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Abstract

We present AsterX, anovel open-source, modular, GPU-accelerated, fully gen-
eral relativistic magnetohydrodynamic (GRMHD) code designed for dynamic
spacetimes in 3D Cartesian coordinates, and tailored for exascale comput-
ing. We utilize block-structured adaptive mesh refinement (AMR) through
CarpetX, the new driver for the Einstein Toolkit, which is built on AMReX,
a software framework for massively parallel applications. AsterX employs the
Valencia formulation for GRMHD, coupled with the ‘Z4¢’ formalism for space-
time evolution, while incorporating high resolution shock capturing schemes
to accurately handle the hydrodynamics. AsterX has undergone rigorous test-
ing in both static and dynamic spacetime, demonstrating remarkable accuracy
and agreement with other codes in literature. Using subcycling in time, we
find an overall performance gain of factor 2.5-4.5. Benchmarking the code
through scaling tests on OLCF’s Frontier supercomputer, we demonstrate a
weak scaling efficiency of about 67%—77% on 4096 nodes compared to an
8-node performance.

Keywords: general relativity, magnetohydrodynamics, exascale computing,
GPUs

1. Introduction

Recent years have witnessed remarkable strides in multimessenger astrophysics, driven by
technological advancements and collaborative efforts among global observatories. This pro-
gress was kick-started by the breakthrough detection of gravitational waves (GWs) from a bin-
ary neutron star (BN'S) merger event ‘GW 170817’ [1], accompanied by rich variety of electro-
magnetic (EM) counterparts including a short gamma-ray burst (SGRB) [2] and an ultraviolet/
optical/infrared transient consistent with a radioactively powered kilonova [3] (GRB 170817A
and AT2017gfo, respectively), flooding the entire EM spectrum from gamma-rays to radio [4].
The comprehensive data collected from this single event provided critical insights into the ori-
gin of heavy elements through r-process nucleosynthesis [3, 5, 6], the nature of short gamma-
ray bursts [2, 7-9], and the behavior of matter under extreme conditions [ 10—13]. Undoubtedly,
the plethora of science extracted from this event has been unprecedented. Subsequently, a
number of compact binary mergers involving at least one neutron star have been detected
through GWs [14-16], making such events a cornerstone of the field. In the next decade or
two, next-generation ground-based detectors (3G) [17, 18] are expected to expand our ability
to observe these systems. On much larger scales instead, accreting supermassive binary black
holes (SMBBHs) continue to be as promising multimessenger sources due to their strong emis-
sion of both GWs and EM radiation. While low-frequency GWs have already been detected by
pulsar timing arrays [19] and are anticipated to be detected by the Laser Interferometer Space
Antenna [20, 21], discovering SMBBH mergers in this data would offer profound insights for
astrophysics and cosmology (e.g. [22]). Additionally, the combination of EM and GW data
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will allow for a more comprehensive understanding of the environments surrounding SMBBH
mergers and provide unique cosmological tests, such as measuring the Universe’s expansion
history.

General relativistic magnetohydrodynamic (GRMHD) simulations remain an indispensable
tool for probing the intricate dynamics of relativistic plasmas in the vicinity of such compact
astrophysical sources. For instance, in recent years, various GRMHD simulations of BNS and
black hole-neutron star (BHNS) mergers have demonstrated that magnetic fields play a critical
role in launching relativistic jets, which can act as a pre-cursor or potentially power SGRBs
[23-30]. Additionally, they can have a profound impact on matter ejection, contributing to the
kilonova production [31-34]. On the other hand, for accurate modelling of the gas dynamics
in SMBBH merger simulations, magnetic fields prove to be fundamental in driving turbulence
and accretion processes from the circumbinary disks [35-37] to the minidisks surrounding
each SMBH [38-42], as well as in jet generation [41, 43-45].

As the computational demands of these multi-physics simulations are substantial, they
are typically limited in time and/or length scales. Existing state-of-the-art GRMHD codes
such as WhiskyMHD [46, 47], GRHydro [48], HARM3D [49-51], TllinoisGRMHD [52, 53],
MHDuet [54-56], Spritz [57-59], GRAthena++ [60], employed to run such simulations,
are designed to work on central processing unit (CPU) architectures that are not efficient
enough for massive parallel processing. To tackle these challenges, modern GRMHD codes
are currently being redesigned directly or being build on infrastructures that support graph-
ical processing unit (GPU) architectures such as Parthenon [61] (based instead on Kokkos
library [62]), and AMReX [63, 64] which also provide block structured adaptive mesh refine-
ment (AMR) capabilities. This is also driven by the revolutionary advancement in latest high-
performance computing (HPC) supercomputers that employ GPUs to achieve exascale per-
formance. Availing this advantage, the newest GPU-friendly (GR)MHD codes coupled with
either static or dynamical spacetimes such as K-Athena [65], H-AMR [66], GRaM-X [67] have
reported a performance speed up of a factor 2—10 in challenging simulations.

In this paper, we present AsterX, a GPU-accelerated GRMHD code designed to work with
dynamical spacetimes in Cartesian coordinates. AsterX is built on top of CarpetX, the new
driver for the Einstein Toolkit [68] that provides AMR capability via the AMReX frame-
work. Developed entirely in C++4 from scratch as an open-source code [69], AsterX incor-
porates numerous algorithms derived from the Spritz code [57-59]. Like Spritz, it also
adopts the Valencia formulation for GRMHD equations, and evolves the staggered version
of the vector potential to preserve the divergenceless character of the magnetic field. At the
moment, the code supplies only analytical equations of state (EOS), and support for tabulated
microphysical EOSs is currently underway. For dynamical evolution, we utilize the spacetime
solver based on the ‘Z4c’ formulation [70, 71] of the Einstein’s field equations. Here, we also
present a series of extensive tests in 1D, 2D, and 3D that validate our implementation, and
provide performance benchmarks conducted on OLCF’s Frontier supercomputer, scaling up
to 4096 nodes.

The paper is organized as follows. In section 2, we briefly describe the theoretical formu-
lations on which our code is based. Numerical implementation of the adopted schemes are
outlined in section 3. In section 4, we showcase the results of various tests performed in spe-
cial and general relativistic regimes. Performance benchmarks are summarized in section 5.
Finally, we present our conclusions and future outlook in section 6. Unless stated otherwise,
we adopt the space-like signature as (—,+,+,+) and use geometric units G =c=Mg =1,
and follow the standard Einstein’s convention for the summation over repeated indices.
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2. Background equations

In this section, we briefly provide the theoretical background, describing the formulations
adopted in AsterX. First, we focus on the 3+1 foliation technique adopted to arrive at numer-
ical solutions of the Einstein field equations, followed by the 3+1 formulation of GRMHDs
equations adopted for matter evolution.

2.1. 3+1 spacetime
The geometry of the 4-dimensional spacetime is governed by the Einstein’s equations
Gu =87T,,, @)

where G, is the Einstein tensor, and T ,,,, is the total stress-energy tensor. Our implementation
employs the standard decomposition of spacetime into 3-dimensional space-like hypersurfaces
associated with the line element of the form

ds® = g dxtdx” = —a’dr® +; (dx' 4 B'de) (d/ + Fdr) | 2)

where y;; are the spatial components of the spacetime 4-metric g, o is the lapse function and
B is the shift vector. We then define n as the unit 4-vector orthonormal to the hypersurfaces
’;, which has the following components

n”zé(l,_ﬁi)v nu:(_avovovo)' ®

The extrinsic curvature is given by the Lie derivative of the three-metric in the n direction as

1

K,ul/ = _E»Cn'y,uv (4)

For the evolution of spacetime, we consider the conformal decomposition of the Z4 formula-
tion, commonly denoted as Z4c [70, 71]. In the Z4c system, the Einstein equations are augmen-
ted with an additional 4-vector Z* such that in the extended evolution system, the Hamiltonian
and momentum constraints are damped to zero. The gauge conditions employed with this sys-
tem include the 1 + log slicing and the I'-driver shift. For convenience, the so-call ADM vari-
ables a, ', v;, and K;; are made available whenever the Z4c state vector is updated. Thus,
AsterX is decoupled from details of the Z4c formulation. For further details of this evolution
system, we refer to [70, 71].

2.2. Valencia formulation

Analogous to the 3+1 decomposition of 4D spacetime, we require a 341 formulation to evolve
the matter field equations involving magnetic fields. This section discusses the 3-++1 GRMHD
formulation implemented in AsterX.

First, we define the 4D rest-mass density current and the energy-momentum tensor for a
perfect fluid as

M=put, T =(p+pe+p)utu’ +pg"” = hputu” +pgh”, Q)

where p is the gas pressure, p stands for rest-mass density, u* is the four velocity of the fluid,
€ is the specific internal energy, and h = 1 + ¢ + p/p denotes the specific relativistic enthalpy.
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The equation for the conservation of matter current density i.e. the continuity equation, and
for the conservation of energy-momentum are written respectively as

V" =V, (pu")=0, V" =V, [hpu"u” +pgh’] =0. (6)

To include the effect of electric and magnetic fields in the GRHD formalism, we start with the
Faraday EM tensor F*¥ and its dual *F*” = (1/2)n**?°F .5, which are given by the expres-
sions

FW = UMEY — UYE* — "M U\By | (7)
1 - - -
*FHY — 577/“/)\617)\5 — U*BY — UYB* — n;tl/)xé U)\E(S , (8)
where E* is the electric field, B* stands for the magnetic field, U* a generic observer’s four-

velocity, and % = ﬁ [uvAd] is the Levi—Civita pseudo-tensor representing the volume
element. For the evolution of EM fields, we have the well-known Maxwell’s equations

V., F'" =0, Vo F*Y =4n J" ©)
where J* is the charge-current four-vector, expressed using Ohm’s law as
J" =qu" +cF"u, , (10)

where ¢ is the proper charge density and o represents the electrical conductivity. Under the
assumption of ideal MHD, which considers a perfectly conducting fluid such that ¢ — co and
F*"y,, = 0 (implying that the comoving observer measures no electric field), the EM tensor
can be re-written solely in terms of the magnetic field » measured in the comoving frame as

utBY —u”BH

FY =g 2p oy, PR = by’ — b ut = 7 , an
whereas the Maxwell equations become
1
V,F*W = ——09, |/—g (bH'u” —b"u")| =0, (12)
oIV ]

where W = 1/+/1 —viv; is the Lorentz factor and b is the magnetic field measured by a comov-
ing observer, which can then be written in terms of the magnetic field measured by an Eulerian
observer B as

B+ (1)
W2 )
with B> = B'B;. Considering B' = /7B’ where 7 is the determinant of ;, and 7 = av' — 3,

equation (12) can be separated into time and spatial components, with the time component
giving the divergence-free condition as

B0 — WB' v, b — B + ab’u!

s S B =, = (13)

OB =0, (14)
while the spatial component giving the magnetic-field induction equations as

OB =0, (VB —-VB) , (15)
Including the magnetic field contribution, the stress-energy tensor can be redefined as

T = (ph+b%) 't + (p+ pmag) " = b"D" (16)

5
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2 . . . . .
where prag = % is the magnetic pressure. The set of equation (6) can then be written in the
following hyperbolic, first-order flux-conservative form

= {alviF ) +a [v=r0 ]} =s (). an
where F()(U) stands for the flux-vector in the i-direction, S(U) are the source terms, and
v/—& = a,/7. Except for the dependence on stress-energy tensor, the source terms depend only
on the metric and its derivatives. In order to recast equation (6) into a conservative form (17),
the primitive magnetohydrodynamical variables U = (p, V', ¢, B) are mapped into a set of con-
served variables F*(U) = (D, S;, 7, B) which are defined in the following way:

D DV Ja
0 Sj i S]f/’/a—l-(p—i-bz/Z)(SJ’—b]B’/W
¥ = e ¥ = Tﬁi/a+(p+b2/2)v"fozb08"/W ’ (18)
B B Ja— BV o
| T (Onsn - T,es)
S= a(T“OBHIna—T"”I‘B#) ’ (19)
Ok
where 0¢ = (0,0,0)7 and
D= pW (20)
8i = (ph+b*) W2v; — ab’s, @1
7= (ph+ b)) W2 — (p+b2/2) —a? (b°)* =D (22)

Along with equations (18) and (19), we require an equation of state (EOS) which relates the
pressure to the rest-mass density p and to the specific internal energy ¢, in order to close the
system of equations for hydrodynamics.

2.3. EM gauge conditions

To ensure the divergence-free constraint (14), one common approach is to evolve the EM vector
potential instead of magnetic field variables. To do so, we first express magnetic field Bin terms
of the vector potential A Con51der1ng V as a purely spatial operator, we can write B=V xA.
Taking the divergence of B, we get

V-B’:V.(VXK):O. 23)

Therefore, by construction, evolving the vector potential A automatically satisfies (23).

We now introduce the four-vector potential as A, = n,® + A,, where A, is the purely spa-
tial vector potential, whereas ® stands for the scalar potential. The magnetic field, as measured
by an Eulerian observer, can then be written as

B = A, 24)
and the induction equation (15) can be re-written in terms of A; as
A = —E; — 0; (a® — f4)), (25)

where €% = n, "% is the 3-dimensional spatial Levi-Civita tensor.
However, the gauge freedom admitted by Maxwell’s equations renders the choice of the
four-vector potential A" as not unique, and allows setting a suitable gauge.

6
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2.3.1. Algebraic gauge.  The numerical codes that first employed vector potential evolution
equations to perform GRMHD simulations considered using the algebraic gauge [72, 73],
where the scalar potential is setto ® = é ( BA j) . This choice leads to a much simplified version
of (25), reducing it to 0,A; = —E;, and therefore, does not necessitate the evolution of the scalar

potential P.

2.3.2. Lorenz gauge.  The Lorenz gauge is another choice that has been recently adopted
in GRMHD simulations [72], which is based on the constraint V,.A” = 0, which serves as an
advection equation for 4. In order to impose this constraint, this gauge condition also requires
solving the following evolution equation for the scalar potential

O (VA®) +0; (a/HA' — /48" @) =0. (26)

The Lorenz gauge has proven to be advantageous over the algebraic gauge in GRMHD
simulations which utilize AMR, for e.g. BNS and NSBH merger simulations [72]. The use
of algebraic gauge in such simulations with AMR leads to generation of static gauge modes
which then cause interpolation errors at the refinement boundaries, producing spurious mag-
netic fields near the boundary regions (see [72] for more details), rendering this gauge choice
unsuitable for BN'S, NSBH or SMBBH merger simulations, and more generally, for all simu-
lations which involve magnetized matter crossing refinement boundaries. A more robust gauge
choice has been introduced in [74] with the name of generalized Lorenz gauge, which considers

vV, A =¢&n, A7, 27)

where £n,, A" acts like a damping term in the advection equation for .A. When employing this
gauge choice, the evolution equation for the scalar potential becomes

0 (VA®) +0; (a/FA' — /4B @) = —Ea /7D . (28)

3. Numerical implementation

3.1 Storage location for grid variables

CarpetX allows for grid variables to be stored at centers, vertices, faces and edges of the grid
cell. All the spacetime quantities including o, i vij» and K;;, as well as the stress-energy tensor
T, live at cell vertices. The hydrodynamic variables including primitives (p, p, ¢, vl as well
as conservatives (D, 7, S;) are stored at cell centers. Magnetic vector potential components A;
are staggered and are located at respective cell edges, taking the curl of which conveniently
results in the magnetic field components B’ at cell faces. Using the adjacent cell-face values,
a linear interpolation is then employed to calculate the magnetic field components at the cell-
centers, whenever necessary. The scalar potential ® is instead stored at the cell vertex. Fluxes
are also stored at cell faces. This is highlighted in figure 1.

3.2. Spacetime evolution

As mentioned in section 2.1, we use the Z4c module to evolve the spacetime. In our sim-
ulations, we employ the standard gauge and constraint damping parameters, specifically
k1 =0.02 and x, = 0.0 for constraint damping, along with the lapse parameter p; =2/a,
and shift parameters pg = 1 and n =2 [71].
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Figure 1. Storage locations of different variables within a grid cell. Both conserved and
primitive hydrodynamic quantities live at the cell center, denoted by U; ;. Magnetic
vector potential components A; are stored at the respective cell edges, whereas the mag-
netic field components B' and fluxes are at cell faces. The magnetic scalar potential as
well as the spacetime variables are stored at cell vertices, represented by M;_ Lj— bt

Figure reproduced with permission from [57].

Since all spacetime quantities are stored at grid vertices, which is different from the hydro-
dynamical quantities that are located at cell centers and fluxes at cell faces, we use fourth order
Lagrange interpolation for interpolating the spacetime variables from vertices to cell centers
or faces when evaluating the hydrodynamics sources and fluxes.

3.3. High resolution shock capturing schemes

Accurate and efficient treatment of shocks and discontinuities require state-of-the-art high-
resolution shock capturing methods. Two main components of such schemes are (i) the recon-
struction algorithms, employed to compute values of primitive variables at the cell interfaces,
and (ii) the approximate Riemann solvers, used to compute the fluxes at these cell interfaces.

In AsterX, we have implemented the second order accurate total variation diminishing
(TVD) MINMOD scheme [75], as well as the third order accurate piecewise-parabolic method
(PPM) [76, 77]. Higher order methods, i.e. WENO-Z [78], and MP5 [79] have also been imple-
mented, and currently are undergoing testing. All the schemes are made available through the
ReconX module. Within this module, we also conduct internal unit tests for some of the afore-
mentioned reconstruction algorithms to verify that their specific mathematical properties are
satisfied.

Approximate Riemann solvers implemented include Lax—Friedrichs (LxF) [80] and
Harten-Lax—van-Leer—Einfeldt (HLLE) [81]. For HLLE, the numerical fluxes at cell inter-
faces are computed as

i i 0 0
_ CminFr+CmaxF1 — CmaxCmin (Fr _Fl)

Cmax T Cmin

Fi

; (29)
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where the subscript r (1) denotes function computation at the right (left) side of the cell inter-

face, and cax = max (0,¢4 /¢4 ), Cmin = —min(0,c_ ;,c_ ), where ¢ , (c4 ;) are the right-

going (+) and left-going (—) maximum characteristic wave speeds computed from the prim-

itive variables U at the right (left) interface. Here, the computed eigenvalues are based on the

solutions of a quartic equation, as described in detail for instance, in section 3.1.1 of [46].
Fluxes via LxF can instead be obtained by the expression

_ Fi+F{— cyave (F) — F))

F' ;
2

(30)
where Cyave = Max(Cmax, Cmin) [82]. This scheme is more dissipative than HLLE, and can be
useful in cases when dealing with strong shocks and interiors of black-hole horizons.

3.4. EM field evolution

In AsterX, we evolve the vector potential A; instead of the magnetic field variable B, and
then compute B’ by taking the curl of the vector potential given by the equation (24). For the
EM gauge, we have the choice to employ either the algebraic gauge or the generalized Lorenz
gauge (27). The latter is adopted by default in our simulations, unless stated otherwise.

When making use of the generalized Lorenz gauge, the damping term £ in equation (28)
is typically set to 1.5/ Afpax, where Aty is the time step of the coarsest refinement level, as
also adopted in [52, 57].

Recasting the evolution equations of the vector potential and the densitized scalar potential
(Wimng = 1/7®P), the update terms for the right-hand side can be written as

0A; = —E; —0; (Ga)

i Yinhd ;
= —eB* — 9, (a i ﬂ’Aj> , (31)
O Vimna = —0; (Fe') — £aWmng
=—0; (ay/AA — B Wnha) — EaWpmpg - (32)

In the above equations, since some of the terms on the right-hand side are stored or staggered
in different ways within a cell, they need to be interpolated at a common point. For solving
equation (31), we first interpolate A; to the vertices, where Wp,,¢ and the metric components
are located. This allows us to compute G4 at the vertices. We apply finite differencing with
a stencil that computes the derivative of G4 at cell edges, which gives the second term of the
RHS.

To calculate the electric field in equation (31) at cell edges, we have implemented two differ-
ent schemes. The first approach uses the flux constrained transport method [83], in which the
electric field is computed from the magnetic field HLLE fluxes (see, for instance, equation (23)
of [84]). However, this scheme might result in generation of numerical instabilities in magnetic
field evolution in simulations such as BN'S mergers. These instabilities can be curbed by adding
an appropriate amount of Kreiss—Oliger dissipation to the magnetic field variables. Our second
approach implements the upwind constrained transport (UCT) scheme as described in [84, 85].
To compute, for instance, the E. component of the electric field on the edge (i + 3,/ + 3,k),
we follow the steps summarized below:
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(i) Using equation (57) of [85], the upwind transverse velocities are first computed, for
example, on cell-face along x direction, i.e. (i + 1,j,k) as

- as vV at ok )
:+a1+a*x o J=wz (33)

where L and R stand for left and right upwind states of ¥ along an interface, and @, is
defined as

at =max {0,£\} (UY),£N, (UF)} . (34)
where X% are the characteristic wave speeds calculated at both left and right states.

(i1) Then, the quantities v, 17, B*, B” are reconstructed from faces (i + %, J, k) and (i, Jj+ %,k)
to the edge (i + %, Jj+ %,k) using the PPM reconstruction method, following equations
(59) and (60) of [85].

(iii) Finally, using the above expressions, the E, component of the electric field on the edge
(i +4.j + %,k) can be written using equation (61) of [85], as

@ VB + @t VRBR — o a* (BR - B'T)
ay +a*
ai_‘*}yLBxL 4 a}'_ ‘*}yRBxR . a)_”_a}'_ (BxR _ BxL)

Y Y
ay +a_

7=

(33)

The other components E, and E, are also derived in the same way.

For solving equation (32), we only need to interpolate A; to the vertices, where W4 and
the metric components are located. Fyy/ is then calculated at vertices. Using finite differencing
with a stencil that computes the derivative of Fiy/ at cell vertices, we obtain all the required
RHS terms for equation (32).

3.5. Primitive variables recovery

At each time-step during the evolution, we require values of the primitive variables U in order
to compute the numerical fluxes. However, since we evolve the conservative variables, the sys-
tem of equation (20) need to be inverted to retrieve the primitives. This must be done numer-
ically, and is one of the most delicate parts of the time evolution step. This process is referred
to as primitive variables recovery or conservative-to-primitives (C2P) inversion.

In AsterX, we have implemented two such C2P methods:

e 2D Noble et al scheme [50, 86]. This method is based on the reduction of (20) to a system
of two equations and its subsequent inversion via a Newton—Raphson technique. First, we
define

2= phW?, (36)
and use expression (13) for 5°, together with
B;
b = 7 ab®v;, (37)
to write (20) as
S; = —n,T"; = aT’; = (ph+b*) Wr; —ab’b; = (z+B*)v; — (B'v;) B;. (38)

10
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Next, contracting the above equation with B, we get

BIS; = phW* (B'v;) =z (Blv;) . (39)
Finally, we use the above relation while contracting (38) with S, and recast (20) in terms of
zand »? to get

2

(Ber )2 ( )

+2) —-$2=0 (40a)

) —z+p=0, (40b)

T+D—7(1 )

where B?> = B'B; and §? = §'S;. The above system is solved for the unknowns z and v? via a
Newton—Raphson technique, and the primitives are then retrieved in the following order

1

W= Wip (41a)
D
P=1 (41)
) ig. B'S;) B
Vl _ Y SJ ( !) (416‘)

T z+BY z(z+B?)

1 z
=—|—=-1], 41d
‘ 7<sz ) @1

where (41¢) comes from (38) and (39), while (41d) stems from (36) together with relativistic
specific enthalpy &, and pressure p is derived from the evolution EOS.

e 1D Palenzuela et al scheme [86, 87]. This method is based on the reduction of (20) to a
single equation, whose root is found via Brent’s technique [88]. Since the root is bracketed
and the algorithm does not attempt to estimate the derivatives of the function whose root
is being searched for, this scheme is both more robust and more accurate than Newton—
Raphson based techniques (though it is usually slower). The scheme works as follows:

(i) starting from the conservative variables at the current timestep, define the quantities

T 52 B B'S;
=— =— =—, =—5; 42
q D7 r D27 s D’ D% ) ( )

(i) compute 2W using the primitives at the previous timestep, and solve
NN R <p7 ) 6) N
fx)=x—hW=x— LHét ———| W, (43)

via Brent’s method to get the value of the unknown x = phW? /pW = hW in between the
bounds 1+ ¢g —s <x <24 2q—s, where quatities with a hat in (43) are calculated at
every iteration step from x;

(iii) in terms of (42) and x and using v> = 1 — WZ , equation (40a) can be recast as

2
;Zlirx +t2(2x—2|—s) ; a4
w2 X% (x+s)

1



Class. Quantum Grav. 42 (2025) 025016 J V Kalinani et al

(iv) compute = £;
(v) again, make use of (42), x and vV=1- # to recast (40b) as

e 2 (o) v 1egose L2 )]
E= 1+W(1 W)+W[l+q S+2<x+ﬁﬂ>}’ (45)

(vi) using the evolution EOS, invert € to compute pressure p;
(vii) noting that (36) holds, and that x is close to AW, the 3-velocity components can be obtained
from (41c) setting z = pWx.

Our C2Ps are made available through the Con2PrimFactory module.

3.6. Atmosphere

One of the limitations of the state-of-the-art GRMHD codes is the difficulty to handle vacuum
states. A standard approach imposes an artificial atmosphere, that requires setting a minimum
density floor pym,. In AsterX, during the evolution, if the conserved density ‘D’ computed by
the C2P falls below the floor density, i.e. D < /7 pum, then the primitive p is reset to pum,
whereas the pressure and specific internal energy are recomputed using a polytropic EOS.
Moreover, the fluid’s three—velocity is set to zero. The conserved variables are then reset to
atmospheric values using the modified primitives, via equation (20). The magnetic fields are
kept unchanged. For the tests presented in this paper, unless stated otherwise, we typically set
Patm = 1077 P0,max> Where po max 18 the initial maximum value of the rest-mass density.

3.7 EOS

In order to close the system of equations (18) and (19), an EOS encoding the thermodynamic
properties of the gas under study is needed. To this end, we couple AsterX to EOSX, a new
Cactus module we developed that currently implements the following two analytical EOS

e ideal-fluid:
P(p,e):(F—l)pe, (46)
where I is the adiabatic index;
e polytropic:
P(p)=Kp", (47)
Ko'™'  P(p)
r-1 (I'=1p’

e(p) = (48)

where K is the polytropic constant with n = %_1 as the polytropic index.

It is our intention, in future work, to render EOSX capable of supporting finite-temperature,
tabulated EOS in the form P (p,T,Y,) and/or P (p,¢, Y,).

3.8. Boundary conditions

CarpetX provides several types of boundary conditions that can be applied to the numer-
ical domain, namely, ‘Dirichlet’, ‘Neumann’, ‘Robin’, ‘linear extrapolation’ and ‘none’. A

12
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Dirichlet boundary condition sets a fixed value of the function, whereas the Neumann bound-
ary condition imposes a fixed value of the function derivative at the boundary. The Robin
boundary condition is a mix of Dirichlet and Neumann conditions, specifying a linear com-
bination of the function value and its derivative at the boundary. There is also support for
periodic and reflection (symmetry) boundary conditions. Radiative boundary conditions are
also made available via the NewRadX module.

3.9. AMR

CarpetX offers the capability of AMR through the AMReX framework [64]. Support for fixed
mesh refinement is provided by the BoxInBox module, which allows for constructing a hier-
archical grid structure with nested rectangular boxes. Whereas, the dynamic (non-fixed) block-
structured AMR enables higher refinement in localized regions of interest while maintaining a
coarser resolution elsewhere, thus optimizing computational resources and enhancing accur-
acy. In the latter approach, once we have the solution over a rectangular grid, cells that require
additional refinement can be identified through user-based criteria, which are then covered
with a set of rectangular grids or blocks of higher resolution. AMReX follows the strategy of
[89] to determine the most efficient patch layout to cover the cells that have been tagged for
refinement (see [64] for more details). In AsterX, we have implemented algorithms that com-
pute either the gradient, first derivative, second derivative, or second derivative norm for one
or more MHD variables, the results of which are compared to a user-defined error threshold
parameter, to decide cell-tagging for refinement.

3.10. Subcycling

Our latest implementation in CarpetX includes support for subcycling in time, in which grid
variables on different levels progress with different time step sizes, thus reducing the com-
putational effort required. This implementation follows a more efficient approach than the
one provided in the original Carpet code. Specifically, subcycling in Carpet employs a buf-
fer region with a width four times the number of ghost zones to supply inter-level boundary
data at AMR boundaries during an RK4 evolution. Additionally, the buffer zone interpola-
tion is second-order accurate, resulting in loss of accuracy. The new subcycling algorithm in
CarpetX, based on [77, 90], does not require any additional buffer zones, and all interpola-
tions are fully fourth-order accurate. While this method will be presented soon in our upcoming
paper (Ji et al in preparation), we show preliminary results with AsterX employing subcycling
in section 5 (see also figure 13).

3.11. Parallelism

As based on the CarpetX driver, AsterX can run on both CPUs and GPUs, and for conveni-
ence, code that has been written for GPUs can still execute efficiently on CPUs. We have tested
AsterX with both NVIDIA GPUs (CUDA) and AMD GPUs (ROCm). Intel GPUs (oneAPI)
are in principle also supported, but this has not been tested yet. This functionality is provided
by AMReX.

CarpetX provides several levels of parallelism:

SIMD. SIMD vectorization uses special CPU instructions to execute the same operation on
multiple (usually 4 or 8) data elements simultaneously. Under ideal conditions, execut-
ing a SIMD instruction takes the same amount of time as executing a scalar instruction,

13
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and a compute kernel might thus run several times faster with this optimization. Support
for SIMD instructions is implemented via the nsimd library [91]. Future versions of the
C++ standard will support SIMD vectorization directly. Unfortunately, SIMD vectoriz-
ation requires certain smallish changes to the source code, and not all parts of the code
have been vectorized. In practice, code that is limited by memory bandwidth instead of
compute throughput does not usually benefit from SIMD vectorization.

Multi-threading. Multi-threading is also called ‘shared-memory parallelism.” Modern CPUs
have many cores, and it is beneficial to have multiple cores share data structures (grid
functions) because this reduces overhead introduced by ghost zones (see below) that would
be necessary by distributed-memory parallelism. AMReX splits grid functions into tiles, and
we assign tiles to threads for calculations.

GPUs. GPUs over multiple levels of parallelism. Using CUDA terminology, a GPU executes
threads which perform individual operations. Threads are grouped into warps which
execute identical operations on different data elements. Warps are finally grouped into
blocks that operate on a common data structure. CarpetX hides these levels from the pro-
grammer, who writes compute kernels that are only slightly more complex than a CPU-
only compute kernel. As mentioned above, a GPU-enabled compute kernel still runs effi-
ciently on a CPU.

Message passing. This is also called ‘distributed-memory parallelism.” To split a large calcula-
tion onto multiple GPUs or multiple compute nodes we use MPI to communicate between
independently running processes. CarpetX hides this complexity from the programmer,
using ghost zones to allow the evaluation of finite differencing stencils and reconstructing
fluid states on cell faces. This is also implemented via AMReX.

Overall, the programmer implements compute kernels that look very similar to straightfor-
ward C++ code, surrounded by function calls to allow CarpetX to parallelize the code when
iterating over tiles.

3.12. AsterX workflow

To facilitate users’ comprehension of the organizational structure of our code, figure 2 illus-
trates an overview of the workflow within AsterX for computing the right-hand side of the
GRMHD equations.

In the figure, elements outlined by green boxes denote GRMHD variables, red boxes rep-
resent Einstein’s equations, while grey boxes show functional steps in the GRMHD workflow.
Concurrently, blue arrows denote data flow for computing the GRMHD RHS, while those
depicted by red boxes and arrows pertain to relevant segments of the spacetime evolution
scheme.

The code is initialized with data encompassing both primitive hydrodynamical variables
(refer to section 2.2) and spacetime quantities, including lapse, shift vector, spatial metric, and
extrinsic curvature. Analytical expressions (20) are then employed to initialize the conserved
variables. The code loops over the following steps until the designated final simulation time is
reached:

(i) Utilizing the conserved variables from the previous step and an appropriate EOS,
con2prim is called to obtain cell averages of the conserved variables.
(ii) Cell averages of the conserved variables are reconstructed on cell faces while also being
used in computing the energy momentum tensor of the evolution.
(iii) The Riemman problem on each cell face is solved via an approximate Riemman solver in
order to obtain the numerical flux between cells. This process also requires the 3-metric
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Figure 2. Schematic representation of the AsterX workflow to compute the right-hand
side of the conservative equations. See text for more details.

along with lapse and shift (components of the four-metric) from the gravitational evolution
part of the code.

(iv) Once the fluxes have been computed, the 3-metric along with lapse and shift and their
derivatives are used to compute source terms, finalizing the computation of the hydro-
dynamical RHS.

4. Tests

In this section, we report on the results of our extensive testing, including a number of 1-, 2-
and 3-dimensional simulations. These simulations include critical tests that have been already
considered in the literature in several previous Papers (see, e.g. and references therein), allow-
ing for a direct comparison with other codes.

4.1. Balsara shocktube

In order to check the correctness of the approximate Riemann solvers and other numerical
schemes implemented in the code, the first round of tests we performed with AsterX are
those involving Riemann problems. In figure 3, we show the results for 1-dimensional (1D)
relativistic shock-tube problems based on the testsuite of [92]. Here, our numerical results of
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Figure 3. Comparison of numerical results (red dots) and exact solutions (continuous
black lines) for the suite of tests of [92]. Left and right columns show respectively the
spatial distributions of the rest-mass density and the magnetic field component B” at the
final time of the evolution. Here, the Balsara 1, 2, 4 and 5 tests are performed with the
third order PPM method. On the other hand, Balsara 3 is performed with the second
order MINMOD method because this test is the most demanding one due to the jump of
four orders of magnitude in the initial pressure. This extreme change requires a slightly
more dissipative method to succeed.

these tests are directly compared with the exact solutions computed via the code presented
in [93]. Initial data for such tests are described in table 1.

For all tests, we employ an ideal fluid EOS, with T" = 2.0 for test Balsara 1andI'=35/3
for the others. The final evolution time is considered as t = 0.55 for test Balsara 5andt=0.4
for the others. We note that all tests show an excellent agreement between the numerical results
and the exact solutions.

4.2. Alfvén wave

To determine the convergence order of our code, we perform the conventional Alfvén wave
test. This involves advecting a circularly polarized Alfvén wave across the simulation domain.
The solutions for such a wave are exact and do not contain shocks, making it an ideal candidate
for this test. The initial conditions are adopted from [57, 67], where we set the wave amplitude
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Table 1. Initial data for Balsara relativistic shock tube tests.

1 2 3 4 5
Test L R L R L R L R L R
p 1O 0125 1.0 1.0 1.0 1.0 1.0 1.0 108 1.0
p 1.0 01 300 101000.0 01 0. 0.1 095 1.0
ve 00 00 00 00 0.0 00 0999 —0999 04 -—045
w 00 00 00 00 00 00 00 00 03 -02
v 00 00 00 00 00 00 00 00 02 02
B° 05 05 50 50 100 100 100 100 20 20
B 10 -10 60 07 70 07 70 -70 03 —07
B 00 00 60 07 70 07 70 -70 03 05

Ap = 1.0, the fluid rest-mass density p = 1.0, fluid pressure p = 0.5 and the Alfvén wave speed
v4 = 0.5. The velocity components are initialized as

vi=0, v =-—vsAgcos(kx), V= —vaApsin(kx), (49)
whereas the magnetic field components are initialized as
B*=1.0, B"=AB"cos(kx), B*=AoB"sin(kx). (50)

The wave propagates along the x-direction with the wave vector k = 27/L, and the domain
length L, = 1, where the grid along x extends from -0.5 to +-0.5. We study convergence based
on various different resolutions, varying the number of grid points along x as 8, 16, 32, 64
and 128. For the evolution, we use the ideal gas EOS with I = 5/3, MINMOD reconstruction,
HLLE Riemann solver, RK2 for time-stepping with the Courant factor of 0.2, and periodic
boundary conditions. The result of the L2 norm of the convergence error in the y-component
of the magnetic field B” as a function of number of grid points is illustrated in figure 4. In
particular, we compute the L2 norm based on the initial and final wave profile after 1 full period
of evolution. Here, we observe an overall 2nd order convergence rate, an expected outcome
that has also been reported, for instance, in [57, 67] for the same test case.

4.3. Cylindrical explosion

The first test considers the evolution of a 2D cross-section of a dense, over-pressured cylinder
in a uniformly magnetized environment. Following this blast wave allows a check of whether
the code can correctly follow the shock front on the equatorial plane. The initial data is based
on the setup described in [57]. For the cylinder, we consider

rin = 0.8, row = 1.0, pin = 1072, pip = 1.0, (51)
while for the surrounding ambient medium, we set
Pout =107*, pou =3 x 1077 (52)

Here, the parameters ri, and r,y are used for smoothening the density profile (and similarly
for the smoothening of the pressure profile) considered in [57], such that

Pin for r < Fin
p(r) = exp [(rmrr) lnpm+(rfra“)1npom} for riy < r < Fou (53)

Tout —7in

Pout for r 2 rou.
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Figure 4. Results of the Alfvén wave test. Here, the L2 norm of error in the y-component
of the magnetic field is illustrated (red solid line) as a function of the number of cells
used along x-direction. Reference curves for 1st and 2nd order convergence are shown
in black solid and dashed lines respectively. With the increase in resolution, our results
show good agreement with the expected ~2nd order convergence rate as well as with
the ones reported in literature [57, 67].

Initially, the fluid 3-velocity is set to zero while the magnetic field is kept uniform with B* = 0.1
and B = B* = 0. The grid domain spans the range [—6, 6] along x and y-axes containing 200 x
200 grid points. For the evolution, we use an ideal fluid EOS with adiabatic index I" = 4 /3 and
set the CFL factor to 0.25. For solving the numerics, the MINMOD reconstruction method is
employed along with the HLLE flux solver and the RK4 method for the time-step evolution.
In figure 5, the left panel illustrates the 2D blast wave profiles at the final time #=4.0,
representing the distribution of gas pressure p, Lorentz factor W (together with magnetic field
lines), and the x- and y-components of the magnetic field, B* and B”. Profiles from 1D slices
along x- and y-axis are instead shown in the right panel. We find both 1D and 2D profiles to
be in good agreement when compared to the results already presented in the literature [57].

4.4. Magnetic rotor

Another 2D test we consider is the magnetic cylindrical rotor, originally introduced for classic
MHD in [83, 94] and later employed also for relativistic MHD in [73, 82]. This test consists of a
dense, rapidly spinning fluid at the center, surrounded by a static ambient medium starting with
a uniform magnetic field and pressure in the entire domain. For initial data, we set the radius
of the inner rotating fluid to » = 0.1, with inner rest-mass density p;, = 10.0, uniform angular
velocity €2 =9.95, and therefore the maximum value of the fluid 3-velocity is v,y = 0.995.
In the outer static ambient medium, we set the rest-mass density to po, = 1.0. The initial
magnetic field and gas pressure are set to B' = (1.0,0,0) and pi, = pour = 1.0 respectively.
The numerical domain is a 400 x 400 grid with x- and y-coordinates lying in range [—0.5,0.5].
Here, too, we set the CFL factor to 0.25, and consider an ideal fluid EOS with I' =5/3 for
evolution. For the numerics, we use the MINMOD reconstruction, the HLLE flux solver, and
the RK4 method for time-update.

Figure 6 depicts the 2D profiles of density p, gas pressure p, magnetic pressure ppa, = b*/2,
and Lorentz factor W along with magnetic field lines at the final time # = 0.4. The rotation of the
cylinder leads to magnetic winding. This can be seen in the bottom-right panel of left figure 6
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Figure 5. Equatorial snapshots (left panel) and 1D slices along x and y-axis (right-panel)
of the cylindrical explosion test at final time = 4. On the left, we have gas pressure P
(top-left), Lorentz factor W together with magnetic field lines (top-right), and x- and
y-components of the magnetic field, B* (bottom-left) and B* (bottom-right). Right panel
shows density p (top row), lorentz factor W (second row), gas pressure P (third row) and
magnetic pressure b /2 (bottom row).

where, near the central region, the field lines are twisted roughly by ~90°. This twisting of
field lines could eventually slow down the rotation of the cylinder. A decrease in p, p, and
Pmag in the central region is also observed along with the formation of an oblate shell of higher
density. Also for this test, the results are in good agreement with the ones in the literature [48,
57, 67, 82].

For a quantitative check, we again take a 1D slice along x =0 and y =0 of the final rotor
configuration at # = 0.4, as shown in the right panel of 6. Comparing with the results presented
in [57, 67], we find the curves including the peak values in agreement with the literature.

To assess the AMR functionality, we conduct an additional simulation by introducing an
inner refined grid spanning the x- and y-coordinates from [—0.32,+0.32], with half the grid
spacing, utilizing the BoxInBox module. For prolongation at the inner refinement boundary,
we interpolate polynomially in vertex centered directions for the spacetime variables, and con-
serve with third order accuracy along other directions for MHD variables, with a linear fall-
back in presence of shocks. Figure 7 presents a comparison of the final magnetic pressure
distribution with the results from the uniform grid test. The comparison shows no significant
differences nor any noticeable effects at the boundaries between grids, confirming the correct
working of our code with the AMR framework.

4.5. Magnetic loop advection

In this test, we simulate an advecting magnetic field loop in 2D, as also considered in [48,
57, 95-97]. This case considers a magnetized circular field loop propagating with a constant
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Figure 6. 2D snapshots (left) and 1D slices along x- and y-axis (right) of the Magnetic
rotor test for the final evolved time r = 0.4. The left panel shows the density p (top-left),
gas pressure p (top-right), magnetic pressure pmag (bottom-left), and Lorentz factor W
together with the magnetic field lines (bottom-right). The right plot illustrates the density
p, Lorentz factor W, gas pressure p and magnetic pressure b’ /2 along the x- and y-axes
respectively. The resolution here is Ax = Ay = 0.0025.
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Figure 7. Magnetic rotor test with adaptive mesh refinement (AMR). For comparison,
we show the final magnetic pressure configuration at = 0.4 between the uniform grid
test (left panel) and the AMR test (right panel) including a refined inner grid (black box)
with twice the resolution. We find the two results to be agreement, without any spurious
effects at the inner refinement boundary.

velocity in a surrounding non-magnetized ambient medium within a 2D periodic grid. The
initial magnetic field is set by the following analytical prescription

_Aloopy/r; Aloopx/r for r< Rloop

B*, B =
0 for r= Rioop

(54
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Figure 8. Loop advection test with v* = 1/24. Left and right columns represent the x-
component of the magnetic field B* and the magnetic pressure pmag = b /2, respectively.
The top row shows the initial data for B* and its corresponding pmag at t =0 while the
bottom row depicts these quantities after one periodic cycle of evolution, i.e. at t =24.
Our results exhibit good agreement with those reported in [57].

where r = \/x% + y? is the radial coordinate, Rioop 18 the loop radius, Ajeqp sets the amplitude of
the magnetic field, and B* is set to zero. The corresponding vector potential prescription from
which equation (54) can be obtained is given by A(r) = (0,0, max|0, Ajeep (Rioop — 7)]) [96].

As initial data, we set the density and pressure to p = 1.0 and p = 3.0 respectively throughout
the computational domain. For the loop, we set Ajoop = 0.001 and Rjoop = 0.3. The fluid 3-
velocity is initialized to V' = (1/12,1/24,1/24), keeping a non-zero vertical velocity, i.e. v* #
0. The test is performed on a 256 x 256 grid, where the x- and y-components span the range
[-0.5,0.5]. The CFL factor is 0.25 and the adiabatic index for the ideal EOS is set to I' = 5/3.
Here, too, we use the MINMOD reconstruction method along with the HLLE flux solver and
the RK4 method for time-udpate.

In figure 8, the top row depicts the initial configuration of the magnetic loop for the quant-
ities B* and ppag = b? /2 at t=0. After one entire cycle of evolution across the domain, the
same quantities are illustrated in the bottom row at # = 24. A significant loss of magnetic pres-
sure can be noticed due to numerical dissipation after one evolution cycle, as also reported in
[57]. We also perform another simulation using a less dissipative PPM reconstruction, and find
similar final outcome profiles as in [57].
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4.6. Kelvin—-Helmholtz instability

The Kelvin—Helmholtz instability (KHI) is an instability that develops across fluid interfaces
in the presence of a tangential shear flow, resulting in the production of fluid turbulences. Here,
we performed the KHI test in 2D, to evaluate the block-structured AMR feature provided via
CarpetX. This test adopts the initial setup similar to the one presented in [98], based on which
the simulation domain is [—0.5,40.5]> on the xy plane with periodic boundary conditions
along x-direction. The central region |y| < 0.25 is initialized with density p = 2.0 and velocity
v* = 0.5, whereas the surrounding gas is set up with p = 1.0 and velocity v* = —0.5. The initial
gas pressure is kept constant throughout the domain with value p = 2.5. This gives two contact
discontinuities or ‘slip’ surfaces at |y| = 0.25. To induce the instability, we excite a single mode
with wavelength equal to half the domain size by perturbing v, given by the expression

. —(y—0.25)2 — (y+0.25)2
W=uwpsin(4rx) (e 27  +e 27 , (55)

where we set the wave amplitude wo = 0.1, and o = 0.05/+/2. For simplicity, the magnetic
field components are set to zero.

Here, we incorporate 3 levels of AMR with 642 cells on the coarsest level. The error
threshold for regridding is set to 0.4. At the time of regridding, regions with first derivat-
ives of either of the fluid variables (p, p, €, V') that surpass this threshold are refined. We evolve
with system up to = 1.5 with an ideal gas EOS using I' = 5/3, along with the MINMOD
reconstruction method, the HLLE flux solver, and RK4 time-stepping with CFL factor 0.5.

In figure 9, the density profile at end is illustrated along with the block-structured AMR
mesh. Here, we notice that KHI grows at the slip surfaces, and develops the characteristic wave-
like structures. In order to capture the physics at the shear layers, these waves are refined based
on our refinement criterion. However, we also note that the refinement criteria are problem-
dependent, and can be improved with further experimentation for this case. Our test demon-
strates AsterX’s ability to utilize the dynamic block-structured AMR, which could be essential
for accurately resolving shocks and instabilities in various astrophysical fluid flows. One such
application of our code with block-structured AMR could be to better capture KHI in BN'S mer-
ger simulations, by increasing resolution in regions of interest, i.e. in the shear layer where the
KHI develops when the two NS cores touch each other, allowing to effectively model magnetic
field amplification.

4.7 TOV star

The Tolman—Oppenheimer—Volkoff (TOV) equations [99, 100] are typically employed to
describe static, spherically symmetric stars in general relativity. As the first 3D test to further
assess the stability and accuracy of our code, we consider the evolution of a non-rotating stable
magnetized TOV configuration in dynamical spacetime. For computing the initial data, we use
our module TOVSolverX, ported to the new CarpetX infrastructure from an earlier version
[68]. The initial TOV configuration is generated using a polytropic EOS with adiabatic index
I" = 2.0, polytropic constant K = 100, and initial central rest-mass density p = 1.28 x 1073.
This setup is then evolved using an ideal fluid EOS with the same I'. In addition, we add a
magnetic field to the TOV configuration by hand using the analytical prescription of the vec-
tor potential Ay given by

Ay =Apyw’max (p — peu,0)™ (56)
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Figure 9. Density profile of the Kelvin—Helmholtz instability test at final time = 1.5,
illustrated along with the grid mesh. The wave-like patterns, that develop at the shear
layers, are well-captured by the finest mesh refinement blocks.

where w is the cylindrical radius, Ay is a constant, pcy, = 0.04pn.x determines the cutoff
when the magnetic field goes to zero inside the star, with pp,, corresponding to the initial
maximum gas pressure, and ny = 2 sets the degree of differentiability of the magnetic field
strength [47]. The value of A, is set such that the maximum value of the initial magnetic field
strength is set to ~10'* G. This generates a dipole-like magnetic field confined fully inside
the star, which is a standard configuration used for such tests. Exploration of complex mag-
netic field geometries that include higher-order multipoles and also extend beyond the stellar
surface (e.g. [101, 102]), in long-term high-resolution simulations can be non-trivial and is
deferred to future work. The spacetime is evolved via Z4c with constraint damping parameters
k1 =0.02 and «2 = 0.0, along with the dissipation coefficient of 0.32. In the atmosphere, we
set Pam = 10711

The tests are run on a box-in-box AMR grid with 6 refinement levels, having the finest level
extending from —20 to 20 along x-, y- and z-directions, and the radii along with grid-spacings
are increased by a factor of 2 for the outer refinement levels. We perform simulations with three
different resolutions, i.e. low, medium and high resolution with finest grid spacing of 0.5, 0.25
and 0.125 respectively. All test cases are simulated for 8 ms using the PPM reconstruction
method, the HLLE flux solver, and the RK4 method for time stepping with a CFL factor of
0.25.

The top-left panel of figure 10 shows the evolution of central rest-mass density p. for the
three simulations with different resolutions. In all cases, the star experiences periodic oscilla-
tions induced as a result of the truncation errors present in the initial data, whereas the numer-
ical viscosity of the employed finite differencing (FD) scheme are the main cause of dissipa-
tion. The low-resolution simulation experiences both large oscillations as well as heavy dis-
sipation. As we move to higher resolution, the oscillations are reduced to nearly 1%, and show
convergence of the order /2.7, as shown in bottom-left panel of the same figure.
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Figure 10. Left: the top panel shows the evolution of the normalised central rest-mass
density pc/pc,o for the different resolution runs. To quantify convergence with increas-
ing resolution, evolution of the absolute difference € between the different resolutions
are shown in the bottom panel. Right: top, middle and bottom plots show the power
spectrum of the central rest-mass density evolution for the three different resolutions,
i.e. Axy equal to 0.5, 0.25 and 0.125 respectively, compared with peak frequencies of
the oscillations (vertical dotted lines) computed from perturbation theory [103]. Here,
F stands for the fundamental frequency of oscillation whereas (H1, H2, H3, H4, HS)
represent the higher harmonics.

As another validation check, we report oscillation frequencies of the three TOV simula-
tions with different resolutions in the right panel of figure 10. For each simulation, the power
spectrum density is computed via fast Fourier transform in order to extract the amplitudes and
frequencies of the oscillations of the central rest mass density. To compare, in the same figure,
we also illustrate the expected peak frequencies of the oscillations taken from [103], which
were obtained independently through a 2D pertubative code. Here, we find that the low resol-
ution case reproduces only the fundamental oscillation mode correctly, but as we increase the
resolution, the medium resolution run is able to capture at least two higher harmonic peak fre-
quencies (H1, H2) whereas the high resolution case is able to show matching peak frequencies
at least up to fourth harmonic (H4). Note that even though we evolve the TOV using ideal gas
EOS, which is different from the polytropic EOS used in [103], the peak frequencies still show
a good agreement since ideal gas EOS is expected to produce different results from a poly-
tropic one only in presence of shocks, which appear only near the low-density TOV surface,
thus having negligible impact on the oscillations at the core. Our results are also in agreement
with the ones reported in the literature [57, 67].

5. Performance benchmarks

To evaluate the performance of AsterX, we conduct scaling tests on OLCF’s supercomputer
Frontier. Each Frontier compute node is equipped with a 64-core AMD CPU having 512 GB
of DDR4 memory, alongside 4 AMD MI250X accelerator units, each featuring two Graphic
Compute Dies (GCDs). This configuration yields 8 logical GPUs per node, each outfitted with
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Table 2. Single-GPU performance tests for our four setups: Setup A (static spacetime
+ uniform grid), Setup B (dynamical spacetime + uniform grid), Setup C (dynamical
spacetime + AMR, without and with subcycling).

Setup A Setup B Setup C Setup C + subcycling
levels 1 1 8 8
cells/level 240° 240° 120° 120°
cells GPU ™! 240° 240° 240° 240°

speed (ZCss™1) 027 x 108 0.095x 10®  0.072x 10 0.2 x 10®

64 GB of high-bandwidth memory. As noted in [67], the memory available per GPU dictates
the problem size, constraining the maximum number of cells per GPU. Furthermore, to maxim-
ize GPU utilization, computations should primarily occur within GPU kernels, and CPU-GPU
memory transfers should be kept to a minimum.

We perform scaling tests for the following configurations, based on magnetized TOV sim-
ulations using an ideal gas EOS for evolution and fourth order Runge-Kutta (RK4) for time-

stepping:

e Setup A: static (Cowling) spacetime + uniform grid
e Setup B: dynamic (Z4c) spacetime + uniform grid
e Setup C: dynamic (Z4c) spacetime + 8-level AMR

These tests employ PPM reconstruction, an HLLE Riemann solver, Neumann boundary condi-
tions, and three ghost zones. For benchmarking purposes only, we refrain from writing any out-
put files and exclude the time taken to set up initial conditions. We quantify our performance in
terms of ‘zone-cycless~!” and ‘zone-cycles s~! GPU~!". Each zone-cycle (ZC) corresponds
to the evolution of a single grid cell for one full time-step, encompassing all time-integrator
(RK4) sub-steps. Thus, ‘ZCss~!" provides an estimate of the overall simulation efficiency,
while ‘ZCss~! GPU~!” measures the code performance per GPU.

By using subcycling, we reduce the number of ZCs required to reach the same time point by
allowing larger time step sizes for coarser levels, compared to the non-subcycling case where
all levels evolve using the same time step. As a result, less time is needed to reach the same
point. For an effective comparison, instead of using the wall time required to reach the same
time point, we use the total amount of work divided by the wall time taken. Here, we define
the zone cycles required by the non-subcycling simulation as the measure of total work.

5.1 Single GPU benchmarks

To quantify the performance on a single Frontier GPU (i.e. 1 GCD), we consider a compute
load of 240° cells. The results are summarized in table 2.

For Setup A, the simulation runs with 0.46 x 108 ZCss~! when using RK2 integrator,
which is comparable to the one reported in [67] for a similar setup, which was run how-
ever on a single Summit NVIDIA V100 GPU. Whereas, the performance drops to 0.27 x 10%
ZCss~! when using RK4 instead. Since RK4 has double the number of sub-steps as compared
to RK2, we find the 40% decrease in run speed to be reasonable. Setup B instead yields a speed
of 0.095 x 108 ZCss~!, which indicates that the spacetime solver (Z4c) is roughly twice as
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expensive as the GRMHD code'*. For Setup C, we use 120° cells per level, which effectively
gives a compute load of 240 cells in total as well. Without subcycling, we find the perform-
ance of 0.072 x 108 ZCss™!, which is about 3.5 and 1.3 times slower than that of Setup A and
B respectively. Inclusion of subcycling in time increases the speed to 0.2 x 103 ZCss™!, thus
proving to be faster by a factor of about 2.8.

We repeated some of the above tests with the NVIDIA Quadro RTX 5000 GPU available
on the Frontera cluster, and encounter an overall reduction in performance by a factor of about
8 for uniform grid cases and about 15 times when using AMR.

We also ran Setup B with the aforementioned problem size on a single Frontier node (8
GPUs), and found the parallel efficiency to decrease to 80% compared to a single GPU per-
formance. This drop is likely due to the additional ghost cell communication as well as decrease
in compute load per GPU. The same setup was also run using only CPUs on a single Frontier
node (64 CPUs), and we find the CPU run to be about an order of magnitude slower than the
GPU one.

5.2. Profiling

Profiling is a fundamental tool to pinpoint the bottlenecks that make the code slow and ineffi-
cient. To identify the most expensive GPU kernels in AsterX, we make use of the HPCToolkit
software [104] on Frontier. Specifically, we repeat the simulations for Setup A and B with the
compute load of 2403 cells on a single GPU, but enabling all the necessary options to output
the measurement statistics for HPCToolkit. Here, we also ignore the computational costs for
initialization routines.

For Setup A, in which we do not evolve spacetime, we find the most expensive kernel
to be AsterX_Fluxes, which dictates about 70% of the total evolution time. This is expec-
ted since this routine involves computations for the reconstruction scheme PPM as well as
the approximate Riemann solver. The next two expensive kernels, i.e. AsterX_SourceTerms
and AsterX_Con2Prim, which involve calculations of the source terms and the C2P scheme
respectively, consume about 11% and 10% of the evolution time. Instead, for Setup B, the
spacetime solver kernels prove to be most expensive, as also reported in [67]. Here, Z4c_RHS,
which computes the RHSs of the Z4c evolution variables, demands 34%, whereas, Z4c_ADM2,
which computes the first time derivative of extrinsic curvature and second time derivatives
of gauge quantities, consumes 23% of the total evolution. In this case, AsterX_Fluxes util-
izes 21% whereas computation of T, via AsterX_Tmunu takes 14% of run time. Since the
spacetime and the flux solver kernels deem to be most costly, our future efforts will focus on
optimizing them.

5.3. Strong scaling

Strong scaling measures the efficiency of the parallel performance of the code run with an
increasing number of processors while keeping a fixed problem size. Ideally, in this case,
increasing the number of GPUs should reduce the time to the solution proportionally, however,
achieving perfect linear speedup on GPUs can be challenging due to factors such as commu-
nication overhead between GPUs, memory bandwidth limitations, and diminishing returns as
the number of GPUs increases.

14 Z4c is hand-written in C4-+ which makes it difficult to optimize. Other spacetime evolution codes based on auto-
mated code generation are in preparation.
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Figure 11. Results of strong scaling test performed for Setup A (static spacetime +
uniform grid) in solid red line, and Setup B (dynamical spacetime + uniform grid) in
solid green line. Corresponding ideal rates are shown in light grey dotted lines. Here, we
vary the number of GPUs (nodes) from 64 (8) to 8000 (1000) as shown along the x-axis,
while keeping a fixed problem size of 960 x 960 x 960. Performance is quantified in
terms of zone-cycles s !, shown along the y-axis. As we increase the number of GPUs,
the compute load per GPU varies from 240° cells GPU ™! to 48* cells GPU™!. For 512
GPUs, the strong scaling efficiency 7, is maintained at 54% and 65% for Setup A and
B, but drops further to 13% and 20% respectively when using 8000 GPUs. One major
reason for the decrease in 7 stems from the insufficient compute load per GPU, leading
to its ineffective usage.

Table 3. Strong scaling test results for Setup A (static spacetime + uniform grid) and
Setup B (dynamical spacetime + uniform grid) with a fixed problem size of 960 x 960 x
960. The strong scaling efficiency 7, is normalized by the 8 node performance.

Setup A Setup B
Nodes GPUs cellsGPU™' ZCss™! s ZCss™! s
8 64 2403 10.0 x 108 1.0 4.6 x 108 1.0
27 216 160° 26.9 x 108 079 13.5x 108 0.86
64 512 1203 43.5 x 108 054 24.1x 108 0.65
125 1000  96° 66.5 x 108 042 37.3x10°8 0.51
216 1728  80° 96.8 x 108 036 49.4x 108 0.40
512 4096  60° 1502 x 108 023  76.6 x 108 0.26
1000 8000  48° 164.6x 108 013 114.8x10° 0.20

For AsterX, the strong scaling test results are illustrated in figure 11, and details presented
in table 3. On uniform grid, we consider a problem size of 960 x 960 x 960, and vary the com-
putational load per GPU from 240° cells GPU ™! to 483 cells GPU™! with increasing number
of nodes, similar to the study reported in [67]. Due to limited computational resources, we per-
form each test up to 512 iterations. Our parallel efficiency for strong scaling 7 is normalized
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based on the results obtained for 8 nodes (64 GPUs), for which we have 2403 cells GPU~!.
Here, we find that Setup A and B run with about 10 x 10® and 4.6 x 108 ZCss™! respect-
ively. With an about x16 increase in node count, 75 drops to 42% and 51% for Setup A and
B, and decreases further to 13% and 20% respectively with a x125 node count increase. This
decline in parallel efficiency can be explained by the significantly larger ratio of throughput
and memory bandwidth to problem size on GPUs. In other words, we are not efficiently using
the GPUs since the problem size per GPU becomes too small, and for the chosen simulation
setup, operating below a compute load of about 96> cells GPU~! results in significant ineffi-
ciency. We also find that for a given number of nodes, the performance in terms of ZCss ™!
is roughly twice as faster for Setup A which assumes static spacetime, than that of Setup B,
which involves evolving the spacetime equations as well. In contrast, the parallel efficiency
75 is higher by roughly 10%—-20% for Setup B when compared to that of Setup A. This is
expected since the work load per GPU for Setup B is larger, in terms of solving the number of
equations, as compared to Setup A.

For Setup C, which includes 8 levels of mesh refinement, we restrict the problem size to
480 x 480 x 480 per level, and vary the computational load from 1203 cells GPU ™! level ™! to
243 cells GPU~! level ~!. In this case, we find that the number of ZCs s~! decreases at most by
a factor of 2 as compared to the results of Setup B, and the parallel efficiency goes below 10%
for a 1000 node run. In particular for the case without subcycling there is a known inefficiency
in our code: Each level is independently distributed across all GPUs, which leads to much
smaller per-GPU block sizes than if each GPU handled only blocks from a single level.

Overall, we find our results to be similar to the ones reported in [67].

5.4. Weak scaling

Weak scaling involves measuring the variation in the solution time with the number of GPUs,
while maintaining a constant computational load per GPU. Ideally, for a perfect weak scal-
ing, the solution time should remain constant, however, in practice, the parallel performance
is affected by a number of factors stated earlier, such as inter-GPU and inter-node commu-
nication overheads, limited communication bandwidth, load imbalance, and synchronization
overheads.

Our weak scaling results are illustrated in figures 12 and 13. For each of the Setups A and
B, we consider two cases having a compute load of 1283 cells GPU~! and 240° cells GPU!,
and vary the number of nodes (GPUs) from 8 (64) to 4096 (32768). For Setup C instead,
which involves 8 levels of AMR, we consider cases with 643 cells GPU~ ! level~! and 1203
cells GPU ™! level ~!. Summing up the compute load for all 8 levels effectively results in 1283
cells GPU™! and 240 cells GPU~! for Setup C. Results for the case with higher compute load
(2403 cells GPU™') are presented in tables 4 and 5. Here too, the weak scaling efficiency 7,,
is normalized by the 8-node performance.

For 8 nodes with 240° cells GPU™!, we find the number of ZCss~! GPU~! to be about
0.16 x 108 and 0.072 x 10® for Setups A and B respectively. In general, Setup A runs about
2 to 2.5 times faster than Setup B. The weak scaling efficiency 7,, remains as high as 85%
and 91% upto 216 nodes (1728 GPUs) but decreases to 77% and 67% for 4096 nodes (32 768
GPUs) for Setups A and B respectively. As mentioned earlier, one reason for the decrease in
performance is related to the communication overhead. The box-shaped grid structure used
for the scaling test distributes the workload per GPU in cubical blocks, where the ghost cell
communication scales with the number of blocks as ~n>. This, in turn, is limited by the com-
munication bandwidth, as also pointed out in [67].
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Figure 12. Results of weak scaling test performed for Setup A (static spacetime + uni-
form grid), Setup B (dynamical spacetime + uniform grid) and Setup C (dynamical
spacetime + 8 levels AMR). Number of GPUs (nodes) is varied from 64 (8) to 32 768
(4096) along the x-axis, while keeping a fixed compute load of 128 cells GPU™! and
2407 cells GPU™! for Setup A and B, and effectively for Setup C as well. Along y-axis,
we show performance in terms of zone-cycless~! GPU™!. In general, Setup A runs are
about 2-2.5 times faster than Setup B, and about 6-22 times faster than Setup C. Overall,
the runs with higher compute load perform better, for which, with 4096 GPUs, the weak
scaling efficiency 7, remains at 83% and 88% for Setup A and B, but drops further to
77% and 67% respectively when using 32 768 GPUs. For Setup C instead, 7,, decreases
to 62% for the run with 1728 GPUs, and further down to 22% for 32 768 GPUs.
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Figure 13. Comparison of weak scaling results for Setup C (dynamical spacetime + 8
levels AMR) without and with subcycling in time. An overall gain of factor 2.5-4.5 is
obtained in performance when using subcycling, as expected since larger time steps are
employed for coarser refinement levels, whereas runs without subcycling use the same
time step size for all levels.

While the overheads could be minimized by adopting efficient schemes that would require
less number of ghost zones, such as Discontinuous Garlerkin methods [105] and compact FD
[106], increasing the communication bandwidth instead requires improving the cluster infra-
structure. Another strategy would be to improve the computation-communication overlap. As
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Table 4. Weak scaling test results for Setup A (static spacetime + uniform grid) and
Setup B (dynamical spacetime + uniform grid) with a fixed computational load of
240° cells GPU™!. Here, the weak scaling efficiency 7, is normalized by the 8 node

performance.

Setup A Setup B
Nodes GPUs Grid 7ZCss~'GPU™! 1, ZCss™'GPU™! p,
8 64 960 x 960 x 960 0.157 x 10 1.0 0.072 x 108 1.0

27 216 1440 x 1440 x 1440 0.145 x 10® 0.92 0.068 x 10° 0.94
64 512 1920 x 1920 x 1920 0.130 x 108 0.83 0.065 x 10° 0.91
216 1728 2880 x 2880 x 2880 0.133 x 10° 0.85 0.066 x 10 0.91
512 4096 3840 x 3840 x 3840 0.129 x 10° 0.83 0.064 x 10 0.88
1728 13824 5760 x 5760 x 5760 0.123 x 10 0.79 0.051 x 10 0.71
4096 32768 7680 x 7680 x 7680 0.121 x 10 0.77 0.048 x 10 0.67

Table 5. Weak scaling test results for Setup C (dynamical spacetime + 8 levels AMR) with a fixed
computational load of 120° cells GPU ™! level ~! without and with subcycling in time. Here too, the weak
scaling efficiency 7,, is normalized by the 8 node performance.

Setup C Setup C + subcycling
Nodes GPUs  Grid ZCss~' GPU™! Nw ZCss~ ' GPU™! Nw
8 64 8 x (480 x 480 x 480) 0.0244 x 108 1.0 0.0893 x 108 1.0
27 216 8 x (720 x 720 x 720) 0.0195x 10 08 0.0767 x 10 0.86
64 512 8 X (960 x 960 x 960) 0.0155 x 108 0.64 0.0736 x 108 0.83
216 1728 8 x (1440 x 1440 x 1440) 0.0150 x 108 0.62 0.0629 x 108 0.70
512 4096 8 x (1920 x 1920 x 1920) 0.0107 x 108 0.44 0.0506 x 10 0.57
1728 13824 8 x (2880 x 2880 x 2880) 0.0099 x 10® 0.41 0.0270 x 10® 0.30
4096 32768 8 x (3840 x 3840 x 3840) 0.0055 x 108 0.22 0.0135 x 108 0.15

noted in [67], the current version of CarpetX does not launch the next GPU kernel until all the
ghost-zones from the previous kernel are filled. The ability to launch subsequent kernels that
may not immediately require ghost-zone values of the previous kernel while they are being
filled, can increase the computation-communication overlap, a feature that is under develop-
ment in CarpetX.

When considering AMR with 120° cells GPU~!level ™!, we compare performance with
and without the activation of subcycling in time. We notice that without subcycling, the 8-
node performance goes down to 0.0244 x 108 ZCss~! GPU™!, and overall, we notice it to be
about 6 to 22 times slower than Setup A (see figure 12). Whereas with subcycling, for 8 nodes,
we get 0.0893 x 108 ZCss~! GPU™!, and in general, the performance is quantitatively similar
to Setup B upto 512 nodes. Overall, we find that subcycling boosts the performance by a factor
of about 2.5 to 4.5 when compared to the results without subcycling (see figure 13). This is
expected since time steps are doubled as we move from finer to coarser grids when using
subcycling, whereas a uniform time step is used for all levels for runs without subcycling. In
terms of parallel efficiency, 7, reduces to 62% (70%) without (with) subcycling when using
216 nodes (1728 GPUs), and further decreases to 41% (30%) and 22% (15%) for 1728 nodes
(13 824 GPUs) and 4096 nodes (32768 GPUs) respectively. Here too, we find our results
without subcycling to be consistent with the ones reported in [67].
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The drop in ZCss~! GPU~! as well as 7, can be attributed to reasons such as prolonga-
tion/restriction operations for interpolations to finer/coarser grids that demand additional com-
putations and communication, as also highlighted in [67]. Also, the existing CarpetX infra-
structure enforces each GPU to work on one or more blocks on each refinement level, resulting
in serial calculations for the blocks assigned to each GPU. To make this handling efficient, one
could let each GPU work on one or more blocks from any given level, thus enhancing weak
scaling.

6. Conclusions and outlook

In this paper, we have presented a new three-dimensional GPU accelerated open-source numer-
ical code AsterX [69] that solves the full set of GRMHD equations in Cartesian coordinates
on a dynamical background. The code is based on CarpetX, the new driver for the Einstein
Toolkit which, in turn, is built on top of AMReX, a software machinery designed for massively
parallel, block-structured AMR applications. AsterX has been written from scratch in C++
but has adopted several algorithms from Spritz [57], and the RePrimAnd library [107], while
also benefitting from other publicly available codes such as WhiskyTHC [108], GRHydro [48]
and I11inoisGRMHD [52].

In AsterX, the employed GRMHD equations are based on the flux-conservative Valencia
formulation, and the divergence-free character of magnetic fields is guaranteed by evolving the
staggered vector potential. To accurately handle discontinuities, high resolution shock captur-
ing schemes, enabled via reconstruction methods TVD MINMOD and PPM along with Lax—
Friedrichs and HLLE flux solvers, have also been utilized. Our primary choice for primitive
variable recovery is based on the 2D Noble scheme with 1D Palenzuela routine set as back up.

AsterX has been validated via a series of classical tests in special and general relativity.
We demonstrated the code’s ability to accurately reproduce exact solutions by simulating 1D
MHD shock tube problems. Whereas, our convergence study illustrates the code to be at least
second order accurate. A number of special relativistic MHD tests in 2D were also conducted,
namely, cylindrical explosion, magnetic rotor, and loop advection, which proved to be in good
agreement with literature. We also simulated the Kelvin—Helmbholtz instability in 2D, to exam-
ine the handling of block-structured AMR, and confirmed that it performed reliably without
issues. For our final test, we evolved a stable magnetized TOV configuration in a dynamical
spacetime and successfully obtained peak oscillation frequency modes up to fourth harmonic.

Benchmarking the code on OLCF’s Frontier cluster indicated that performance on a single
GPU node is at least an order of magnitude faster than the respective CPU node. Strong scal-
ing efficiency is maintained up to 80% for 1 GPU node when comparing with a single GPU
throughput. Whereas, for weak scaling, parallel efficiencies are retained to 67%—77% for 4096
nodes (32768 GPUs) relative to the 8 node results. Moreover, when employing AMR, use of
subcycling provided a significant gain by a factor 2.5-4.5 in performance. Profiling the code
also helped us to identify the bottlenecks which will be optimized in the near future.

At present, the code supports different analytical EOS, and is currently being extended to
deal with tabulated microphysical EOSs. The primitive variable recovery algorithm of the
RePrimAnd library [107] has also been ported and is undergoing testing, and we plan to
add other routines of [109, 110]. In order to obtain higher order convergence, WENO-Z and
MP5 reconstruction schemes have already been implemented and are being tested. Next, we
intend to include support for advanced Riemann solver HLLD together with upwind CT-HLLD
scheme [84, 111]. For modelling neutrino transport, we have also started looking into porting
the moment-based M1 scheme [112] which would be coupled with the Monte—Carlo scheme,
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to closely follow the approach of [113]. These developments will enable us to accurately model
astrophysical systems such as core-collapse supernovae and BNS mergers, and will be presen-
ted in our next paper.

Meanwhile, we have already implemented a photon radiation leakage scheme in AsterX,
which is currently being tested via black-hole accretion disk simulations and will be presented
in another paper. This scheme will then be utilized in our production simulations to study gas
dynamics in supermassive binary black-hole mergers, allowing us to reach unprecedented time
and length scales via exascale computing.
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