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Abstract: The objectives of this paper are to investigate the trade-offs between a physically con-
strained neural network and a deep, convolutional neural network and to design a combined ML
approach (“VarioCNN”). Our solution is provided in the framework of a cyberinfrastructure that
includes a newly designed ML software, GEOCLASS-image (v1.0), modern high-resolution satellite
image data sets (Maxar WorldView data), and instructions/descriptions that may facilitate solv-
ing similar spatial classification problems. Combining the advantages of the physically-driven
connectionist-geostatistical classification method with those of an efficient CNN, VarioCNN provides
a means for rapid and efficient extraction of complex geophysical information from submeter resolu-
tion satellite imagery. A retraining loop overcomes the difficulties of creating a labeled training data
set. Computational analyses and developments are centered on a specific, but generalizable, geophys-
ical problem: The classification of crevasse types that form during the surge of a glacier system. A
surge is a glacial catastrophe, an acceleration of a glacier to typically 100-200 times its normal velocity.
GEOCLASS-image is applied to study the current (2016-2024) surge in the Negribreen Glacier System,
Svalbard. The geophysical result is a description of the structural evolution and expansion of the
surge, based on crevasse types that capture ice deformation in six simplified classes.

Keywords: neural networks; convolutional neural networks; geostatistics; glaciology; surge glaciers;
image classification; satellite remote sensing; spatial classification; connectionist-geostatistical classification

1. Introduction

The objective of this paper is to contribute to three challenges in different disciplines:
(1) Earth observation and data analysis, (2) climatic and cryospheric change, and (3) ma-
chine learning (ML). In order to put these challenges and our approach into a broader
context, this paper includes a review section centered around the three topics.

Challenge 1. Harnessing the data revolution in Earth observation from space. Obser-
vations of our rapidly changing Earth are largely carried out from space, and the collection
of such Earth observation data from satellites has rapidly advanced with increasingly
large and detailed data sets becoming available for scientific investigations [1]. The data
revolution has led to both new opportunities and challenges for science, as extraction of
information on complex geophysical processes from large and high-resolution data sets is
becoming increasingly difficult (a problem that has been summarized as “Harnessing the
data revolution” by the U.S National Science Foundation [2]). In turn, this phenomenon has
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created a cyberinfrastructure problem in terms of a disconnect between the revolutionary
increase in satellite image data on the one hand and the development of numerical Earth
system models on the other hand, which are employed to aid in assessment of global
climatic changes and their manifestations in warming and sea-level rise (SLR) [3-12]. A bot-
tleneck is created—growing with the data revolution—as this new wealth of information
revealed by the new satellites makes it hard to incorporate observations into physical-
process models, as the improved spatio-temporal scale introduced by the data sheds light
onto subprocesses not easily incorporated into models.

In this paper, we will introduce an approach that integrates machine learning and
physical knowledge into a physically-driven neural network, whose application will fa-
cilitate derivation of physical process understanding from high-resolution satellite data.
Results include parameterized information in the form of thematic maps (time series of
segmented satellite imagery) that can inform modeling as well as lend themselves to direct
geophysical interpretation and discovery.

Challenge 2. Glacial acceleration and sea-level-rise assessment. We address a cli-
matic and cryospheric change problem, the phenomenon of glacial acceleration, which has
been identified as one of two main sources of uncertainty in SLR assessment, as identi-
fied by the Intergovernmental Panel on Climate Change (IPCC) in their 2013 Assessment
Report 5 (the other source is atmospheric) [13]. The most recent IPCC AR 6, published in
2021, does not present a solution but rather elevates the urgency of understanding glacial
acceleration by declaring it a “deep uncertainty” in SLR assessment [3]. The different
types of accelerating glaciers include surge-type glaciers, tidewater glaciers, fjord glaciers
(isbree) and ice streams [14-30]. Acceleration frequency may be intrinsic to the glacier
type, quasi-periodic, or single-time. Initialization of an acceleration may be due to internal
dynamics of the glacier or externally forced, for instance, induced by warming ocean
water at the front of the glacier or controlled by a combination of several factors [31-34].
Spatial acceleration may be due to subglacial (bed) topography [33] or caused by a dynamic
event. All types of acceleration typically lead to the formation of crevasse fields. Surging
is the type of acceleration that has seen the least amount of research, and complexity of
ice flow during surging defies many classic data analysis methods, thus rendering most
cyberinfrastructures incapable of modeling this geophysical process.

In this paper, we focus on an exemplary analysis of glacial acceleration during the surge
of an Arctic glacier system, the Negribreen Glacier System (NGS), through classification of
crevasse patterns as indicators of the drastic and rapid dynamic changes that occur during
a surge. The surge led to mass transfer from the glacier to the ocean on the order of 0.5-1%
of global annual SLR in just a few months during the height of the surge [35,36]. The fact
that a surge causes sudden mass transfer events from the cryosphere to the ocean leads to a
catastrophic type of uncertainty in SLR estimation (with the term “catastrophic” defined as
continuous changes leading to sudden effects). If we are to reconcile SLR assessment, we
need to understand surge processes.

Challenge 3. Integration of physically-constrained classification and modern “Deep
Learning” approaches in satellite image classification. The surge is captured in the time
series of high-resolution satellite image data, which motivates a ML-based classification.
While deep convolutional neural network (CNN) architectures have been considered to
provide state-of-the-art performance on standard image classification benchmarks such
as the ImageNet data set [37-41], two problems exist: First, deeper networks only lead
to increased performance up to a point, after which increased network depth results in
increasingly worse performance due to the vanishing gradient problem [42]. Second, and
more challenging for applications in the cryospheric sciences, is the fact that no published
labeled training data sets exist for tasks of classification of ice-surface features, such as
crevasses (see [43]). The role of crevasse types in identification of deformation types, which
are directly related to glacial acceleration, will be described in Section 3. A main task is
thus the creation of such labeled data sets required for training of a neural net (NN). For
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CNN:s, the problem is exacerbated by the fact that very large numbers of training data (on
the order of 100,000 s) are needed.

We have previously developed a physically constrained ML approach, the connectionist-
geostatistical classification method [18,44,45]. The connectionist-geostatistical method uses
a two-tiered approach, in which the first step is a physically informed spatial statistical
analysis, carried out in a discrete mathematics framework. The output of the geostatis-
tical step provides the input for the NN, activating the neurons of the input layer. In
order to carry out an actual classification, a connectionist approach is selected, which can
utilize a multi-layer perceptron with backpropagation of errors (MLP-BP), or simply, a
MLP. The MLP has proven to provide a robust and functional architecture for this type
of classification and provided an efficient solution 20 years ago already [44]. To train the
connectionist-geostatistical classification, a small data set suffices, of a size that can reason-
ably be derived by an expert [44], on the order of several hundred labeled video-scenes or
small subimages of a satellite image. However, advances in Earth observation, increasing
data resolution and data set size, as well as advances in computer hardware and processing
speed warrant investigation of modern “Deep Learning” architectures to facilitate fast and
efficient processing.

The salient difference in the effectiveness of the two approaches lies less in the NN
architecture (MLP versus CNN) than in the fact that the connectionist-geostatistical clas-
sification is a physically informed approach (where the physical knowledge informs our
approach to geostatistics), whereas in the case of the CNN the network’s many more de-
grees of freedom are what the determination of classes relies on. CNNs can be trained
supervised or unsupervised [46].

In this paper, we will investigate the trade-offs of a physically constrained NN and
a CNN and introduce a first approach to leverage the advantages of both ML methods
in an integrated image classification system. We propose a solution to natural science
problems that takes an approach of combining and integrating physically constrained
neural networks and modern ML methods. To this end, we will demonstrate that a
physically constrained NN can be utilized to aid in creating a labeled training data set of
sufficient size to train a CNN. We emphasize that physical knowledge needs to be leveraged
in designing a ML approach that can be expected to provide solutions for the physical
sciences and advance knowledge there.

This last objective of the paper, providing an outlook towards future directions of
ML in the physical sciences, is grounded in the context of a review section of ML learning
in general and in the physical sciences, specifically and more recently the geosciences
(Section 2). Given that application of ML in the geosciences emerged several decades
ago, but is now rapidly gaining traction, a quick review of the state of the art may be
helpful for many readers. The review section covers topics from general references, classic
papers and books, early applications of NNs in the geosciences, spectral versus spatial
classification, computer science developments of ML methods for image processing and
classification, such as CNNSs, to the identified needs for advancing remote-sensing-data
classification using ML methods, especially in the geosciences, reporting some recent
geoscience applications of NNs, and lastly an approach aimed at integrating physical
sciences and ML.

In Section 3, we provide background on the glaciological problem, focusing on the
importance of the surge phenomenon as a main source of uncertainty in sea-level-rise
assessment, the surge of the Negribreen Glacier System (which is the glacier system that
is studied in this paper) and the crevasse-centered approach that facilitates treatment
of the surge problem using our machine learning approach, which is based on spatial
data analysis.
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2. Review on Neural Networks, Especially in the Geosciences and in (Satellite)
Image Classification

In this section, we give a brief summary of the state of the art of ML in the geosciences,
as well as ML applied to satellite image classification or analysis. Most works fall into one
of several categories, addressed in the following subsections.

2.1. General References: Classic Papers, Review Papers and Books

While neural networks have seen a sudden rise in public attention in recent years,
first research dates back to neural psychology at the end of the 19th century [47,48].
Rosenblatt [49] introduced the perceptron, and the first deep learning perceptron came out
in 1967 [50]. The use of neural networks stalled in the early 1970s, mostly due to limitations
in computation [51]. Foundational research on CNNs and thus on deep learning dates
back to the 1960s [40,50,52,53]. Important concepts that marked steps of development of
NN include backpropagation of errors and connectionism. Backpropagation of errors is
an application of Leibniz’s chain rule (from 1673) to networks of differentiable nodes that
has become a standard in optimizing MLPs [54]. Designing the connectionist-geostatistical
classification approach, we applied an MLP with backpropagation of errors in the 1990s,
using the Stuttgarter Neural Network software [44,55]. The term connectionism refers to an
approach to the study of human mental processes and cognition that utilizes mathematical
models known as connectionist networks or artificial neural networks [56,57].

A standard reference for deep learning is the book by Goodfellow and others [58].
A good general reference related to several topics of this paper is the book titled “Deep
learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and
geosciences” [46].

In their review of remote sensing image classification methods, [59] focus on appli-
cations of CNNss for extraction of semantic features in image data. Rawat and Wang [38]
present a review of deep convolutional networks for image classification, and Garcia-Garcia
and others write a survey of deep learning techniques for image and video semantic seg-
mentation [60]. A review of ML methods for classification of remotely sensed imagery and
applications to sea-ice classification is given in [61], and a review of hyperspectral image
(HSI) classification using CNNSs is presented by [62].

2.2. Classic Applications of NNs in the Geosciences

Prediction and assessment of sea-ice conditions in the Arctic, based on satellite remote
sensing, has been an important tool for ocean navigation. Synthetic Aperture Radar (SAR)
data lend themselves well for sea-ice observations, because the radar signal penetrates
cloud layers and fog, which are frequent in Arctic atmospheric conditions and obscure
optical satellite image data. A short review of ML methods for classification of remotely
sensed imagery and applications to sea-ice classification is given in [61]. Research on sea-ice
classifications based on SAR data goes back to the 1990s [63-65]. These early methods
typically allow distinguishing a small number of sea-ice types, such as three or four. Most
methods use multivariate statistics at pixel values in different channels, for example [66-68].
The approach of [66] is innovative in that it bases image segmentation on gradients in
the original multivariate statistical parameters, using an edge-detection method. Early
applications of NNs include [69,70]. Karvonen’s work [69] was a milestone in state-of-the-
art statistical techniques in sea-ice classification with applications to the seasonal ice cover
in the Baltic Sea, noting that understanding physical processes is an open problem. [70]
introduce an interesting concept that combines a number of statistical parameters and a
NN. Recent publications that utilize sea-ice classification include [71-74].

Neural networks that address pattern recognition problems such as self-organized
maps [75], a form of unsupervised classification, or “Learning vector quantification”, a
supervised NN approach [76], achieved some popularity, but were found to be outper-
formed by MLPs with back propagation of errors (MLP-BP) for image analysis of repeated
structural patterns [44]. An overview of pattern recognition using NNs is given in [77].
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2.3. Spectral Versus Spatial Classification

Most image classification methods are based on spectral or multi-spectral classification,
i.e., they utilize the fact that an image is composed of several spectral bands [59]. The
connectionist-geostatistical classification method that will be utilized in this paper is a
form of spatial classification, which is based on the fact that repeating spatial structures of
crevasse fields lead to characteristic types of vario functions [44,45]. In [61], we compare
statistical and geostatistical classification methods to explore the potential of combined
methods for sea-ice classification.

Vario functions are a formulation of the variogram in discrete mathematics [78]. Vari-
ograms are employed in satellite image characterization by [79]. Ref. [79] explore first and
second-order modeled histograms and variograms to characterize landscape spatial structures
from remote-sensing imagery (SPOT-HRV NDVI data) and conclude that the method has
potential to distinguish effects of anthropogenic landscape-forming processes from those of
environmental and ecological processes, however, they note that the method can be improved.
In contrast, the connectionist-geostatistical method in the form used in this paper employs
experimental vario functions directly to initialize the input neurons in a NN.

Most applications of variograms in satellite image analysis are estimations (kriging) or spatial
or temporal analyses, rather than classifications, of satellite data, for example [80,81], specifically,
of SAR data. The differences between geostatistical estimation/ interpolation and extrapolation,
characterization and classification are explained in [45].

2.4. Computer Science Developments of ML Methods for Image Processing and
Classification. CNNs

Recent advances in NN research, especially for applications to image analysis/processing
/classification, have been led by computer scientists. In the last approximately 10-15 years,
deep learning methods have dominated. Within the field of deep learning approaches,
CNNs are preeminent [46]. Deep learning summarizes ML approaches that involve neural
nets with large numbers of internal layers (for example, ResNet-1001 has 1001 layers [82,83].
Overviews of these methods are given in [46,59]. In contrast, the MLP used in the original
(2001) connectionist-geostatistical classification has three layers: an input layer, an internal
layer, and an output layer [44].

Types of CNNs that have been widely used include: (described largely following [59]
with some updated references) (1) AlexNet, a CNN with five convolutional layers and
two fully connected layers, first evaluated for ImageNet [39,40], a prototype test data set.
AlexNet won the so-called ImageNet challenge in 2012 [41]. (2) Network-in-Network
(NiN) [84], where a MLP is added to each convolutional layer, replacing a simple linear
convolutional layer, and an averaging method, called global average pooling, is applied
to counteract overfitting. (3) VGG-Net [85], a 19-layer network with small (3 x 3) convo-
lutional kernels, (4) GoogLeNet [86], a 22-layer network, (5) ResNet [41,82,83], a family
of so-called residual networks with depths of up to 1001 layers, (6) DenseNet [87], a NN
type that uses cross-layer connections to improve network structure, (7) MS-CapsNet [88],
a multi-scale capsule network. ML methods, from multi-spectral statistical methods to
CNN:s, can be trained supervised or unsupervised [46].

The work in this paper uses a form of ResNet, because ResNets have been found to
excel at image classification problems. Hence, ResNet principles and architectures will be
described in more detail in Section 8. Applications of CNNs in image classification are
numerous (see, for example, [37,38,40]).

2.5. Identified Needs for Advancing Remote-Sensing-Data Classification Using ML Methods, in
General and in the Geosciences

In this paper, we will address some of the shortcomings and challenges associated with
applications of CNNs in image classification, identified in [59]: lack of sufficient training data
(see also [43,89,90]), need for remote-sensing-specific CNN architectures, time-efficiency of
training CNNs for image classification, and a need for high-level CNN-based applications in
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remote-sensing image classification. The first three challenges concern technical aspects of NN
developments, and our work will address all three. Most interesting to us is the observation
(made by [59]) that most current remote-sensing image ML applications resemble those in
computer vision, whereas identification of semantically complex information is largely missing
in state-of-the-art research. This resonates with the authors’ observations that many modern
CNNs are constructed for the same type of simple applications that were tackled with image
processing methods several decades ago. For example, the hyper-deep ResNet-1001 [82,83] is
derived for multiframe video satellite image super-resolution processing, but then applied to
a problem of differencing aircraft-presence/aircraft-absence already analyzed decades earlier.
Another application to moving object detection is described in [91]. Note that the ResNets
use very small convolutional kernels, which is a match to the fact that many image denoising
or sharpening techniques of the 1900s used 3 x 3 or 5 x 5 or 7 x 7 kernels [44]. It appears
that modern ML methods often perform similar applications as older methods, only faster,
at higher resolution, or for more modern observations, e.g., satellite videography. In our
paper, we aim to create an approach that allows to understand a certain, complex geophysical
(cryospheric) phenomenon.

In part, the lack of actual conceptual advances or physical process understanding in
the Earth sciences from ML applications to image classification is tied to the fact that ML
research is based on a relatively small number of labeled training data sets (an example is
ImageNet [40]).

Physically-driven NNs fall in the category that is termed “high-level (C)NN-based
applications” (by [59]) or classification of geophysically complex information, such as
crevasse classification for the surge problem in this paper. Identification and classification
of complex information in imagery requires large subimages, or large moving windows
(not the same) [44], and last but not least the creation of labeled training data for cryospheric
applications. Along similar lines, [92] in their review of Earth science applications highlight
NN structures that include modules of data analysis from other than ML fields (see,
Sections 2.5 and 2.6); however, there are only a small number of such approaches listed—
and none in cryospheric sciences. Our work falls in this category.

2.6. Recent Applications of NNs in Geosciences

Dominant application fields include land-cover/land-use (urban areas, farmlands,
roads, water bodies), biogeosciences, and military applications, and there especially change
detection of airplanes present/absent at terminals (see, for example, [37,59,89,93-96]).
Neural nets and other ML methods are increasingly finding applications in the geosciences.
Reviews are found in [61,97].

Examples of papers where ML structures are applied include the following: Neural
networks are utilized in studies of vegetation canopy height, using ICESat-2 and Landsat
data [98,99]. In a case study of a forest in Texas, [99] investigate the potential of using
a Deep Neural Net (DNN) or a Random Forest (RF) model for above-ground biomass
assessment based on ICESat-2 and Landsat data, finding similar performance values for
the DNN and the RF. Ref. [100] explore applications of NNs for analysis of atmospheric
data from ICESat-2, treated like image data. Common to these studies is that they are
case studies, which investigate the applicability of previously published types of NNs to
satellite data analysis. Other applications include forest canopy height determination from
ICESat-2 and Landsat data [101], disaster detection and monitoring (flood detection) using
RFs [102], and geological image classification using CNNs [103].

In summary, recent applications of ML in the geosciences fall into two categories,
(1) computer scientists taking summative approaches to geoscience data classification
(different formulation) and (2) geoscientists exploring applications of existing, previously
published ML approaches to image analysis. Notable exceptions include feature augmented
neural nets for satellite image classification (an approach that augments data sets with
handcrafted feature data sets, see, for example, [104]) and a new strand of methods that
aim to integrate ML and physics (see, next section).
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2.7. Approaches Aimed at Integrating Physical Sciences and ML

Most relevant for the work in this paper is a class of approaches that are aimed at
integrating physical sciences and ML, by either using physical knowledge in ML or by
using ML to improve physical models.

Exemplary approaches that include physics in ML have been termed “physics-aware
ML"” [105], based on the concept that the elementary laws of physics ought to be respected
by ML approaches in the geosciences. Under this label, challenges, more so than solutions,
in the interplay of physics and ML have been identified that may help advance Earth system
knowledge (encoding differential equations from data, constraining data-driven models with
physics-priors and dependence constraints, improving parameterizations, emulating physical
models, and blending data-driven and process-based models). Reference [106] propose an ap-
proach termed “Geoscience-aware deep learning” (GADL), which includes geoscience features
in deep learning models. This is similar to the concept of including handcrafted features in
CNN-based satellite image classification suggested by [104]. Other authors recognize the need
for collaborative efforts in the field of geoscience and ML (e.g., [107]).

Physically-guided neural networks (PGNNSs) leverage scientific knowledge physical mod-
els, and observational data in a neural network in order to make better predictions [108]. The
idea of physical consistency is used as a learning objective to allow generalization of the
learned network. PGNN’s have been used to model complex physical systems that either
lack required data constraints or incur large computational costs, such as those found in
fluid dynamics problems [109] or power flow analysis [110]. These include applications of
ML methods in the determination of numerical modeling parameters.

In a recent overview of ML in the Earth sciences or physical sciences in general, refer-
ence [92] emphasize that advance of knowledge in the sciences, with the help of ML methods,
requires development of novel NN approaches. Examples of methods that include non-ML
physical data analysis modules in the NN operations flow /architecture stem from oceanogra-
phy (sea-surface temperature patterns, [111]) and biological applications [112].

3. Glaciology Background
3.1. Importance of Surging

Glacier surging is an important type of glacial acceleration, with surge-type glaciers
found around the world in many but not all geographic regions, however, the phenomenon
remains poorly understood due to a relative paucity of comprehensive observational data
and a lack of model application to actual, complex ice systems [14-18]. A surge-type glacier
experiences a quasi-periodic cycle between a long quiescent phase of normal flow and grad-
ual retreat, and a short surge phase when the glacier accelerates to typically 10-200 times
its quiescent speeds with heavy crevassing occurring throughout the ice system.

The recent surge of the Negribreen Glacier System (NGS), an Arctic glacier system
located in eastern Spitsbergen, Svalbard, provides a rare opportunity to study a surge
in a large and complex system [35,113,114]. Beginning in 2016, the NGS began to surge
with acceleration and heavy crevassing within 10 km of the terminus [35,36,114,115]. The
fastest surge speeds of around 22 m/day, equivalent to 200-times the glaciers quiescent
flow velocity, occurred during the height of the acceleration phase in July 2017 [116].

Negribreen last surged in 1935/36 [113], which indicates that the quasi-cycle of the
surge in the NGS is approximately 80 years. From a methodological point of view, it is
worth noting that there has been no opportunity for modern data analysis and study of
the Negribreen surge process prior to the current surge— this example indicates how the
relative paucity of surges limits our ability for their study, but also that the Negribreen surge
has provided a unique opportunity to advance several branches of science, mathematics
and engineering [35,116]. Relevant to the study in this paper, the NGS has provided a
unique collection of ice surface structures and crevasse types in close proximity, for an
Arctic glacier system, and thus enabled the ML work reported here.
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3.2. The Surge in the NGS

Negribreen is located on Spitsbergen in Svalbard, Norway, with the calving front at
approximately (78.57°N, 19.083°E) in 2019, approximately 1000 km south of the North
Pole. Negribreen receives most of its inflowing ice from the accumulation zone above
the glacier to the west called Filchnerfenna and its northern part, the Lomonosovfenna,
through Transparentbreen, Opalbreen and the Negribreen ice falls. The NGS, as defined by
the blue contour in Figure 1a, has an ice extent of approximately 500 km?. The main glacial
trunk, simply referred to as Negribreen, is fed by several major tributaries: Rembebreen
to the south, and to the north, Akademikarbreen and Ordonnansbreen. Rembebreen and
Petermannbreen (southwest of Negribreen) flow out of a southern part of the Filchnerfenna.
Ordonnansbreen does not flow out of an icecap, but its source areas are mountain cirques.
The area of the NGS is classically referenced as 1180 km? [113], based on the extent of the
glacier system at a time when Petermannbreen and Gardebreen (east of Ordonnansbreen)
and their tributaries were still connected to Negribreen.
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Figure 1. Location of study area and surface velocities from Sentinel-1 SAR data. (a) Negribreen
Glacier System (NGS) with important geographical features labeled. The location of the NGS within
the Svalbard archipelago is indicated by the red box in the upper-right corner insert. (b) NGS mean
surface velocity between 2016-07-03 and 2016-07-15 shortly after the surge began. (c) NGS mean
surface velocity between 2017-07-10 and 2017-07-22 when peak surge speeds were reached (upwards
of 22 m/day). (d) NGS mean surface velocity between 2018-05-10 and 2018-05-22. Each of the velocity
maps in (b-d) are in m/day, with black arrows indicating the magnitude and direction of the mean
surface velocity between the baseline dates. Background image for each subfigure: Landsat-8 RGB
image acquired 5 August 2019.
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The NGS is a polythermal glacier, consisting of ice at and below the pressure melting
point, and a marine-terminating (tidewater) glacier with ice calving into Storfjorden and the
Arctic Ocean. Like other tidewater glacier surges in Svalbard (e.g., [24,114,117]), Negribreen
began accelerating near the terminus after a collapse near the glacier front [36]. Surge effects,
such as heavy crevassing and elevated velocities, proceeded to propagate upglacier through
the end of 2020 when they reached the NGS boundary with Filchnerfenna 30 km upglacier
from the terminus [36]. Mean ice-speeds remained significantly elevated in 2023 relative to
quiescent speeds, with a maximum of 4 m/day near the calving front, though ice-speeds
have been decreasing steadily since the peak in 2017 (see Figure 1c). High velocities, large-
scale crevassing and enhanced calving during the surge has led to rapid disintegration
of the system and large mass loss [36], thus contributing a significant amount to annual
sea level rise during the surge years. Examples of surge crevasses are shown in aerial
photographs in [36,116].

3.3. The Crevasse-Centered Approach

Because analysis of crevasse patterns takes a central role in the physical part of our
ML approach, we give a brief background summary on the role of crevassing in glacial ac-
celeration and to the utilization of the crevasse concept in data analysis and modeling. The
central idea of the crevasse-centered approach is that dynamic signatures of fast-moving ice
and glacial acceleration are imprinted in ice in the form of crevasses and consequently the
deformation history of a glacier can be reconstructed through analysis of crevasse patterns.
Structural geologic principles provide links between dynamics, kinematics and deforma-
tion, which can be physically formalized and quantified using continuum mechanics and
simulated in numerical models [20,118-123].

Crevasses can be characterized using generalized spatial surface roughness, which is
a mathematical approach that utilizes parameters derived from spatial statistical functions
to capture spatial properties of a surface [45]. Roughness-based characterization applies
to both crevassed and non-crevassed ice surfaces and thus allows to map an entire glacier.
The approach of combining structural geology and mathematical roughness analysis to
derive deformation characteristics in fast-moving glaciers is described in theory in [124] and
has been applied to map deformation provinces in surging and continuously fast-moving
glaciers throughout the cryosphere [16,44,45,125-128]. Applications of other approaches
to structural glaciology have been reported by [129-131]. These studies have shown
that observations of crevasse patterns and surface roughness can be used as a source of
geophysical or glaciological information.

Furthermore, the crevasse-based geophysical information obtained from remote
sensing observations, such as satellite imagery, can be utilized in numerical models.
Reference [20] use Landsat-7 imagery of Bering Glacier, Alaska, during its peak surge
phase in 2011 to derive crevasse locations, based on roughness characterization, and
crevasse orientations, which are also modeled by simulating the stress regime in a 3D,
full-Stokes finite element model. Differences in crevasse characteristics are minimized by
optimizing important surge-model parameters such as the basal friction coefficient. This
method is extended in [132] to include other sources of model-data comparisons, such as
surface velocity, which allows the optimization of additional model parameters such as
those related to ice rheology.

Ice velocity observations are popularly used to constrain unknown model parameters
(e.g., [133]); however, during a surge, the large-scale non-linear dynamics complicate veloc-
ity determination [20,134], particularly on short time scales relevant to a surge. Therefore,
crevasse observations are our most reliable source of dynamical information during peak
surge activity and can be used to derive and optimize basal sliding laws for modeling a
surge phase [135].

Crevasse classes, like those derived in the present paper, offer a more sophisticated
picture of a glacier’s dynamic and structural state compared to simple crevasse-location
and crevasse-orientation characterization. With more detailed geophysical information
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from crevasse classification, we expect to provide better constraints for a numerical model,
allowing more optimal parameterization, better error correction for input data sets such
as bed topography, and ultimately more realistic simulation of glacial acceleration and its
resulting effects on SLR and the evolving cryosphere.

4. Summary of the Approach
4.1. Objectives, Summary of Approach, Classification and Analysis Steps

The main objective of this paper is the exploration of the trade-offs between a physi-
cally constrained NN, a CNN (“Deep Learning”) for a specific, but generalizable, problem
in the geosciences: The classification of crevasse types that form during the surge in an
Arctic glacier system, the Negribreen Glacier System, Svalbard, to derive objective infor-
mation about the evolution of the surge. To achieve this objective, we create a software
system, termed GEOCLASS-image that facilitates classification of surface features from high-
resolution satellite imagery and other imagery, perform testing and quality assessment
(Q/A) of the software system, and release it as the core of an associated cyberinfrastructure.

Based on the results of the two trade-offs studies, we derive an example of a ML
approach that combines the advantages of a physically constrained, classic NN with those of
a CNN, thereby creating a physically constrained NN with a combined architecture, which
will be termed VarioCNN. The final VarioCNN is applied to a time series of World View
images, to derive information on the evolution of the surge in an Arctic Glacier System, the
Negribreen Glacier System.

The combined NN, VarioCNN, will be applied to a time series of World View-1 and
WorldView-2 images, collected in 20162018 during the acceleration stage and mature stage
of the surge in the NGS. Each image will be analyzed individually and provided an element
in a time series of thematic maps of crevasse provinces. The goal is to derive geophysical
information on the evolution of the surge during these core stages. Specifically, we aim to
create a classification of crevasse patterns, as they relate to deformation types that occur
as a result of ice-dynamic processes. Crevasses are manifestations of the local strain state
of the ice. Occurrence of fresh crevassing indicates the expansion of the surge, and as the
surge progresses, new types of crevasse patterns form. The time series of crevasse maps
will be interpreted geophysically. Lastly, we provide a description of the GEOCLASS-image
software system.

In summary, the work in this paper builds on the following three ideas:

(1) Employ geostatistical parameters as a mathematical formulation for physically in-
formed extraction of complex information from imagery

(2) Utilize different NN types as connectionist association structures: MLPs and CNNs

(8) Compare and then combine the NNs into a three-tiered approach: geostatistical-
connectionist with MLP and CNN

4.2. Approach Steps
Objectives of the work in this paper are the following:

(1) Create a software that

(1.1) encompasses the main principles of the connectionist-geostatistical classification
method,

(1.2) is sufficiently tested /robust/quality-assessed to form the center-piece of a com-
munity software for image classification in the geosciences and beyond,

(1.3) has a user-friendly GUI for image manipulation, selection of training data,
through classification,

(1.4) facilitates training and classification of several crevasse types,

(1.5) allows analysis of different types of satellite imagery,

(1.6) includes utility tools for cartographic projections and other image manipulations,

(1.7) includes several neural network types, including multi-layer perceptrons, convo-
lutional neural networks, and



Remote Sens. 2024, 16, 1854

11 of 49

(1.8) is open to generalization to more architecture types,

(2) Explore the trade-offs between a physically constrained NN and a CNN for a specific,
but generalizable, problem in the geosciences: the classification of crevasse types that
form during a glacier surge,

(3) Create an example of a ML approach that combines the advantages of a physically
constrained, classic NN with those of a CNN, thereby creating a physically constrained
NN with a combined architecture, and

(4) Apply the resultant NN to a time series of WorldView images, to derive information on
the evolution of the surge in an Arctic Glacier System, the Negribreen Glacier System.

4.3. Terminology

We use the following terms to distinguish ML approaches and NN in this paper;
further explained in Sections 6-9.

(1) The connectionist-geostatistical classification method [44] is the original approach that
combines a physically driven geostatistical analysis of an input data set and a neural
network into a ML approach. As described in [45], the geostatistical analysis or charac-
terization can take several different forms, in any case, the output of the geostatistical
analysis is used as input for the neural network. Examples of geostatistical analysis
include (a) the experimental variogram, a discrete function, and (b) results of geosta-
tistical characterization parameters. The neural network type applied in most of our
studies is generally a form of a multi-layer perceptron (MLP) with back-propagation
of errors [44,45,61] (see Section 6).

(2) The acronym VarioMLP is used for the connectionist-geostatistical NN type that is
applied in this paper; it employs an four-directional experimental vario function to
activate the input neuron of a MLP with back-propagation of errors (see Section 6).

(8) The term convolutional neural network (CNN) stands for a specific class of neural net-
works that realize the concept of “deep learning” [46,58].

(4) ResNet-18 is the acronym for the specific CNN used in this paper [41,82] (see Section 8).

(5) The acronym VarioCNN will be used for the combined new method that integrates
VarioMLP and ResNet-18 into a unique, physically constrained ML approach (see
Section 9).

(6) Specific architectures of a NN are identified by adding information in square brackets,
for example, VarioMLP[18, 4,(5,2)] identifies a VarioMLP, where 18 is the number of
steps in the vario function (for each direction), 4 the number of directions of vario-
function calculations, yielding 72 nodes in the input layer, and (5,2) the factor in the
number of nodes of hidden layers; here a MLP with two hidden layer is used, where
the first layer includes 72 times 5 nodes and the second layer 72 times 2 nodes (see
Section 7).

More generally, Vario MLP[nsteps, iy, (M1, - . ., y,)] identifies a VarioMLP, where e ps
is the number of steps in the vario function (for each of n;, directions ) and (my, ..., my;)
with nl € N the factor in the number of nodes in n! hidden layers; here a MLP with nl
hidden layers is used, where layer i has m; nsteps nodes fori = 1,.. ., nl (see Section 7).

(7) GEOCLASS-image is the software system utilized to create the neural networks and
labeled data sets referred to in this paper and carry out the classifications of crevasse
types during the surge of the NGS, Svalbard [136].

5. Approach Component: Image Classification and Data Sources
5.1. Image Classification Challenges and Approaches

The data analysis challenge is a type of image classification, more specifically, im-
age segmentation. Different types of image classification are the following: (1) Each
image is associated to a class, (2) features are extracted from images (an often-analyzed
example is the detection of moving features between consecutive images, e.g., planes at
terminals [83], (3) application of the image classification to videography, i.e., time series
of images (e.g., [44]) or satellite videography [83], (4) segmentation of a single image into
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areas of several different classes, resulting in thematic maps. Early applications in the
geosciences, e.g., sea-ice classification and land-cover classification, fall in this category.
Typically, the classification is applied as a moving-window operator (i.e., to subimages,
which can overlap). From a classification standpoint, the types of image arrangement can all
be treated the same way, with different data handling utilities. Challenges in this context lie
in the specifics of the observational data, which may include remotely sensed imagery from
any tier of observation (satellite, airborne, subaerial, ground), in the specific spatial and
spectral resolution of the sensor, signal-background separation, and other characteristics of
image. The problem treated in this study is a combination of (4) and (1), applied to a time
series of satellite image data of the glacier surface. The classification will be applied to each
image individually (i.e., without providing information on the previous image).

Because a surge in an Arctic glacier extends over several years, typically 7-10 [137],
data from several different satellite sources need to be integrated in an analysis. Here,
we utilize Maxar (formerly DigitalGlobe) data from the WorldView-1 and WorldView-2
satellites. Both satellites carry high-resolution multispectral optical image sensors, but with
different resolutions and spectral channels (see, Table 1). Thus, a specific challenge lies in
the identification of subimages for training that work for both satellite data types.

Table 1. Instrument specifications for the Worldview-1 and Worldview-2 satellites (Maxar). Both
satellites provide high-resolution imagery using the pushbroom scanning technique.

Worldview-1 Worldview-2
Dates of Operation 18 September 2007-September 2023 8 October 2009-present
Sensor Name WorldView-60 camera WorldView-110 camera
. 1) Panchromatic channel, spectral range:
Channel(s) (1) Panchromatic channel, spectral range: E15)0 nm-800 nm, (2) 8-band {\)/[ultispect;gal
450 nm-900 nm
channel, spectral range: 400 nm-1050 nm
Resolution 0.50 m—-0.55 m Ground Sampling (1) 046 m—0.52 m GSD, (2) 1.8 m—2.4 m
Distance (GSD) GSD
Swath Width 17.9 km 16.4 km
Field of View 2.12° 1.28°
Orbit Altitude 496 km 767 km
Inclination 97.2° 97.8°
Orbit Period 94.6 min 100.2 min
Revisit Time 1.7 days-5.9 days ~1.1 days

In order to facilitate application of our classification system GEOCLASS-image to
data from different sources, a large range of data handling utility modules is included
(see, software description). The software is designed to be generalizable to several data
types, both for different studies, using a single data type, and to integrate data from several
sources into one classification.

The classification will be trained using a set of labeled images. A challenge in a
spatially based classification, but also in any image classification that uses subimages (or:
splitimages), is the selection of a subimage size that is large enough to include several
repetitions of the crevasse pattern, but also small enough to be sufficiently homogenous to
be assigned to a single class.

5.2. Data Sources and Processing

The analysis in this paper utilizes Maxar WorldView-1 and WorldView-2 optical
satellite image data. WorldView-1, WorldView-2 and WorldView-3 data are a widely
used type of commercial satellite imagery [138]. Hence, the classification approach de-
scribed in this paper is relevant to large parts of the Earth science community. For exam-
ple, an Arctic-wide Mosaic and DEM is created from WorldView data [139]. Ref. [140]
use a RF classification applied to WorldView-2 imagery to identify tree species in the
forests of Austria at high resolution. WorldView data are used heavily as the data source



Remote Sens. 2024, 16, 1854 13 of 49

for classifications by the land-cover/land-use and the vegetation ecology communities
(e.g., [93,94,96,140-147]).

The WorldView-1,2,3 satellites, owned and operated by Maxar (formerly Digital-
Globe), provide submeter optical imagery of much of the cryosphere [139], including all
of Negribreen. WorldView-1 carries a single high-resolution optical imager called the
WorldView 60 camera, which has a single panchromatic channel with a spectral range of
0.45 um-0.90 pm. WorldView 60 is a pushbroom sensor operating in a swath of 17.9 km with
0.5 m resolution at nadir down to 0.55 m resolution 20° off nadir. (see Table 1). WorldView-2
also carries a single high-resolution optical imager called the WorldView 110 camera, but it
has two operational channels. The first is a panchromatic channel with a spectral range
of 0.45 um—0.80 um, while the second is an 8-band multispectral channel ranging from
0.4 um-1.05 pm. WorldView 110 is also a pushbroom sensor with a swath-width of 16.4 km
with 0.46 m resolution at nadir down to 0.52 m resolution off nadir. A full comparison of
the WorldView-1 and WorldView-2 specs is given in Table 1.

In this analysis, we utilize panchromatic imagery from WorldView-1 (launched 18
September 2007, decommissioned September 2023, [148]) and WorldView-2 (launched
8 October 2009, remains operational in 2024, [149]) to analyze the NGS surge from its
start in 2016 through 2019. Data from the panchromatic channel will be utilized for the
classification approaches in this paper, because it has the highest spatial resolution for
each satellite (0.45 m pixel size for WorldView-1 data and 0.42 m for WorldView-2 data)
and thus retains the most information on spatial properties of the ice surface. While we
do not employ data from the other spectral channels, we have described statistical and
geostatistical image classification approaches for multispectral data elsewhere [61].

VarioMLP has also been applied to classify Negribreen crevasse provinces based on
Planet SkySat data [35,116] (for data description, see [150,151]). Other commonly used
satellite imagers include Landsat [152] and Sentinel-2 [153].

Processing. Images are selected with respect to spatial coverage, temporal coverage
and lack of obfuscation. The GEOCLASS-image system includes a tool for evaluation of
the area of overlap of a given WorldView image with the area of interest, as outlined by the
polygon encompassing the NGS region (Figure 1a). Only images with 50% or more overlap
with the NGS area of interest are used for analysis. To avoid obfuscation, (1) images with a
high percentage cloud cover over the area are avoided, as are images with a deep snow
cover on the glacier, which would obliterate the crevasse patterns. Thus, winter images
are rejected. Applying these criteria, 11 high-quality images from spring and summer
2016-2018 are selected from several hundred WorldView data sets (Table 2). All 11 images
are used for creation of the labeled training data sets of split images, whereas 7 are used
in the time-series analysis (leaving out images that are too close in time to other images
already in the time series).

Table 2. List of WorldView satellite image data sets and distribution of split images per source files in
the final labeled training dataset of 3993 split images. Total split image numbers summed up from all
11 images are given in boldface in the last row. “N/A" stands for “Not Applicable".

Source Image Total Split Images Generated g;l::;z‘: Split Images Final Time Series Subfigure in Figure 6
WV01_20160520215109 10,142 67 (a)
WV02_20160625170309 11,834 608 (b)
WV01_20160708211932 10,379 164 (c)
WV01_20170425150931 4797 380 (d)
WV01_20170530144716 9209 319 (e)
WV01_20170808153226 8448 23 N/A
WV01_20180429140517 11,002 479 H)
WV01_20180429140558 7614 543 N/A
WV01_20180526211954 12,191 634 N/A
WV01_20180526211859 13,647 228 (8)
WV01_20180530151039 9370 488 N/A
Total 108,623 3933
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The pixel intensity of the source WorldView geotiff images is normalized to the 95th
percentile and compressed to an 8-bit range. The reason for this processing step is that the
actual distribution of intensity values in a WorldView-1 or WorldView-2 image does not
fully exploit the 11-bit range of values. By normalizing to an 8-bit range, data processing
during training and testing becomes faster and more efficient. After excluding the pixels
with the highest-intensity values, the resultant World View images and split-images are
much easier to view with the human eye, which simplifies labeling.

Custom software is written to extract the coordinates in both pixel space and UTM
space for each split image within a given set of WorldView images that fall 100% within the
NGS area of interest. These coordinates, along with fields for a class label, class prediction,
confidence, and an enumerator to reference the source World View images are stored in
a large table. In addition, this table includes metadata containing the filepaths, affine
transformations to convert between pixel and UTM space, and class enumerations. This
pipeline produces a standardized and efficient split image data set format which is input to
the classification model, visualization tools, labeling tools, and utility tools that reproducibly
extract split-images from source images. From the 11 source WorldView images (Table 2),
a total of 108,623 split-images are extracted using this pipeline. A breakdown of the total
number of split images from each WorldView image is given in Table 2.

6. The Connectionist-Geostatistical Classification Method

The connectionist-geostatistical classification method [44,45] integrates and interleaves
physical knowledge, spatial statistical analysis and computational components at several
levels. The approach includes the following concepts:

(1) The idea of using spatial classification to extract features from image data
(2) The idea of using geostatistical parameters to pre-process the imagery

(3) The vario function and residual vario function

(4) Creation of input data to activate the input-layer neurons of the NN

(5) The feed-forward multi-layer perceptron with back-propagation of errors

The idea of the connectionist-geostatistical classification method is to utilize geosta-
tistical parameters to pre-process the input image data, thereby reducing the complexity
of a NN required to identify spatial structures that are surface signatures resultant from
cryospheric processes. The relationship between glacial acceleration, crevassing and resul-
tant spatial structures reflected in imagery has been explained in Section 3.3 and in more
detail in [45]. In this section we describe the mathematical and computational ingredients
of this approach, in the form that is employed in VarioMLP, the type of connectionist-
geostatistical classification utilized as a component of VarioCNN.

6.1. Geostatistical Processing of the Input Image Data
6.1.1. Spatial Homogeneity

Depending on the type of image classification problem at hand, an input image can be
a video frame, a photograph, a subset of a video frame or photograph, or a subimage of a
large image such as a satellite image (termed split-image here). Split-images are created
from satellite images by a moving window process. The goal is to associate each image to a
surface class, here a crevasse class, using the classification method. Considering the entire
classification, a moving-window operation applied to a satellite image, a segmentation
of the area of the satellite image into crevasse classes will be obtained, in other terms, a
thematic map of structural glaciologic provinces. Similarly, a time-dependent segmentation
of a video stream of a glacier will result in a mapping of surface classes.

To allow for characterization and classification of the spatial structures captured, the
optimal size of a subimage (split-image) is determined as follows: A feature type needs
to repeat approximately three times in the split-image, and the split image needs to be
spatially homogeneous with respect to surface structure, here, crevasse type. These two
criteria will not be met exactly across an entire glacier region, thus, a split image size
needs to be selected that meets the criteria sufficiently often to make the classification
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operational. For experiments with only VarioMLP, split-images of sizes 201 pixels by 268
pixels are used, which follow the (3-4-5) rectangle convention and are approximately 123 m
by 92 m for WorldView-1 data. An additional constraint is that the structure requires input
imagery of 224 by 224 pixel sizes. For WorldView data and Negribreen surge crevasses,
this requirement can be met, however, it limits the generalizability of the approach. The
entire training is rerun for the combined architecture of VarioCNN using square images.

6.1.2. Vario Functions

In order to characterize the spatial surface structure in a given area, recorded in an
image or subimage, we calculate vario functions, defined as follows:

=

o1(h) = 5 Y [2(x) — 2(xi + h)]? )

Il
—

for pairs of points (x;,z(x;)), (x; + h,z(x; + h)) € D, where D is a region in R? (case of
profile data) or R3 (case of image data) and # is the number of pairs separated by h; the
distance value & is also termed “lag”. The function v1 (h) is called the first-order vario function.
This function always exists and has a finite value.

The residual vario function is often more useful to analyze roughness in situations
where a regional trend or a local drift underlies the data. Using

1 n
m(h) = - Y lz(x;) — z(x; + )], 2)
i=1
the residual vario function is defined as
1 2
resy(h) = o1 (h) — Em(h) : (©)

First-order vario functions are formally equivalent to variograms of geostatistics, but
introduced in a discrete mathematics framework that facilitates easy numerical implemen-
tation as well as generalization to higher order [45].

The variogram is defined for a data set that may be considered a realization of a spatial
random function satisfying the intrinsic hypothesis (see Matheron [154,155]), for which
generalization to higher order is difficult because of the statistical assumptions that need to
be met. Equation (1) corresponds to the statistical second-order moment and Equation (2)
to the first-order moment. Residual vario functions work best for data that underlie a
trend. The second-order vario function and residual vario function can also be used (see,
Table 3). Numerical outputs of the first-order vario function have been used in the original
connectionist-geostatistical classification in [44], and they correspond to the experimental
variogram values.

In VarioMLP, we calculate first-order vario functions by sampling along the four
directions of each image, paralleling each side and the two diagonals (see, Figure 2). An
efficient sampling algorithm makes use of the matrix structure of the 2D image. The
sampling algorithm in [44] utilizes images of relative sizes (3-4-5), where 3 and 4 are the
relative lengths of the split image sides and 5 the diagonal. However, this cannot be
transferred to training, which requires square images.
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Table 3. GEOCLASS-image software system, components design, implementation, testing and
release, updated 30 November 2023.

Design | Implementation | Software Testing | Release v1.0
Universal coordinate system transform X X X X
Vis. of image/glacier overlap X X X X
Directional variogram X X X X
(A) Utility Scripts Roughness maps X X X X
GUTI-based creation and manipulation of Re-
gion of Interest and export of UTM coordi- X X X X
nates
First-order vario function X X X X
Second-order vario function X X
(B) Geostatistical Methods: Functions First-order residual vario function X X X X
Second-order residual vario function X X
Other functions X
Direct use of vario function X X X X
(C) Geostatistical Methods: Feature Vectors IC:Zlassmcatlon parameters s X
eature vector built from classification N
params
Multi-layer perceptron model X X X X
. . Resnet-18 CNN model X X X X
(D) Machine Learning Models Alternative machine learning models X
Deterministic class association X
Universal training script X X X X
Universal testing script X X X X
Overall classification visualization X X X X
Visualization of losses X X X X
(E) Machine Learning Training and Validation Threshold visualization of classification con- X X X X
fidence values
Visualization of split image Iocation from N N N «
classifications
Visualization of split images from classifica-
tions X X X X
Generalized split image dataset class X X X X
Generalized split image dataset creation tool X X X X
Universal split image dataset Ioader X X X X
GUI-based Iabeling of individual split images X X X X
(F) Dataset Management GUTI-based batch-labeling of split images X X X X
GUT and visualizations dynamically adapt to X X X X
creation of new classes
NetCDF-formatted output of Iabels and clas-
i X X X X
sifications
Integration of multiple satellite images X X X X
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Figure 2. Typical images and associated directional vario function values. (a) An example of an

input image containing only undisturbed snow, which displays relatively uniform surface characteristics.
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(b) An example of an input image containing strong parallel crevasses, a prominent and repeating
surface characteristic. (¢) Output of the directional vario function v1(h) in 4 directions for 14 values
of h. Note the relative uniformity of output values across all directions. (d) Output of the directional
vario function v1(h) from (b) in 4 directions for 14 values of h. Note the much higher baseline values
than in (c). Also note and the sharp contrast between the Diagl direction (defined as diagonally from
top left to bottom right) and the other directions. In this case, the Diag1 direction is nearly parallel to
the direction of the crevasses and thus it does not reach the same sill as the other directions until a
much higher lag value.

The discretization of the vario function is determined by the lag value  in pixels. In
the final implementation of the algorithm, the lag value is determined such that 18 lag steps
exhaust 80% of the image size. The values of

(v1(1),...,v1(m)) (4)

become the activation values for the input layer of the MLP for any value of m € . In
our final structure m = 18. Accounting for the 4 directions of directional vario functions
calculated for each split image, we have a matrix of input values

i=1,....m
V= (16) s ©)
With ny;, = 4 for the number of directions, the number of input values is m;, =
ng,m = 72.

6.2. NN Architecture: Multi-Layer Perceptron (MLP)

The NN structure of the connectionist-geostatistical classification is a multi-layer
perceptron with back-propagation of errors (MLP-BP or simply MLP). The MLP has an
input node per vario-function value, in the final VarioMLP structure m;, = 4m = 72,
accounting for 18 lag steps and 4 directions. MLPs have been found to be useful NN types
for the solution of this type of classification problem.

The number of nodes (neurons) in the output layer has to equal the number of surface
classes, here crevasse classes. In our experiments, this number is m,,; = 6. Larger numbers
of crevasse classes have been used, ranging up to 18.

This leaves the number and size of internal, hidden layers as variables of the NN
architecture that will be determined experimentally (see Section 7.7.2). The original work
in [44] uses a single hidden layer, in fully connected or partly connected architectures. Here,
we experiment with two or three internal layers.

7. Image Labeling and Training Approach (for VarioMLP and ResNet-18)
7.1. Training Approach

The training approach reflects the goal of creating a physically constrained NN by
combining knowledge of glaciological processes and Earth observation technology with
ML methods at every step. In the last section, we saw that the selection of sizes of train-
ing images is controlled by a requirement of spatial homogeneity, constraints associated
with the spatial resolution of the satellite imagery, and the spacing of crevasses on the
glacier surface, which results from the glacial movement and acceleration that we aim
to analyze.Training is carried out as a form of supervised training; training as such is an
optimization problem of the model’s internal parameters.

7.2. Crevasse Classes

Crevasse classes are selected by an expert, based on structural glaciology (Section 3.3).
Because a main objective of this paper is the integration of a physically constrained NN and
a CNN, we utilize (only) four basic crevasse classes: (a) one-directional crevasses, (b) multi-
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directional crevasses, (c) shear crevasses, and (d) chaos crevasses, or shear—-chaos crevasses.
The crevasse types associated with these classes are illustrated in Figure 3. Crevasse types
(a), (b) and (c) are associated with basic deformation matrices [124]: The one-directional
crevasse type results from an extension in one direction (Figure 3a). The multi-directional,
including two-directional, crevasse type results from a deformation with more than one
stress axis (Figure 3b). It can also result from two deformation processes that affect the
material ice in sequence. The shear crevasse type results from shear, a deformation type
that typically occurs when fast-moving ice borders slow-moving ice. In the case of a surge,
the ice of one glacier (Negribreen) accelerates, while the ice of an adjacent glacier (e.g.,
Ordonnansbreen) continues to flow at normal, much slower speeds (Figure 3c). Depending
on the spatial and temporal velocity gradient, shear crevasses can have different appearances
(Figure 3c,d). Transportation, weathering and interaction of several deformation processes
can lead to complex ice-surface and near-surface structures, in which the signatures of
individual processes can no longer be distinguished, thus, they are summarized as a “chaos”
crevasse class (Figure 3d). In some areas, the signature of shear deformation is still evident
in the chaos crevasse fields (Figure 3f), but separation in an image classification process
may be too difficult, thus, the class is summarized as chaos/shear-chaos. Two additional
classes need to be added to each classification, one for undisturbed snow /ice and a rest
class for “other” surfaces, which can include moraines, rock avalanches, subimages that
include snow/ice and rock surfaces, and indiscernible images, to limit misclassification of
the four better defined crevasse classes. A rendering of representative examples of split
images, subselected from WorldView satellite imagery, is seen in Figure 4. The images have
a size of 201(=3 x 67) pixels by 268(=4 x 67) pixels, i.e., they follow the (3-4-5) size rule.
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Figure 3. Airborne photographs of the four basic crevasse types. Photographs acquired dur-
ing the 2017 Negribreen campaign of the authors (Flight 2, 2017-07-15). (a) One-directional
crevasses (DSC_0063). (b) Multi-directional crevasses (foreground, DSC_245). (c) Shear crevasses
(DSC_0221). (d) Chaos or shear/chaos crevasses (DSC_0199). (e) Shear crevasses, so-called “shear
holes” (DSC_0344). (f) Chaos or shear/chaos crevasses (DSC_0198). Example of chaos crevasses with
a shear component.
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Figure 4. Examples of “split-images” of the 6 surface classes, subselected from WorldView satellite
imagery. (a) Undisturbed snow/ice, (b) One-directional crevasses, (c) Multi-directional crevasses,
(d) Shear crevasses (shear holes), (e) Chaos crevasses (shear/chaos) and (f) Other (not classified).
Same crevasse classes as illustrated in aerial photographs in Figure 2, with a class for undisturbed
snow /ice and a rest class “other” added.

7.3. Image Labeling

A second main objective of this paper is the derivation of a labeled training data set for
the problem of crevasse classification from satellite imagery. With this objective, we address
the problem that application of ML in the geosciences and specifically the cryospheric
sciences has been hampered by the lack of labeled training data sets, as identified by
authors working in the field (e.g., [43,89,90]) and described in more detail in Section 2.

To initiate training, sets of split-images for each class are identified and selected by the
structural glaciologist. In our experiments, we found that several tens of example images
per class are sufficient for an initial training run of VarioMLP.

Technically, image labeling is carried out using the Split Image Explorer Tool, visual-
ized in Figure 5, described in more detail at [136]. Individual images can be selected from
the WorldView image, optionally with a polygonal area of interest outlined that contains
the glacier area, viewed enlarged at the top left, and associated to a class. The association
can be (1) performed initially by the glaciologist, or (2) displayed as the result of the NN
classification, or (3) overwritten (accepted or rejected) in a control pass in the training loop
(see Section 7.6). A sliding bar in the left middle of the explorer tool allows application
of confidence as a filter for visualization (only images classified with a confidence level
exceeding the user-selected confidence threshold are displayed in color).
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Figure 5. Split Image Explorer tool in action. Red cross-hairs select the split-image viewed in the
upper left. Label options are displayed in the lower left. On the right, full classification and/or
labeling results are viewed overlaying the full starting image (here a WorldView-2 image from 2016-
06-25). The sliding bar on the center left allows visualization filters based on confidence levels. Finally,
the tool has the options to switch between classification results for different starting images, as seen
in the upper left for various WorldView images.

7.4. Data Handling and Feature Engineering

Feature engineering is the design of the input for the neural network. Of impor-
tance for robustness of the results is that identification of a crevasse type is independent
of orientation and view angle of the satellite, relative to features on the ground. Direc-
tional bias is removed by calculating vario functions in several different directions for
each split-image.

Prior to extraction of split-images, the satellite image needs to be oriented in a geo-
graphic or rectangular projection framework that facilitates output of the final classification
in the form of a thematic map of crevasse provinces. Raw satellite imagery is typically col-
lected along orbits and constrained by the view angle of the observatory, which is fixed for
some imagers, but adjustable or sweeping for most (including WorldView). To accomplish
mapping larger areas from a single or multiple satellite images, utility functions for image
projection and mosaicking are implemented as part of the GEOCLASS-image system. To
visualize, the reader may compare the different sizes and orientations of the input imagery
shown in Figure 6.

Data from the panchromatic channel of WorldView-1 and WorldView-2 are utilized,
because the classification principle is a spatial classification. In the more common form
of multivariate statistical classification, data from several spectral channels are used. Our
study combined imagery from two different image systems, WorldView-1 and World View-
2, which resulted in imagery of a somewhat different pixel size and resolution (0.45 m
for WorldView-1 and 0.42 m for WorldView-2, see Section 5.2). A utility function in
GEOCLASS-image facilitated simultaneous analysis and classification of imagery from
both satellite types.
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Figure 6. Full Maxar WorldView-1 and WorldView-2 imagery used in classification time se-
ries analysis. (a) WorldView-1 image acquired 2016-05-20, (b) WorldView-2 image acquired 2016-
06-25, (c) WorldView-1 image acquired 2016-07-08, (d) WorldView-1 image acquired 2017-04-25,
(e) WorldView-1 image acquired 2017-05-30, (f) WorldView-1 image acquired 2018-04-29 and
(g) WorldView-1 image acquired 2018-05-26.

Application of the vario function to a typical image from the classes of (1) undisturbed
snow and ice surfaces and (2) one-dimensional crevasse types, seen in Figure 2, illustrates
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how the NN can separate these crevasse types based on the vario function values for
different directions and distances. First, the maximum of the resultant vario function values
is much lower for undisturbed surfaces than for crevassed surfaces (compare the v; axes
in Figure 2¢,d). Second, an anisotropic behavior of the set of directional vario functions is
typical for one-directional crevasses (Figure 2b,d), where the direction that is near-parallel
to the crevasse direction does not reach the sill of the vario function (green in Figure 2d),
whereas the other three directional vario functions exhibit a typical wavy pattern resultant
from washed out cross-correlation, with spacing dependent on the relative angle of the
crevasse orientation to the directional calculations.

7.5. Criteria for Evaluation of Training Success

We use the terminology of intrinsic criteria for quantitative, computational criteria
(cross-entropy measure of training loss, confidence of classification result, co-occurence
matrix) and extrinsic criteria for glaciological criteria that are typically based on airborne
field observations of the glacier system during surge and on additional expert knowledge
on the evolution of crevasse types during a surge [16,18,20,125,126]. The application of
extrinsic criteria is best explained in an applied example of image labeling and in the
geophysical interpretation (see Sections 7.6 and 11).

7.5.1. Softmax Function

A softmax function is used to convert the NN output layer to a probability distribution
for the possible classes. Each output node is assigned a value between 0 and 1 (p;), with
all outputs summing to 1, so that they can be interpreted as probabilities. The class with
the largest probability is selected as the NN’s final classification of a given input and the
confidence of the classification result is equal to that probability, i.e., the maximum of
the softmax function. The loss function associated with the softmax function is given
by the cross-entropy loss, which is used for training purposes (see, Section 7.5.2). The
softmax function is commonly used in many CNNs [40,41], due to its simplicity and
probabilistic interpretation.

7.5.2. Cross-Entropy

Training an MLP is an optimization of the model’s internal parameters, carried out
iteratively. At each iteration, VarioMLP predicts the class of each training example and
uses the cross-entropy loss function as a quantification of the difference between predicted
values and training data. Entropy is first introduced in [156] to quantify the level of
uncertainty of a random variable X based on possible outcomes p; according to

H(X) = —)_ pilog(pi) (6)
i=1

fori=1,...,nand n € N is the number of classes. For VarioMLP, the outcomes are the
crevasse classes and the probabilities are those which the model assigns to each output
neuron. The DDA-MLP uses cross-entropy loss as its loss criterion, calculated as

n
Lossce = — Y _ ti log(pi) 7)
i=1

where 1 is the number of classes, t; is the truth label for class i, and p; is the model-predicted
probability for class i as its loss criterion. The optimization problem is then for the model
to learn an internal parameter set that minimizes this loss function, and to accomplish
this the DDA-MLP employs stochastic gradient descent (SGD) via the Adam algorithm
for first-order gradient-descent based optimization problems introduced by [157]. During
training, backpropagation, as defined in [158], involves computing the gradient of the loss
layer by layer, starting from the output and moving backward towards the input layer. In
this case, the Adam algorithm for SGD only computes the first-order gradient, and employs
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adaptive learning rates for parameters based on estimates of the first- and second-order
moments, and updates the parameters proportionally to the learning rate hyperparameter
in the direction of steepest descent of the gradient [157]. Application of cross-entropy loss
for training of deep NNis is described in [159].

Cross-entropy loss is utilized to identify functional training runs and reject training
mistakes. For example, overfitting in a test-run of the model is illustrated in Figure 7.

Figure 7. An example of overfitting from a test run of the ResNet-18 model trained with a training
data set of 1362 split images. The loss function used is the cross-entropy loss. The training loss
approximates zero, whereas the validation loss stays high.

7.5.3. Confidence

Classification confidence is a measurement of the probability that the association of an
input image to a class is correct. Confidence approaches have been discussed in [160]. We
utilize confidence to accept or reject classified crevasse images into the training data set,
applying a threshold of 90% confidence. The Split-Image Explorer Tool allows user-selected
confidence values.

7.5.4. Other Training Hyperparameters

Overall, the training and feedback-loop experiments are repeated several times with
different parameters and variations of the classification models. The split of the training
data into actual training images and validation images is held constant at 80% (training)
and 20% (evaluation) for all experiments training VarioMLP and ResNet-18. This means
that, however many labeled training images exist for a given run, 80% are randomly
selected at runtime for the actual training process, and 20% are reserved to evaluate the
model performance after each epoch. It is important to separate the training and evaluation
data sets, because if a model is not evaluated on images it did not see during training,
it will simply memorize the training data set if the model is sufficiently complex. Each
training run is carried out with a maximum number of 50 epochs. For each epoch that
results in a new best validation loss, a checkpoint of the classification model is saved for
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further evaluation. For all training experiments, cross-entropy loss is used with the Adam
optimizer as the method for gradient descent calculation (Section 7.5.2).

7.6. Interleave of Split Image Labeling with the Training Process: The Feedback Loop

Following creation of an initial set of expert-labeled training data, a VarioMLP is
trained. The resultant network architecture can be applied to simply classify an entire
satellite image. However, in order to derive a large data set of labeled training images, an
iterative approach to split-image labeling and VarioMLP training is taken. The goal is the
creation of a data set that is large enough to train a CNN, which in turn can be expected to
facilitate rapid classification of many satellite images for similar problems, i.e., a higher
level of generalization of the task of crevasse classification.

The iterative approach is implemented as a feedback loop in VarioMLP, executed as a
mix of computational criteria and expert interaction, interleaved in the training process of
VarioMLP as follows (see, Figure 8): The initial data set is considered the first-order data
set, used to train the NN. Validation loss and training loss are evaluated as quantified by
the cross-entropy measure (see, Section 7.5.2). A trained VarioMLP architecture results.

VarioCNN
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l loop
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(5 o [0\ (o] \

class 1 (i) | (i+1) ——)fu“;‘am";n oll; o) O 5

. O x||x[l0 full labeled e

z : 8 training lutional 0]

: . 0 o > dataset > | |structure 8

- (O] internal O 201 x 268 0 (o)

class 6 (i) | (i+1) | —3—> Varo s ixels/i o

function [18x4 6 output pixels/image 201x268 6 output

\ mgut nody input nodes nodes,

nogaes

Figure 8. VarioCNN, derivation, and architecture. Training data set (step(1)) derived by expert
(structural glaciologist), includes split images representing 6 crevasse classes. Vario functions cal-
culated per input image, vario function values activate input nodes of VarioMLP (number of input
nodes=number of vario values; number of input nodes is a variable model parameter). Vario function
values are calculated for 4 directions at 18 steps. VarioMLP example with two internal layers of sizes
[5,2] =[5 x 18 x 4,2 x 18 x 4], output layer with 6 nodes; number of output nodes=number of
crevasse classes, a variable model parameter. Retraining loop used for augmentation of training
images per class from step (i) to step (i + 1), for n steps. Full labeled training data set used to train
ResNet-18. Number of input nodes equals the number of pixels per training image (201 x 268).

VarioMLP, with first-approximation final structure, is then applied to classify the entire
set of all split-images from a given satellite image (all split-images inside the polygon that
outlines the NGS). Each split image is associated to a class and written out into a directory
of that class. Next, only split images with a classification confidence at least 0.9 are retained
in the crevasse class directories. Then, the glaciology expert quickly views all new images
in each class (i.e., any images that are not part of the original labeled data set) and rejects
images that are misclassified. This process is much faster, requiring a fraction of human
expert time, than labeling thousands of split-images initially. VarioMLP is then rerun, using
the larger set of labeled data as training data. By repeating the feedback loop, a labeled
data set with 3933 images is obtained in a reasonable amount of time. The final labeled
data set of 3993 split images includes between 522 and 953 images per crevasse class, with
a distribution given in Table 4. This distribution is relatively even and not varied enough
to be a significant potential source of inaccuracy for the model training.
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Table 4. Number of split images for each of the 6 crevasse classes in the final labeled training data set
of 3933 split-images, derived using VarioMLP and several training and reinforcement loops.

Class Total Labeled Examples
Undisturbed Snow 538

One-Directional 953

Multi-Directional 614

Shear Holes 742

Shear/Chaos 564

Other 522

Total 3933

In this exemplary application, the expert that selected the initial data set was a glaciol-
ogist experienced in structural glaciology, especially observation of glacier surfaces during
surges (the lead author of the paper), whereas in later iterations, the sorting of images was
performed by a computer science student, indicating that the sorting procedure grows
increasingly fast and simple as the training goes through several iteration steps. To sim-
plify the process, only a set of four main crevasse classes, plus undisturbed plus a rest
class/chaos class are chosen for this study.

On the other hand, to ascertain the general application of the labeled training data
set to a range of previously unseen WorldView data sets from the NGS and other regions
of surge glaciers, as well as for analysis and classification of data from WorldView-1 and
WorldView-2, split-images are sourced from 11 different WorldView data sets collected
over the NGS in 2016, 2017, and 2018. This results in a total of 108,623 split-images. The
distribution of split images in the final 3933 data set per WorldView source files is given in
(Table 2).

At this point, we have achieved two results: (1) The derivation of a labeled training
data set, and (2) VarioMLP together with the feedback loop as either a standalone NN or a
component in a physically constrained CNN, the VarioCNN.

In the next sections, we will describe ResNet-18, the CNN component selected for
VarioCNN, its training, comparison to VarioMLP, and finally the design of the combined
classification system, VarioCNN, and the classification software system, GEOCLASS-image.
Experiments with VarioCNN, using GEOCLASS-image, are rounded off by geophysical
application and interpretation of the evolution of crevasse provinces during the surge in
the NGS.

7.7. Determination of VarioMLP Hyperparameters

The VarioMLP architecture includes hyperparameters that can be optimized to tune
the model for testing performance and generalization. Both the directional variogram and
multi-layer perceptron steps of the VarioMLP architecture have hyperparameters that affect
the training and testing in different ways. Input image size and resolution have already
been discussed in Section 6.1.1, as this is constrained by the observations technology, the
surface signatures and the assumption of spatial homogeneity. To optimize the architecture
of VarioMLP, experiments are carried out to determine the optimum number of lag steps
in the vario function and the shape and number of the internal layers. In both series of
experiments, cross-entropy loss is used as the measure for assessment of training quality
and network performance.

7.7.1. Number of Vario Function Steps

VarioMLP is trained on the output of the discrete, experimental vario function, cal-
culated in four directions (horizontal, vertical and along the two diagonals, using the ad-
vantages of the 3-4-5 size of the image for efficient computation (201 =3 x 67,268 =4 x 67,
335 =5 x 67)). The number of directions is kept fixed. If the number of lag steps used is too
small, then the directional vario function may not be able to provide sufficiently different
characteristics for a given set of surface types for reliable classification. If the number of
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lag steps is too high, the characteristics provided by the directional vario function can be
polluted by noise and small-scale features that are present in multiple surface types. These
characteristics may bury the salient features of each surface type needed for classification.
During training, the lag step parameter is tested for values of 10, 12, 14, 16, 18 and 20
(Table 5). In this experiment, the hidden layer shape is fixed at [5, 2], and the final validation
data set included 786 images (20% of the final 3933-image labeled data set.) An MLP model
denoted as [5, 2] refers to a model with two fully-connected hidden layers, which contain 5
and 2 times as many nodes as the input layer respectively, in our experiments [5, 2] =[5 x k
x 4,2 x k x 4] for k € {10,12,14,16,18,20}. The best performance is achieved with a lag
step value of 18, resulting in an internal layer structure of [5,2] =[5 x 18 x 4,2 x 18 x 4]
(see, Figure 8). It is interesting to note that performance is not correlated with the number
of lag steps used in the vario function phase. Rather, the model seems to perform relatively
well with values of 12, 14 and 18, and relatively poorly with values of 10, 16 and 20.

Table 5. Minimum cross entropy loss achieved by VariogramMLP model with different values for
number of lag steps in the variogram step. Hidden layer shape is fixed at [5, 2] for all runs. Minimum
loss (in boldface) is reached for 18 lag steps, the number used in the final experiments.

Lag Steps in Variogram Min. Loss Achieved
10 1.56
12 0.61
14 0.88
16 1.14
18 0.54
20 1.48

7.7.2. Hidden Layer Structure in the MLP

The number of hidden layers in the MLP step of the VarioMLP architecture is a
function of the size of the input layer, as well as the size of the training data set. If the
number of hidden layers is too large relative to the input layer size, then the model becomes
unnecessarily complex and thus more susceptible to overfitting. Too few hidden layers
produce the opposite problem—the model lacks the complexity necessary to capture the
full variance in the data set and suffers from underfitting. This is an example of what
is commonly referred to in machine learning as the bias—variance trade-off [161-163].
Choosing a perfect model size and depth becomes increasingly difficult for problems where
there is no existing reference data set of labeled training examples, since as the size of the
training data set increases, so too does the optimal fully-connected model size. However,
this relationship is nearly impossible to calculate, so trial-based estimation is necessary. To
reduce the scope of this optimization during training, the shape of the hidden layers of
MLP architecture are limited to being exact multiples of the input layer size. An MLP model
denoted as [5, 10, 2] refers to a model with three fully-connected hidden layers, which
contain 5, 10 and 2 times as many nodes as the input layer, respectively. During training,
model architectures of [2, 2], [5, 2], [5, 5, 2], [10, 5, 2], and [10, 10, 2] are tested (Table 6).
For each test run, the lag steps for the vario function are fixed at 18. The best performing
hidden layer shape is [5, 2]. For networks both wider and deeper than this, the performance
significantly decreases. This is likely due to the fact that for the relatively small amount of
information at the input layer (the concatenated output of the vario function stage), larger
networks simply converge on memorizing the training data set. This is another example of
the bias—variance trade-off at play, the network must not be overly complex for the scope
of the input data.
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Table 6. Minimum cross entropy loss achieved by VarioMLP model for each of the 5 hidden layer
shapes tested. Variogram lag steps are fixed at 18 for all runs. Minimum loss (in boldface) is reached
for hidden layer shape [5, 2], which is used in the final experiments. It is interesting to note that after
[5,2], adding both depth and width to the hidden layers results in decreases validation performance.

Hidden Layer Shape Min. Validation Loss
[2,2] 0.54
[5,2] 0.52
[5,5,2] 1.21
[10, 5, 2] 0.80
[10, 10, 2] 0.78

8. The CNN Approach: ResNet-18
8.1. Description of ResNet-18

The term ResNet summarizes a family of convolutional neural networks with depths
of up to 1001 layers [41,82,83], based on residual learning. ResNet-18 is the deep learning
network with the fewest internal layers that is commonly used today (e.g., [164-166]) and is
the ResNet type used for the studies in this paper. In medical sciences, labeled training data
exist [164]. Notably, for image feature detection in medicine (brain tumors, Alzheimer’s,
to name a few) labeled data sets exist, which is not the case for image classification in
geoscience studies.

8.1.1. Mathematical Principles of ResNets

The following mathematical description of deep residual networks (ResNets) is sum-
marized from [82], the basic paper that introduces ResNets. ResNets consist of many
stacked so-called “Residual Units”. The defining equations of a ResNet are the follow-
ing two:

yi = h(x;) + F(x, W) (8)

xi41 = f(y1) )

where x; and x;;1 are input and output of the I-th unit, F is a residual function and W,
denotes the set of weights (and biases) associated with the I-th residual unit, which may
consist of K number of layers itself (K = 2 or K = 3 are typical values). The residual
units form the building blocks of the modularized architecture that characterizes a ResNet.
In [41], only h(x;) is an identity mapping and f is a ReLU function, whereas in [82], both
h(x;) and f(y;) are identity mappings. The work in [82] shows that in the case that both
these are identity mappings, the signal can be directly propagated from one unit to any
other unit; this finding leads to the definition of skip connections. The identity mapping
h(x;) = x; (derived in their first paper, [41]), achieves fastest error reduction and lowest
training loss (among a number of model variants studied in [82]). The use of the second
identity mapping, f(y;) = y; , is a new interpretation of the activation functions (which
can be, for example, ReLU, the function used in our ResNet-18 model) as so-called pre-
activation of the weight layers, as opposed to a hitherto view of post-activation. This
paper [82] introduces a 1001-layer ResNet, which is easier to train and generalizes better
than the original ResNet described in [41].

The essential mapping of the ResNet is reduced to Equation (3), by using the two
identity equations and applying them to Equations (1) and (2):

X141 = x+ F(x;, W) (10)

and then, using definitions of the elements in a building block, the following recursive
equation is obtained:

L-1
Xp = x;+ Z }'(xl,Wl) (11)

i=l



Remote Sens. 2024, 16, 1854

29 of 49

that associates any deeper unit L with any shallower unit . The summation term
ZiL;ll F(x;,W)) is the residual between units L and . The innovative property of the
ResNet is this residual function, which distinguishes it from previous designs of so-called
plain networks, where a feature x| is a series of matrix—vector products. The simplification
used in the defining equations of a ResNet not only introduces the skip connections, but
also has the consequence that the gradient of a layer does not vanish, even when the
weights are arbitrarily small. The signal can be propagated both forward and backward
between layers L and I. This paper also states explicitly that deeper (plain) networks suffer
from increased errors.

He and others [82] compare n = {3,5,7,9}, leading to 20, 32, 44, and 56-layer networks,
and n = 18 that leads to a 110-layer ResNet. Ref. [82] conclude that ResNets (including
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152, whose main difference lies
in the number of network layers) perform better in image classification aimed at feature
extraction than other CNN models, evaluated for the ImageNet data set. In our work, we
will investigate the potential of ResNets for identification and classification of complex
cryospheric spatial patterns, namely crevasse patterns.

8.1.2. Properties of ResNet-18

A few facts about ResNet-18 include the following:

(a) Layer structure. ResNet-18 consists of 16 convolutional layers, 2 downsampling
layers and several fully connected layers. Convolution kernels are of size 7 x 7 for the first
convolution layer and of size 3 x 3 for the following convolutional layers. A ResNet-18 can
include shortcut connections.

(b) Size of input images. The input images need to have a size of 224 by 224 pixels,
as a result of the requirement that the number of input neurons of the fully connected
layer is fixed. This is a very limiting fact, because it cannot be assumed that patterns
or objects can be identified in a (sub)image of a specific size. After identifying optimal
sizes for input images in the crevasse detection, the creation of labeled data sets is re-run,
using images of 224 x 224 size, in order to allow training of a ResNet-18 model. The
connectionist-geostatistical method and VarioMLP do not require a certain size of input
imagery. Vario-function calculation is computationally most efficient when images of a
size of 3-4-5 are used [44], however, a rectangular input image of any size can be utilized.
This type of flexibility is important, because it does not require a priori assumptions about
the relationship between sensor resolution, data fields and physical sizes of cryospheric or
other patterns.

(c) Class association is carried out by an eigenvector composed of multiple probabilities,
the class with the highest probability will be associated to the image to be classified.

(d) Performance. There is research that indicates [91] that ResNet-18 can actually not
be expected to perform a complex class association, such as the crevasse classification, but
only the extraction of low-level features such as edge detection and texture. Ref. [91] state
that deeper ResNets (with more layers) would be needed for detection or classification
of more complex features, such as spatial context, global semantics and local features of
objects. As demonstrated in the work in this paper, the ResNet-18 model we derive from a
combination with VarioMLP results in classification of crevasse patterns. Of note, in classic
satellite image processing and other image processing, edge-detection and texture analysis
are obtained by convolution with small kernel images of sizes 3 x 3 to 7 x 7 [44], so the
finding of limitations caused by small kernels in ResNets are an analogue of limitations in
image processing known several decades ago.

(e) Activation functions: The authors of [167] explore the effect of different activation
functions on image classification results. They note that CNNs perform better than ma-
chine learning techniques because of their multi-layer hierarchical feature extraction that is
controlled by variables such as the number of hidden layers, activation functions, learning
rates, initial weights, and decay functions, however, they attributed the non-linearity of the
network only to the activation function, which motivates their comparative investigation,



Remote Sens. 2024, 16, 1854

30 of 49

regarding under-researched problems including (a) vanishing and exploding gradients
during back-propagation, (b) zero-mean and range of outputs, (c) computational complex-
ity of activation functions and (d) predictive performance of the model. The activation
function we use in our ResNet-18 experiments is the Rectified Linear Unit (ReLU), which is
commonly used elsewhere in the literature.

8.1.3. Applications of ResNets

Examples of studies that utilize ResNet-18 include applications to moving object detection
in super-resolution videos [83] and complex scenes [91], an analysis of COVID presence [164],
an application to Alzheimer’s diagnosis [165] and an engineering application to classification
images of bearing faults [166]. In medical sciences, labeled training data exist [164], unlike in
geosciences. In order to process video satellite image sequences of relatively low resolution,
collected by Chinese video surveillance satellites Jilin-1 and OVS-1, into data streams with
super-high spatial resolution while maintaining the high temporal resolution of the video
data allowing the detection of moving objects, Ref. [83] develop a multiframe video super-
resolution neural network (MVSRnet). The resultant MVSRnet is a ResNet with a 1001-layer
depth, the largest depth published to date and first mentioned in [82], and it includes an
attention mechanism to improve moving feature detection. While the complexity of MVSRnet
is impressive, it performs a relatively simple task, the detection of moving objects. In contrast,
our research aims at extraction of complex information. In the next subsection, we cast
some light on the expected and reported differences in capabilities and performance of
comparatively shallow (such as ResNet-18) and deeper CNNs.

8.2. Selection of ResNet-18 as the CNN Structure for the Work in This Paper

ResNet-18 is chosen as the convolutional architecture. The ResNet architecture was
first developed in 2015 in response to a growing set of problems with CNN image clas-
sification architectures at the time [41,82]. While deep convolutional architectures had
been shown to provide state-of-the-art performance on standard image classification bench-
marks such as the ImageNet data set [39-41], it was quickly discovered that, in a somewhat
counter-intuitive fashion, deeper networks only led to increased performance up to a point,
after which increased network depth resulted in increasingly worse performance. This was
due to what is known as the vanishing gradients problem [167,168]. In essence, the deeper
a network becomes, the smaller the derivative used to adjust model weights becomes
during backpropagation. After a certain point during backpropagation, this value becomes
so insignificantly small that the initial layers of the network are no longer trained at all.
This results in significantly worse performance, and overall training inefficiency at scale.
ResNet solves this problem by allowing skip or shortcut connections between convolutional
layers, in which the output from a given layer is both fed directly to the next layer, and to
several layers later in the model. This effectively solves the vanishing gradient problem,
as it provides a much shorter path for the gradient to adjust the initial layers of the model
during backpropagation. Not only do ResNet models achieve similar or better perfor-
mance to other state-of-the art convolutional image classification models of its time such as
VGG [85] or AlexNet [39,41], they do so with far fewer trainable parameters. ResNet-18,
the most shallow commonly used variation containing 18 layers, has roughly 11 million
trainable parameters, whereas VGG16 (a state of the art convolutional model contemporary
to ResNet) contains around 138 million. This drastically reduced model complexity with
comparable performance results in faster, more efficient and more generalizable training
for ResNet models as opposed to traditional convolutional architectures [82].

For this project, ResNet-18 is chosen because of its overall efficiency and demonstrably
high performance on similar image classification tasks. Because the problem domain
requires building a custom data set from scratch, deeper and wider convolutional network
architectures, which mainly show increased performance over ResNet-18 on benchmark
data sets with millions of training examples, are not necessary. In summary, ResNet-
18 provides an efficient and lightweight reference for convolutional image classification
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architectures. The reference ResNet-18 architecture is left essentially unmodified for the
purposes of this paper, in order to serve as a reasonable benchmark for convolutional
models on the glacier surface type classification problem, and for ease of comparison with
the VarioMLP model.

8.3. Determination of ResNet-18 Hyperparameters

Because the main goal of this paper is to evaluate a CNN compared to a physically con-
strained NN, and because the ResNet-18 model is selected as explained above (Section 8.2),
the commonly used hyperparameters of the ResNet-18 model are not reevaluated. The
purpose of the ResNet CNN architecture in this project is to provide a benchmark for CNN
models on the surface classification problem to compare against VarioMLP. The goal is to
provide a methodology that inherits the strengths of both the “shallow” fully-connected
VarioMLP architecture and the deep ResNet model.

For ResNet-18, the one parameter tested is the batch size (Table 7). Batch size refers to
the number of input examples that are fed forward through the MLP before backpropaga-
tion is performed during training. The resulting loss and gradient for backpropagation is
then an average of the losses from each input in the “batch”. With a larger batch size, the
model sees a greater variety of examples from which to tune its weights and biases, and
this can improve the model’s generalizability. Too large a batch size relative to the amount
of training data can result in a poorly directed gradient during backpropagation. For the
ResNet-18 model, batch sizes of 1, 2, 4 and 8 are tested, with 2 achieving the lowest loss of
any tested model or training hyperparameter set (Table 7). It is interesting to note that after
a batch size of 2, the performance degrades significantly. This is likely a result of the size of
the training data set. The larger the ratio of batch size to overall training set size, the less
directed the gradient will be during backpropagation.

Table 7. Minimum validation loss achieved on the full-sized validation dataset of 786 split images
using batch sizes of 1,2, 4 and 8. The best result is achieved from a batch size of 2, a slight improvement
from 1. Minimum loss (in boldface) is reached using a batch size of 2, which is used in the final

experiments.
Batch Size Min. Validation Loss Achieved
1 0.169
2 0.115
4 0.245
8 0.925

9. Comparison and Integration of VarioMLP and ResNet-18 in a Combined NN
Model: VarioCNN

9.1. Comparison of Capabilities and Performance of VarioMLP and ResNet-18

The primary advantage of VarioMLP over the CNN (ResNet-18) is that VarioMLP
can be trained with a relatively small set of labeled training data, using a number of input
images that can feasibly be labeled by an expert in the field. This is simply not possible
for a CNN, not even a relatively shallow CNN such as ResNet-18, because the number of
training images ranges in the 100,000 s (and is orders of magnitudes higher for other types
of CNN:gs, as reported in Section 2). Data sets of several hundred initially labeled images of
crevasse types suffice to train VarioMLP, and thereafter an efficient training feedback loop
developed here can be applied to increase the size of the training data set, until a number is
achieved that facilitates training of ResNet-18.

In comparisons of the efficiency and performance of VarioMLP and ResNet-18, Var-
ioMLP outperforms the CNN for training data sets of up to several thousand (3500 or
5000) labeled images. An explanation for this lies in the fact that we utilize a physically
informed spatial analysis/geostatistical approach to NN neuron activation, which is more
important than the NN model architecture. In other words, the performance-determining
factor is not the selection of a shallow, potentially outdated model structure, here, the
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perceptron, but rather the pre-training effect of the geostatistical analysis, combined with
expert understanding of the relationship between surface signatures of crevasses on the
ice surface and resultant outputs of experimental vario-functions. The MLP turns out to
remain an efficient model architecture for this first classification task.

For classification tasks of many more images, ResNet-18 is faster and trained more
efficiently. For this study, we only carry out a limited number of experiments with CNNs.

9.2. Derivation and Application of a Three-Tiered VarioOCNN

The main idea is to use the physically constrained Vario-MLP to drive the CNN.
Thereby, we employ the main advantage of VarioMLP, to derive labeled data sets of 4000
(3933) training images, starting with approximately 300 labeled images and using an
iterative learning approach.

The combined architecture, illustrated in Figure 8, consists of three tiers: (1) the vario-
function calculation for each input image data set, which is used to activate the nodes in
VarioMLP, using the connectionist-geostatistical method, (2) the MLP component of Vario
MLP, which employs error backpropagation through the layers as a means for optimization
of weights, and (3) ResNet-18, a CNN that can take input from satellite split images that
are piped through the convolutional structure and associated with 6 output classes, here,
6 crevasse classes. A retraining loop around VarioMLP serves to grow a training data set
from a size of several hundred images, selected by an expert, to a size that is sufficiently
large to train the CNN (here 4000 images approximately). ResNet-18 has a stable and
robust outcome for classification. Based on the research in this paper, we formulate the
hypothesis that a CNN can be used as a component in a physically constrained NN. We
test this hypothesis for ResNet-18.

Split-images of the same size, here 201 by 268 pixels, are used for training VarioMLP
and for training ResNet-18. As seen in Figure 8, the number of input nodes for VarioMLP is
4 x 18 = 72 (the number of directions times the number of steps in the discrete, experimental
vario function), but increased to 201 x 268 = 53, 868, the total number of pixels in a split-
image, for ResNet-18.

In the literature, ResNet-18 was originally trained using square input images of 224 by
224 pixels [41,82], especially for benchmarking experiments. With some code modifications,
ResNet-18 can be applied using rectangular images of any size, as long as the size is
large enough to resolve salient features. In GEOCLASS-image, all currently utilized NN
architectures and approaches can be trained with rectangular split-images of any size [136].

In the next section (Section 10), we use the trained ResNet-18 to perform a classification of
a time series of WorldView-1 and WorldView-2 data sets, to analyze the evolution of the surge in
the NGS, based on insights from formation and expansion of 6 basic crevasse classes (4 classes
and two rest classes). VarioMLP can be used alone for classification of the crevasse types of the
Negribreen surge from WorldView imagery and Planet SkySat imagery.

Lastly, we examine the question of whether ResNet-18 can be trained with a relatively
small data set of well-selected labeled training images (split-images), in other words,
whether VarioMLP and its feedback loop are indeed needed to derive a training data set
and train a CNN. Because these experiments require knowledge of the classification results
from VarioCNN, especially the geophysical interpretation of crevasse provinces and their
evolution during the 2016-2017-2018 expansion phase of the surge, this analysis is placed
in Section 12, after the geophysical interpretation.

10. Experiments with VarioCNN: Application to Classification of Crevasse Types from a
Time Series of WorldView Satellite Imagery

Following training of VarioCNN using the 3933 set of labeled training images, a final
architecture of VarioCNN is derived. The final, trained VarioCNN is then applied to a
time series of 7 WorldView-1 and WorldView-2 data sets (Table 2). From a large catalog of
WorldView images, 11 images are found to be suitable with regards to cloud cover and area
coverage, of those, 7 images are selected to represent the time interval between May 2016 to
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May 2018. A disadvantage of any analysis that utilizes WorldView imagery is the large delay
between the time of data collection and the time when imagery is first made available to the
glaciological research community. All useful images are WorldView-1 or WorldView-2 data.

As described in Section 3, crevasse types are the results of ice-dynamic processes
that occur during the surge. The spatial patterns recorded in the satellite image provide a
snap-shot of the local result of the dynamic state of the material ice, which is the kinematic
force/state associated with the deformation that results in the crevasse type.

At the beginning of the classification work for this paper, 22 crevasse classes (including
ancillary classes), are created. To facilitate efficient implementation and application of the
software, crevasse classes are combined into four larger classes: the current selection of
classes ((1) one-directional, (2) multi-directional, (3) shear and (4) shear/chaos) provides
relatively simple descriptors of deformation kinematics but allows to capture the formation
of main crevasse provinces, as the following analysis will demonstrate.

The resultant time series of thematic maps of the six surface classes, which include four
crevasse types, undisturbed surface and a rest class, is shown in Figure 9. An important criterion
for the consistency and geophysical interpretability of the results is the fact that the areas of each
crevasse class consist of one or several simply connected regions, without being post-processed,
such as smoothed. The region of crevassed ice expands upglacier, as time passes and the
surge progresses. Therefore, interpretation of our results from the physically constrained CNN,
VarioCNN, is warranted and will be presented in the next section.
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Figure 9. Time series of crevasse classes showing surge evolution. Classification of the NGS subset
of the following imagery (see, Figure 6): (a) World View-1 image acquired 2016-05-20, (b) World View-2
image acquired 2016-06-25, (c) WorldView-1 image acquired 2016-07-08, (d) WorldView-1 image
acquired 2017-04-25, (e) WorldView-1 image acquired 2017-05-30, (f) WorldView-1 image acquired
2018-04-29 and (g) WorldView-1 image acquired 2018-05-26. (h) Legend of crevasse classes.
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11. Geophysical Application: Evolution of the Surge in the NGS

The following geophysical analysis is based on the time series of thematic maps of
crevasse classes, derived from WorldView imagery using VarioCNN (Figure 9).

11.1. Evolution of Crevasse Classes in 2016

The first image, collected on 2016-06-20 (Figures 6a and 9a) corresponds to the time
when the start of a surge was first detected in Sentinel imagery [114]. The area of crevassing
at this time coincides with an area of fast movement [36]. At this time, one-directional
crevasses form the center of the fast-moving region, which is flanked by shear crevassing
on both its northern and southern edge. This classification is correct, assessed by visual
interpretation and field observations that (1) acceleration occurs in an along-flow direction
near the calving front, and the basic physical notion that (2) shear crevasses form between
fast-moving and slow-moving ice. Only five days later, on 2016-06-25, the crevassed area
had already expanded in both upglacier and across-flow directions (Figure 9b), as indi-
cated by the increased region of ice classified as crevassed. This rapid change matches
existing knowledge that a surge is a catastrophic event, which expands rapidly in the
acceleration phase [18,20,126,135,169-174]. At this point, two new crevasse classes occur:
(2) multi-directional and (4) shear/chaos. Multi-directional crevasses form, as the next accel-
eration wave affects the existing one-directional crevasses (so these are multi-generational
crevasses) near the calving front. Further progression of deformation results in crevasses
that are summatively termed “chaos”, as the ice is too fractured to allow identification
of crevasse phases (Figure 3d,f). Notably, the new crevasse types occur first in the oldest
regions of crevassed ice. Thus, the analysis of crevasse formation allows reconstruction of
the surge evolution (beyond velocity). By 2016-July-08 (Figure 9c), the surge has expanded
further upglacier, with its leading edge reaching almost as far upglacier as the Negribreen—
Ordonnansbreen junction. Fields of one-directional crevasses are always on the upglacier
edge of the surge expansion (see also Figure 9d-g).

11.2. Evolution of Crevasse Classes in 2017

In 2017, the surge in the NGS reached maximal velocities of 22 m/day in July, which
marked the height of the acceleration phase and the most intensive phase of new crevassing.
This result was obtained from velocity analysis of Sentinel-1 SAR data and from field
observations of the authors [36] (see also Figure 3). Leading up to this, the surge expanded
far upglacier, as seen in analysis of World View imagery from 2017-04-25 (Figures 6d and 9d)
and 2017-05-30 (Figures 6e and 9e). The image collected 2017-04-25 only covers the lower
glacier region, but the image from 2017-05-30 shows that the surge has expanded as far as
the Negribreen-Akademikarbreen junction, indicated by isolated fields of one-directional
crevasses, separated by undisturbed ice. Notably, the marginal area of Negribreen is
not taking part in the surge acceleration at this point in time (summer 2017). In both
April and May 2017, a large area of multi-directional crevasses is present that extends
upglacier from the calving front to the Negribreen—-Ordonnansbreen junction, which is as
far upglacier as the crevasse provinces of one-dimensional crevassing extended in 2016.
In consequence, we conclude that a new surge wave, or acceleration phase, affected the
area of the 2016 surge in summer 2017. Based on these results, it is likely that surge
speeds decreased in winter 2016 and increased again in summer 2017, reaching the all-time
maximum. However, crevasse classification maps provide information on the deformation
type at a high resolution, whereas velocity maps yield only a single parameter (ice-flow
speed). The classification map from 2017-05-30 shows an expansion of the shear zone
(class 3: shear) along the southern margin of Negribreen, upglacier to the Negribreen—
Rembebreen junction, bordering the most extensive region of one-dimensional crevassing.
In comparison, the shear zone (class (3)) in the northern margin only extends to about 5 km
or 10 km upglacier of the Negribreen-Ordonnansbreen Junction (Figure 1a). Hence, there is
a clear asymmetry in progression of the surge through the NGS, with a far more extensive
surge region in the longitudinally southern part of the glacier. In the 2017 crevasse maps,
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we see two regions of class 4: shear/chaos. The northern region follows the northern
edge of class (3) “shear”, with slow-flowing ice of non-surging Ordonnansbreen running
along the northern edge of the class-(3) province, and thus this region is classified correctly.
The new and stronger acceleration in 2017 induced a stronger shear pattern, identified in
training images for this class. The strong velocity gradient leads to so-called shear holes
near the folded moraines (Figure 3c,e). However, the region identified as class (4) includes
a wider part, which actually coincides with the region of the “retreating bay” [36], where
the ice has retreated along the previous Negribreen-Ordonnansbreen medial moraine,
leaving an area where open water is covered with ice chunks of various sizes, rendering
“chaos class” (class 4) surface types. The second area, where class (4) is identified, covers
much of the region of multi-directional crevasses (class (3)) in 2016, and field observations
and imagery show that this is a region of “chaos”, as described above (Figure 3d,f). The
significant differences between strong shear and chaos crevasse types show the limitations
of a classification that is based on an insufficient number of characteristic crevasse classes.
Furthermore, the 2017 classifications indicate that Ordonnansbreen has not been affected
by the surge in Negribreen.

11.3. Evolution of Crevasse Classes in 2018

Classification results from two WorldView images from 2018 allows analysis of the
surge progression that summer. The images were collected on 2018-04-29 and 2018-05-
26. In 2018, the marginal area of Negribreen is also affected by surge crevassing, and
crevassing is overall more pervasive (see, Figure 9f,g). Thus, we conclude that in 2018
the surge is expanding into areas of shallower bed topography, which generally coincide
with marginal glacier areas. Comparison of the width of the crevassed regions in the
maps in Figure 9f (29 April 2018) and Figure 9g (26 May 2018) suggests that this process
of across-glacier expansion happens in the summer 2018. However, the longitudinally
southern part of the glacier continues to be more crevassed than the northern part, as was
previously noted for summer 2017. Crevasse patterns may still be evolving, as the map for
Figure 9f (29 April 2018) shows. The northernmost shear zone that parallels the glacier edge
between the Negribreen-Ordonnansbreen junction and the Negribreen—-Akademikarbreen
junction is misclassified as “other”, but shown on the map for (30 May 2018; Figure 9g)
correctly as a shear margin (class 3). Similar to progression of crevasse types observed for
2017 compared to 2016, the new surge wave leads to changes of crevasse type, with type
(2) “multi-directional” following areas where type (1) “one-dimensional” formed in 2017,
especially in central Negribreen. The regions of class 4 “shear/chaos” increased, expanding
the regions of complex shear as well as the regions of chaos crevasses, compared to regions
where these types occurred in 2017, with the problem of a lack of separation of “complex
shear” and “chaos” persisting.

Of note is the mapping of crevasse types in upper Negribreen, south of the Negribreen—
Akademikarbreen junction and north of the Rembebreen, and downstream of the Filchner-
fonna ice falls. The Negribreen—Akademikarbreen medial moraine is classified correctly
as class (5) “other” in its upstream (eastern) part, but as class 2 “shear” in its downstream
half, which is incorrect, as moraine material covers this part of the glacier (seen in airborne
imagery from summer 2018, cf. Figure 1 in [116]).

In this area, crevasse fields overflown by our ICESat-2 validation campaign and
analyzed in [35,116] (RGT450-RGT594 areas) are clearly seen and correctly classified
in Figure 9g of 26 May 2018. The one-directional crevasses south of the Negribreen—
Akademikarbreen medial moraine are the subtype of thin, parallel, freshly opened crevasses,
measured by airborne altimetry and ICESat-2 satellite altimetry [35]. Furthermore, the
classification of uncrevassed regions as class (1), demonstrates that the surge has not trans-
gressed the medial moraines between Negribreen and Akademikarbreen, nor advanced
into Rembebreen in the south. In conclusion, as of summer 2018, the surge in the NGS
has not or not yet affected side glaciers of Negribreen. However, it has been hypothesized
in [113] that some side glaciers may surge in a later part of the surge process.
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11.4. Summary of Geophysical Findings

In summary, we conclude that crevasse classification using a physically constrained
neural net yields a segmentation of a surging glacier into crevasse provinces, which allows
geophysical interpretation. A time series of crevasse provinces, based on a time series of
WYV images, provides evidence of the complex deformation processes that occur during the
evolution of the surge. Individual findings are, in summarized form, as follows:

(1) More classes form, as the surge progresses.

(2) Fields of one-directional crevasses are always on the upglacier, leading edge of the
surge expansion. From airborne observations and numerical analyses, we know that these
crevasses are of extensional crevasse type with direction of extension in the direction of
largest strain (strain rate) [18,36,116].

(3) Fields of shear crevasse type form between areas of accelerating and fast-moving
ice and areas of slow-moving ice that is not (or not yet) affected by the surge.

(4) Multi-generational, multi-directional crevasse types form, as a new wave of the
surge forces affects regions with pre-existing crevasses. Multi-directional crevasses can also
form as a result of a two-directional, extensive force field, as observed during the surge of
the BBGS [126], however, these types are not differentiated in the experiments in this paper.

(5) Lastly, continued deformation can render the crevassed area as a region “chaos class”,
where individual deformation events can no longer be traced back from crevasse patterns.

(6) Combining complex shear and chaos into a single class limits the ability for geo-
physical interpretation. For simplicity, these two different processes are not differentiated
in the experiments in this paper. In applied work, we have discriminated up to 13 crevasse
classes from WorldView imagery.

(7) Over time, the surge expands into marginal areas, in addition to expanding upglacier.

12. Experiments Using Small Data sets to Train ResNet-18 Directly, without VarioMLP

The objective of this section is to answer the question of whether the role of VarioMLP
and its feedback loop in deriving a labeled training data set for VarioCNN is actually
necessary—or whether, alternatively, it may be possible to train a ResNet-18 directly,
utilizing the experience gained with crevasse classification from WorldView imagery. To
this end, we carry out a series of experiments, using data sets of several hundred labeled
split images (see, Figures 10 and 11).

For the first series of experiments, a training data set is created by selecting approxi-
mately 50 split-images for each class, for a total of 384 from the WorldView-2 image acquired
2016-06-25 (see, Figures 6b and 9b). Split images for any given class are selected from re-
gions where crevasses of the type of that class are identified in application of VarioCNN
(i.e., in Figure 9b). The size of this initial data set is similar to that of the first iteration of the
data set used for VarioMLP (approximately 300 images, see Section 9.2). We then train a
ResNet-18 model using the resultant 2016_50 labeled data set with an 80%/20% split into
training and validation data. Training and validation loss curves are shown in Figure 11.

The resultant ResNet-18 model (2016-ResNet for short) is applied to three images:
(1) WorldView-2 acquired 2016-06-25 (see, Figures 6b and 9b)), (2) World View-1 acquired
2017-05-30 (see, Figures 6e and 9e)), and (3) WorldView-1 acquired 2018-05-26 (see,
Figures 6g and 9g)).
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Figure 10. Experiments training ResNet-18 directly (without using VarioMLP). Classification of the
following imagery: (1) WorldView-2 acquired 2016-06-25 (see, (b) in Figures 6 and 9)), (2) WorldView-
1 acquired 2017-05-30 (see, (e) in Figures 6 and 9)) , (3) WorldView-1 acquired 2018-05-26 (see, (g) in
Figures 6 and 9)). Left Column: Experiments training ResNet-18 using a training data set of 50 labeled
split-images, sourced from 2016 WorldView image (1): (a) 2016 WorldView Image classified using
ResNet-18 trained with 2016 data. Result after 47 epochs. (c) 2017 WorldView Image classified using
ResNet-18 trained with 2016 data. Result after 47 epochs. (e) 2017 WorldView Image classified using
ResNet-18 trained with 2016 data. Result after 41 epochs. (g) 2018 WorldView Image classified
using ResNet-18 trained with 2016 data. Result after 47 epochs. Right Column: Experiments training
ResNet-18 using a training data set of 100 labeled split-images, sourced from 2017 WorldView image
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(2): (b) 2016 WorldView Image classified using ResNet-18 trained with 2017 data. Result after 5 epochs.
(d) 2017 WorldView Image classified using ResNet-18 trained with 2017 data. Result after 5 epochs.
(f) 2017 World View Image classified using ResNet-18 trained with 2017 data. Result after 5 epochs.
(h) Crevasse-type legend for the classification time series. Crevasse classes are the same as in Figure 9.

(a) (b)

Figure 11. Training and validation loss for experiments training ResNet-18 directly (without
using VarioMLP). With a 80/20 split between training data and validation data for each experiment.
(a) Training and validation loss for training ResNet-18 using a training data set of 50 labeled split-
images, sourced from 2016 WorldView image acquired 2016-06-25 ((1) in Figure 10, see Figures 6b
and 9b). Loss curves for CNN used in left column in Figure 10. (b) Training and validation loss for
training ResNet-18 using a training data set of 100 labeled split-images, sourced from 2017 World View
image acquired 2017-05-30 ((2) in Figure 10, see Figures 6e and 9e). Loss curves for CNN used in
right column in Figure 10.

Classifications of crevasse types using 2016-ResNet, applied to image (1), i.e., the image
from which the labeled training set is sourced, works reasonably well. The area of the surge
is correctly identified, as is the area of undisturbed snow. The region of other surfaces
is classified similarly to the result in Figure 9b. The region of multi-directional crevasses
approximately matches that in Figure 9b and the region of one-directional crevasses is
mostly, but not entirely identified as the upglacier part of the region affected by the surge.
But the more difficult to identify crevasse types of shear and shear/chaos are not correctly
classified. There are misclassifications of the shear margin of the surge region as either
one-directional or chaos or multi-directional. A look at the loss curves (Figure 11a) shows
that the 2016-ResNet is overfitting to the small training data set of 384 images but does
not generalize well, an observation that can be expected given the size of the training data
set (for typical learning curves, see [44]). More interesting in the context of evaluation of
the contribution of VarioMLP to the creation of a training data set is the observation that
the CNN is not able to distinguish imagery based on spatial patterns associated with the
deformation characteristics of crevasse fields, which is attributable to the fact that the CNN
does not have a spatial statistical decision criterion, as is explicitly implemented as part of
VarioMLP. Application of 2016-ResNet to the 2017 World View data yields misclassification
of the entire region, which is interpreted as a result of poor generalization. Comparison
of the classification results after 47 epochs (near the end of experiments) and 41 epochs
(minimum distance between validation loss and training loss curves) indicates that for
41 epochs, an approximately along-flow orientation of provinces emerges, however, all
crevasse locations are misclassified as “undisturbed snow /ice” or “other”. In comparison,
the result of application of 2016-ResNet to the 2018 WorldView image is somewhat better
in that crevassed areas are called out approximately where they exist (see Figure 9g), but
the crevasse types are classified incorrectly for most locations of the glacier: The region
of “chaos” is far too large, the shear margin is missing and misclassified as “other”, and
one-directional crevasses do not lead the expansion of the surge upglacier.

In the second series of experiments, approximately 100 split-images are selected for
each class from the 2017 WorldView-1 image (2), resulting in a total of 634 training data.
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The loss curves (Figure 11b) for the resultant ResNet-18 model, 2017-ResNet for short,
indicates that the training process is not stable, hence, we cannot expect that 2017-ResNet
will yield correct crevasse classification results. Resultant crevasse classification maps are
plotted for an epoch with a small difference between validation and training loss (epoch 5;
see Figure 11b). Similar to the previous experiments from 2016-ResNet, the classification
works to some extent in application to the data set from which the 634 labeled training
images are sourced, simply because the training data are a significant part of the data to be
analyzed. Comparing Figure 10d to Figure 9e, the chaos class is approximately correctly
mapped, with a province of multi-directional crevasses splitting it near the terminus.
Distinguishing multi-directional and shear crevasse fields appears most challenging for
this network. Results of application of 2017-ResNet to 2016 and 2018 WorldView data
suffer from the poor generalization capability of the CNN (2017-ResNet). Approximately
doubling the number of training data without changing the labeling strategy does not
improve the classification capability significantly. For the 2016 data set, large areas are
misclassified as shear. For the 2018 data set, large areas are misclassified as shear but
are actually fields of one-directional crevasses in Figure 9g (and also Figure 9f) or multi-
directional crevasses. These comparisons affirm the conclusion from the 2016-ResNet
experiments that the capability for association of those spatial characteristics, which relate
ice deformation to resultant surface pattern (crevasse types), requires VarioMLP and the
connectionist-geostatistical approach.

13. Summary, Discussion and Conclusions

The work in this paper has addressed three challenges, posed in the introduction:
Challenge 1. Harnessing the data revolution in Earth observation from space; Chal-
lenge 2. Glacial acceleration and Sea-Level-Rise assessment; and Challenge 3. Integration of
physically-constrained classification and modern “Deep Learning” approaches in satellite
image classification.

Challenge 1. Harnessing the data revolution in Earth observation from space.
Through the integration of physical knowledge and two different ML approaches into a
physically-driven NN, the VarioCNN, we have provided a means for rapid and efficient
extraction of complex information from submeter resolution satellite imagery (and other
imagery). The new NN, VarioCNN, combines the advantages of a physically-driven,
relatively easily trainable MLP, with those of an efficient CNN, and thus directly provides
an answer to Challenge 3. Integration of physically-constrained classification and modern
“Deep Learning” approaches in satellite image classification.

There are several key concepts that are instrumental in the mathematical and com-
putational formulation of a connection between physical understanding and physically
constrained classification: (1) ice dynamics of glacial acceleration, especially surging, (2) de-
formation of the material ice during rapid acceleration, (3) the resultant surface signatures:
crevasse patterns, and their formation, transport and overprinting, (4) recording of ice-
surface structures in optical satellite imagery (and other imagery) and (5) mathematical
representation of crevasse patterns in multi-directional vario functions—these compo-
nents comprise the physical constraints of VarioMLP. VarioMLP utilizes the connectionist-
geostatistical classification method [18,44,45] to first process satellite imagery by calculation
of directional vario-functions, which are then used to activate the neurons of an input layer
of a MLP.

While there has been an increasing acceptance of deep learning methods in the geo-
sciences, the lack of adequate, problem-specific labeled training data has hampered deriva-
tion of new knowledge using said deep learning approaches, because CNNs require training
data sets with on the order of 100,000s to millions of labeled data. Science applications of
CNNs have been limited to areas where more training data exist, including (a) biology and
medicine, (b) atmospheric sciences and weather forecasting, and (c) sea surface temperature
(ocean remote sensing) [92].
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In a comparison of VarioMLP and ResNet-18, the shallowest “deep” NN that is
commonly used [41,82], we find that the primary advantage of VarioMLP over the CNN
is that VarioMLP can be trained with a relatively small set of labeled training data of a
number of input images that can feasibly be labeled by an expert in the field. Starting from
a set of several hundred training data sets of crevassed surface images, associated to six
classes by a structural glaciologist, a feedback loop of retraining and reinforcement, with
a fast rejection/acceptance feature supported by a GUI in combination with a confidence
measure and expert-controlled decision, leads to the creation of a labeled crevasse class
data set of 4000 images.

We proceed to create a combined three-tiered network, termed VarioCNN, which
consists of VarioMLP, the feedback loop, and a backend of a CNN (ResNet-18); this NN
can be trained with the 4000-image labeled data set and has better training properties
than VarioMLP alone. A flexible and versatile open-source software system, GEOCLASS-
image [136], has been designed and built for image classification. It performs all the
tasks in this analysis and more; it is easily generalizable to other network structures and
applications because of its modular design. GEOCLASS-image is user friendly, and it
includes a functional GUI that appeals to the expert and non-expert in glaciology or
computer science alike (i.e., it does not require a lot of knowledge of ML, however, it has a
PyTorch framework).

While ResNet-18 is classically trained using square input images of 224 by
224 pixels [41,82], especially for benchmarking experiments, this is not a requirement. In
GEOCLASS-image, all currently utilized NN architectures and approaches can be trained
with rectangular split-images of any size [136]. Using the same size for VarioMLP and
ResNet-18 in the combined VarioCNN architecture yields the most consistent results (here,
201 by 268).

With GEOCLASS-image and VarioCNN, we have created an infrastructure that facili-
tates rapid analysis of submeter resolution commercial satellite image data, such as Maxar
WorldView data, thus answering Challenge 1. Furthermore, the work in this paper presents
an approach for a path forward in harnessing the data revolution towards obtaining an
advanced understanding of complex geophysical phenomena (here, glacial acceleration) in
a climate-change science framework.

Challenge 2. Glacial acceleration and sea-level-rise assessment. Our research in
this paper presents an advance in the complexity of physics that can be extracted from
satellite imagery (crevasse classification, deformation), in an area where such research
has not been conducted yet. In the introduction, we have summarized the relationship
between glacial acceleration and sea-level rise. In summary, glacial acceleration constitutes
a deep uncertainty in SLR assessment, a term coined by the 6th Assessment Report of
the IPCC [3]. Surges are the least understood form of glacial acceleration. The work in
this paper culminates in an application of VarioCNN to study the evolution of crevasse
provinces during the current (2016-2024) surge of an Arctic glacier system, the Negribreen
Glacier system, Svalbard, based on the classification of crevasse types in a time series of
WorldView images for 2016-2018. This constitutes a novel approach, resulting in new
results in glaciology. This classification is the first of its kind, carried out for an entire Arctic
glacier system and for WorldView data. Negribreen last surged in 1935/36 [35,113].

Using four principal crevasse types (one-directional, multi-directional, shear and
chaos), plus a class for undisturbed snow /ice surfaces and a rest class, we have derived
segmentations of a surging glacier into crevasse provinces that allow geophysical inter-
pretation of the surge evolution in 2016-2018, which includes most of the acceleration
phase of the surge. Some results are: More crevasses form, as the surge expands. Fields of
one-directional crevasses always form on the upglacier, leading edge of the surge expansion.
Fields of shear crevasse type form between areas of accelerating and fast-moving ice and
areas of slow-moving ice that is not, or not yet, affected by the surge. Multi-generational,
multi-directional crevasse types form, as a new wave of surge forces affects regions with
pre-existing crevasses. Lastly, continued deformation can render the crevassed area as a
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region of “chaos class”, where individual deformation events cannot be traced back to
individual deformation events any more. Over time, the surge expands upglacier and into
marginal areas. Links to modeling are outlined.

A limitation of the current analysis is the small number of crevasse classes, chosen to
more easily derive the first combined network that integrates the connectionist-geostatistical
approach and a CNN. A classification that distinguishes up to 13 crevasse classes is in
preparation by the authors’ group.

More generally, the specific glaciological results obtained in this paper demonstrate
that geoscience and computer science are equally important disciplines in the development
of physically constrained NN (i.e., glaciology is not merely “domain knowledge”), in light
of the goal to utilize modern observation technology to advance geophysical understanding.
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Appendix A. Open Science, Software and Data Access

The data and code supporting the findings of this study are openly available in the
GEOCLASS-image GitHub repository [136] found at

https://github.com/Herzfeld-Lab/GEOCLASS-image/releases/tag/v1.0, accessed
on 31 December 2023.

The repository contains all the necessary data sets, scripts, and code used for analysis
and reproduction of the results presented in the article. Researchers interested in accessing
and utilizing the first release of this software may find it at the specified GitHub link.
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Additionally, specific instructions, descriptions, and necessary dependencies to repli-
cate and conduct similar experiments and analyses are documented within the repository’s
README file.

All materials in this repository are released under the MIT License. Please refer to
the repository’s LICENSE file for detailed information on the permissions and restrictions
regarding the use, reproduction, and distribution of the data and code.

Sentinel-1 SAR Data from the European Space Agency’s (ESA) Copernicus Mission
are freely available through “Sentinel Online”, https:/ /sentinel.esa.int/web /sentinel /user-
guides/sentinel-1-sar, accessed on 10 May 2023.

The Maxar WorldView-1 and WorldView-2 Data (value-added products) used in this
paper can be acquired through the Polar Geospatial Center, University of Minnesota, Twin
Cities, Minnesota, U.S.A.

Airborne geophysical field observations including imagery of the Negribreen Glacier
System during surge in 2017 and 2018, collected by the Geomathematics, Remote Sensing
and Cryospheric Sciences Laboratory at the University of Colorado Boulder, Boulder, CO,
USA. (Ute Herzfeld, Thomas Trantow and field assistants) are available through the Arctic
Data Center of the U.S. National Science Foundation [175].
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