the potentially stale data based on software
information, but we do not implement region optimizations here.
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4.1.2 Coherence Protocols. We evaluate three protocols: MESI co-
herence, Coherent DMA and Spandex-FCS. Coherent DMA is an
optimized implementation of MESI supported by ESP that bypasses
the L2 cache of the accelerators, and provides best performance for
finer-grained data sizes in ESP [94]. It leverages a dedicated DMA
interface in the LLC controller that can service bulk transfers with-
out needing to be broken into consecutive line-granularity requests.
In contrast, MESI and Spandex-FCS do not bypass the accelerator
L2 cache. The L2 cache does not service bulk transfers, and any bulk
request from the accelerator is broken down as consecutive line-
granularity requests to the L2 cache. As a result, Coherent DMA
provides a higher throughput DMA interface that can effectively
pipeline reads and writes from an accelerator, especially in cases
where they hit in the LLC (i.e., no L2 cache in the system has a
local copy). The increased throughput is further amplified by the
unusual fact that the LLC clock frequency in ESP is twice of the L2,
due to other implementation reasons. On the other hand, the DMA
interface does not service multiple bulk transfers concurrently. This
behaviour of Coherent DMA is purely a limitation of the ESP system
and other implementations that service bulk transfers are possible.
A similar DMA interface can also potentially be integrated with
Spandex-FCS.

4.1.3 Evaluated Designs. All our designs are modular SoCs with a
mesh-based NoC connecting multiple tiles, including CPU, multiple
accelerators, LLC and IO. We use a 64-bit in-order RISC-V CVA6[27]
CPU, 32KiB 512-set 4-way L2 caches, and a 128KiB 1024-set 8-way
LLC. The CPU and L2 caches are clocked at 78MHz, while the LLC
is clocked at 156MHz (as required by ESP). We use the following
system configurations for our evaluations: (1) Baseline system
uses OS-based invocation for accelerators andMESI for cache coher-
ence. (2) M+ uses ASI for accelerator invocation and MESI for cache
coherence. (3) D+ uses ASI for accelerator invocation and Coherent
DMA for cache coherence. (4) Mozart uses ASI for accelerator
invocation and Spandex-FCS for cache coherence.

4.2 Benchmarks
We use multiple benchmark categories to cover a large design space
of heterogeneous workloads. We start with benchmarks that have
one dominant kernel offloaded to a single accelerator. We then
consider multi-accelerator workloads and evaluate complex real-
world multi-kernel applications that invoke multiple accelerators.4
Finally, for a broad design space exploration sweep for added insight,
we study a multi-accelerator workload using synthetic accelerators.

4.2.1 Single Accelerator Benchmarks. We use three single accel-
erators for standard kernels, FFT, Sort, and GeMM. We use (open
source) RTL from ESP for the accelerators, and augment them with
ASI, illustrated in Figure 1b, to enable shared-memory synchro-
nizations. We run these kernels with different input sizes (128 to
32K elements for FFT, 32 to 1K elements for Sort, matrices of size
8x8 to 64x64 for GeMM) to study impact of control and data taxes.
For simplicity, we use the term GeMM to refer to both GeMV and
GeMM in this work, and report results for GeMV over 1xM vector

4We considered the Yin-Yang benchmarks [43] and the cross-domain benchmarks by
Wang et al. [83] for our evaluation, but not all accelerators and key software functions
were open-sourced, making it hard to test our ideas.
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Figure 3: Block diagram of audio from ILLIXR [38]. The
blocks in orange are accelerated in hardware.

and M*Nmatrix as 1*M*N, and GeMM over MxN and NxMmatrices
as M*N.

4.2.2 3D Spatial Audio Decoder. The 3D spatial audio decoder
(audio) is based on libspatialaudio [47] and a component of the
ILLIXR system [38] that plays back the encoded audio sources based
on the pose of the user in an XR system. Audio is a complex real-
world application that runs end-to-end for playable audio output,
features a rich diversity of tasks, and is implemented with 6.5K lines
of C++ source code. A detailed data flow graph of the computation
required for a single audio block is shown in Figure 3, along with
the size of data transferred along each edge. We identify the four
dominant tasks in the application: psycho-acoustic filter, rotate
order, zoomer, and the binauralizer filter. The psycho-acoustic and
binauralizer filters contain 16 and 32 independent instances of a
chain of fine-grained tasks, respectively. The chain consists of an
FFT, FIR and IFFT, which we refer to as the FFT-FIR-IFFT chain.
We accelerate the FFT-FIR-IFFT chain in hardware and execute
the overlap task on the CPU (we do not design an accelerator for
overlap as it not a generic kernel like FFT or FIR, with differences
even between the two instances in the audio application). As the
FFT accelerators operate on fixed-point data, the CPU is responsible
for converting input data for the FFT-FIR-IFFT chain from floating-
point to fixed-point and vice-versa.

To evaluate audio in hardware, we design three configurations of
a heterogeneous SoC to accelerate the FFT-FIR-IFFT chain. First, we
design a monolithic accelerator that accelerates the FFT-FIR-IFFT
tasks as sequential stages within this single monolithic accelerator.
Next, we design a composable disaggregated system by reusing two
FFT accelerators from the single accelerator benchmark to acceler-
ate FFT and IFFT, and develop a custom accelerator for FIR. Using
these fine-grained accelerators, we offload the entire FFT-FIR-IFFT
chain as a disaggregated producer-consumer chain. Finally, for an
in-depth analysis of all scenarios, we design a second monolithic
accelerator that internally pipelines FFT-FIR-IFFT computations
across each other, at a hardware level. To achieve this aggressive
hardware-level pipelining, we include additional private scratch-
pads within the monolithic accelerator to allow double-buffering,
which in turn enables overlapping data movement and compute.
However, other simpler but potentially less performant strategies
are also possible.

4.2.3 Mini-ERA. Mini-ERA [39] is a vehicular swarm perception
workload that consists of multiple tasks with 5K lines of code,
including a radar component to find the nearest obstacle in the
vehicle’s lane and Viterbi decoder to decode messages [40]. We
leverage the Viterbi accelerator in ESP’s accelerator suite, augment
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it with ASI, and reuse the FFT accelerator from the audio bench-
mark. We note that accelerator disaggregation enables accelerators
(here, FFT) to be directly reused across workloads. In the radar
component, the radar data is used to perform an FFT on the FFT
accelerator, which the CPU uses to calculate distance. In Viterbi,
encoded messages are first decoded by the Viterbi accelerator be-
fore a de-scramble is performed by the CPU. To mimic the actual
hardware on an autonomous vehicle, we create synthetic sensor
accelerators for both components that provide the input (pre-loaded
from traces) at runtime. Using ASI, we can chain the radar sensor,
CPU, and the FFT accelerator to form a three-device chain in the
radar component; and the Viterbi sensor, Viterbi accelerator, and
CPU to form another chain in the Viterbi component. Mini-ERA
has limited opportunities for accelerator pipelining (only one inter-
accelerator producer-consumer relationship), so we do not evaluate
its pipelining.

4.2.4 Fully Connected Neural Network (FCNN). Fully Connected
Neural Networks are widely used in applications like image and
video processing [80], recommender systems [89], and recent neural
graphics [50, 57, 58, 84]. Instant-NGP [58], for instance, proposes
a model for neural radiance fields (NeRF) consisting of a 1-layer
multi-layer perceptron (MLP) for density and a 2-layer MLP for
color, where each layer consists of 64 neurons. We design a 3-layer
FCNN benchmark inspired by the Instant-NGP model, where each
FCNN layer consists of 64 neurons. We instantiate three GeMM
accelerators, capable of computing ReLU, and map individual layers
of the FCNN to each accelerator in a producer-consumer chain.
During initialization, the CPU writes the read-only weights for the
layers once. During the benchmark execution, the CPU writes a
1x64 vector input for the disaggregated FCNN accelerator system,
and reads back 1x64 vector output.

4.2.5 Synthetic Benchmark. The synthetic benchmark enableswide
design space exploration. Based on the micro-benchmark described
for Gables [36, 52], the benchmark loads a word from an input ar-
ray, performs several multiply-and-accumulate (MAC) operations,
and stores the word to an output array. As in the original micro-
benchmark, the synthetic benchmark provides tuning knobs for
the input/output data size as well as the operational intensity (Op
Int, number of operations performed per byte loaded from shared-
memory). These knobs are used to configure the work done (number
of operations performed). We evaluate the synthetic benchmark
with two cases of total work – Synth-large with work of 1500 and
Synth-small with work of 150 – over stream data of size 4KiB. To
evaluate the benchmark in hardware, we design a synthetic accel-
erator that includes a load kernel (to read from the input array), a
store kernel (to write to an output array), and one or more compute
kernels. We use the synthetic benchmark to evaluate strong scaling
of up to 15 disaggregated synthetic accelerators in chained and
pipelined configurations, and use the Op Int knob to partition the
work evenly among the accelerators.

4.3 Power Consumption
We qualitatively discuss Mozart’s power consumption here. Our op-
timizations primarily improve execution time by reducing the work

Table 2: Area of the baseline designs (accelerators and caches
in ESP) and overheads of ASI and Spandex-FCS, respectively.

Accelerator Area (𝜇𝑚2) ASI Overhead
FFT 30881 1%
FIR 80081 1%

Cache Area (𝜇𝑚2) Spandex-FCS Overhead
L2 61082 5% (7% w/ write buffer)
LLC 260259 -1%

done and/or network traffic; however, disaggregated systems intro-
duce additional network traffic. We do not quantitatively evaluate
power consumption because the measured power from an FPGA is
not representative of an ASIC technology, and power-aware RTL
simulations are infeasible for our benchmarks with an OS.
ASI: ASI eliminates the need for CPU orchestration of accelerators
and thus, reduces the work done by the CPU for OS invocation.
On the other hand, it expends additional power to spin on flags in
shared-memory. However, spinning largely happens in the private
cache and our implementation is amenable to traditional back-off
solutions to reduce the impact.
Spandex-FCS: By enabling read hits and reducing coherence traf-
fic, Spandex-FCS reduces traffic in system compared to MESI and
thus lowers dynamic power consumption from the NoC and caches.
Disaggregated Accelerators: Relative to a monolithic accelerator,
a disaggregated system incurs additional network traffic to com-
municate data between accelerators, potentially increasing power
consumption. Spandex-FCS can reduce this compared to MESI with
producer-consumer forwarding.
Static Power: Our optimizations incur small area overheads and
thus do not expect a significant increase in static power. Instead,
disaggregated accelerators may potentially incur lower static power
than monolithic if managed appropriately [23].

5 Results
This section presents the quantitative results from our compre-
hensive evaluation. Appendix A provides a analytical performance
model for additional insights to accompany our empirical results.

5.1 ASIC Area Analysis
Table 2 shows the area overhead of our ASI and Spandex implemen-
tations. We obtain ASIC area results using Genus [16] and use the
12nm process technology. For ASI, we compare the area of the audio
accelerators with and without ASI. For Spandex-FCS, we compare
its area against the MESI implementation in ESP for the L2 and
LLC for sizes in Section 4.1.3. We also show the area overhead from
adding a write-buffer (WB) in the Spandex-FCS L2.
Low area overhead for ASI and Spandex-FCS: ASI only incurs a
1% area overhead in the FFT and the FIR accelerators. For Spandex-
FCS L2, compared to the baseline L2 in ESP, the area overheads
are 7% and 5% with and without a WB. Spandex-FCS LLC is 1%
smaller than the baseline LLC in ESP since we do not implement
the coherent DMA handler for Spandex-FCS5.

5Only results for D+ rely on the DMA handler, while M+ does not. The design of the
handler is deeply integrated with the LLC in ESP, therefore we were unable to measure
the area without it.
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(b) Benefit of Mozart for single accelerator benchmarks over M+ and D+
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Figure 4: Benefit of ASI and Spandex-FCS for single accelerator benchmarks with different input sizes and geometric mean
(GM). The bars show execution time normalized to pure software.

5.2 Taming Control Tax for a Single Accelerator
Figure 4a shows the benefit of ASI in taming the control tax for
single-accelerator benchmarks, with execution time normalized to
the software-only case. We evaluate the single-accelerator bench-
marks in 3 systems: (1) baseline system, (2) baseline system with
no OS (i.e., benchmark is run bare metal), (3) M+.
Baseline System can lead to slowdown, whileM+ significantly
reduces the control tax, with comparable performance to bare
metal: Across all standalone accelerator benchmarks, the baseline
performs worst, and in several fine-grained cases, it results in a
slowdown over software (e.g., 28.4X slowdown for Sort 32). As
the input sizes and the amount of work done in the accelerator
increase, the impact of the OS-invocation, which is a constant
overhead independent of the input size, is less severe and we see
increasing speedups over software. ASI, by bypassing the bulky
OS invocation, brings down this large constant overhead to just
the time taken to perform a shared-memory synchronization. As a
result, M+ offers an average speedup of 5.31X over baseline, and
comparable performance to the bare metal configuration (which
has the lowest control tax).

5.3 Taming Data Tax for a Single Accelerator
Figure 4b shows the benefit of Spandex-FCS in taming the data tax
for single accelerator benchmarks, with execution time presented as
a percentage of the software-only case.We evaluate the benchmarks
in 3 systems: (1) M+, (2) D+, (3) Mozart.
Mozart provides the lowest data tax for virtually all configura-
tions: Across virtually all single-accelerator benchmarks and input
sizes, Mozart provides the best performance, with average speedups
of 1.7X and 1.4X over M+ and D+, respectively. The improvements
come from the direct producer-consumer data forwarding enabled
by Spandex-FCS. The large performance improvements (of up to
2.2X relative to M+) are seen when the data sizes are smaller than

the L2 cache size of the accelerator. With increasing input size,
Mozart continues to outperform M+ with a similar speedup. How-
ever, we observe an inflection point in the larger FFT sizes when
the input exceeds the L2 cache size; e.g., speedup over M+ drops
from 1.5X to 1.1X when changing input size from 8192 to 16384.
At this point, the consumer no longer hits in the L2 cache for all
read data, resulting in cache misses to the LLC. However, Mozart
still outperforms M+ because the consumer benefits from read hits
at the LLC, whereas modified data needs to be revoked from the
producer’s cache for M+.

Mozart outperforms D+ for most cases despite the implemen-
tation difference, especially for finer-grained input sizes that fit
within the L2 cache. At coarser-grained sizes, D+ performs better,
providing a speedup of 1.2X over Mozart for FFT 32768. Here, the
data from the CPU’s L2 cache spills over to the LLC. The accelerator,
having bypassed its own L2 cache, benefits from data locality in the
LLC for high-throughput DMA reads and writes. While this work
aims to primarily enable finer-grained acceleration, we note that
Spandex-FCS can be extended to support coarser-granularity trans-
fers like D+ for similar benefits. We plan to explore this direction
in future work.

5.4 Accelerator to Accelerator Chaining
Figures 5 and 6 show accelerator chaining benefits for four bench-
marks: three real-world use cases – audio, Mini-ERA and FCNN –
and a synthetic benchmark for a broad sweep of chain sizes and
two cases of total work (as described in Section 4.2.5). We eval-
uate these benchmarks in 4 systems: (1) baseline system, (2) M+,
(3) D+, (4) Mozart. The accelerator "chain" for a baseline system is
orchestrated entirely by the CPU, where the CPU invokes each ac-
celerator with OS-based invocations sequentially, after the previous
accelerator in the computation chain finishes its computation.
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Figure 5: Execution time for three real-world applications
with accelerator chaining and pipelining. Execution time is
normalized to the software-only version.
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Figure 6: Speedup over software for the synthetic benchmark
for accelerator chaining and pipelining. Two benchmarks –
Synth-large and Synth-small – are evaluated.

Baseline system can lead to slowdown over software and
Mozart enables speedup: We observe that chaining accelerators
with baseline does not always provide benefits over software, and
can even result in a slowdown. Specifically, the baseline provides
a speedup of 7.2X over software for Mini-ERA, but provides vir-
tually no speedup for audio, and results in a slowdown of 1.4X
over software for FCNN. M+ improves upon baseline and enables
speedups over software for the three cases by 1.2X to 21.3X. Mozart
further improves upon M+ by 1.4X on average, and provides better
or comparable performance to D+ for all cases.
Mozart broadens the design space that can benefit from ac-
celerator chaining: Figures 6a and 6b show that with the baseline
system, accelerator chains can provide speedups over software until
length 15 with Synth-large, or cause a slowdown at length 3 with
Synth-small. The speedup over software monotonically decreases
with increase in chain length due to the additional control and data
taxes incurred by each accelerator. We observe that Mozart signifi-
cantly improves upon the baseline and enables all accelerator chain
lengths studied to provide speedups over software. The speedup
curve for accelerator chains with Mozart is much higher and has a

lower slope than both baseline and M+. Mozart is comparable with
D+ for accelerator chaining, with the best configuration depending
on the accelerator chain length.

5.5 Accelerator to Accelerator Pipelining
Figures 5 and 6 show the benefits of software pipelining of disaggre-
gated accelerators, enabled by ASI (as described in Section 2.2), for
the same benchmarks as in Section 5.4. We evaluate these bench-
marks for 3 systems: (1) M+, (2) D+, and (3) Mozart. Accelerator
pipelining improves performance over chaining across all configu-
rations, and Mozart results in the best performance for all cases.
Pipelining with ASI significantly improves performance for
all benchmarks:As discussed in Section 2.2, the accelerator pipeline
is orchestrated entirely in software, with no hardware changes to
the ASI necessary. Further, it improves accelerator utilization, and
any inefficiencies are a result of imbalances in the pipeline. For
the two real-world applications (that were amenable to pipelining),
pipelining provides an average speedup of 1.8X over chaining.
Mozart gives the best performance across both real-world
benchmarks: On average, Mozart achieves speedups of 1.2X and
1.3X over M+ and D+ with pipelining. The GeMMs performed in
the FCNN are particularly fine-grained and data load time domi-
nates the accelerator execution time. As a result, for FCNN, Mozart
provides a speedup of 1.2X over M+ and 1.75X over D+ with pipelin-
ing. D+ performs the worst for FCNN with pipelining due to the
bottlenecked DMA interface, discussed in Section 4.1.2. Here, the
read-only weights (requiring a majority of the read accesses) are
concurrently read from the LLC by all three accelerators in D+,
while M+ and Mozart benefit from read hits in the private caches.
Performance ofMozart scales bestwith increasing accelerator-
level parallelism: Figures 6c and 6d show that Mozart provides
the highest speedup for all pipeline lengths (i.e., number of accel-
erators) from 1 to 15. For Synth-small, Mozart shows increasing
speedups until pipeline length of 10, after which performance sat-
urates. This is because the CPU read and write time (CPU time)
increasingly becomes the dominant stage, and eventually limits the
maximum speedup achievable from adding more accelerators to
the system. In contrast, M+ and D+ reach their maximum speedups
much earlier at pipeline lengths of 5 and 7 respectively, after which
their speedups degrade. This is because of the longer CPU (read and
write) time in the case of M+ and D+, thus becoming the dominant
stage at smaller pipeline lengths. Furthermore, the LLC is a point
of centralization for all reads and writes for M+ and D+. As the
pipeline length increases, the LLC is unable to efficiently service
multiple concurrent requests from all the accelerators, leading to
degrading speedups for both systems. In case of Synth-large, Mozart
is again the best performing system, achieving linear speedup over
software until pipeline length 15. M+, on the other hand, reaches its
maximum speedup at pipeline length 10. In summary, Mozart gives
the best scalability and performance for both synthetic workloads
across the pipeline lengths studied.

5.6 Monolithic vs. Disaggregated Performance
Figure 7 shows the performance gap between monolithic (dashed
lines) and disaggregated (solid lines) acceleration for audio (Fig-
ure 7a) and synthetic benchmarks (Figures 7b and 7c) for different
systems.
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Figure 7: Execution time for (a) audio and for speedup over
software for (b,c) synthetic benchmark formonolithic (Mono)
and disaggregated (Disag) accelerators. Results are presented
for the chained and pipelined audio benchmark, and the
pipelined synthetic benchmark. Execution time of audio
is normalized to the software-only version. Two synthetic
benchmarks – Synth-large and Synth-small – are evaluated.

Baseline shows a large gap between monolithic and disag-
gregated, Mozart techniques significantly improve upon the
baseline for both systems. In audio( Figure 7a), we observe a per-
formance gap of 1.8X between the monolithic accelerator and the
chained disaggregated accelerators with the baseline system (be-
tween Mono and Disag in Base). This performance gap exists be-
cause the monolithic system incurs control and data taxes only
once in a chain, as opposed to multiple times for the disaggregated
accelerators. Mozart improves the performance for both and re-
duces the performance gap to 1.1X (between Mono and Disag in
Mozart Chaining).
Pipelining narrows performance gap and Mozart gives the
best benefits. In audio, applying pipelining improves both mono-
lithic and disaggregated systems, with Mozart providing the best
performance. Further, in audio, pipelining virtually closes the gap
for all coherence protocols. This is because the CPU time (including
writing data for FFT, reading output from IFFT and overlap) is the
dominant pipeline stage for audio and determines the maximum
speedup possible from pipelining. Thus, by reducing CPU read
time, Mozart shows a speedup of 1.1X over M+. Figures 7b and 7c
show that the pipelined monolithic and disaggregated accelerators
provide increasing speedup over software up to a certain number
of pipeline stages until the performance is bound by CPU time.
For Synth-small, monolithic and disaggregated accelerators for all
three protocols become bound by CPU time at different number

of pipeline stages. Mozart provides the best performance for both
the monolithic and disaggregated systems at all pipeline lengths.
On the other hand, M+ and D+ observe an increase in performance
gap with increase in pipeline length beyond 7 for Synth-small.
Disaggregated accelerators are a performant alternative, with
no additional design cost for accelerator pipelining: As dis-
cussed before in Sections 2.2 and 4.2.2, introducing pipelining with
disaggregated accelerators requires no hardware change and is or-
chestrated entirely in software, whereas there is an added design
complexity cost to designing monolithic accelerators. For audio,
the monolithic accelerator is designed with aggressive internal
pipelining that is specialized for the workload (here, the FFT-FIR-
IFFT chain), and requires additional scratchpads to orchestrate the
pipeline efficiently. Whether to use a monolithic accelerator or to
reuse existing IPs for disaggregated accelerators of various con-
stituent tasks is an important design decision when building an
SoC. Mozart opens up the design space of possible acceleration
candidates by promoting disaggregated systems that would have
otherwise sacrificed performance for lower design complexity.

6 Related Work
There is decades of work on coherence, synchronization, and hetero-
geneous SoCs. We aim to move beyond one-off ideas to holistically
realize and evaluate a full heterogeneous SoC (1) withmultiple fixed-
function accelerators capable of synchronizing with each other over
shared-memory, (2) running real-world applications with an OS
and demonstrating software programmable chains and pipelines of
accelerators, (3) with a state-of-the-art heterogeneous coherence
protocol that enables per-word coherence specialization, and (4)
demonstrating programmable, transparent composition of disag-
gregated accelerators as a performant alternative to monolithic
acceleration.

6.1 Accelerator Disaggregation and
Composability

Cong et al. [23] propose using accelerator building blocks (ABBs)
to emulate a coarse-grained loosely-coupled accelerator. Stitch [79]
proposes composing tightly coupled accelerators and proposes net-
work and compiler support to achieve this. Baskaran et al. [11, 12]
explore similar motivations for decentralizing control and data
movement. The Accelerator Store [54] has a shared SRAM for ac-
celerator data communication. Yin-Yang [43] also advocates the use
of disaggregated accelerators from different domains. However, all
of the above work rely on architecture simulations, do not consider
bulky control taxes, do not consider overheads of coherent shared
memory or propose invasive changes to the CPU pipeline. VIP [59]
proposes IP chains and frame bursts to reduce overheads due to
CPU orchestration or memory stalls. Mozart is complementary to
the software stack of VIP.

Cohort [85] studies transparent acceleration using shared-memory
synchronizationswith an FPGA evaluation. However, thework does
not evaluate accelerator chaining or pipelining, and does not con-
sider how to bridge the performance gap between disaggregated and
monolithic acceleration. ASI is lightweight with minimal area over-
head, while Cohort adds significant area to enable shared-memory
synchronization. Gonzalez et al. [30] present an analytical model to
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study the benefits of a sea of glue accelerators in hyperscale work-
loads and also advocate chained fine-grained accelerators. However,
they do not provide an actual performant design. AuRORA [44]
proposes an interface for integrating virtualized accelerators for
multi-tenant execution; however, their control interface for accel-
erators does not leverage shared-memory and is CPU-centralized.
Wang et al. [83] propose an accelerator for data restructuring (DRX)
to enable accelerator-accelerator chaining, without indirection via
the host CPU. The idea of DRX is complementary to our work;
e.g., ASI could potentially reduce the control tax for invoking the
DRX accelerator. While their system focuses solely on optimizing
inter-chip PCIe traffic, Mozart leverages Spandex-FCS to optimize
on-chip coherence traffic. Yuan et al. [91] present a holistic approach
to accelerator integration and motivate the need to tame datacenter
taxes. However, their approach for accelerator interfacing through
x86-specific instructions restricts its general applicability and re-
quires invasive changes to the CPU, whereas ASI relies on a more
general and ubiquitous shared-memory abstraction. While data
movement in their work is through shared virtual memory, they
rely on a non-coherent PCIe interconnect, whereas our work lever-
ages the benefit of a coherent interface with Spandex-FCS.

6.2 Kernel Bypass and Control Tax
Lustig et al. [53] and Blockmaestro [1] identify both the overheads
of invocation in the context of GPUs and propose schemes that
reduce the control tax by invoking GPUs ahead of time. NUCD [9]
proposes an ISA extension for kernel-bypass, but requires CPU
modifications and does not support communication between ac-
celerators. The M3 series of works [6–8] promote accelerators as
first-class citizens at the OS level with support for virtualization.
Several other studies [35, 48, 85, 90] also explore kernel bypass
through shared-memory to eliminate control taxes. However, these
works primarily target programmable and coarse-grained acceler-
ators, do not consider a cache coherent heterogeneous SoC, and
do not propose solutions to optimize data movement in such SoCs.
Commercial products typically adopt various approaches for invo-
cation that (1) are not uniform or interoperable, (2) are designed
with programmable accelerators in mind, and/or (3) rely on un-
derlying mechanisms that are typically wrappers of OS calls. To
remedy this, HSA [28] was proposed as a standard interface to en-
able heterogeneous devices to communicate over shared-memory
with task descriptors enqueued in a circular buffer. However, ASI
(1) is generalized to support arbitrary synchronization primitives,
(2) is lightweight in implementation with small area overhead, and
(3) supports accelerators with limited programmability, whereas
HSA is mostly implemented with programmable accelerators [81].

6.3 Heterogeneous Coherence and Data Tax
There is a rich literature on coherence for heterogeneous systems [5,
19, 20, 22, 46, 60, 63, 66, 67, 69, 70, 75–78, 82, 94]. Spandex was pro-
posed as a flexible and extensible coherence interface that supports
a variety of access patterns and coherence requirements at a per-
device granularity [4]. Spandex-FCS extended Spandex to provide
coherence specialization at a per-access granularity, also demon-
strating extensibility [3]. We are not aware of any other heteroge-
neous coherence protocol with such properties, and therefore chose

Spandex-FCS as state-of-the-art. The Spandex papers provide a de-
tailed comparison with other protocols. For example, Fusion [46]
is a hierarchical protocol that supports forwarding within an accel-
erator tile. HCC enables efficient work stealing [82] (its primitive
operations are supported by Spandex and the specific protocol is
complementary to ourwork). However, most suchwork is evaluated
in simulation with small benchmarks and no OS. Cohmeleon [94]
develops an algorithm to dynamically choose a coherence protocol
at runtime for each accelerator and is complementary to our work.
For instance, the algorithm can be used to choose the Spandex-FCS
request type at runtime. Further, we evaluate against MESI and
coherent DMA, which perform best for small workload sizes in
their work. gem5-Aladdin [69] studies trade-offs between a DMA
and cache-based approach in simulation, again complementing our
work. None of the above works consider the control tax, accelerator
chaining or pipelining, or disaggregated vs. monolithic accelera-
tors. RELIEF [32] proposes a scheduler for leveraging data forward-
ing techniques proposed in prior work [46, 59] and colocation of
producer-consumer tasks to reduce data tax. This is complementary
to our work as Spandex also offers similar forwarding primitives.
Rui et al. [37] optimize data streaming for on-chip accelerators
in a system with a snooping protocol. Our work does not require
a snooping protocol, and supports streaming accesses efficiently
thanks to specialized request types in Spandex-FCS. Streaming ac-
celerators [10, 21, 25, 51, 61] reduce the data tax with custom data
paths and hardwired interfaces that restrict accelerator reuse and
have limited programmability. Our work offers shared-memory
programmability features, flexibility to specialize coherence for
every request, and enables disaggregated accelerator sharing.

7 Conclusions and Future Work
Mozart is a novel architecture that enables finer-grained accelera-
tion than previously possible; programmable, transparent composi-
tion of fine-grained disaggregated accelerators; efficient accelera-
tor pipelining via shared-memory and decentralization; and fine-
grained, disaggregated accelerators as a performance-competitive
alternative to specialized monolithic accelerators. Mozart leverages
a general, lightweight, and modular ASI to enable uniform shared-
memory synchronization across all compute units, supported by a
state-of-the-art heterogeneous coherence protocol, Spandex-FCS,
that enables decentralized data movement and per-word coherence
specialization. ASI is open source and available as a part of ESP, and
can be easily integrated with any of the accelerators at less than
1% area overhead. Equally significant, this is the first open sourced
RTL implementation of Spandex-FCS that offers per-word hetero-
geneous coherence specialization, and with only a modest cache
area increase. Our results show that Mozart can tame control and
data acceleration taxes for fine-grained accelerators and accelerate
real-world applications with software programmable chains and
pipelines of disaggregated accelerators, and that these performance
benefits scale to complex SoCs of up to 15 accelerators.

Overall, Mozart reveals a new space of designs for acceleration
with little area cost and familiar shared-memory programmability,
aligned with the needs of emerging applications with large task
diversity. Our future work includes designing SoCs using these
ideas for full-scale workloads such as extended reality and data
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centers, designing schedulers and resource management mecha-
nisms, building automated design space exploration tools, extending
these ideas to multi-SoC systems, and incorporating complemen-
tary techniques such as near-data acceleration for reduced off-chip
data movement.
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A Analytical Performance Model
We develop an analytical model for the various configurations eval-
uated in this work to further understand the quantitative results.

A.1 Model for Disaggregated Accelerators
We consider a system with one CPU and 𝑁 disaggregated accelera-
tors that can be chained and pipelined. The system runs in a loop,
with the computational chain starting and ending with the CPU.

We define 𝐶𝑖 , 𝐼𝑖 , and 𝐷𝑖 as the compute time, the control taxes,
and the data taxes incurred by the 𝑖𝑡ℎ accelerator running in a
steady state, where𝐶0, 𝐼0, and𝐷0 are incurred by the CPU. The total
execution time with accelerator chaining is defined in Equation 1.

𝐶ℎ𝑎𝑖𝑛𝑑𝑖𝑠 =

𝑁∑︁
𝑖=0

(𝐶𝑖 + 𝐼𝑖 + 𝐷𝑖 ) (1)

When the CPU and accelerators are pipelined, the system perfor-
mance is dominated by the CPU or accelerator with the longest
execution time. Equation 2 calculates this dominant time which
defines the inverse of the pipeline throughput.

𝑃𝑖𝑝𝑒𝑑𝑖𝑠 = max
0≤𝑖≤𝑁

(𝐶𝑖 + 𝐼𝑖 + 𝐷𝑖 ) (2)

ASI reduces 𝐼𝑖 and Spandex-FCS reduces 𝐷𝑖 , resulting in more
efficient chaining and pipelining. The quantitative results are pre-
sented in Sections 5.2 through 5.5.

A.2 Monolithic vs. Disaggregated Accelerators
We compare the performance of monolithic and disaggregated ac-
celerators with both chaining and pipelining. The monolithic ac-
celerator has internal compute stages, where each internal stage is
identical to the compute of the corresponding disaggregated accel-
erator. We define the compute time of each internal stage as 𝐶𝑀𝑖

,
the total compute time as 𝐶𝑀 =

∑𝑁
𝑖=1𝐶𝑀𝑖

, and as stated above, we
assume𝐶𝑀𝑖

= 𝐶𝑖 . Finally, we define 𝐼𝑀 and 𝐷𝑀 as control and data
taxes paid by the monolithic accelerator.

A.2.1 Chaining. Equation 3 defines the ratio of execution time of
a system with a CPU and (1) a monolithic accelerator over (2) 𝑁

disaggregated accelerators running in a chain (without pipelining).

𝐺𝑎𝑝𝑐ℎ𝑎𝑖𝑛 =
𝐶ℎ𝑎𝑖𝑛𝑑𝑖𝑠

𝐶ℎ𝑎𝑖𝑛𝑚𝑜𝑛𝑜
=

∑𝑁
𝑖=0 (𝐶𝑖 + 𝐼𝑖 + 𝐷𝑖 )

(𝐶0 + 𝐼0 + 𝐷0) + (𝐶𝑀 + 𝐷𝑀 + 𝐼𝑀 )

=
𝐶0 +𝐶𝑀 + (∑𝑁

𝑖=0 (𝐼𝑖 + 𝐷𝑖 ))
𝐶0 +𝐶𝑀 + (𝐼0 + 𝐷0 + 𝐼𝑀 + 𝐷𝑀 )

(3)

𝐺𝑎𝑝𝑐ℎ𝑎𝑖𝑛 increases monotonically with the number of accelera-
tors due to additional acceleration taxes. This gap also depends on
whether the total compute time (𝐶0 + 𝐶𝑀 ) is significantly larger
than the taxes. Figures 6a and 6b for Synth-small and Synth-large
illustrate this well (the x-axis value of 1 accelerator is the same
as monolithic). 𝐺𝑎𝑝𝑐ℎ𝑎𝑖𝑛 increases for both cases with increasing
chain lengths; but with significantly larger compute time, the gap is
much lower for Synth-large than Synth-small. However, when the
total compute time does not dominate the taxes, then the gap be-
tween the two cases depends on the cumulative acceleration taxes.
We observe that this gap with Mozart is much lower than for other
coherence protocols in audio (Figure 7a) and for most chain lengths
for Synth-small and Synth-large (Figures 6a and b). Pipelining can
narrow this gap much further as discussed next.

A.2.2 Pipelining. For a monolithic accelerator that can be inter-
nally pipelined (as discussed in Section 5.6), Equation 4 calcu-
lates the dominant time that defines the inverse of the mono-
lithic pipeline throughput. Here, each compute and data movement
stage of the monolithic accelerator is pipelined across each other.
Equation 5 defines the ratio of execution time of (1) an internally
pipelined monolithic accelerator over (2) 𝑁 pipelined disaggregated
accelerators.

𝑃𝑖𝑝𝑒𝑚𝑜𝑛𝑜 = max
𝑖

((𝐶0 + 𝐼0 + 𝐷0),𝐶𝑀𝑖
, (𝐼𝑀 + 𝐷𝑀 )) (4)

𝐺𝑎𝑝𝑝𝑖𝑝𝑒 =
𝑃𝑖𝑝𝑒𝑑𝑖𝑠

𝑃𝑖𝑝𝑒𝑚𝑜𝑛𝑜
=

max𝑖 ((𝐶0 + 𝐼0 + 𝐷0), (𝐶𝑖 + 𝐼𝑖 + 𝐷𝑖 ))
max𝑖 ((𝐶0 + 𝐼0 + 𝐷0),𝐶𝑀𝑖

, (𝐼𝑀 + 𝐷𝑀 ))
(5)

We expect Mozart to provide the best performance due to its
lower taxes for both monolithic and disaggregated cases. When
the CPU time (𝐶0 + 𝐼0 + 𝐷0) dominates, monolithic and disaggre-
gated accelerators offer similar performance (𝐺𝑎𝑝𝑝𝑖𝑝𝑒 is nearly 1).
When the compute time of an accelerated stage dominates, the
gap between monolithic and disaggregated is far lower for Mozart
(and often closes) with pipelining than with just chaining since the
disaggregated taxes are no longer additive.

The presented analytical model can explore tradeoffs for different
design decisions. For example, a powerful CPU can potentially re-
duce OS-based CPU control taxes. However, control taxes due to OS-
based invocations would still be greater than ASI’s near-baremetal
overhead. Further, a powerful CPU reduces 𝐶0 and potentially in-
creases its sensitivity to relatively longer latency accesses in the
cache hierarchy, making Spandex-FCS and Mozart more effective.

B Artifact Appendix
B.1 Abstract
This appendix describes how to reproduce the results from Sec-
tion 5 of the paper. We implement our design on the ESP platform
for prototyping heterogeneous SoCs [55]. We integrate the source
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code for the Accelerator Synchronization Interface (ASI), Spandex-
FCS, and all the accelerators that are part of our comprehensive
evaluation in the ESP platform. Our source code is available as a
separate fork of ESP on GitHub.

As part of our methodology, we first generate a variety of fixed-
function accelerators (disaggregated and monolithic) through high-
level synthesis (HLS). Our evaluation includes three different co-
herence protocols – MESI, Coherent DMA, and Spandex-FCS – and
two different strategies for accelerator invocation – OS and ASI. We
synthesize multiple bitstreams of SoCs – each SoC has RISC-V CPUs
and accelerators in a variety of design configurations, connected
with a mesh-based network-on-chip (NoC). Once the hardware is
generated, we evaluate the performance of our designs on an FPGA,
using multiple real-world applications running on top of a Linux
operating system. This appendix provides detailed instructions for
reproducing the results from our evaluation.

B.2 Artifact check-list
• Run-time environment: SoC prototypes on an FPGA run-
ning Linux. Host machine for using ESP must either use
Docker or support an OS supported by ESP; i.e., CentOS 7,
Ubuntu 18.04, or Red Hat Enterprise Linux 7.8.

• Hardware: Xilinx VCU118 FPGA boards [88].
• Benchmarks:Multiple single-accelerator andmulti-accelerator
benchmarks including real-world applications and compre-
hensive scalability studies.

• Compilation: Automated cross-compilation for RISC-V pro-
cessors using ESP’s workflow.

• Metrics: Execution time in CPU cycles.
• Output: Prints on the UART console and CSV files with
tabulated results for each benchmark.

• Experiments: Single accelerator benchmarks for different
invocation and coherence strategies (Figures 4a and 4b),
multi-accelerator applications for different invocation and
coherence strategies (Figure 5), comparison of a monolithic
and disaggregated accelerator system (Figure 7), scalability
study with different combinations of a synthetic accelerator
in chained and pipelined configurations (Figure 6).

• How much disk space required (approximately)?: 64
GB.

• How much time is needed to prepare workflow (ap-
proximately)?: Setting up ESP takes 5-6 hours assuming
all required tools are already installed. High-level synthe-
sis of each accelerator takes 30 minutes on average. The
generation of each FPGA bitstream takes up to 3 hours.

• Howmuch time is needed to complete experiments (ap-
proximately)?: Once bitstreams are ready, entire evaluation
takes 2 hours.

• Publicly available? Yes.
• Code licenses (if publicly available)?: Apache 2.0.
• Archived?: Yes: 10.5281/zenodo.13207536.

B.3 Description
B.3.1 Hardware dependencies. We use a Xilinx VCU118 FPGA
board for our evaluations. However, our system will also work
with any of the other FPGA boards supported by ESP. Deploying

the compiled software on the FPGA requires an Ethernet connec-
tion to the FPGA. Further, a UART connection can be used to view
the output from the FPGA using a terminal console. Instructions on
the FPGA setup can be found at https://esp.cs.columbia.edu/docs/
singlecore/singlecore-guide/, specifically in the sections “Debug
link configuration" and “UART interface".

B.3.2 Software dependencies. The software and tool dependencies
of ESP for different operating systems are listed at https://esp.cs.
columbia.edu/docs/setup/setup-guide/. Users who prefer to work
with a Docker image can find the steps to setup with Docker here:
https://esp.cs.columbia.edu/docs/setup/docker/. In terms of CAD
tools, evaluating our system requires only Xilinx Vivado 2019.2 and
Cadence Stratus HLS 19.22-s100 (other versions of Stratus should
work too). Finally, our evaluation requires the RISC-V software
toolchain for compiling the benchmarks to run on the ESP platform.
Steps to setup the toolchain can be found at: https://esp.cs.columbia.
edu/docs/setup/setup-guide/#software-toolchain.

B.3.3 How to access. We integrated our source code into ESP and
released it on Zenodo (https://zenodo.org/records/13363750). Once
the hardware and software dependencies have been setup and in-
stalled, download the archived repository (or clone from the linked
GitHub release) and initialize all submodules recursively. The root
folder of the repository includes a template esp_env.sh script with
the required environment variables that need to be modified to the
appropriate values in the user’s environment.

B.3.4 Important files and directories. The most relevant files and
directories are as follows:

• accelerators/stratus_hls: Accelerators (both hardware
and software benchmarks) used in the experiments, namely:

– audio_fft_stratus –gemm_stratus
– audio_fir_stratus –tiled_app_stratus
– audio_ffi_stratus – viterbi_stratus
– audio_dma_stratus – asi_viterbi_stratus
– sort_stratus – sensor_dma_stratus

• accelerators/stratus_hls/common/inc/core/accelerat
ors/esp_accelerator_asi.hpp: Modular implementation
of the Accelerator Synchronization Interface (ASI), that al-
lows easy integration with any accelerator in stratus_hls.

• rtl/caches/spandex-caches/: RTL implementation of the
Spandex-FCS protocol, including the L2 and LLC controller.

• rtl/caches/*_wrapper.vhd: Cache wrapper files to instan-
tiate Spandex-FCS caches as well as synchronization-related
support (aq/rl/fence).

• socs/*: SoC design folders. The SoCs used for the experi-
ments are labeledwith the prefix *-xilinx-vcu118-xcvu9p.
Each folder comes with scripts and configuration files for
running the experiments relevant to that folder. Below, we
list the design folders in this artifact along with a mapping
of the results in the paper that they reproduce:
– socs/audio-mono-esp-*: Figures 5a and 7.
– socs/audio-mono-spx-*: Figures 5a and 7.
– socs/fcnn-*-esp-*: Figures 4a (Sort andGeMM), 4b (Sort
and GeMM) and 5c.

– socs/fcnn-spx-*: Figures 4b (Sort and GeMM) and 5c.
– socs/miniera-esp-*: Figures 4a (FFT), 4b (FFT) and 5b.
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– socs/miniera-spx-*: Figures 4b (FFT) and 5b.
– socs/synth-esp-*: Figure 6.
– socs/synth-spx-*: Figure 6.

• socs/*/soft-build/ariane/sysroot: The Linux file sys-
tem that is populated after building the toolchain and Linux.

• soft/common/drivers/linux/esp/esp.c: Changes to the
ESP device driver to enable ASI-based accelerator invocation.

• rtl/cores/ariane/ariane/src/decoder.sv: Changes CVA6
decoder stage to generate Spandex-FCS based loads and
stores based on custom RISC-V instructions.

• soft/ariane: Software folder containing submodules for
audio_pipeline and mini-era.

B.4 Experiment workflow
This section presents a step-by-step workflow for our experiments
using the ESP platform6. As listed in Section B.3.4, we provide
multiple design folders for reproducing the various results in the
paper. For each step below, we provide automated scripts that can
be run from each design folder to evaluate the benchmarks relevant
to that folder:

(1) Run HLS. Generate the RTL implementation of all the ac-
celerators listed in Section B.3.4.
Script: source ./gen-hls.sh.

(2) Generate FPGA Bitstream. Configure the SoC layouts us-
ing the socgen.tar binary, modify wrappers and generate
the bitstream. Here, socgen.tar is included in each design
folder as a reference to recreate the required SoC configura-
tion to run our benchmarks.
Script: source ./gen-vivado.sh.

(3) Build Software. Generate all the software executables re-
quired to run that benchmark (scripts in *-spx-* folders
generate executables to run on Spandex hardware). We also
provide pre-compiled binaries in the test folder for audio
and mini-era benchmarks (whose compilation instructions
can be found in the respective submodules).
Script: source ./gen-sw.sh

(4) Run baremetal tests on FPGA. Run the baremetal tests
that were compiled in Step 3.
Script: source ./run-baremetal-test.sh

(5) Boot Linux on FPGA. Build Linux using the pre-built file
system tarball in socs/sysroot.tar, program the bitstream
and boot Linux on the FPGA. Once the boot reaches the login
prompt, log in with the username root and the password
openesp.
Script: source ./gen-run-linux.sh

(6) RunLinux tests on FPGA.Navigate to /applications/test
and run all the software executables required to run that
benchmark.
Script: source ./run-linux-test.sh

B.5 Evaluation and Expected Results
To evaluate the results in this artifact, (1) ensure the hardware
and software dependencies are met as described in Section B.3.1

6The resources available on the ESP website (https://esp.cs.columbia.edu/resources/)
include several hands-on tutorial guides, the recordings of conference tutorials, and
an overview paper.

and B.3.2, (2) download the source repository (included in Sec-
tion B.3.3) with all submodules, (3) source the esp_env.sh script,
(4) navigate to each design folder listed in Section B.3.4 and run
scripts (1)-(6) from Section B.4.

B.6 User Interface
All benchmarks print out the execution results via UART, which
can be viewed through a console such as minicom. An example
command to open minicom is shared below:
minicom -D <FPGA UART port> -b 38400 -C <minicom.log>

B.7 Tabulating Results
In order to tabulate the results into a CSV file, we parse a print
log from UART (minicom.log in the above example) using gen-
results.py included in the root folder of the ESP repository, and
generate results.csv in the current directory. We recommend
running the parser script after all benchmarks have been evaluated
from their respective design folders. Note: Linux tends to sporad-
ically generate unavoidable internal prints (like random: fast
init done). We recommend rerunning the benchmark script if this
happens for consistent results.
Script: python3 gen-results.py <minicom.log>.
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