

1 **Long-Lived Isospin Excitations in Magic-Angle Twisted Bilayer Graphene**

2
3 **Authors:** Tian Xie¹, Siyuan Xu¹, Zhiyu Dong², Zhiyuan Cui¹, Yunbo Ou³, Melike Erdi³, Kenji
4 Watanabe⁴, Takashi Taniguchi⁵, Seth A. Tongay³, Leonid S. Levitov⁶, Chenhao Jin^{1*}

5
6 **Affiliations:**

7 ¹Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA

8 ²Department of Physics and Institute for Quantum Information and Matter, California Institute of
9 Technology, Pasadena, CA, USA

10 ³Materials Science and Engineering, School for Engineering of Matter, Transport and Energy,
11 Arizona State University, Tempe, AZ, USA

12 ⁴Research Center for Electronic and Optical Materials, National Institute for Materials Science,
13 1-1 Namiki, Tsukuba, Japan

14 ⁵Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1
15 Namiki, Tsukuba, Japan

16 ⁶Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

17
18 * Corresponding author. Email: jinchenhao@ucsb.edu

19
20 A plethora of correlated many-body phases, both conventional and exotic, have been
21 reported in magic-angle twisted bilayer graphene (MATBG)¹⁻²⁴. However, the dynamics
22 associated with these correlated states, crucial for understanding the underlying physics,
23 remains unexplored. Here we combine exciton sensing and optical pump-probe spectroscopy
24 to investigate dynamics of isospin orders in MATBG with WSe₂ substrate across the entire
25 flatband, achieving sub-picosecond resolution. We observe remarkably slow isospin
26 dynamics in a broad filling range around $\nu = 2$ and between $\nu = -3$ and -2, with lifetimes up
27 to 300ps that decouple from the much faster cooling of electronic temperature (~ 10 ps). This
28 non-thermal behavior demonstrates the presence of abnormally long-lived modes in the
29 isospin degrees of freedom. This surprising observation, not anticipated by theory, implies
30 the existence of long-range propagating collective modes, strong isospin fluctuations and
31 memory effects; and is likely associated with an intervalley coherent (IVC) or
32 incommensurate Kekulé spiral (IKS) ground state. We further demonstrate non-equilibrium
33 control of the isospin orders previously found around integer fillings. Specifically, through
34 ultrafast manipulation, it can be transiently shifted away from integer fillings. Our study
35 demonstrates a unique probe of collective excitations in MATBG and paves the way for
36 actively controlling non-equilibrium phenomena in moiré systems.

37 Magic-angle twisted bilayer graphene (MATBG) recently emerged as an intriguing platform for
38 engineering correlated phenomena¹⁻²⁴. The electron isospin degrees of freedom – spin and valley
39 – play a critical role in its phase diagram with superconductivity often emerging adjacent to isospin
40 transitions³⁻⁸. The rich variety of isospin orders offers a unique opportunity to explore the interplay
41 between electron correlation and topology⁹⁻¹⁴. At low temperatures, symmetry-broken isospin
42 phases are reported in MATBG at integer fillings of the moiré unit cell. Their exact nature is under
43 active investigation, with the candidate orders including multiple types of spin/valley polarized
44 states and IVC states²⁵⁻²⁸. At higher temperature of $T > 5\text{K}$, the long-range isospin orders are
45 expected to melt. Cascade features near integer fillings were found to persist up to tens of Kelvin
46 in compressibility and chemical potential measurements. This puzzling behavior was generally
47 interpreted as a signature of parent correlated states of the low temperature isospin orders arising
48 due to short-range isospin correlations¹⁹⁻²².

49 One intriguing question posed by these findings is about the impact of isospin orders on system
50 dynamics. It has been conjectured that the isospin soft modes can provide the pairing glue for
51 superconductivity²⁹⁻³⁴ and contribute to the large electronic entropy in transport at elevated
52 temperature²²⁻²⁴. However, the isospin orders typically feature exotic order parameters that are
53 difficult to couple to, making susceptibility measurements challenging. Non-equilibrium dynamics
54 offers a promising alternative route to probe this physics. By inspecting the transient dynamics
55 between isospin orders and the damping of collective excitations, one could access the flatness of
56 the energy landscape and key properties of the soft isospin modes without directly coupling to the
57 order parameter³³⁻³⁷. However, isospin dynamics of flatband graphene systems has remained
58 unexplored in experiment due to the lack of suitable ultrafast probes. Available techniques such as
59 time-resolved photovoltage are only sensitive to electronic temperature but not the isospin degrees
60 of freedom³⁸.

61 Non-equilibrium dynamics of isospin orders

62 Here we develop a novel optical pump probe technique to directly access ultrafast dynamics of
63 isospin orders in MATBG and inspect damping of collective isospin excitations. Fig. 1a illustrates
64 the experimental scheme, where a monolayer WSe₂ sensor is placed adjacent to the MATBG
65 without an hBN spacer. The interaction between electrons in graphene and WSe₂ excitons converts
66 low-energy isospin orders in graphene into exciton responses at optical frequency. Fig. 1b shows
67 the gate-dependent equilibrium reflection contrast (RC) spectrum of device D1 ($\sim 1.04^\circ$ twisted) at
68 the base temperature of 2.5K (see methods). Since the Dirac points of graphene are positioned
69 deep inside the bandgap of WSe₂, all gate-injected charges reside in graphene while WSe₂ remains
70 charge neutral. Therefore, the WSe₂ 1s exciton (blue arrows) remains largely intact as the overall
71 doping increases except for a slight redshift. In contrast, the WSe₂ 2s exciton (yellow arrows)
72 shows rich features due to its sensitivity to the dielectric environment and MATBG's
73 polarizability^{39,40}. It can thus distinguish different isospin polarized states due to their different
74 Fermiology (see methods). A series of cascade features emerge around integer fillings between ν
75 = -4 and 4, which are reminiscent of chemical potential measurements and are assigned to the
76 parent states of symmetry-broken isospin orders¹⁴⁻¹⁶.

77 The observed cascade features indicate our measurement's sensitivity to the isospin degree of
78 freedom, which allows us to further investigate its non-equilibrium dynamics through pump-probe
79 spectroscopy. Fig. 1c shows the non-equilibrium RC of device D1 at representative pump-probe
80 delays $\Delta t = -3.7, 1, 10$ and 136 ps, respectively (see methods). See Supplementary Movie 1 and 2
81 for complete time evolution. We use pump photon energy of 1.55 eV to selectively excite graphene
82 but not WSe₂. All the pump-induced changes in RC therefore originate from excitations in
83 graphene while WSe₂ itself remains in equilibrium, as confirmed by the lack of change in 1s
84 exciton response (Fig. 1c lower panels and Fig. 1d). We have further performed systematic
85 measurements of pump wavelength dependence and probe fluence dependence to demonstrate that
86 the WSe₂ layer remains as a passive sensor (see methods).

87 To investigate the non-equilibrium dynamics of isospin orders, we measure the filling-dependent
88 relaxation in device D1 (see methods). Fig. 2a shows the time evolution of the pump-induced RC
89 change, ΔRC , at representative fillings near $\nu = 2$ (see Supplementary Movie 3 for full filling
90 dependence). Each panel corresponds to a fixed filling factor. The ΔRC signal remains zero before
91 the pump arrives and rises sharply at time zero; then gradually diminishes as the system relaxes
92 back to equilibrium. At fillings away from $\nu = 2$, such decay is rather fast and the signal merges
93 into the noise floor after ~ 40 ps. Surprisingly, a prominent slowing-down of the dynamics is
94 observed near $\nu = 2$, where the signal develops a long tail that barely changes over the full delay
95 range of 130 ps. Similar slowing-down is also observed on the hole side between $\nu = -3$ and -2 .
96 (Fig. 2b), where, interestingly, it peaks notably at away from integer filling. Fig. 2c summarizes
97 the filling-dependent ΔRC signal between $\nu = -5$ and 5 at probe energy of the 2s exciton resonance,
98 and the fitted relaxation lifetime is shown in Fig. 2d (blue curve). The single exponential fitting
99 used here considerably underestimates the lifetime of the long relaxation components and only
100 provides qualitative information (see methods). Nevertheless, we already see a clear slowing-down
101 of relaxation around $\nu = 2, -2.3$ and ± 4 . In contrast, no apparent slowing down is observed around
102 $\nu = \pm 1$ or ± 3 . These behaviors are well reproduced in two other MATBG devices D2 and D3 (see
103 Extended Data Fig. 1 and 7).

104 The enhanced lifetime at $\nu = \pm 4$ is consistent with previous photovoltage measurements of
105 electronic temperature³⁸, which is assigned to a gap-induced phonon bottleneck that prevents
106 efficient cooling. On the other hand, the slowing-down around $\nu = 2$ and -2.3 is quite surprising as
107 it does not show up in the electronic temperature measurement. In fact, the cooling was found to
108 be accelerated over the entire filling range of $-4 < \nu < 4$ with a near-constant lifetime of 5 ps³⁸. To
109 elucidate origin of the slowing-down around $\nu = 2$ and -2.3 , we perform measurements on a non-
110 magic-angle device D3 that does not have apparent cascade features in the equilibrium RC ($\sim 1.14^\circ$
111 twist, see Extended Data Fig. 2 and Supplementary Movie 4). While we find similarly enhanced
112 lifetime at $\nu = \pm 4$, the slowing-down elsewhere is much weaker (Fig. 2d, orange curve). We have
113 further measured the temperature dependence. Fig. 3a summarizes the relaxation dynamics in
114 device D1 at equilibrium temperature from 2.5 to 10 K. The slowing-down around $\nu = 2$ and -2.3
115 shows sensitive temperature dependence and largely disappears at 10 K (Fig. 3b). In contrast, the
116 lifetime at $\nu = \pm 4$ remains intact. These measurements indicate the distinctively different origins
117 behind the slow relaxation around $\nu = 2$ and -2.3 and at ± 4 . While the latter is consistent with a
118 single-particle picture, the former necessarily originates from correlation effects.

119 **Decoupling between the charge and isospin dynamics**

120 Electron correlations can alter the relaxation dynamics in multiple ways. The simplest scenario is
121 a phonon bottleneck induced by a correlated gap, which slows down the cooling of electronic
122 temperature. This scenario is conceptually similar to $v = \pm 4$ since in both cases the dynamics
123 corresponds to the charge degree of freedom. On the other hand, it is also possible that the slowing-
124 down is driven by the isospin degree of freedom, such as from a slow transition between isospin
125 orders. To elucidate the mechanism, Fig. 3c shows the time-dependent ΔRC at $v = 2.07$ over a
126 larger delay range of 300ps. The signal remains visible in the full delay range. In contrast, the
127 signal around $v = 4$, despite its larger initial amplitude, becomes negligible at 300ps (Fig. 3d). Fig.
128 3e summarizes the relaxation dynamics around $v = 2$ and 4 (symbols). To reliably extract the
129 lifetime of the slow component, we fit the experimental data after 50ps with single exponential
130 decay (dashed lines). The lifetime at $v = 2.07$ approaches 300ps, much longer than the lifetime of
131 60ps at $v = 3.95$. Such dramatic slowing-down around $v = 2$ cannot be accounted for by a gap-
132 induced phonon bottleneck since the gap at $v = 2$, if exists, is much smaller than the gap at $v = 4$.
133 Indeed, previous photovoltage measurement reported negligible slowing-down of electronic
134 cooling at $v = 2$ despite insulating transport^{3-5,38}. Furthermore, the maximum slowing-down on the
135 hole side corresponds to a gapless metallic state away from integer filling (Fig. 3f) and is
136 qualitatively incompatible with the electronic temperature cooling scenario³⁸. These observations
137 indicate that the slow dynamics around $v = 2$ and -2.3 does not originate from the charge degree
138 of freedom.

139 A close inspection of the relaxation process further allows us to extract the charge and isospin
140 dynamics separately. The complete melting of cascade features at time zero indicates a high initial
141 electronic temperature of >100K (Fig. 1c). Meanwhile, since the slow component in relaxation
142 only exists at low temperature, the dominance of the slow component at $\Delta t = 30$ ps (Fig. 3e)
143 indicates that the system temperature is already below 10K at this point. Such rapid decrease of
144 electronic temperature gives a carrier cooling lifetime of <10ps around $v = 2$, consistent with
145 previous reports³⁸. The ~300ps relaxation time is therefore completely decoupled from the charge
146 dynamics and should originate from the isospin degree of freedom. Indeed, the dynamics around
147 $v = 2$ or -2.3 is described by a two-component decay corresponding to the charge and isospin
148 dynamics, respectively (Fig. 3 e-f, red lines), while the dynamics at $v = \pm 4$ shows a single-
149 exponential decay from the electronic cooling (blue lines). Consequently, only the $v = \pm 4$ feature
150 is observed in photovoltage measurements that probe the electronic temperature³⁸. On the other
151 hand, the sensitivity of our measurements to isospin orders (Fig. 1b) allows us to capture dynamics
152 in both the charge and isospin degrees of freedom. Their complete decoupling around $v = 2$ and -
153 2.3 is further confirmed by the pump fluence dependence (see methods and Extended Data Fig. 3).

154 **Control of the cascade isospin-order features**

155 Besides direct access to the isospin dynamics, our experimental scheme also enables ultrafast
156 engineering of non-equilibrium states in MATBG. To this end, we focus on the responses of
157 MATBG at short timescales of ≤ 20 ps. A careful inspection of the transient RC at $\Delta t = 10$ ps (Fig.
158 1c) reveals shifts of the cascade features to higher fillings compared to their equilibrium positions
159 (arrows). To investigate the shifts in detail, we extract the filling-dependent 2s exciton energy at

160 each delay and monitor its evolution over time, as shown in Fig. 4a (see methods). Before time
161 zero, the 2s exciton energy shows local maxima at integer fillings, corresponding to the cascade
162 features. Upon the pump arrival, all cascade features are quenched in amplitude, as expected from
163 a sudden increase of electronic temperature. On the other hand, their positions also transiently shift.
164 Fig. 4b summarizes the time-dependent positions of the cascade features. The cascade features at
165 $\nu = 2, 3$ and 4 shifts to higher fillings within ~ 2 ps of pump excitation and recovers over a timescale
166 of $5, 10$ and 40 ps, respectively. These behaviors are well-reproduced in another MATBG device
167 D2 (see Supplementary Movie 5). Such prominent shifts of cascade features are not compatible
168 with a simple equilibrium temperature change, which only reduces their amplitude but does not
169 change their fillings (see Extended Data Fig. 4). Therefore, they are necessarily non-equilibrium
170 phenomena at ultrafast timescale.

171 Discussions and conclusions

172 We first discuss the origin of the ultrafast shifts (see methods for more discussions). They can
173 naturally arise from a bottleneck in carrier relaxation between the remote- and flat-bands (Fig. 4c).
174 At $\nu = 4$, such a bottleneck is confirmed by our observation of an enhanced electronic cooling time
175 of ~ 60 ps (Fig. 3e), which is comparable to the recovery time of the transient shift (Fig. 4b) and
176 supports a common origin. The transient shifts at $\nu = 2$ and 3 probably originate from similar
177 mechanisms. This picture allows us to determine the filling-dependent carrier relaxation dynamics
178 between the remote bands and flat-bands in MATBG and indicates a prominent electron-hole
179 asymmetry: the hole relaxation is always efficient (< 2 ps) in electron-doped MATBG; whereas the
180 electron relaxation is rather slow around $\nu = 4$ (40 ps) and becomes faster at lower fillings, reaching
181 10 ps around $\nu = 3$ and 5 ps around $\nu = 2$. Such relaxation time is consistent with the charge dynamics
182 determined in Fig. 3 (< 10 ps at $\nu = 2$). The shift around $\nu = 1$ is not noticeable, which could be due
183 to an even faster electron relaxation and/or restored electron-hole symmetry.

184 We now discuss the abrupt slowing-down of isospin dynamics around $\nu = 2$ and between $\nu = -3$
185 and -2 , which is orders-of-magnitude slower than the carrier relaxation and is clearly more exotic.
186 Magnetic orders in the valley and spin degrees of freedom would naturally lead to isospin
187 collective modes associated with long-wavelength dynamics of the isospin order parameter. Such
188 modes, when excited under optical excitation, will relax at characteristic times originating from
189 collective dynamics. This would yield lifetimes that are considerably longer than those of single-
190 particle processes at fillings $\nu = 0$ and ± 4 (see methods). This picture naturally accounts for long-
191 lived isospin excitations at integer moiré fillings such as at $\nu = 2$, where the insulating ground state
192 leads to a gap in the particle-hole continuum. Such gap suppresses damping of the collective
193 isospin waves as long as the isospin modes are softer than the gap size (see methods).

194 In addition, intriguingly, we also consistently observe dramatic slowing-down of isospin dynamics
195 away from integer fillings at $-3 < \nu < -2$ (Fig. 2, Extended Data Fig. 1 and 7). In-situ transport
196 (Extended Data Fig. 7) further confirms that the slowest isospin dynamics on the hole-doped side
197 appears within a gapless metallic phase. This suggests the presence of a gapless collective mode
198 that only couples to the isospin degree of freedom. To host a mode of this type, the ground state is
199 likely to be an IVC or IKS state²⁶ where broken U(1) symmetry leads to a gapless Goldstone mode

200 (see methods). Indeed, IKS states have recently been observed in a similar filling range of $-3 < v < 2$
201 through STM measurements (Ref. ²⁶⁻²⁸), supporting our interpretation.

202 Our study also has interesting implications for the collective isospin dynamics. Although IKS
203 states detected in STM measurements²⁸ can host gapless isospin modes, it was unclear whether
204 these isospin modes are long-lived or strongly damped. Long-lived isospin modes are expected to
205 show long-range propagation and strong fluctuations, where strongly damped modes would not
206 show this behavior. Our results indicate that the isospin soft modes are weakly-damped at $-3 < v < 2$. Interestingly,
207 superconductivity in MATBG is also most widely observed at $-3 < v < -2$ (Ref. ³⁻⁵),
208 and strong isospin fluctuations have been conjectured as a potential pairing glue for
209 superconductivity³⁰⁻³⁴. Additionally, transport measurements²¹ indicate signatures of isospin
210 fluctuations at elevated temperatures, which is consistent with the long-lived excitations observed
211 in our measurements above the ordering temperature. By probing these effects, our work offers a
212 crucial missing piece in understanding correlated physics in flatband graphene systems.

213

214 **Main Text References**

215 1. Utama, M. I. B. *et al.* Visualization of the flat electronic band in twisted bilayer graphene
216 near the magic angle twist. *Nat Phys* **17**, 184–188 (2021).

217 2. Yoo, H. *et al.* Atomic and electronic reconstruction at the van der Waals interface in
218 twisted bilayer graphene. *Nat Mater* **18**, 448–453 (2019).

219 3. Yankowitz, M. *et al.* Tuning superconductivity in twisted bilayer graphene. *Science* (1979)
220 **363**, 1059–1064 (2019).

221 4. Cao, Y. *et al.* Unconventional superconductivity in magic-angle graphene superlattices.
222 *Nature* **556**, 43–50 (2018).

223 5. Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors
224 and correlated insulators in twisted bilayer graphene. *Nat Phys* **16**, 926–930 (2020).

225 6. Kim, H. *et al.* Evidence for unconventional superconductivity in twisted trilayer graphene.
226 *Nature* **606**, 494–500 (2022).

227 7. Lu, X. *et al.* Superconductors, orbital magnets and correlated states in magic-angle bilayer
228 graphene. *Nature* **574**, 653–657 (2019).

229 8. Arora, H. S. *et al.* Superconductivity in metallic twisted bilayer graphene stabilized by
230 WSe₂. *Nature* **583**, 379–384 (2020).

231 9. Xie, Y. *et al.* Fractional Chern insulators in magic-angle twisted bilayer graphene. *Nature*
232 **600**, 439–443 (2021).

233 10. Das, I. *et al.* Symmetry-broken Chern insulators and Rashba-like Landau-level crossings
234 in magic-angle bilayer graphene. *Nat Phys* **17**, 710–714 (2021).

235 11. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for Anomalous Hall
236 Ferromagnetism in Twisted Bilayer Graphene. *Phys Rev Lett* **124**, (2020).

237 12. Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged
238 skyrmions and topological origin of superconductivity in magic-angle graphene. *Sci Adv*
239 **7**, (2021).

240 13. Grover, S. *et al.* Chern mosaic and Berry-curvature magnetism in magic-angle graphene.
241 *Nat Phys* **18**, 885–892 (2022).

242 14. Yu, J. *et al.* Spin skyrmion gaps as signatures of strong-coupling insulators in magic-angle
243 twisted bilayer graphene. *Nat Commun* **14**, 6679 (2023).

244 15. Cao, Y. *et al.* Correlated insulator behaviour at half-filling in magic-angle graphene
245 superlattices. *Nature* **556**, 80–84 (2018).

246 16. Wong, D. *et al.* Cascade of electronic transitions in magic-angle twisted bilayer graphene.
247 *Nature* **582**, 198–202 (2020).

248 17. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van
249 Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. *Nat
250 Mater* **20**, 488–494 (2021).

251 18. Yu, J. *et al.* Correlated Hofstadter spectrum and flavour phase diagram in magic-angle
252 twisted bilayer graphene. *Nat Phys* **18**, 825–831 (2022).

253 19. Zondiner, U. *et al.* Cascade of phase transitions and Dirac revivals in magic-angle
254 graphene. *Nature* **582**, 203–208 (2020).

255 20. Choi, Y. *et al.* Interaction-driven band flattening and correlated phases in twisted bilayer
256 graphene. *Nat Phys* **17**, 1375–1381 (2021).

257 21. Polshyn, H. *et al.* Large linear-in-temperature resistivity in twisted bilayer graphene. *Nat
258 Phys* **15**, 1011–1016 (2019).

259 22. Saito, Y. *et al.* Isospin Pomeranchuk effect in twisted bilayer graphene. *Nature* **592**, 220–
260 224 (2021).

261 23. Jaoui, A. *et al.* Quantum critical behaviour in magic-angle twisted bilayer graphene. *Nat
262 Phys* **18**, 633–638 (2022).

263 24. Cao, Y. *et al.* Strange Metal in Magic-Angle Graphene with near Planckian Dissipation.
264 *Phys Rev Lett* **124**, 076801 (2020).

265 25. Kim, H. *et al.* Imaging inter-valley coherent order in magic-angle twisted trilayer
266 graphene. *Nature* **623**, 942–948 (2023).

267 26. Kwan, Y. H. *et al.* Kekulé Spiral Order at All Nonzero Integer Fillings in Twisted Bilayer
268 Graphene. *Phys Rev X* **11**, (2021).

269 27. Bultinck, N. *et al.* Ground State and Hidden Symmetry of Magic-Angle Graphene at even
270 Integer Filling. *Phys Rev X* **10**, (2020).

271 28. Nuckolls, K. P. *et al.* Quantum textures of the many-body wavefunctions in magic-angle
272 graphene. *Nature* **620**, 525–532 (2023).

273 29. Kumar, A., Xie, M. & Macdonald, A. H. Lattice collective modes from a continuum
274 model of magic-angle twisted bilayer graphene. *Phys Rev B* **104**, (2021).

275 30. Fischer, A., Klebl, L., Honerkamp, C. & Kennes, D. M. Spin-fluctuation-induced pairing
276 in twisted bilayer graphene. *Phys Rev B* **103**, (2021).

277 31. Wang, Y., Kang, J. & Fernandes, R. M. Topological and nematic superconductivity
278 mediated by ferro-SU(4) fluctuations in twisted bilayer graphene. *Phys Rev B* **103**, (2021).

279 32. Morissette, E. *et al.* Dirac revivals drive a resonance response in twisted bilayer graphene.
280 *Nat Phys* **19**, 1156–1162 (2023).

281 33. Kozić, V., Zaletel, M. P. & Bultinck, N. Spin-triplet superconductivity from intervalley
282 Goldstone modes in magic-angle graphene. *Phys Rev B* **106**, (2022).

283 34. Dong, Z., Levitov, L. & Chubukov, A. V. Superconductivity near spin and valley orders in
284 graphene multilayers. *Phys Rev B* **108**, 134503 (2023).

285 35. Kardar, M. *Statistical Physics of Fields*. (Cambridge University Press, 2007).
286 doi:10.1017/CBO9780511815881.

287 36. Dawson, D. A. Critical dynamics and fluctuations for a mean-field model of cooperative
288 behavior. *J Stat Phys* **31**, 29–85 (1983).

289 37. Khalaf, E., Bultinck, N., Vishwanath, A. & Zaletel, M. P. Soft modes in magic angle
290 twisted bilayer graphene. *arXiv:2009.14827 [cond-mat.str-el]* (2020).

291 38. Mehew, J. D. *et al.* Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle
292 twisted bilayer graphene. *Sci Adv* **10**, (2024).

293 39. He, M. *et al.* Dynamically tunable moiré exciton Rydberg states in a monolayer
294 semiconductor on twisted bilayer graphene. *Nat Mater* (2024) doi:10.1038/s41563-023-
295 01713-y.

296 40. Hu, Q. *et al.* Observation of Rydberg moiré excitons. *Science (1979)* **380**, 1367–1372
297 (2023).

298

299

300 **Figure Legends**

301

302 **Figure 1. Exciton sensing of isospin orders and dynamics in MATBG.** (a) Schematics of
303 experimental configuration. An 800nm femtosecond pump pulse creates excitations in MATBG
304 (red), which are then sensed by excitons in an adjacent WSe₂ layer (yellow). (b) Equilibrium
305 reflection contrast (RC) of device D1 without the pump excitation. The WSe₂ 2s exciton (yellow
306 arrow) shows cascade features at integer fillings of MATBG, while the 1s exciton (blue arrow)
307 shows negligible change. See main text for detailed discussion. (c) Transient RC of device D1 at
308 pump probe delay Δt = -3.7, 1, 10 and 136 ps, respectively. The cascade features (arrows) melt
309 upon pump arrival and gradually recover over time. (d) Transient RC at v = 4 before (Δt = -3.7ps)
310 and after (Δt = 1ps) the pump arrival. The 1s exciton remains unaffected, indicating that the 800
311 nm pump selectively excites MATBG but not WSe₂. On the other hand, 2s exciton shows
312 prominent changes by sensing the excitations in the graphene layers. All measurements are
313 performed at the base temperature of 2.5 K.

314

315

316 **Figure 2. Filling dependent dynamics in MATBG.** (a)(b) Pump-induced RC change of device
317 D1 at representative filling factors and temperature of 2.5 K. Prominent slowing-down in
318 relaxation is observed over a broad range of fillings from $\nu = 1.7$ to 2.4 (a) and from $\nu = -2.7$ to -
319 1.9 (b). (c) Pump-induced RC change at the WSe₂ 2s exciton resonance across the entire flatband.
320 Vertical dashed lines label even fillings between $\nu = \pm 4$ as guide to the eye. The relaxation lifetime
321 from single exponential fitting shows remarkable increase around $\nu = 2, -2.3$ and ± 4 (d, blue curve).
322 On the other hand, only the slowing-down around $\nu = \pm 4$ is prominent in a non-magic angle device
323 D3 (orange curve) that has no apparent cascade features.

324

325

326

327 **Figure 3. Decoupling between the charge and isospin dynamics.** (a) Temperature dependent
328 relaxation dynamics of device D1 from single exponential fitting. The slowing-down near $v = \pm 4$
329 does not depend on temperature, indicating a single-particle origin. In contrast, the slowing-down
330 around $v = 2$ and -2.3 largely disappears at 10 K (b). (c)(d) Pump-induced RC change at $v = 2.07$
331 (c) and $v = 3.95$ (d) over a larger delay range of 300 ps. Their relaxation dynamics is compared in
332 (e). The dynamics at $v = 3.95$ is well-described by a single-component decay with a lifetime of 60
333 ps (blue symbols and lines); while the dynamics at $v = 2.07$ shows two fully separable timescales,
334 a fast initial decay with lifetime of 10 ps followed by a remarkably long component with lifetime
335 of 300 ps (red symbols and lines). The two fitted curves for $v = 2.07$ are single exponential fitting
336 using experimental data at $\Delta t < 30$ ps and $\Delta t > 50$ ps, respectively. (f) Similar to (e) for the hole
337 side. The dynamics at $v = -3.99$ is captured by a single-component decay with lifetime of 75 ps
338 (blue); while the dynamics at $v = -2.25$ features two separate components with lifetime of 10 ps
339 and 180 ps, respectively (red).

340

341

342

343 **Figure 4. Ultrafast manipulation of the cascade features.** (a) Delay-dependent evolution of the
344 cascade features on the electron-doping side. The WSe₂ 2s exciton energy at each delay is
345 successively shifted up by 1 meV for visual clarity. At equilibrium, the cascade features appear at
346 integer fillings from $\nu=0$ to 4 (dashed lines). Upon pump excitation, however, the cascade features
347 around $\nu=2, 3$ and 4 transiently shift to higher fillings and recover over 5, 10 and 40 ps,
348 respectively, as summarized in (b). (c) Illustration of a potential mechanism behind the transient
349 shifts of cascade features. Owing to the electron-hole asymmetry, scattering between the remote
350 and the flatbands is efficient for holes (<2 ps, left) but slow for electrons (~5 ps at $\nu=2$, right). As
351 a result, the charge density within the flatband transiently decreases and then recovers over 5 ps.
352 The timescale of such recovery is consistent with the charge dynamics and fully separated from
353 the much longer isospin dynamics.

354

355 **Methods**

356 **Device Fabrication**

357 Graphene, hBN, and WSe₂ flakes used for device fabrication were mechanically exfoliated from
358 bulk crystals onto silicon substrates with a 285 nm silicon oxide layer. The MATBG van der Waals
359 heterostructures were constructed through a standard dry-transfer technique employing a
360 Poly(Bisphenol A carbonate) (PC) film on a polydimethylsiloxane (PDMS) stamp. The fabrication
361 process involved first creating the lower hBN/graphite bottom gate and releasing them onto a 90nm
362 Si/SiO₂ substrate. The removal of PC residue on the sample was accomplished by dissolving it in
363 chloroform, followed by rinsing with isopropyl alcohol and vacuum annealing at 375 °C for 12
364 hours. For the upper part of the heterostructure, we purposely chose hBN with straight edges as
365 the top hBN. Monolayer graphene was cut in half using a Dimension Icon 3100 atomic force
366 microscope (AFM)^{41,42}. After picking up the top hBN and monolayer WSe₂, we align the hBN
367 straight edge with the AFM cut on graphene and pick up half of it, twist the silicon substrate with
368 the remaining graphene by 1.06°, pick up the remaining graphene and put down onto the premade
369 bottom part. This stacking sequence was meticulously implemented to minimize the mechanical
370 stretching of the twisted bilayer graphene. Standard electron-beam lithography, dry-etching
371 processes, and vacuum deposition were employed to fabricate electrodes for electrical contacts
372 (~150 nm gold with ~5 nm chromium and ~15nm palladium adhesion layers).

373 **Calibration of carrier density and twist angle**

374 The bottom hBN thickness in the TBG devices was measured by a Dimension Icon 3100 AFM.
375 We computed the geometrical capacitance per unit area between gate and sample through
376 $c_g = \epsilon_{hBN}\epsilon_0/d_{hBN}$ where $\epsilon_{hBN}=3.52$ is the dielectric constant of hBN and d_{hBN} is the bottom hBN
377 thickness. The carrier density in TBG was obtained from $n = c_g V_g/e$, where V_g is the bottom gate
378 voltage and e is the elementary charge. Twist angles of TBG were determined from the spectral
379 features in RC. The WSe₂ 2s exciton resonance shows abrupt changes at superlattice filling factors
380 $\nu=\pm 4$ (Fig. 1b), allowing the extraction of the corresponding carrier density $n_{\nu=4}$. The twist angle
381 was obtained from $n_{\nu=4} \approx (8\theta^2)/(\sqrt{3}a_0^2)$, $a_0=0.246\text{nm}$ is the graphene lattice constant.

382 **Reflection contrast measurements**

383 The TBG devices were mounted in a closed-cycle cryostat (Quantum Design, OptiCool) for all
384 optical experiments with a base temperature of 2.5 K. A broadband tungsten lamp was beam-
385 shaped by a single mode fiber and subsequently collimated by a lens. The light was focused onto
386 the sample by an objective (NA=0.45), resulting in a beam diameter of approximately 1 μm on
387 sample with a power of approximately 20nW. The reflected light was collected by a liquid-
388 nitrogen-cooled CCD camera coupled with a spectrometer. The reflection contrast was computed
389 as $RC=(R'-R)/R$, where R' and R represent the reflected light intensity from regions with and
390 without the sample, respectively. Keithley 2400 source meters were employed to apply gate
391 voltages to adjust the charge density.

392 **Pump-probe measurements**

393 All measurements are performed at the temperature of 2.5K and pump fluence of $1.84\mu\text{J}/\text{cm}^2$
394 unless noted otherwise. Femtosecond pulses (1030 nm, 600 kHz, $\sim 200\text{fs}$) were generated by a
395 regenerative amplifier seeded by a mode-locked oscillator (Light Conversion PHAROS). The
396 femtosecond pulses were split into two parts. One part was used to pump an optical parametric
397 amplifier to generate 800nm excitation laser pulses, used as the pump; and the other part was
398 focused into a sapphire crystal to generate a broadband white light (500 \sim 900 nm) as the probe
399 pulses. The probe light was wavelength selected via a bandpass filter with center wavelength
400 694nm and 44nm bandwidth. The pump-probe time delay was controlled by a motorized delay
401 stage. To ensure homogeneous spatial profile, both the pump and probe beams were expanded
402 before focusing on the sample and had a diameter of 40 and 10 μm on the sample, respectively. The
403 reflected probe light was isolated from the pump light by a 750nm short pass filter and spatially
404 filtered using a 100 μm pinhole at an intermediate image plane conjugated with the sample plane.
405 Such a spatial filter isolates responses from a $\sim 2\mu\text{m}$ diameter region on the sample in the center of
406 the probe beam, thereby ensuring the spatial homogeneity of the probe intensity within the
407 measured region. The filtered probe light was collected by liquid-nitrogen-cooled CCD camera
408 coupled with a spectrometer. Transient RC was computed in the same way as in the equilibrium
409 measurements (Fig. 1 and Fig. 4). To obtain pump-induced RC change (Fig. 2 and Fig. 3), the
410 pump light was modulated by an optical chopper at 20Hz, and the CCD camera was operated in
411 an external trigger mode synchronized with the chopper. This allowed direct isolation of ΔRC
412 from the difference between the spectra with and without the pump.

413 **Pump fluence dependence**

414 Extended Data Fig. 3 shows the relaxation dynamics at $v = 2.07$ for three representative pump
415 fluences. Increasing the pump fluence from $0.46\mu\text{J}/\text{cm}^2$ to $1.84\mu\text{J}/\text{cm}^2$ dramatically changes the
416 initial electronic temperature and the charge cooling rate. The observed ΔRC signal therefore
417 shows sensitive pump fluence dependence at the short timescale of $< 30\text{ps}$, which corresponds to
418 the charge dynamics. On the contrary, both the amplitude and dynamics of the slow
419 component $> 30\text{ps}$ were unaffected by the pump fluence change. The contrasting behaviors
420 between the fast and slow components indicate their distinct origins from the charge and isospin
421 degrees of freedom, respectively, and confirm the complete decoupling between their dynamics.

422 **Fitting of relaxation dynamics**

423 We first fit the relaxation dynamics at all fillings using single exponential decay to avoid the
424 instability of multi-component fitting when the slow component is small. On the other hand, this
425 will considerably underestimate the lifetime of the slow component since the stronger fast
426 component can dominate. The fitted lifetime (Fig. 2d and Fig. 3a) is therefore only for qualitative
427 purposes to identify the range of fillings with the slowing-down behavior. To quantitatively extract
428 lifetime of the slow component in this filling range, we fit the experimental data after 50ps with
429 single exponential decay (Fig. 3e and f), where the fast component is expected to be small. For
430 fillings around $v = \pm 4$, the fitted curve using long timescale data also matches well with the
431 experiment at the short timescale $< 50\text{ps}$, indicating that the full relaxation dynamics is described
432 by a single component (blue symbols and curves). In contrast, the short and long timescale

433 dynamics around $v = \pm 2$ shows distinctive behaviors due to the decoupling between the charge and
434 isospin dynamics and the much longer lifetime of the latter.

435 Extraction of 2s exciton energy

436 We extracted the 2s exciton energy at each carrier density from the local maximum in the slope of
437 RC vs. probe energy (Extended Data Fig. 5a). The obtained 2s exciton energy shows a smooth
438 decreasing background with increasing charge density due to stronger screening^{39,40}. To highlight
439 the cascade features associated with the isospin physics, we fitted the smooth background using a
440 3rd-order polynomial (Extended Data Fig. 5b, red curve). The background-subtracted 2s exciton
441 energy shows clear cascade features at integer fillings in equilibrium (Extended Data Fig. 5c). The
442 same background was used for all time delays in pump-probe measurements to ensure that no
443 artifacts were introduced. A peak-finding algorithm was used to determine the filling factors of the
444 cascade features at each time delay (Extended Data Fig. 5c and Fig. 4b).

445 Comparison between 1s and 2s exciton responses

446 Fig. 1b shows that the response of WSe₂ 2s exciton to doping in the adjacent MATBG is much
447 larger than that of 1s exciton. This observation is consistent with previous reports that the 2s
448 exciton energy in WSe₂ is much more sensitive to dielectric environment than 1s exciton^{43,44}.
449 Theoretically, the insensitivity of 1s exciton energy to dielectric screening is a consequence of the
450 cancellation between quasi-particle bandgap shift and exciton binding energy change⁴³: a stronger
451 screening will reduce both electron-electron and electron-hole Coulomb interaction, thereby
452 reducing both the quasi-particle bandgap and the exciton binding energy. For 1s exciton, the two
453 effects are comparable, and the quasi-particle bandgap shift is slightly larger. Therefore, stronger
454 screening leads to a slight reduction (redshift) in the 1s exciton energy, which is opposite to the
455 expectation solely from a reduced exciton binding energy. The situation is very different for 2s
456 exciton since its binding energy is much smaller than that of 1s exciton. Therefore, the quasi-
457 particle bandgap shift dominates, giving rise to a much larger overall redshift in the exciton energy.
458 Our observation of prominent 2s exciton redshift with graphene doping and much weaker response
459 from 1s exciton (Fig. 1b) is therefore a natural consequence of dielectric screening from electrons
460 in graphene. Such a difference in behavior between 1s and 2s exciton responses can be used to
461 distinguish between different origins of the observed signal. For example, excitations in the WSe₂
462 layer, either excitons or free carriers, are expected to lead to larger changes at 1s exciton resonance
463 than at 2s exciton resonance⁴⁵⁻⁴⁷. In our pump probe measurements, 2s excitons show prominent
464 changes upon the pump arrival, while the 1s exciton remains largely intact (Fig. 1c). This confirms
465 the origin of the signal from excitations in MATBG instead of in WSe₂.

466 The strong responses of 2s exciton energy to dielectric environment allow it to sensitively detect
467 isospin orders in MATBG. Isospin orders will reconstruct the Fermi surface of graphene and
468 change its polarizability, thereby affecting the Coulomb screening of 2s exciton in the nearby WSe₂
469 layer. Therefore, although 2s exciton energy does not couple linearly to spin/valley polarization
470 and or distinguish the sign of order parameter, it is sensitive to the formation of isospin orders and
471 the amplitude of the order parameter. Our observation of cascade features in 2s exciton energy

472 (Fig. 1b) confirms such sensitivity. Detailed discussions and quantitative simulation of the optical
473 sensing scheme here can be found in Ref.⁴⁸.

474 Effects from the WSe₂ layer

475 The WSe₂ remains as passive sensor layer throughout the measurements and is not excited by the
476 pump light. As shown in Fig. 1c, the 1s exciton response does not change upon the pump arrival,
477 while the 2s exciton resonance is significantly modified. The much stronger response of 2s exciton
478 than that of 1s indicates that the origin is from change of dielectric environment instead of direct
479 excitations in WSe₂. We have further performed a systematic study of the pump energy dependence
480 (Extended Data Fig. 6, b and c) to unambiguously exclude excitation of WSe₂. Since all pump
481 wavelengths used (800 - 1000nm) are below the optical bandgap of WSe₂ (~740nm), excitation of
482 WSe₂ can only be through in-gap states and/or charge transfer absorption between graphene and
483 WSe₂. Both of these pathways depend sensitively on the pump energy^{45,46,49}. On the other hand,
484 the Δ RC signal we observe is independent of pump wavelength. This indicates that the signal is
485 originating entirely from pump excitations of the MATBG, and WSe₂ remains passive. We also
486 confirm that the probe light does not modify the observed physics. This can in principle be
487 achieved with a sufficiently weak probe. We directly test the probe effects by measuring a probe
488 fluence dependence without the pump light, as shown in Extended Data Fig. 6a. When probe light
489 fluence is too large, the WSe₂ 2s resonance is significantly broadened and the cascades features
490 are blurred. On the other hand, at a probe fluence of 46.7nJ/cm², which we have used throughout
491 the measurements, the impact of the probe light is minimal.

492 While the WSe₂ does not generate excitations during the pump probe measurement, its presence
493 can passively affect the phase diagram of the system by e.g. changing the dielectric environment
494 of MATBG and introducing proximity spin-orbit coupling (SOC). However, these effects do not
495 prevent and could actually facilitate the study of correlated physics in MATBG. The effects from
496 adjacent WSe₂ layer to flatband graphene are recently under intensive investigation as additional
497 tuning knobs to navigate the correlated phase diagram. In particular, WSe₂/MATBG, the same
498 system as in our work, has been investigated in several studies. Ref.⁸ shows that superconductivity
499 is stabilized in small-twist angle MATBG with proximate WSe₂, where superconducting domes
500 emerge at $-3 < \nu < -2$ and near $\nu = 2$. Ref.^{50,51} demonstrates that an adjacent WSe₂ layer can stabilize
501 time-reversal symmetry breaking and Chern insulator states in MATBG at integer fillings of $\nu = 2$
502 and $\nu = 3$. In both cases, the main effects from WSe₂ are proposed to be a proximity SOC
503 introduced into the graphene layers. In our experiments, we expect the adjacent WSe₂ layer to play
504 a similar role as that in Ref.^{8,50,51}. Since identical device configurations are used, our results can
505 be combined with the ground state phases obtained in Ref.^{8,50,51} to establish a unifying picture of
506 orders and excitations. Compared to MATBG without WSe₂, the phase diagram of WSe₂/MATBG
507 is enriched as the SOC can stabilize both topological states such as Chern insulators^{50,51} and
508 correlated states like superconductivity⁸. In particular, recent studies have shown that an adjacent
509 WSe₂ layer seems to generally enhance the superconductivity critical temperature by up to an order
510 of magnitude in flatband graphene systems^{8,52}. While complete understanding of the WSe₂ effects
511 warrants further theoretical and experimental studies and is under intensive investigation, the
512 enriched phase diagram of WSe₂/MATBG could facilitate the study of physics in flatband graphene.

513 Our work based on such a system aligns well with recent efforts in the field and provides new
514 insights into its intriguing phase diagram.

515 **Nature of the $\nu = 0$ state**

516 We conclude that the $\nu = 0$ state in device D1 is a “band insulator” for two reasons. First, the
517 dynamics at $\nu = 0$ does not depend sensitively on temperature between 2.5 to 10K. Second, the
518 dynamics at $\nu = 0$ is largely captured by a single-exponential decay of carrier relaxation (Fig. 2c),
519 while the dynamics around $\nu = \pm 2$ is described by two well-separated timescales from the charge
520 and isospin dynamics, respectively (Fig. 3e and f). Overall, the behavior at $\nu = 0$ is qualitatively
521 similar to that at $\nu = \pm 4$ but distinctively different from around $\nu = \pm 2$. These observations indicate
522 that the $\nu = 0$ state in device D1 is insensitive to temperature and does not host long-lived isospin
523 excitations. The simplest scenario is a band insulator. It could also be a correlated insulator with a
524 large gap and without isospin soft modes. TBG is expected to be gapless at the charge neutral point
525 (CNP) from the Bistritzer-Macdonald model. On the other hand, effects not captured by the model,
526 such as strain^{26,53}, proximity with WSe₂^{50,51}, and correlation effects beyond the single particle
527 picture^{54,55}, could lift the degeneracy and induce a gap at the CNP. In particular, bilayer graphene
528 in proximity with WSe₂ has been consistently observed to show a gap at CNP in both STM and
529 transport^{8,50–52,56}. Our observation of gapped CNP is therefore consistent with previous
530 observations and could originate from proximity effects of WSe₂. On the other hand, the size and
531 nature of the gap at CNP in WSe₂/MATBG depends sensitively on details of the device such as
532 twist angle, strain, and alignment with hBN^{26,53,57}. Therefore, our observation of a “band insulator”
533 at $\nu = 0$ in device D1 may not represent a general case. Future studies are required to fully
534 understand the nature of CNP states in WSe₂/MATBG, which is beyond the scope of our work.

535 **Origin of the transient cascade feature shifts**

536 The cascade features in MATBG have been attributed to the high temperature parent states of
537 isospin orders^{20–22}. Their filling dependence can be phenomenologically understood through the
538 scenario of Stoner instability and analogy to Hund’s rule in atoms. Namely, the exchange
539 interactions, which arises from Coulomb interaction between carriers, favor isospin flavors to be
540 either completely filled or empty near integer fillings^{15–19,28}. The transient shifts of cascade features
541 therefore can have two possible origins. Either the isospin interactions are altered in a state driven
542 out of equilibrium such that the tendency towards symmetry breaking is enhanced at non-integer
543 fillings; or the effective carrier density relevant to isospin physics is transiently changed. While
544 the former scenario is plausible, the latter can naturally arise from a bottleneck in carrier relaxation
545 between the remote- and flat-bands, as detailed in the main text.

546 **Long-lived isospin modes in a compressible phase**

547 Our main finding is the slow isospin relaxation at $1.7 < \nu < 2.4$ and $-2.7 < \nu < -1.9$ that completely
548 decouples from the much faster carrier cooling. The slowing-down at $-2.7 < \nu < -1.9$ is centered
549 notably away from integer fillings, and the relaxation at $\nu = -2.3$ is significantly slower than at ν
550 = -2. These observations are consistent over all three MATBG devices D1, D3 and D4. Extended
551 Data Fig. 7d compares the filling-dependent relaxation time from optical pump-probe
552 measurements and the longitudinal resistance R_{xx} from in-situ four-point transport. The resistance

553 R_{xx} shows strongly insulating peaks at $v=\pm 4$ from the gaps between the flat and remote bands. In
554 addition, we also observe resistance peaks exactly at $v=\pm 2$ and $v=\pm 3$, corresponding to correlated
555 insulating states^{7,8,51,58}. In contrast, the relaxation time behaves quite differently. First, while $v=\pm 3$
556 is strongly insulating and more resistive than $v=2$, the relaxation time at $v=\pm 3$ is not significantly
557 enhanced and is much shorter than at $v=2$. Second, on the hole doping side the slow isospin
558 dynamics is observed in a broad filling range of $-3 < v < -2$, and the maximum slowing-down peaks
559 clearly away from the correlated insulators at integer fillings.

560 Now we discuss the possible origins and implications of these observations. At $\Delta t > 30$ ps, the
561 system's electronic temperature is already approaching the equilibrium (Fig. 2e and Ref.³⁸), and
562 the ΔR_C signal becomes independent of the pump driving amplitude (Extended Data Fig. 3).
563 Therefore, the long-timescale dynamics is an intrinsic attribute of the isospin ground states as well
564 as the excitations associated with these states. The observed weak damping and long lifetime of
565 isospin excitations imply that these excitations have lower energy than the particle-hole excitation
566 gap, otherwise they would efficiently decay into the particle-hole continuum. Therefore, a slow
567 isospin relaxation indicates the particle-hole excitation gap is relatively large as compared to the
568 energy of isospin modes. The observed much longer isospin lifetime at $v=2$ than at $v=1$ and 3 could
569 either be due to a flatter energy landscape in the isospin degree of freedom or a larger gap in the
570 charge degree of freedom at $v=2$. Since our transport measurement does not allow quantitative
571 extraction of thermodynamic gap due to the high base temperature of 2.5 K, we cannot conclusively
572 distinguish these possibilities.

573 On the other hand, the most intriguing observation from our experiments is the slow isospin
574 relaxation at $-3 < v < -2$, i.e., away from integer fillings. This provides direct insights into the
575 properties of both the soft modes and the ground state. The transport measurements (Extended
576 Data Fig. 7d) confirm that this filling range corresponds to a gapless metallic state. Therefore, the
577 long-lived isospin modes are likely also gapless in order to have weak damping. A natural origin
578 of such gapless mode is a broken continuous symmetry, which results in a Goldstone mode as
579 predicted by the Nambu-Goldstone theorem. In MATBG, there are two continuous isospin
580 symmetries --- SU(2) spin-rotation symmetry and a U(1) valley rotation symmetry. Breaking the
581 former symmetry results in spin-polarized order, leading to standard magnon modes. Likewise,
582 breaking U(1) valley rotation symmetry results in intervalley coherence order, which leads to a
583 sliding mode of the Kekulé charge density wave. However, the first possibility can almost certainly
584 be excluded, since the proximity spin-orbit coupling from the adjacent WSe₂ layer breaks the spin
585 rotation symmetry^{8,34,59} and gaps out the magnon modes. Therefore, the most likely candidate of
586 the isospin mode that accounts for the abnormal long relaxation at $-3 < v < -2$ is a gapless Goldstone
587 mode from the U(1) valley rotation symmetry. Here, it should be noted that there are two closely
588 related ground state orders that break the U(1) valley rotation symmetry. One is an IVC state that
589 breaks U(1) valley rotation alone, the other is the incommensurate IKS state, which is essentially
590 an incommensurate version of IVC order, or a charge density wave at a momentum of $\mathbf{K}-\mathbf{K}'+\mathbf{q}$.
591 Such IKS state breaks both valley U(1) and translation T, but preserves a “spiral” translation
592 symmetry T' which simultaneously shifts the spatial coordinates and rotates the U(1) angle²⁶. The
593 competition between these two candidate ground states depends on the strain²⁶. In general, the IVC
594 state is lower in energy in the absence of strain, whereas the IKS state is favored upon increasing

595 strain. Since they both host Goldstone modes, our measurement cannot resolve which one is the
596 true ground state. Other order types that only break discrete symmetries, such as spin/valley
597 polarized states and states with nematic order, are not likely to account for the observed long
598 relaxation. Weak damping of Goldstone modes in a metallic state can then be intuitively
599 understood from the illustration in Extended Data Fig. 8. The isospin mode primarily couples to
600 S^+ particle-hole excitations that involve an isospin flip. Such S^+ particle-hole continuum, similar to
601 the Stoner continuum in ferromagnets⁶⁰, is gapless in a metallic state but must have a finite
602 exchange gap at $q = 0$. As a result, a Goldstone mode with small q is isolated from the isospin
603 particle-hole continuum and remains weakly damped.

604 It is all but natural to extend our approach to other flatband graphene systems, both moiré and non-
605 moiré. Doing so will help further elucidating the connection between quasiparticle lifetime,
606 collective excitations and correlated orders. Besides the isospin dynamics, the carrier relaxation
607 dynamics and filling-dependent phonon bottleneck determined here provide a direct measure for
608 electron-phonon coupling strength and electron-hole asymmetry in MATBG. The capability of
609 creating transient non-thermal carrier distributions and associated orders opens up the opportunity
610 for ultrafast control of previously studied correlated states and creating new ordered states.

611

612 **Methods References**

613 41. Li, H. *et al.* Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional
614 Materials. *Nano Lett* **18**, 8011–8015 (2018).

615 42. Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of
616 graphene nanoribbon by local anodic oxidation lithography using atomic force
617 microscope. *Appl Phys Lett* **94**, (2009).

618 43. Hsu, W.-T. *et al.* Dielectric impact on exciton binding energy and quasiparticle bandgap in
619 monolayer WS₂ and WSe₂. *2d Mater* **6**, 025028 (2019).

620 44. Xu, Y. *et al.* Creation of moiré bands in a monolayer semiconductor by spatially periodic
621 dielectric screening. *Nat Mater* **20**, 645–649 (2021).

622 45. Yuan, L. *et al.* Photocarrier generation from interlayer charge-transfer transitions in WS₂-
623 graphene heterostructures. *Sci Adv* **4**, (2018).

624 46. Chen, X., Zheng, S.-W., Wang, X.-P. & Wang, H.-Y. Ultrafast dynamics of spin relaxation
625 in monolayer WSe₂ and the WSe₂/graphene heterojunction. *Physical Chemistry Chemical
626 Physics* **24**, 16538–16544 (2022).

627 47. Ezgi Eroglu, Z. *et al.* Filling Exciton Trap-States in Two-Dimensional Tungsten Disulfide
628 (WS₂) and Diselenide (WSe₂) Monolayers. *Nanomaterials* **11**, 770 (2021).

629 48. Xie, T. *et al.* Optical Imaging of Flavor Order in Flat Band Graphene. (2024).

630 49. Jin, C. *et al.* Identification of spin, valley and moiré quasi-angular momentum of interlayer
631 excitons. *Nat Phys* **15**, 1140–1144 (2019).

632 50. Choi, Y. *et al.* Correlation-driven topological phases in magic-angle twisted bilayer
633 graphene. *Nature* **589**, 536–541 (2021).

634 51. Lin, J.-X. *et al.* Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle
635 twisted bilayer graphene. *Science (1979)* **375**, 437–441 (2022).

636 52. Zhang, Y. *et al.* Enhanced superconductivity in spin-orbit proximitized bilayer graphene.
637 *Nature* **613**, 268–273 (2023).

638 53. Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. *Phys Rev B* **100**, 035448
639 (2019).

640 54. Song, Z.-D. & Bernevig, B. A. Magic-Angle Twisted Bilayer Graphene as a Topological
641 Heavy Fermion Problem. *Phys Rev Lett* **129**, 047601 (2022).

642 55. Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo Lattice Model of Magic-Angle Twisted-
643 Bilayer Graphene: Hund's Rule, Local-Moment Fluctuations, and Low-Energy Effective
644 Theory. *Phys Rev Lett* **131**, 026502 (2023).

645 56. Zhou, H. *et al.* Isospin magnetism and spin-polarized superconductivity in Bernal bilayer
646 graphene. *Science* (1979) **375**, 774–778 (2022).

647 57. Uri, A. *et al.* Mapping the twist-angle disorder and Landau levels in magic-angle
648 graphene. *Nature* **581**, 47–52 (2020).

649 58. Cao, Y. *et al.* Correlated insulator behaviour at half-filling in magic-angle graphene
650 superlattices. *Nature* **556**, 80–84 (2018).

651 59. Milivojević, M., Gmitra, M., Kurpas, M., Štich, I. & Fabian, J. Proximity-induced spin-
652 orbit coupling in phosphorene on a WSe₂ monolayer. *Phys Rev B* **108**, 115311 (2023).

653 60. Nolting, W. & Ramakanth, A. *Quantum Theory of Magnetism*. (Springer Berlin
654 Heidelberg, Berlin, Heidelberg, 2009). doi:10.1007/978-3-540-85416-6.

655 61. Xie, T. Long lived isospin excitation in magic angle twisted bilayer graphene. (2024).
656 Available at: osf.io/8kqh3.

657

658

659 **Acknowledgements**

660 We acknowledge discussions with Andrea Young and Leon Balents. C.J. acknowledges support
661 from Air Force Office of Scientific Research under award FA9550-23-1-0117. The sample
662 fabrication is supported by National Science Foundation (NSF) through a CAREER award DMR-
663 2337606. T.X. acknowledges the support from the National Science Foundation Graduate
664 Research Fellowship under Grant No.2139319. L.L. acknowledges the support from the Science
665 and Technology Center for Integrated Quantum Materials, National Science Foundation Grant No.
666 DMR1231319. S.T acknowledges primary support from DOE-SC0020653 (materials synthesis),
667 DMR 2111812, DMR 2206987 and CMMI 2129412 (manufacturing). S.T acknowledges support
668 from Lawrence Semiconductor Labs. K.W. and T.T. acknowledge support from the JSPS
669 KAKENHI (Grant Numbers 20H00354 and 23H02052) and World Premier International Research
670 Center Initiative (WPI), MEXT, Japan.

671 **Contribution**

672 C.J. conceived and supervised the project. S.X., Z.C., and T.X. fabricated the device. T.X.
673 performed the measurements and analyzed the data. Z.D. and L.L. contributed to the theoretical
674 interpretation. Y.O., M.E., and S.T. grew the WSe₂ crystals. K.W. and T.T. grew the hBN crystals.
675 C.J. wrote the manuscript with the input from all the authors.

676 **Competing interests**

677 The authors declare no competing interests.

678 **Additional Information**

679 **Correspondence and requests for materials** should be addressed to Chenhao Jin

680 **Data availability statement**

681 All data in the main text and extended figures, as well as the code for data analysis, are available
682 from Open Science Framework⁶¹.

683

684 **Extended Data Figure Legends**

685

686 **Extended Data Figure 1. Dynamics in MATBG device D2 (1.06° twisted).** (a) Equilibrium RC.
687 (b) Pump-induced RC change (Δ RC) at representative filling factors and temperature of 2.5 K.
688 Prominent slowing-down in relaxation is observed over a broad range of fillings near $v = 2$. (c) Δ
689 RC at the WSe₂ 2s exciton resonance across the entire flatband and (d) the filling-dependent
690 lifetime from single exponential fitting. The slowing-down is maximized around $v = 2.1$ and -2.3,
691 consistent with the observation in device D1. Vertical dashed lines label even fillings between $v =$
692 ± 4 as guide to the eye. (e)(f) Δ RC at $v = 2.04$ (e) and $v = 3.99$ (f) over a larger delay range of 300
693 ps. Their relaxation dynamics are compared in (g). The dynamics at $v = 3.99$ is well-described by
694 a single-component decay with a lifetime of 60 ps (blue symbols and lines); while the dynamics at
695 $v = 2.04$ shows two fully separable timescales with lifetime of 15 ps and 315 ps, respectively.

696

697 **Extended Data Figure 2. Dynamics in non-magic-angle TBG device D3 (1.14° twisted).** (a)
698 Equilibrium RC. (b) Pump-induced RC change at temperature of 2.5 K and representative fillings.
699 No apparent slowing-down is observed near $v = 2$.

700

701 **Extended Data Figure 3. Pump fluence dependence.** (a) Pump-induced RC change for device
702 D1 at $v = 2.07$ under three representative pump fluences. (b) Comparison between the relaxation
703 dynamics. The fast component shows sensitive pump fluence dependence due to different initial
704 electronic temperature, as expected from the charge dynamics. In contrast, the slow component is
705 insensitive to the pump fluence, indicating a complete decoupling between the isospin and charge
706 dynamics.

707

708 **Extended Data Figure 4. Temperature dependence of Equilibrium RC.** The cascade features
709 become weaker and broader at higher temperatures but do not show apparent shift in fillings.

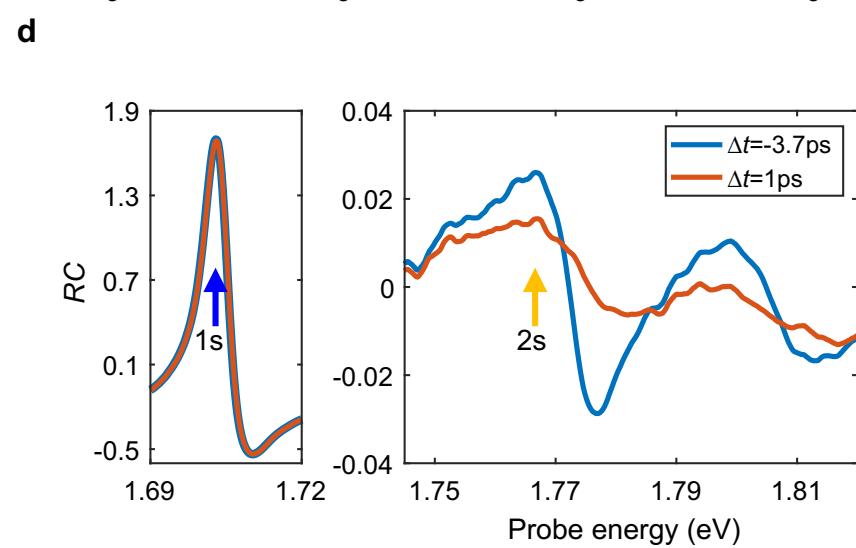
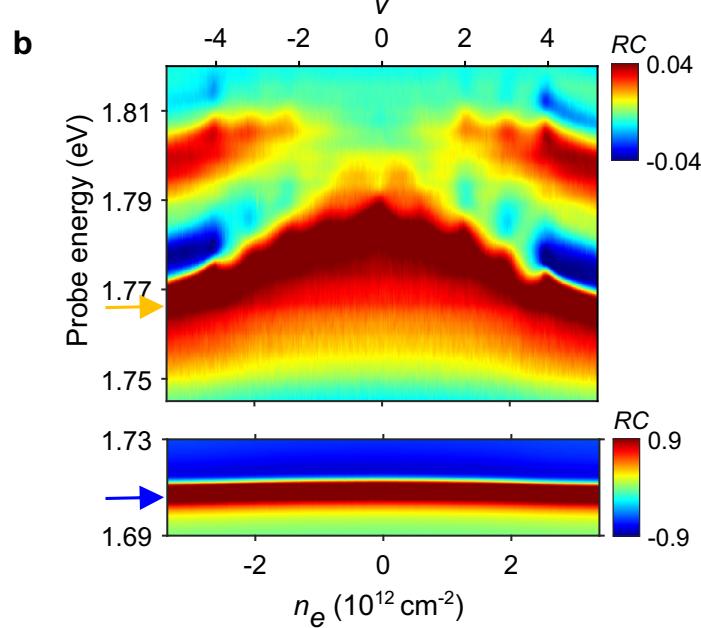
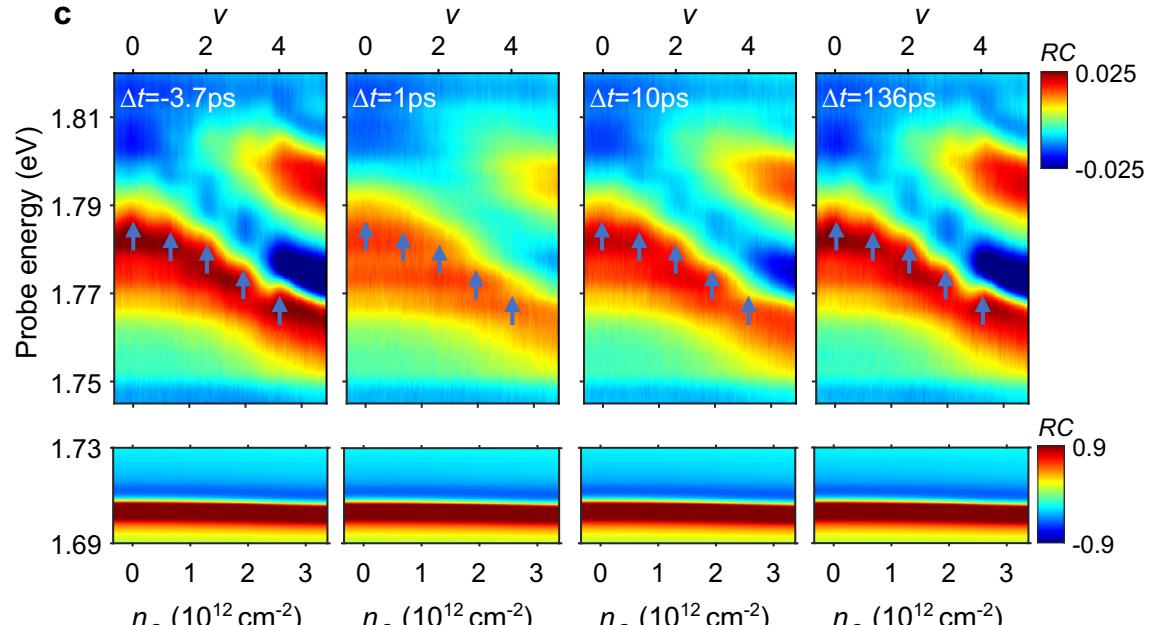
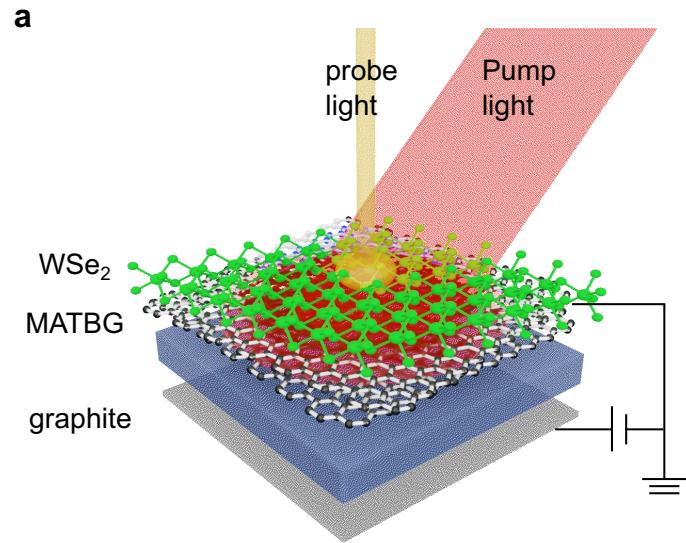
710

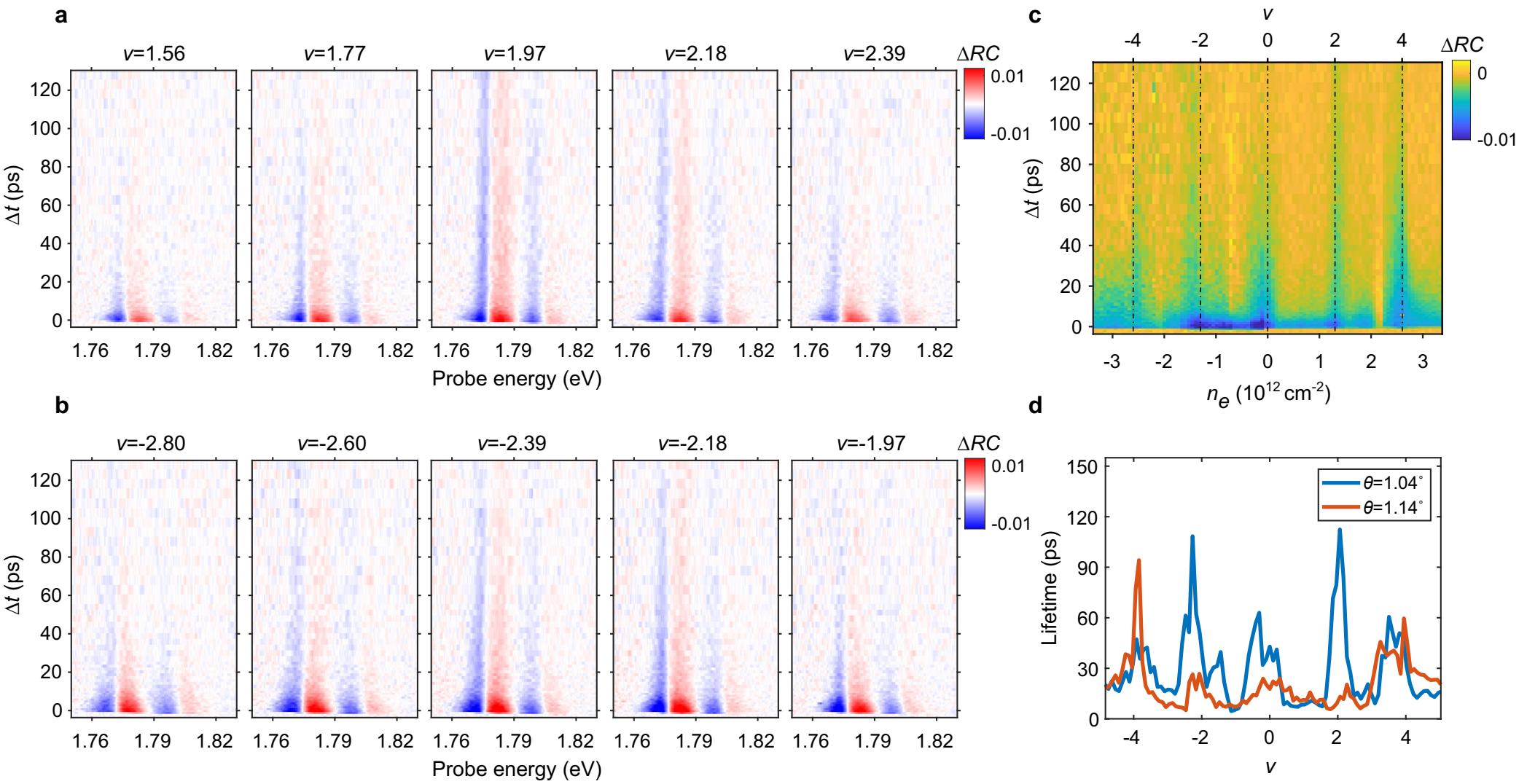
711 **Extended Data Figure 5. Extraction of 2s exciton energy.** (a) Representative RC of device D1
712 with the extracted 2s exciton energy overlaid on top (green line). (b) Filling-dependent 2s exciton
713 energy (blue) and a fitted 3rd-order polynomial accounting for the smooth background redshift
714 (orange). (c) The background-subtracted 2s exciton energy (blue line) shows clear peaks from the
715 cascade features, whose locations are obtained by a peak finding algorithm (orange arrows).

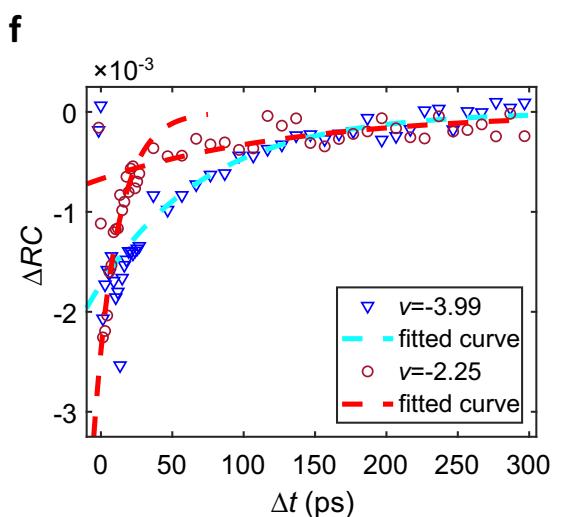
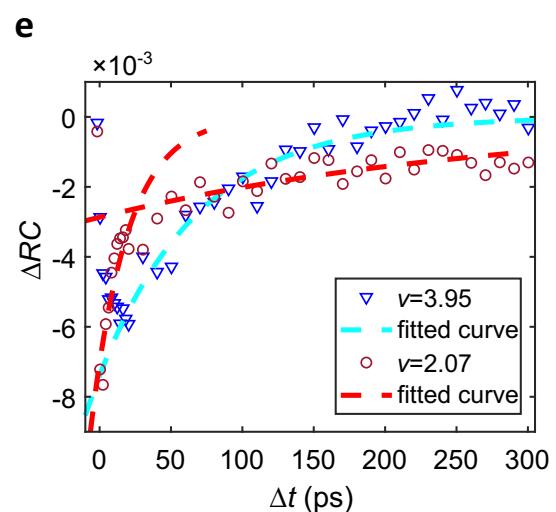
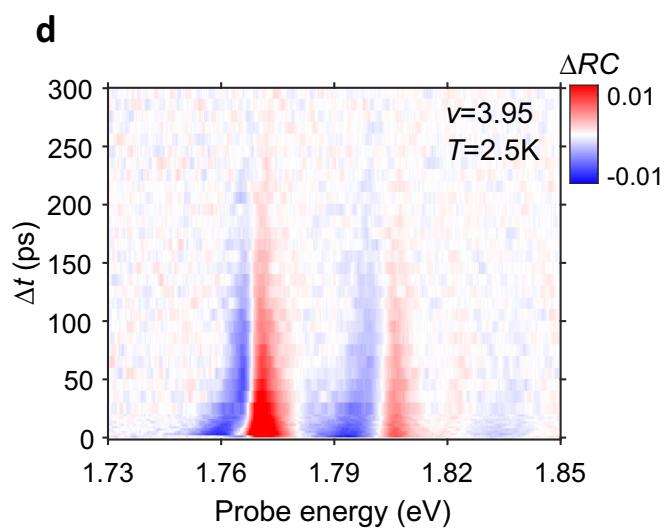
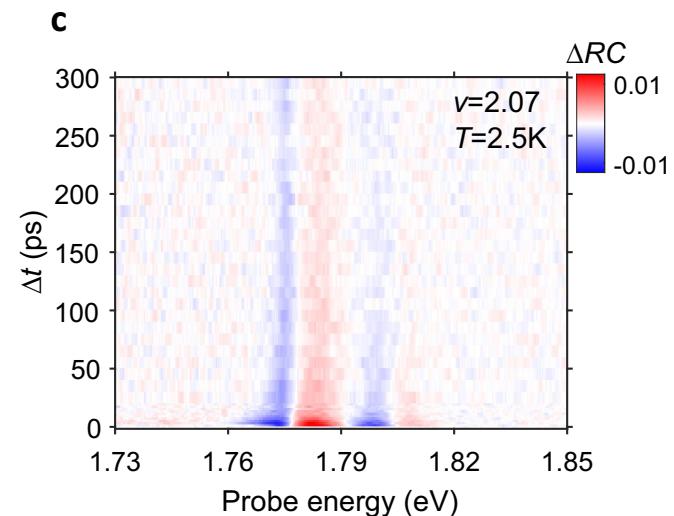
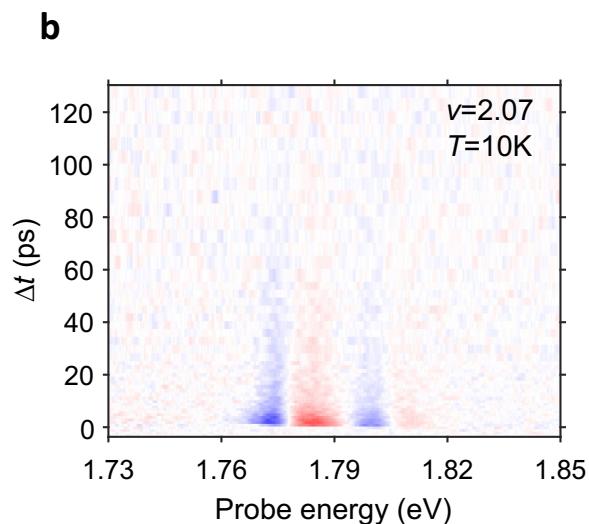
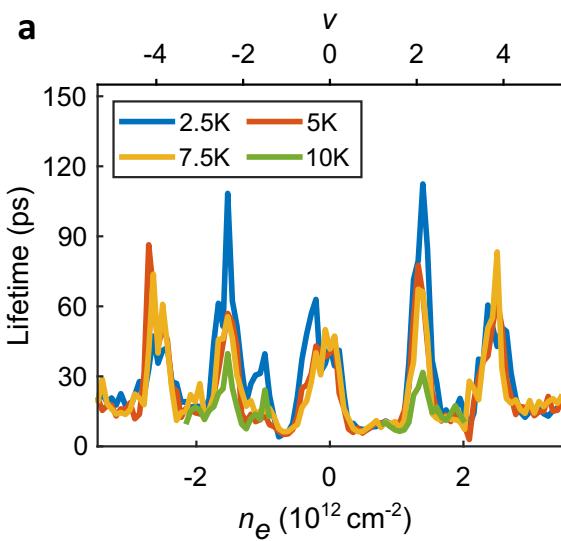
716

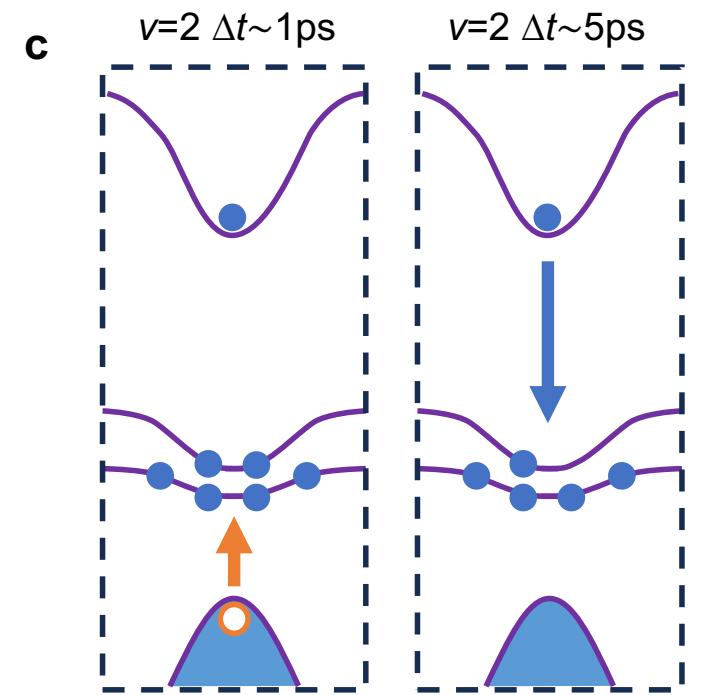
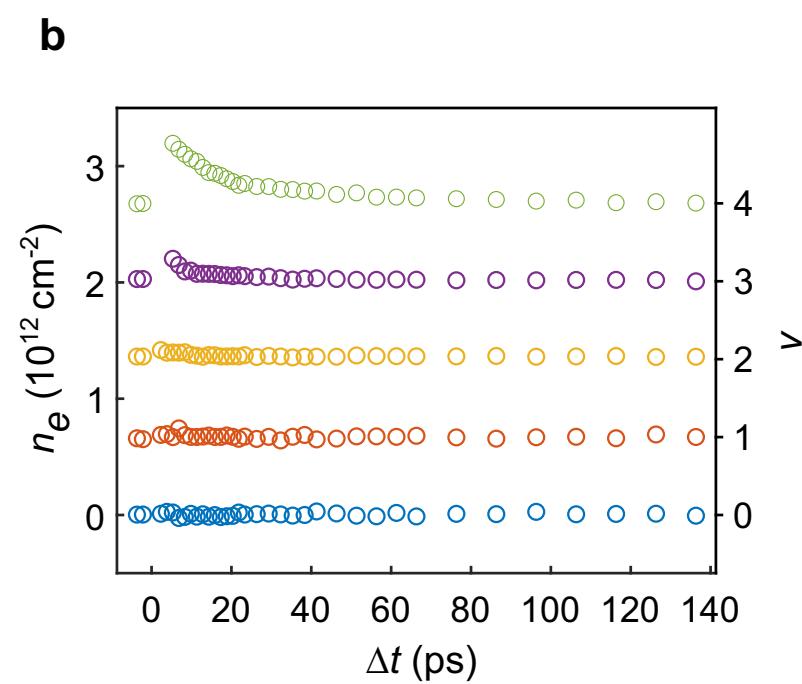
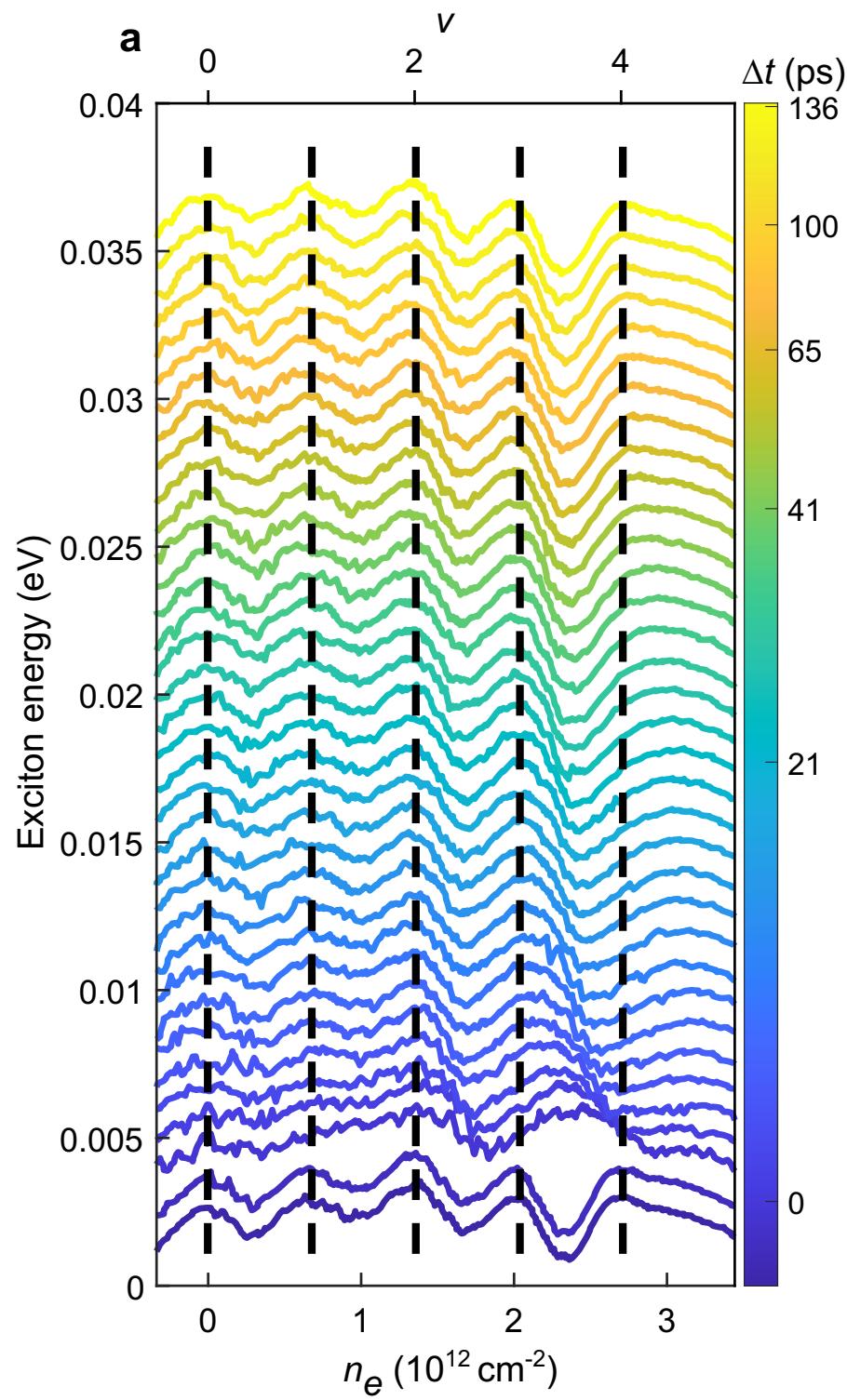
717

718





719 **Extended Data Figure 6. Probe fluence and pump wavelength dependence.** (a) RC of device
720 D4 without pump and under representative probe fluences. The cascade features are blurred at
721 higher probe fluence. On the other hand, the impacts from the probe light are negligible at probe
722 fluence of 46.7nJ/cm^2 , which we have used throughout our measurements. (b)(c) Pump-induced
723 RC change at $\nu = -2.36$ (b) and $\nu = 2.05$ (c) with pump wavelengths of 800, 900, and 1000nm and
724 pump fluence of $1.84\mu\text{J/cm}^2$. The signal remains largely unchanged across these pump
725 wavelengths, confirming that the pump is selectively exciting MATBG and the WSe₂ layer remains
726 a passive sensor.


727







728 **Extended Data Figure 7. Dynamics in MATBG device D4 (0.95° twisted).** (a) Equilibrium RC.
729 (b) Pump-induced RC change of device D4 at representative filling factors and temperature of 2.5 K.
730 Prominent slowing-down in relaxation is observed over a broad range of fillings between $\nu = -3$
731 and -2. (c) ΔRC at the WSe₂ 2s exciton resonance across the entire flatband. (d) Filling-dependent
732 lifetime from single exponential fitting (blue curve) and longitudinal resistance R_{xx} from in-situ
733 four-point transport measurement (orange curve). The slowing-down on the hole-doping side is
734 maximized around $\nu = -2.4$, a gapless metallic state, consistent with the observation in device D1
735 and D3. (e) Temperature dependence of longitudinal resistance R_{xx} .




736

737 **Extended Data Figure 8. Illustration of weakly damped isospin Goldstone mode in a metallic
738 state.** The energy-momentum dispersion of the isospin particle-hole continuum can have a finite
739 gap at $q = 0$, allowing the Goldstone mode to remain weakly damped.

