
a
rX

iv
:2

2
0
6
.0

8
8
9
1
v
2
  
[m

a
th

.N
T

] 
 3

 N
o
v
 2

0
2
2

CYCLIC ISOGENIES OF ELLIPTIC CURVES OVER FIXED

QUADRATIC FIELDS

BARINDER S. BANWAIT, FILIP NAJMAN, AND OANA PADURARIU

Abstract. Building on Mazur’s 1978 work on prime degree isogenies, Kenku
determined in 1981 all possible cyclic isogenies of elliptic curves over Q. Although
more than 40 years have passed, the determination of cyclic isogenies of elliptic
curves over a single other number field has hitherto not been realised.

In this paper we develop a procedure to assist in establishing such a determin-
ation for a given quadratic field. Executing this procedure on all quadratic fields
Q(

√
d) with |d| < 104 we obtain, conditional on the Generalised Riemann Hypo-

thesis, the determination of cyclic isogenies of elliptic curves over 19 quadratic
fields, including Q(

√
213) and Q(

√
−2289). To make this procedure work, we de-

termine all of the finitely many quadratic points on the modular curves X0(125)
and X0(169), which may be of independent interest.

1. Introduction

An important problem in the theory of elliptic curves over number fields is to
understand their possible torsion groups, parametrised by noncuspidal points on
the modular curves X1(m,n), and possible isogenies, parametrised by noncuspidal
points on X0(N). Mazur [Maz77] determined the possible torsion groups over Q

and Kamienny, Kenku and Momose [Kam92, KM88] determined the possible torsion
groups over quadratic fields. More recently, Derickx, Etropolski, van Hoeij, Morrow
and Zureick-Brown [DEv+21] determined the possible torsion groups over cubic
fields and Derickx, Kamienny, Stein and Stoll [DKSS] determined all the primes
dividing the order of some torsion group over number fields of degree 4 ≤ d ≤ 7.
Merel proved that the set of all possible torsion groups over all number fields of
degree d is finite, for any positive integer d [Mer96]. All the possible torsion groups
over a fixed number field K, for many fixed number fields of degree 2, 3 and 4 have
been determined, see [Naj10, BN16, Trb20], but all the possible isogenies have not
been determined over a single number field other than Q.

Unfortunately, much less is known about possible isogeny degrees - for any d > 1
it is not known what the possible cyclic isogeny degrees of all elliptic curves over all
number fields of degree d are. However, the second author [Naj18] determined all
the prime degree isogenies of non-CM elliptic curves E with j(E) ∈ Q for number
fields d ≤ 7 (and conditionally on Serre’s uniformity conjecture for all d). This has
been extended to all d > 1.4× 107 unconditionally by Le Fourn and Lemos [LL21,
Theorem 1.3].

Mazur [Maz78] determined all the possible primes which arise as degrees of ra-
tional isogenies over Q, and explained in the introduction of his paper that to
determine all the possible cyclic isogeny degrees, it suffices to determine the Q-
rational points on X0(N) for a small list S(Q) of composite integers N . We will
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recall this method allowing one to go from prime degree isogenies to composite
degree isogenies in Section 2, and will henceforth refer to it as Mazur’s strategy.
Results known at the time allowed Mazur to deal with all but five of these val-
ues, viz. N = 39, 65, 91, 125, 169. These five cases were subsequently dealt with
by Kenku [Ken79, Ken80a, Ken80b, Ken81], who showed for these five values that
X0(N)(Q) consists only of the cusps, yielding the explicit determination of the cyc-
lic isogeny degrees over the rationals. The results are summarized in Table 1.1
below, in which g denotes the genus of X0(N) and ν is the number of noncuspidal
Q-rational points on X0(N).

N g ν N g ν N g ν
≤ 10 0 ∞ 11 1 3 37 2 2
12 0 ∞ 14 1 2 43 3 1
13 0 ∞ 15 1 4 67 5 1
16 0 ∞ 17 1 2 163 13 1
18 0 ∞ 19 1 1
25 0 ∞ 21 1 4

27 1 1

Table 1.1. Cyclic isogenies over Q.

Theorem 1.1 (Mazur, Kenku). Table 1.1 is a complete classification of all rational
cyclic isogenies of elliptic curves over Q.

Since the appearance of Kenku’s final paper in 1981, such an explicit determ-
ination has not been exhibited for any other number field. This is the primary
motivation for the present work. An important ingredient in our work will be
the algorithm to determine isogenies of prime degree for fixed quadratic fields K
recently developed by the first author [Ban22] assuming the Generalised Riemann
Hypothesis (GRH). Computing the resulting composite integers S(K) to be treated
in Mazur’s strategy yields a list typically larger than S(Q). Although the subject
of higher degree points on modular curves has seen much recent development (see
e.g. [Box21, AAB+21, NV, BGG21]), some of the values N ∈ S(K) are such that
X0(N) has large genus, and therefore the determination of the K-rational points
on X0(N) is beyond current methods. For this reason, we search for ‘convenient’
quadratic fields K for which (among other conditions) the largest value in S(K) is
169. This limits the genus of X0(N) and thereby allows many of the recently de-
veloped computational methods to succeed. Our search strategy will be explained
in Section 3.

Among the quadratic fields Q(
√
d) with |d| < 104, we find 133 which satisfy our

definition of convenient, and therefore, for these quadratic fields, we have some
positive hope that we may be able to completely determine the Q(

√
d)-rational

points on X0(N) for N ∈ S(Q(
√
d)). Carrying out this program - that is, applying

the various known methods (summarised in Section 4) for determining whether or
not X0(N) has noncuspidal quadratic points over a fixed quadratic field - is the
main technical heart of the paper, and yields our main result.
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Theorem 1.2. Let d be one of the following 19 values:

−6846, −2289, 213, 834, 1545, 1885, 1923,

2517, 2847, 4569, 6537, 7131, 7302,

7319, 7635, 7890, 8383, 9563, 9903.

(1.1)

Then, assuming GRH, Table 7.1 lists all cyclic isogenies of elliptic curves defined
over Q(

√
d) that are not contained in Table 1.1.

For the convenience of the reader, we provide here the analogous table to Table 1.1
for the smallest absolute value in the list (1.1).

N g ν N g ν N g ν
≤ 10 0 ∞ 14 1 2 27 1 ∞
12 0 ∞ 15 1 ∞ 32 1 ∞
13 0 ∞ 17 1 2 36 1 ∞
16 0 ∞ 19 1 1 37 2 2
18 0 ∞ 20 1 ∞ 43 3 1
25 0 ∞ 21 1 4 67 5 1
11 1 3 24 1 ∞ 163 13 1

Table 1.2. Cyclic isogenies over Q(
√
213), assuming GRH.

Comparing this with the situation of isogenies over Q, we observe several more
values of N for which there are infinitely many elliptic curves with a cyclic isogeny
of degree N over our quadratic field. These are all explained by the genus 1 modular
curves which attain positive rank over Q(

√
d). We do not obtain values of N larger

than those over Q due to our searching for ‘convenient’ quadratic fields to consider.
Obtaining such results for a general number field K (not just quadratic) will

require enumeration of the K-rational points on some of the same modular curves
each time. Indeed, as shown in Lemma 2.2, the values N = 91, 125, 163, 169 are
guaranteed to arise whenever one attempts to enumerate the cyclic isogenies over
any given number field. Since, for these values of N , the modular curve X0(N)
admits only finitely many quadratic points, it would be valuable to have an explicit
answer to the following.

Question 1.3. For N = 91, 125, 163, 169, can one determine all of the finitely many
quadratic points on X0(N)?

Determining the quadratic points on X0(91) has recently been done by Vukorepa
[Vuk]. In this paper we deal with 125 and 169, yielding the following result.

Theorem 1.4. All finitely many quadratic points on X0(125) and X0(169) are as
described in Table 6.1 and Table 6.2 in Section 6.

Of particular note here is the existence of a point on X0(125) defined over the
quadratic field Q(

√
509) which is not CM and which appears not to have been pre-

viously known. Evaluating the j-map at this point yields the following j-invariant
of an elliptic curve over Q(

√
509) which admits a cyclic 125-isogeny:

j509 =
2140988208276499951039156514868631437312±94897633897841092841200334676012564480

√
509

161051
.
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This is perhaps surprising because, as N gets larger, the non-CM quadratic points
on X0(N) become rarer; for example we note that, of the curves X0(N) appear-
ing in [NV] which have finitely many quadratic points, all of them have either no
noncuspidal points or only CM points.

As in Kenku’s work, most of the effort for the determination of cyclic isogenies
lies in showing that X0(N) consists only of the cusps. The methods that we use
for this have been implemented in Sage [The20]. Moreover, obtaining Theorem 1.4
was achieved with the aid of Magma [BCP97], and certain parts of the computation
were verified in PARI/GP [The21]. All of the the code used in our work may be
found at the following GitHub repository:

https://github.com/barinderbanwait/quadratic_kenku_solver

Paths to filenames given throughout the paper are relative to the top directory in
this repository. In particular, we note that this repository has developed a command
line tool (in sage_code/quadratic_kenku_solver.py) which automates many of
the necessary steps to assist in the determination of cyclic isogenies over a given
quadratic field (more details at the end of Section 7).

The outline of the paper is as follows. Section 2 explains the strategy of Mazur to
reduce the problem to determining all K-rational points on a finite and computable
list of modular curves. Section 3 describes the searching method to identify the
133 convenient quadratic fields, and Section 4 gives an overview of the methods we
used to determine K-rational points on modular curves for fixed quadratic fields K.
While the 19 values in 1.1 were found from running our implementation, it would
be illuminating for the reader to have one case worked out in detail; this is done in
Section 5 for the quadratic field Q(

√
213). Theorem 1.4 is proved in Section 6, and

Section 7 carries out the computation of the “graph of rational isogenies”, which is
Part 2 of Mazur’s strategy. Finally in Section 8 we outline avenues for further work
into this problem.
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2. Mazur’s strategy

Throughout this section K will denote a number field that does not contain the
Hilbert class field of an imaginary quadratic field, unless otherwise specified.

Mazur’s approach to settling the question of rational isogenies for all N was based
on the following notion: an integer N is said to be minimal of positive genus if
the genus of X0(N) is positive, but the genus of X0(d) is zero for all proper divisors
d of N . Note that if N ≥ 17 is prime, then N is minimal of positive genus.

The strategy then is to carry out the following two computational steps:

(a) one determines X0(N)(Q) for all N which are minimal of positive genus,
and

(b) for every elliptic curve E/Q possessing a rationalN -isogeny, with N minimal
of positive genus, one determines the “graph of rational isogenies” of E.

Here, by “graph of rational isogenies of E”, one means to construct the finitely
many elliptic curves which are isogenous to E via a rational isogeny, as well as
determine the isogenies of minimal degree between the curves in this isogeny class.
See [Cre97, Section 3.8] for more on the computations for this over Q.

The fact that step (a) is a finite computation rests both on Mazur’s main theorem
in [Maz78] that X0(p)(Q) consists only of the cusps for primes p > 163, as well as
on the fact that whenever X0(N) is an elliptic curve, X0(N) has rank zero over Q.
However, neither of these statements is necessarily true over other number fields.
We therefore introduce a new notion.

Definition 2.1. Let K be a number field that does not contain the Hilbert class
field of an imaginary quadratic field. An integer N is said to be minimally finite

for K if the following conditions are satisfied:

(1) X0(N)(K) is finite;
(2) X0(d)(K) is infinite for all proper divisors d of N ;
(3) N is supported only at primes p for which there exists an elliptic curve over

K admitting a K-rational p-isogeny.

The set of such integers is denoted MF(K).

The restriction on K and condition 3 have been included to ensure that MF(K)
is a finite set; for otherwise it will trivially contain every prime p ≥ 23. (This
diverges slightly from Mazur’s framing of the notion of minimal of positive genus,
since again, every prime p ≥ 23 is trivially minimal of positive genus; however, apart
from 37, 43, 67 and 163, X0(p)(Q) consists only of the cusps, so can be ignored in
the subsequent step (b).)

Mazur’s strategy for general K then proceeds with this new notion as follows:

(a) one determines X0(N)(K) for all N which are minimally finite for K, and
(b) for every elliptic curve E/K possessing a rational N -isogeny, with N min-

imally finite for K, one determines the “graph of rational isogenies” of E.

Step (b) is a trivial matter to deal with; indeed, all of Sage [The20], PARI/GP
[The21] and Magma [BCP97] have fast implementations for computing the isogeny
graph of a given elliptic curve; see Section 7 for details on this.

In this section we first identify the set of levels N that necessarily arise in step
(a) for any number field K. We refer to these levels N as always minimally finite,
and denote this set by AMF.
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Lemma 2.2. We have

AMF = {26, 35, 37, 39, 43, 50, 65, 67, 91, 125, 163, 169} .
Proof. The set of integers N which are minimally finite for every number field must
have the property that X0(N)(K) is finite for every number field K, but for every
proper divisor d | N , X0(d)(K) is infinite. If N is prime, then this latter condition
is empty, and we find that the genus of X0(N) must be greater than 1. Condition
3 then implies that N must be one of 37, 43, 67 and 163. For composite N , by
considering the genera of X0(N) and X0(d), one sees that the set of such levels N is
precisely the subset of the composite integers identified by Mazur as being minimal
of positive genus, with the further restriction that X0(N) does not have genus 1.
Mazur’s list is given as

14, 15, 20, 21, 24, 26, 27, 32, 35, 36, 39, 49, 50, 65, 91, 125, 169

from which one obtains AMF as in the statement above. �

Next, we describe a procedure which allows one to determine the MF(K) for a
given number field K. This procedure is an algorithm if one assumes the Birch-
Swinnerton–Dyer conjecture, as the only issue that stops it from being an algorithm
unconditionally is the computation of the rank of elliptic curves over Q in step 1
below. This procedure works very quickly in practice and in the vast majority of
cases gives an unconditionally true result, hence we will refer to it as an algorithm.

Algorithm 2.3. Given a number field K not containing the Hilbert class field of
an imaginary quadratic field, compute MF(K) as follows.

(1) (Genus 1) Compute the set of N for which X0(N) is an elliptic curve with
rank 0 over K; call this set S1(K); denote by B(K) the complementary set
of N for which X0(N) is an elliptic curve with positive rank over K;

(2) (Genus ≥ 2; prime level) Compute the set of primes p for which X0(p)(K)
admits noncuspidal points and has genus ≥ 2; call this set S2(K);

(3) (Genus ≥ 2; composite level) Compute the set of products pb for

p ∈ {2, 3, 5, 7, 11, 13, 17, 19}
and b ∈ B(K); call this set S3(K);

(4) Set Output := S1(K) ∪ S2(K) ∪ S3(K) ∪ AMF;
(5) (Remove multiples) Remove multiples from Output (that is, values y in Out-

put for which there exists an x in Output such that x divides y);
(6) Return Output.

Proof. We need to prove that the output of the algorithm is indeed MF(K) as
claimed.

We first consider minimally finite N for which X0(N) has genus 1. This means
that X0(N) is an elliptic curve with rank 0 over K. There are only twelve levels N
for which X0(N) is an elliptic curve, viz.

11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49, (2.1)

and it is readily observed that for each integer N in this list, any proper divisor d of
N is such that X0(d) has genus 0, so in particular admits infinitely many K-rational
points. Thus the levels N in this list for which X0(N) has rank 0 over K are indeed
minimally finite for K; this accounts for the set S1(K) in step 1.
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We next consider minimally finite N for which X0(N) has genus > 1. For the
prime values of N , this is covered by the set S2(K) in step 2 , so for the rest of the
proof we consider the case of composite N . We observe that the only primes which
may divide N are the primes ≤ 19, since primes p ≥ 23 are such that the genus of
X0(p) is at least 2 (and hence admit only finitely many K-rational points).

By definition of N being minimally finite, we have that X0(d)(K) is infinite for
all proper divisors d of N . There are two ways this could happen: either all of
the X0(d) have genus 0; or at least one of them has genus 1 and has positive rank
over K. The first case yields integers which must be contained in AMF, so we are
further reduced to considering the levels N which are multiples of the integers in
B(K) computed in step 1. Moreover, since any multiple of the integers in 2.1 yields
an N for which X0(N) has genus at least 2, we may restrict to considering only
multiples of the integers in B(K) by prime values which, as we observed earlier, are
bounded by 19. This explains the computation happening in step 3.

Step 5 is required since the set Output computed in step 4 may contain multiples
within it (that is, one member is a proper multiple of another). These proper
multiples are clearly not minimal of positive genus, so are removed before being
returned. �

Remark 2.4. With the exception of the set S2(K), the above algorithm is imple-
mented as minimally_finite(d) in sage_code/utils.py. For S2(K), one may
use the program Isogeny Primes explained in [BD22], building on work of the first
author [Ban22].

Example 2.5. Running the program Isogeny Primes for the two quadratic fields
Q(

√
−5) and Q(

√
5) yields that the sets S2 in each case are {23} and {23, 47}

respectively. Therefore, running minimally_finite(d) for d = −5 and 5 we obtain
the following.

MF(Q(
√
−5)) = AMF ∪ {23, 11, 15, 17, 19, 20, 28, 36, 42, 48,

54, 63, 64, 81, 98, 147, 343} .
MF(Q(

√
5)) = AMF ∪ {23, 47, 11, 14, 15, 19, 20, 21, 24, 34,

36, 49, 51, 54, 64, 81, 85, 119, 221, 289} .

(2.2)

3. Searching for convenient quadratic fields

Equation (2.2) shows that, to carry out Mazur’s strategy for the two quadratic
fields K = Q(

√
5) and K = Q(

√
−5), it is necessary to determine the K-rational

points on large genus modular curves such as X0(289) and X0(343). Unfortunately,
the large genera of these curves is a significant obstacle to employing several of the
known methods for determining quadratic points on modular curves.

For this reason we searched through all squarefree integers −10,000 < d < 10,000
and returned d if the following conditions were satisfied:

(1) Q(
√
d) is not an imaginary quadratic field of class number one (which ensures

that the set of cyclic isogeny degrees is finite);

(2) the values in MF(Q(
√
d)) larger than 100 are only either the unavoidable

125, 163 and 169, or are values N for which all of the quadratic points on
X0(N) have been determined;



8 BARINDER S. BANWAIT, FILIP NAJMAN, AND OANA PADURARIU

(3) the Mordell-Weil group of the Jacobian of the modular curve X+
0 (163) does

not grow when base-extended from Q to Q(
√
d).

The third filter here has been employed to enable the ‘No growth in plus-part’
method explained in Section 4 to successfully deal with the case of 163, which
is otherwise a difficult case to surmount. Values d surviving these filters are the
‘convenient’ values mentioned in the Introduction, since the subsequent task of
determining all Q(

√
d)-rational points on the finitely many resulting modular curves

is made somewhat easier to carry out.
The search algorithm is implemented as search_convenient_d in sage_code/

utils.py; running it for the range described above yields 133 convenient values
of d, the smallest of which is −9946, the largest is 9995, and only 26 of which are
negative.

4. Overview of the methods used

This section gives an overview of the methods we employ to determine the K-
rational points on modular curves (for K a quadratic field). The following notation
will be used:

K = a quadratic field;

J0(N) = Jacobian variety of X0(N);

wN = Atkin-Lehner involution on X0(N);

X+
0 (N) = X0(N)/〈wN〉;

J0(N)+ = the sub-abelian variety (1 + wN)J0(N);

J0(N)− = the sub-abelian variety (1− wN)J0(N);

J+
0 (N) = the quotient abelian variety J0(N)/J0(N)−;

J−
0 (N) = the quotient abelian variety J0(N)/J0(N)+.

Thus J+
0 (N) (respectively J−

0 (N)) are quotients of J0(N) on which wN acts as +1
(respectively −1). Moreover, from [Maz77, Chapter II Section 10], we have that
J+
0 (N) and J0(N)+ are isomorphic as abelian varieties over Q.

4.1. Quotient Method. Given an explicit map between curves ϕ : C → D,
whenever we are able to determine the K-rational points on D, we can compute
their preimages and so determine C(K). A particularly convenient case is when D
is an elliptic curve of rank 0 over K. This is used to deal with N = 37 in Section 5.2.

4.2. Catalogues of quadratic points. We use existing classifications of quad-
ratic points on low-genus modular curves, due to several independent works in
recent years; in order of appearance, these are: Bruin-Najman [BN16], Özman-
Siksek [ÖS19], Box [Box21], Najman-Vukorepa [NV], and Vukorepa [Vuk]. In short,
quadratic points on X0(N) are classified non-exceptional or exceptional accord-
ing to whether or not they arise as pullbacks of Q-rational points on a quotient
X0(N)/〈wd〉 (d is usually chosen such that the quotient is of minimal genus). Apart
from N = 37 which is known to be a special case and is treated separately in Box’s
paper, there are only finitely many exceptional quadratic points, and the afore-
mentioned works determine all such. In some cases, there are only finitely many
quadratic points at all, and these are completely determined in those cases.
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4.3. Özman sieve. Even when there are infinitely many non-exceptional quadratic
points on X0(N), it is sometimes possible to rule out the existence of such points

over fixed quadratic fields. One method for this is based on a result of Özman
[Özm12], and is explained in greater detail as Proposition 7.3 in [Ban22]. This
is used for N = 65 in Section 5.3. The package Isogeny Primes mentioned in
Remark 2.4 contains an implementation of the Özman sieve.

4.4. Trbović filter. Another method to rule out possible non-exceptional quad-
ratic points on X0(N) is based on work of the second author with Trbović [NT22,
Theorem 2.13], and applies in the case that X0(N) is hyperelliptic of genus ≥
2. The aforementioned result lists the primes less than 100 which must be un-
ramified in any quadratic field K such that X0(N) admits a K-rational point
which is not a Q-rational point. These unramified primes have been encoded into
sage_code/quadratic_points_catalogue.json. We refer to this method as the
Trbović filter, and is used to deal with all hyperelliptic values we need to consider
apart from N = 37.

4.5. The ‘No growth in plus-part’ method. This is analogous to the ‘No
growth in minus-part’ method of [Ban22, Lemma A.2], and may be summarised
as follows.

Proposition 4.1. Let K be a quadratic field, and N an integer such that:

(1) X+
0 (N) has positive genus;

(2) J+
0 (N)(K) has trivial torsion;

(3) rk(J+
0 (N)(K)) = rk(J+

0 (N)(Q));

Then any K-rational point on X0(N) arises as the pull-back of a Q-rational point
on X+

0 (N).

Proof. For ease of notation in this proof, we write J = J+
0 (N), which by condition 1

is non-trivial. Conditions 2 and 3 tell us that J(K) and J(Q) are isomorphic as
abstract groups. We begin by showing that, in fact, they are equal as sets.

Let r = rkJ(Q) = rkJ(K), let V = [v1, . . . , vr] be the vector of generators of
J(Q), and let W = [w1, . . . , wr] be the vector of generators for J(K). Then there
exists an r × r matrix M with coefficients in Z such that MW = V . The matrix
M−1 may not have coefficients in Z, but there exists an integer d such that dM−1

has integer coefficients. Then

dW = (dM−1)V,

so dwi = dwi ∈ J(Q). Then d(wi − wi) = 0, which implies that either wi = wi

or we have a torsion point. Since the torsion of J(K) is trivial, we conclude that
J(K) = J(Q) as sets.

Writing C for X+
0 (N), this implies that C(K) = C(Q). Indeed, fixing a Q-

rational point P of C (e.g. the image of any of the Q-rational cusps of X0(N)) and
considering the Abel-Jacobi map

ιP : C → J, Q 7→ [Q− P ],

we see that, if Q ∈ C(K), then ιP (Q) = [Q − P ] ∈ J(K) = J(Q), and hence
Q ∈ C(Q). Therefore, we find that any K-rational point on X0(N) in fact arises
as the pullback of a Q-rational point on X+

0 (N) under the natural map X0(N) →
X+

0 (N). �
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This is used to deal with N = 37 in Section 5.2, and N = 43 and 163 in Sec-
tion 5.3. The reason we call this the ‘no growth in plus-part’ method is because
condition 2 is equivalent to J+

0 (N) gaining no new torsion when base-changed from
Q to K; indeed, that J+

0 (N) has only trivial Q-torsion is a theorem of Mazur
[Maz77, Theorem 3].

4.6. Symmetric Chabauty with Mordell-Weil sieve. The determination of
all quadratic points on X0(N) for N = 125 and N = 169 is approached using the
Box-Siksek method as developed in [Box21], and using the improvements developed
in [NV]. The Box-Siksek method is based on a combination of Siksek’s relative
Symmetric Chabauty method as developed in [Sik09] together with a Mordell-Weil
sieve. We will give more details of this in Section 6 for our particular setup.

5. An example - Cyclic isogenies over Q(
√
213)

To illustrate how the methods in the previous section may be used to carry out
step (a) of Mazur’s strategy, we provide an extended example with the smallest ab-
solute value of d for which we were able to successfully determine all cyclic isogenies
over Q(

√
d), namely, d = 213. The set of minimally finite values to be considered

here is as follows.

MF(Q(
√
213)) = AMF ∪ {11, 14, 17, 19, 21, 30, 40, 45, 48,

49, 54, 64, 72, 75, 81} .
(5.1)

Since the determination of rational points on X0(N) depends in large part on the
geometry of the modular curve, we have split the values of N to be considered ac-
cording to whether the curve is elliptic, hyperelliptic, or non-hyperelliptic. Through-
out this section we set K = Q(

√
213).

5.1. The elliptic cases. Here we deal with the values of N in MF(K) for which
X0(N) is an elliptic curve.

Lemma 5.1. Let K = Q(
√
213), and let N be an integer such that X0(N) has

genus 1, viz.
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49.

Then X0(N)(K)tors = X0(N)(Q)tors. In particular, for the genus one values N in
MF(K) in Equation (5.1), the j-invariants of K-rational points on X0(N) are the
same as over Q, which are given in Table 5.1.

Proof. The claims here are all readily achieved via Magma computation; for veri-
fying no growth in torsion see the procedure CheckTorsionGrowth, and for the
computation of j-invariants see EllipticJInvs, both in magma_code/utils.m �

5.2. The hyperelliptic cases. In this section we deal with the minimally finite
N for which X0(N) is hyperelliptic of genus at least 2, which are as follows:

26, 30, 35, 37, 39, 40, 48, 50. (5.2)

Proposition 5.2. For N as in 5.2, we have X0(N)(K) = X0(N)(Q). In particular,
for N 6= 37, X0(N)(K) consists only of the cuspidal points, and X0(37)(K) admits
two noncuspidal points defined over Q, with corresponding j-invariants:

−9317 and − 162677523113838677.
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N j(X0(N)(Q))
11 −32768,−24729001,−121
14 −3375, 16581375
17 −882216989

131072
, −297756989

2
19 −884736
20 ✗

21 −189613868625
128

, 3375
2
, −140625

8
, −1159088625

2097152
36 ✗

49 ✗

Table 5.1. The finitely many j-invariants of elliptic curves corres-
ponding to Q-rational points on genus one modular curves X0(N).
The symbol ✗ means that X0(N)(Q) consists only of cusps.

Proof. The Trbović filter (Section 4.4) applies to all of the values we need to con-
sider apart from N = 37, and shows, for each such N and K, that X0(N)(K) =
X0(N)(Q). The verification of this may be found in sage_code/hyperelliptic_

verifs.py. That the Q-rational points on these modular curves consists only of
the cusps was already known to Mazur prior to the appearance of [Maz78].

For N = 37 we take the following model for the genus 2 curve X0(37):

X0(37) : y
2 = −x6 − 9x4 − 11x2 + 37.

Taking the quotient of X0(37) by the isomorphism (x, y) 7→ (−x,−y) we obtain an
elliptic curve E/Q of rank 0 over K. (The elliptic curve E is J0(37)

−, with Cremona
label 37b1.) By looking at the preimages of the finitely many points in E(K) we
may conclude that X0(37)(K) = X0(37)(Q) (see the function ComputePreimages

in magma_code/X037.m) for this verification). That this latter set admits only two
noncuspidal points is a classical result of Mazur and Swinnerton-Dyer [MSD74,
Proposition 2]. �

5.3. The non-hyperelliptic cases. In this section we deal with the non-hyperelliptic
minimally finite N , which are as follows:

43, 45, 54, 64, 65, 67, 72, 75, 81, 91, 125, 163, 169. (5.3)

Proposition 5.3. For N as in 5.3, we have X0(N)(K) = X0(N)(Q). In particular,
for N /∈ {43, 67, 163}, X0(N)(K) consists only of the cuspidal points, and for N ∈
{43, 67, 163}, X0(N) admits precisely one noncuspidal point, whose corresponding
j-invariants are given in Table 5.2.

N g ν j(X0(N)(K))
43 3 1 −884736000
67 5 1 −147197952000
163 13 1 −262537412640768000

Table 5.2. The j-invariants of the noncuspidal rational points on
X0(43), X0(67), and X0(163).



12 BARINDER S. BANWAIT, FILIP NAJMAN, AND OANA PADURARIU

The proof will occupy the rest of the section. A number of claims are established
via Sage or Magma computation; these can respectively be found in sage_code/

non_hyperelliptic_verifs.py or magma_code/non_hyperelliptic_verifs.m.

5.3.1. N = 43. We apply [Ban22, Lemma A.2], where we use steps 5–7 of [BD22,
Algorithm 7.9] to show that J0(43)−(K) = J0(43)−(Q). This shows that the only
source ofK-rational points onX0(43) beyond theQ-rational points must correspond
to elliptic curves with CM by an order in Q(

√
−43). The inbuilt Sage function cm_

j_invariants shows that the j-invariant of any such elliptic curve must be defined
over Q, whence we find that the only K-rational point on X0(43) corresponds to the
Q-rational point, which is a CM-point with discriminant −43, whose j-invariant is
−884736000.

The code to verify the computational claims made here may be found in sage_

code/non_hyperelliptic_verifs.py.

5.3.2. N = 45, 54, 63, 64, 72, 75, 81. This follows directly from [ÖS19, Tables].

5.3.3. N = 65. [Box21, Section 4.5] shows that X0(65) admits no exceptional quad-
ratic points, and the Özman sieve shows that it admits no non-exceptional K-
rational points.

5.3.4. N = 67. [Box21, Section 4.6] determined all quadratic points on X0(67).
From this we obtain that the only K-rational point on X0(67) is the one CM point
defined over Q, with j-invariant −147197952000.

5.3.5. N = 91. This is dealt by Vukorepa [Vuk] where all the quadratic points on
X0(91) are determined, and none are rational over K.

5.3.6. N = 163. We apply Proposition 4.1 to show that any K-rational points on
X0(163) must arise as pullbacks of Q-rational points on X+

0 (163). Conditions 2
and 3 are checked in magma_code/NonHyperellipticVerifs.m. [AAB+21, Section
5.3] shows that X+

0 (163)(Q) consists only of one cusp, together with CM-points.
Therefore, any pullback of these points under the hyperelliptic involution must
themselves be either cuspidal or CM points. As in Section 5.3.1, a quick Sage
computation reveals that we have only the one Q-rational CM-point known to
Mazur.

5.3.7. N = 125, 169. These are dealt with in Section 6.
This concludes step (a) of Mazur’s strategy for Q(

√
213). Step (b) will be carried

out in Section 7.

6. Quadratic points on X0(125) and X0(169)

In this section we compute all the quadratic points on X0(125) and X0(169).
To do this, we apply the approach developed by the second author with Vukorepa
[NV], which in turn builds on the results of Box [Box21] and Siksek [Sik09].

In particular, we use the same approach which had been used in [NV, Section
7.5.] to determine the quadratic points on X0(131). Let N = 125 or 169, let
D∞ := 0 + ∞ the sum of the two rational cusps of X0(N). Using the sieve from
[NV] using the operator I := 1 − wN , we obtain that for any unknown effective
rational divisor of degree 2 in X0(N)(2), it holds that (1 − wN)[Q − D∞] = 0. It
follows that [Q−D∞] = wN([Q−D∞]) and hence, since wN acts trivially on D∞,
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Name d Coordinates j-invariant CM

P1 −1 (−2w : 1/2w : w : w : 1/2w : 1/2w : 1 : 1) 287496 −16
P2 509 (−38/509w : 21/509w : −12/509w : 5/509w : 1/509w : −1/509w : −1 : 1) j509 NO
P3 −11 (−4/11w : 1/11w : 2/11w : 1/11w : 1/11w : 1/11w : 1 : 1) −32768 −11
P4 −1 (1/2w : 1/4w : −1/2w : 0 : 1/4w : −1/4w : −1 : 1) 1728 −4
P5 −19 (0 : −1/19w : 0 : 0 : −1/19w : 0 : 1 : 0) −884736 −19

Table 6.1. The finitely many quadratic points on X0(125). See the
Introduction for the expression for j509.

[Q − wN(Q)] = 0. Since X0(N) is not hyperelliptic, it follows that Q = wN(Q)
(as divisors). Hence, Q is a pullback of a point in X+

0 (N)(Q) with respect to the
quotient map X0(N) → X+

0 (N).
The curve X+

0 (169) is isomorphic to Xs(13), which is known to have 7 rational
points by [BDM+19, Theorem 1.1] and the curve X+

0 (125) is known to have 6
rational points [AM, Section 4].

Hence, after computing the pullbacks of the rational points on X+
0 (N), we have

all the quadratic points on X0(N). Using data provided to us by the authors
of [CGPS22] and which can be obtained using [CGPS22, Theorem 3.7], we can
conclude over which quadratic fields there exist CM points and how many there
are. This allows us to conclude that the only non-CM points are the points on
X0(125) defined over Q(

√
509). Their j-invariants are as given in the Introduction.

Our results are below. We list all the quadratic points, where w denotes
√
d.

6.1. X0(125). Model for X0(125):

x2

1 − 10x2x3 + 10x3x4 − 9x2

4 − 28x4x5 + 70x4x6 − 19x2

5 − 85x2

6 − x2

7 − 4x2

8 = 0,

x1x2 − 5x2x3 + 4x3x4 − x2

4 − 14x4x5 + 23x4x6 − 6x5x6 − 18x2

6 − x7x8 − x2

8 = 0,

x1x3 − 2x2x3 − x2

3 + 2x3x4 + 5x3x5 − x2

4 − 7x4x5 + 13x4x6 − 6x5x6 − 8x2

6 − x2

8 = 0,

x1x4 − x2x3 + 3x3x5 − x4x5 + 5x4x6 − 4x5x6 = 0,

x1x5 − x3x4 + 2x3x5 + x4x5 + x4x6 − x5x6 + x2

6 = 0,

x1x6 + x3x5 − x2

4 + x4x5 + 2x4x6 − 2x5x6 + 2x2

6 = 0,

x1x8 − x2x7 + x3x7 − x4x7 + x4x8 + x5x7 − x6x7 + 3x6x8 = 0,

x2

2 − 2x2x3 − x2

3 + 2x3x4 + 2x3x5 − x2

4 − 8x4x5 + 14x4x6 − x2

5 − 2x5x6 − 14x2

6 − x2

8 = 0,

x2x4 − x2

3 + 3x4x5 − 4x4x6 + 4x2

6 = 0,

x2x5 − x2

4 + 2x4x5 + x4x6 − x2

5 − x5x6 − x2

6 = 0,

x2x6 − x3x5 + x4x5 − x4x6 + x5x6 = 0,

x2x8 − x3x7 + x4x7 − x4x8 + x6x7 = 0,

x3x6 − x4x5 + x4x6 − 2x2

6 = 0,

x3x8 − x4x7 + x4x8 − 2x6x8 = 0,

x5x8 − x6x7 = 0.

Genus of X0(125): 8.
Genus of X+

0 (125): 2.
Rational cusps: P1 := (1 : 0 : 0 : 0 : 0 : 0 : 1 : 0), P2 := (−1 : 0 : 0 : 0 : 0 : 0 : 1 : 0).
Torsion group of J0(125)(Q) : Z/25Z · [P1 − P2].
Quadratic points (up to conjugation): See Table 6.1.

Primes used in sieve: 3, 7.
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Name d Coordinates j-invariant CM

P1 −1 (w : 0 : 0 : −1/2w : −1/2w : 1 : 1 : 1) 287496 −16
P2 −1 (0 : −1/2w : 0 : 1/4w : 3/4w : 1 : −1 : 1) 1728 −4
P3 −3 (−1/3w : 1/3w : 1/3w : −1/3w : 0 : 1 : 1 : 0) 54000 −12
P4 −3 (−5/18w : 1/6w : 1/6w : 1/2w : 1/9w : 5/2 : 3/2 : 1) 0 −3
P5 −3 (1/3w : 0 : 0 : 0 : −1/3w : 1 : 0 : 1) −12288000 −27
P6 −43 (2/43w : −1/43w : −2/43w : 2/43w : 2/43w : 0 : 1 : 0) −884736000 −43

Table 6.2. The finitely many quadratic points on X0(169).

6.2. X0(169). Model for X0(169):

x2

1 − 12x2

3 − 4x3x4 + 12x3x5 − 8x2

4 − 12x4x5 − 4x2

5 − x2

6 + 4x6x8 − 4x2

7 − 4x2

8 = 0,

x1x2 − 7x2

3 − 2x3x4 + 8x3x5 − 3x2

4 − 8x4x5 + 3x2

5 − x6x7 + 2x6x8 − 2x2

7 − x2

8 = 0,

x1x3 − 21/8x2

3 − 9/4x3x4 + 13/4x3x5 − 25/8x2

4 − 11/4x4x5 − 45/8x2

5 + 1/2x6x8 − 3/2x2

7 + 1/2x7x8 − 19/8x2

8 = 0,

x1x4 − 15/8x2

3 + 1/4x3x4 + 15/4x3x5 − 3/8x2

4 − 5/4x4x5 + 9/8x2

5 + 1/2x6x8 − 1/2x2

7 − 1/2x7x8 − 1/8x2

8 = 0,

x1x5 − x3x4 − x2

4 + x4x5 − 2x2

5 − x2

8 = 0,

x1x7 − x2x6 + 2x4x6 − 4x4x7 + x4x8 + 2x5x6 + 3x5x7 − 2x5x8 = 0,

x1x8 − x3x6 + x4x6 − 2x4x7 + 3x5x6 + 2x5x7 − 2x5x8 = 0,

x2

2 − 3x2

3 − 2x3x4 + 2x3x5 − 3x2

4 − 2x4x5 − 3x2

5 − x2

7 − x2

8 = 0,

x2x3 − 19/8x2

3 + 1/4x3x4 + 11/4x3x5 + 1/8x2

4 − 13/4x4x5 + 21/8x2

5 + 1/2x6x8 − 1/2x2

7 − 1/2x7x8 + 3/8x2

8 = 0,

x2x4 − 3/8x2

3 − 3/4x3x4 + 3/4x3x5 − 7/8x2

4 − 1/4x4x5 − 27/8x2

5 + 1/2x6x8 − 1/2x2

7 + 1/2x7x8 − 13/8x2

8 = 0,

x2x5 − 1/2x2

3 + x3x5 + 1/2x2

4 + 3/2x2

5 + 1/2x2

8 = 0,

x2x7 − x3x6 − 1/2x4x8 + 2x5x6 + 1/2x5x7 − 2x5x8 = 0,

x2x8 − x4x6 + x4x7 + x4x8 − x5x7 = 0,

x3x7 − x4x6 + 2x4x7 − 2x5x6 − x5x7 + 2x5x8 = 0,

x3x8 − x5x6 + x5x8 = 0.

Genus of X0(169): 8.
Genus of X+

0 (169): 3.
Rational cusps: P1 := (1 : 0 : 0 : 0 : 0 : 1 : 0 : 0), P2 := (−1 : 0 : 0 : 0 : 0 : 1 : 0 : 0).
Torsion group of J0(169)(Q) : Z/7Z · [P1 − P2].
Quadratic points (up to conjugation): See Table 6.2.

Primes used in sieve: 3, 5.

7. Computing isogeny graphs

For a general number field K, step (b) of Mazur’s approach is to construct,
for the j-invariants of each of the noncuspidal K-rational points on X0(N) (for
N ∈ MF(K)) found in step (a), the K-rational isogeny graph, and extract any
“unrecorded” isogenies; that is, isogenies whose degree is a multiple of N . (We
need only consider j-invariants, since whether or not an elliptic curve admits a K-
rational N -isogeny depends only on its j-invariant.) As Mazur observed in [Maz78],
this is an easy matter to determine (by “pure thought”), and is made even easier
thanks to the Sage implementation of isogeny graphs due to David Roe (for elliptic
curves over Q) and John Cremona (for elliptic curves over number fields). The code
that carries this out may be found in sage_code/isogeny_graphs.py. The results
have also been verified in the PARI/GP program, via the optimised ellisomat

implementation based on Billerey’s algorithm in [Bil11].
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Example 7.1. We continue with the example of Section 5. To summarise the
results of that section, we have that, for the Ns in the following list:

S1 = {N ≤ 10} ∪ {12, 13, 15, 16, 18, 20, 24, 25, 27, 32, 36}
there are infinitely many elliptic curves over K = Q(

√
213) supporting a K-rational

N -isogeny, and for N in the following list:

S2 = {11, 14, 17, 19, 21, 37, 43, 49, 67, 163}
there are only finitely many such elliptic curves; moreover, the j-invariants of these
curves are given in Lemma 5.1 and propositions 5.2 and 5.3. For all other in-
tegers N , there are no elliptic curves supporting K-rational N -isogenies. Running
unrecorded_isogenies in sage_code/isogeny_graphs.py, we find, just as for
Mazur, no “unrecorded” isogenies, and may conclude that Table 1.2 is complete.
We note that, by definition of N being minimally finite for K, any proper divisor d
of N is such that X0(d) admits infinitely many K-rational points; this explains the
values of N in Table 1.2 for which ν = ∞.

Carrying out this computation for the other 18 values listed in Theorem 1.2, we
obtain tables similar to Table 1.2. In the interest of concision we have chosen to
present the tables of isogenies in a more condensed format, which may be found
in Table 7.1. We only show isogenies (degrees as well as how many up to twist)
which are not observed for elliptic curves over Q. For these 19 values, the additional
degrees all correspond to values N for which X0(N) is an elliptic curve of positive
rank, and hence admit finitely many isogenies (up to twist). The computation of all
necessary isogeny graphs, as well as the entries of Table 7.1, have been automated by
the function quadratic_kenku_solver in sage_code/quadratic_kenku_solver.

py, and the 19 values may be verified by the function very_convenient_vals in
sage_code/utils.py.

8. Further work

We remark in closing that, out of the 133 values that were identified to be con-
venient, we were only able to successfully execute Mazur’s strategy on 19 of them.
This was due to values of N less than 100 whoseK = Q(

√
d)-rational points we were

unable to determine. In particular, the value N = 43 posed an obstacle for many
values of d, particularly when the twisted modular curve Xd(43) was everywhere
locally soluble. It is possible that these (and other) values may be treated with
an application of the Mordell-Weil sieve, as is done (under additional assumptions
which we do not have in our setup) in Section 4.4 of [MJ22].

Finally, in the spirit of Question 1.3, obtaining all finitely many quadratic points
on X0(163) would be of great benefit to obtaining similar determinations over other
quadratic fields.
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