

**1 Water in Ice — It's Detection, Measurement and Role
2 in Understanding Glacial Acceleration and Melt
3 Processes from ICESat-2 Altimeter Data**

4 Ute Herzfeld¹, Rachel Middleton^{1,2}, Thomas Trantow¹, and Adam Hayes¹

5 ¹Geomathematics, Remote Sensing and Cryospheric Sciences Laboratory, Department of Electrical,
6 Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA

7 ²Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO,
8 USA

9 Key Points:

- 10** • Supraglacial water features are recorded by NASA's ICESat-2 and identified with
11 higher order DDA-ice algorithms
- 12** • Water in crevasses is an indicator of switches in the dynamic state of a surge glacier,
13 and these switches are not detectable otherwise
- 14** • Water in melt ponds and streams on glaciers and ice sheets provides an essential
15 indicator of melt progression in a warming climate

16 Abstract

17 While melt-driven occurrence of supraglacial water is largely recognized, an essential but
18 overlooked component of supraglacial water appearance is glacial dynamics and their in-
19 teraction with hydrological drainage systems. ICESat-2 ATLAS data record returns from
20 water features, which requires an automated method for detection and depth measure-
21 ment. We introduce second-order Density-Dimension (DDA-ice) algorithms that facil-
22 itate detection of water in crevasses and melt features. Density characteristics from the
23 DDA-ice allow identification of cryospheric material types such as snow, water-logged
24 firn and water in crevasses. Application of the DDA-ice-2 to data from the current surge
25 of Negribreen, Svalbard, yields key informants on englacial hydrological changes that con-
26 trol the surge process, but are hard to detect otherwise. Analysis of melt ponds and streams
27 on the Greenland Ice Sheet and the Amery Ice Shelf illustrate the capability of the DDA-
28 bifurcate to extract complex morphological shapes, a characteristic that suggests appli-
29 cation in morphogenesis of glacio-hydrological features.

30 Plain Language Summary

31 It is well-known that increasing climatic warming is leading to increased melting
32 of the Earth's glaciers and ice sheets, as is indicated by increased occurrence of melt ponds
33 and melt streams on the ice. An additional but overlooked component of supraglacial
34 water appearance is glacial dynamics and their interaction with hydrological drainage
35 systems. Rapid observable changes in ice dynamics are the characteristics of glacial surges,
36 which are accelerations of a glacier to 10-200 or more times their normal flow velocity.
37 To better understand the mechanisms through which water affects movement and mass
38 loss, this work establishes a new approach for measurement of water on, and implicitly,
39 in, ice, using ICESat-2 ATLAS high-resolution satellite laser altimetry data. To this end,
40 we introduce higher-order Density-Dimension Algorithms for ice surfaces (DDA-ice), which
41 are applied to detect and measure the depth of several kinds of water features: (1) Wa-
42 ter in crevasses during the current surge of an Arctic Glacier provides information on
43 the glacial dynamics of this catastrophic process. (2) Water in melt streams of Amery
44 Ice Shelf indicates a rare melt event in Antarctica, and application to data from the Green-
45 land Ice Sheet allows understanding of complex melt processes.

46 **1 Water In and On Ice as a Signature of Glacial Acceleration and Melt
47 Processes**

48 Increased occurrence of water on ice has seen attention in the cryospheric commu-
49 nity and beyond as an alarming sign of the impeding loss of glaciers, ice sheets and Arctic
50 sea ice in the current realm of climatic warming (Markus et al., 2009; Schoof, 2010;
51 Nghiem et al., 2012; Bartholomew et al., 2012; Hall et al., 2013; Fricker et al., 2020; Spergel
52 et al., 2021; Buckley et al., 2023; U. Herzfeld et al., 2023). In addition to melting, wa-
53 ter on glaciers and ice streams can also occur as a result of changes in ice dynamics (Fig. 1).

54 Rapid observable changes in ice dynamics are the characteristics of glacial surges,
55 which are accelerations of a glacier to 10-200 or more times their normal flow velocity.
56 Glacial acceleration is one of two major sources of uncertainty in SLR assessment, a prob-
57 lem identified by the Intergovernmental Panel on Climate Change (IPCC) Assessment
58 Report (AR) 5 (Stocker et al., 2013). The AR 6 (Masson-Delmotte et al., 2021) used the
59 term “deep uncertainty” to emphasize the importance of this still unsolved problem and
60 its relationship to ice-dynamical instabilities. Surging is a type of glacial acceleration (Clarke,
61 1987; Truffer & Echelmeyer, 2003), and is the least understood type because surges are
62 relatively rare events and thus comprehensive observations are limited relative to other
63 acceleration types. While valuable dedicated surge studies exist, e.g. (Mayer & Herzfeld,
64 2000; U. Herzfeld et al., 2013; Kochtitzky et al., 2020; Banerjee et al., 2022; Liu et al.,
65 2024; Main et al., 2024; Trantow & Herzfeld, 2024a, 2024b), our community’s ability to
66 analyze the surge process is limited. Mass loss from a single Arctic glacier during surge
67 can equate to 0.5-1% of annual global sea-level rise (SLR) in only a few months, as was
68 observed during the height of the current surge of Negribreen, Svalbard (Fig. 1m), in sum-
69 mer 2017 (U. Herzfeld, Trantow, et al., 2021; U. C. Herzfeld et al., 2022), a finding that
70 highlights the importance of surges in SLR. The first focus of this paper will be the de-
71 tection of water in crevasses during the surge of the Negribreen Glacier System (NGS)
72 and interpretation of its role.

73 The acceleration phase of the surge is characterized by opening of crevasses. As the
74 surge progresses, suddenly water-filled crevasses will occur locally and later on more per-
75 vasively throughout the surging glacier (Fig. 1e-h). These water-filled crevasses result
76 from the transition of the englacial glaciological system from an efficient drainage sys-
77 tem (EDS) to an inefficient drainage system (IDS) resultant from the destruction of ex-
78 isting drainage path caused by the rapid motion of the glacier during surge (Kamb, 1987),

79 a process that can be spatiotemporally complex as analyzed in numerical modeling studies (Trantow & Herzfeld, 2018, 2024a). Thus surface water is a signature of otherwise
80 hard-to-observe changes in the interior of the glacier which control the unique dynam-
81 ics of a surge and the hitherto incompletely understood evolution of hydrological changes.
82 This signature characteristic, combined with investigation of supraglacial and near-surface
83 water, motivates the terminology “water in ice” as the focus of this study. An objective
84 of this paper is to demonstrate that satellite laser altimeter data from NASA’s ICESat-
85 2 Mission (Markus et al., 2017; T. A. Neumann et al., 2019) can be utilized to extract
86 information on water in crevasses. We will introduce a mathematical approach that fa-
87 cilitates detection of water in crevasses and measurement of its depth, based on the Density-
88 Dimension Algorithm for ice surfaces (DDA-ice) (U. Herzfeld, Trantow, et al., 2021). Fur-
89 thermore, the work in this paper will shed some light on the characterization of differ-
90 ent cryospheric materials, such as snow and water-logged firn that occur in crevasses dur-
91 ing various stages of the melt process, as afforded by a generalization of the DDA-ice.
92

93 The second focus of the paper will return to the problem of observation and mea-
94 surement of melt features on glaciers, ice shelves and ice sheets. Recent studies have in-
95 vestigated the geophysical processes responsible for the increased melt of the Greenland
96 Ice Sheet (Tedesco et al., 2016; Stroeve et al., 2017; Wood et al., 2018; Oltmanns et al.,
97 2019; Ryan et al., 2019). It has long been known that the coupling between surface melt-
98 water and ice flow can lead to rapid and large-scale dynamic changes in the ice sheets
99 and glaciers (Zwally et al., 2002; McMillan et al., 2007). Satellite image technology has
100 allowed observations of supraglacial lakes on the Greenland Ice Sheet (Sneed & Hamil-
101 ton, 2007; Sundal et al., 2009; Moussavi et al., 2016; Williamson et al., 2018). (Fricker
102 et al., 2020) compare derivation of melt-stream depth from image data during a melt event
103 on the Amery Ice Shelf, Antarctica, with approaches for retrieval of melt-stream depth
104 from ICESat-2 ATLAS data, a technology further developed in (Arndt & Fricker, 2024).
105 Common to the cited approaches is that melt-pond location in ICESat-2 data requires
106 a-priori information and determination of the second surface, the bottom of the melt fea-
107 ture, is only attainable for large (several hundred meter diameter) water bodies with well-
108 defined secondary returns in the ICESat-2 ATL03 data. To remedy this situation, we
109 will briefly describe melt-feature determination in ICESat-2 data using an algorithm of
110 the DDA family, the DDA-bifurcate (U. Herzfeld et al., 2023), which allows detection
111 and depth measurement of shallow, small and complex melt features, thus facilitating

112 a more detailed basis for the study of melt processes in glaciers and ice sheets. The DDA-
 113 bifurcate builds on the DDA-bifurcate-seaice (U. Herzfeld et al., 2023) which has been
 114 applied to detect ponds down to 7.5 m in diameter and 0.1 m in depth.

115 **2 ICESat-2 ATLAS Data as a Source of Information on Water in Ice**

116 NASA's Ice, Cloud and land Elevation Satellite, ICESat-2, launched September 15,
 117 2018, was designed to map high-resolution changes in the surface elevation of glaciers,
 118 ice sheets and sea ice, as well as collect information on vegetation cover and atmospheric
 119 layers (Markus et al., 2017; T. A. Neumann et al., 2019). With the Advanced Topographic
 120 Laser Altimeter System (ATLAS), ICESat-2 carries the first space-borne multi-beam micro-
 121 pulse photon-counting laser altimeter system. While ATLAS was not expected to mea-
 122 sure more than the primary surface of the Earth for glaciers, ice sheets, ice shelves and
 123 sea ice, the recorded photon point cloud, reported on ICESat-2 ATLAS data product ATL03
 124 (T. Neumann et al., 2022b), captures returns from secondary surfaces, such as bottom
 125 reflectors of melt ponds over land ice and sea ice (Farrell et al., 2020; U. Herzfeld et al.,
 126 2023; Fricker et al., 2020). Extraction of this information requires development of a new
 127 algorithmic approach.

128 With ATLAS, ICESat-2 operates a 532 nm, green-light, micro-pulses photon-counting
 129 lidar altimeter at 10KHz pulse-repetition frequency, which results in a nominal along-
 130 track spacing of 0.7 m (under clear-sky atmospheric conditions). ATLAS has three sets
 131 of two beams (a weak beam and a strong beam, where the energy of the weak beam is
 132 1/4th that of the strong beam). The geometry of the beam pattern and the dependence
 133 of numbering of beams and spots on orientation of the observatory is described in Fig. 3
 134 and Table 1 of (U. Herzfeld, Trantow, et al., 2021). All DDA-ice algorithms take ATL03
 135 geolocated photon data (T. Neumann et al., 2022a) as input.

136 **3 Mathematical Methods: Detection of Crevasses, Water in Crevasses 137 and Water in Melt Features using the Density Dimension Family 138 of Algorithms**

139 **3.1 Overview of Density Dimension Algorithms for Ice Surfaces**

140 Detection of crevasses, both dry and water-filled, and detection of melt features on
 141 the ice surface is accomplished by application of the Density-Dimension Family of Al-
 142 gorithms. The density-dimension algorithms are a suite of algorithms specifically devel-

143 oped for the analysis of ICESat-2 ATLAS data and more generally, micro-pulse photon-
 144 counting lidar altimeter data. The analysis in this paper utilizes the following algorithms:
 145 (1) The Density-Dimension Algorithm (DDA) for ice surfaces (DDA-ice, or DDA-ice-1)
 146 has been developed for surface height determination of crevassed and otherwise morpho-
 147 logically complex ice surfaces and also works for smooth ice surfaces (U. Herzfeld et al.,
 148 2017; U. Herzfeld, Trantow, et al., 2021). (2) Detection of secondary surfaces, defined
 149 here as surfaces of lower backscatter intensity than those of primary surfaces, is possi-
 150 ble with the DDA-ice-2. The DDA-ice-2 is a second-order algorithm that builds on the
 151 DDA-ice-1. Here, the DDA-ice-2 is employed for detection of water in crevasses, includ-
 152 ing reflectors that stem from snow or firn transforming into water. (3) Detection of melt
 153 streams and ponds requires the application of the DDA-bifurcate, whose name indicates
 154 the detection and height determination of bifurcating surfaces (melt-pond top and melt-
 155 pond bottom). The DDA-bifurcate is a two-level algorithm; its development has been
 156 necessitated by the fact that, for melt ponds, the stronger reflecting surface can be ei-
 157 ther the bottom or the top.

158 Other members of the DDA algorithm family include the DDA-atmos, which is used
 159 as the official algorithm for ICESat-2 atmospheric products (cloud and aerosol layers,
 160 blowing snow and diamond dust)(U. Herzfeld, Hayes, et al., 2021; U. Herzfeld et al., 2022).
 161 The DDA-ice has been validated for surface-height determination of an Arctic surge glacier
 162 during surge (U. C. Herzfeld et al., 2022) and applied to two years of ICESat-2 data to
 163 derive glaciological processes during the surge (Trantow & Herzfeld, 2024b).

164 3.2 Mathematical Principles of the DDA-ice

165 All DDA methods are built around the calculation of the density field and a density-
 166 based separation between signal and background (“noise”) that, motivated by the no-
 167 tion that a geophysically valid reflector (such as the ice surface or the bottom of a melt
 168 pond) has a higher density of photons in the received point cloud than background. The
 169 radial basis function is the basic mathematical concept used in the data aggregation for
 170 calculation of density. The data aggregation by density calculation forms the basis for
 171 all other steps of the DDA (U. Herzfeld et al., 2017; U. Herzfeld, Trantow, et al., 2021),
 172 which include threshold separation of signal and background photons and applica-
 173 tion-specific ground followers. The DDA-ice-1 for ATLAS data utilizes the geolocated pho-
 174 ton cloud as reported in the ATLAS product ATL03 (but not the photon classification

175 given in ATL03). Data postings of the density field have the same spatial resolution as
 176 the original data, and surface heights are reported at near-sensor resolution, for exam-
 177 ple, at 2.5 m along-track for crevassed surfaces and 5 m along-track for smooth surfaces.

178 A *radial basis function* (*rbf*) is a real-valued function whose value depends on dis-
 179 tance from a *center* $c \in \mathcal{D}$ for all x in a definition area \mathcal{D}

$$\Phi(x, c) = \Phi(\|x - c\|) \quad (1)$$

180 with respect to any norm $\|\cdot\|$. In the algorithm, a Gaussian radial basis function is used
 181 (letting $r = x - c$ and $s \in \mathcal{R}$)

$$\Phi(r) = e^{-(\frac{r}{\sqrt{2}s})^2} \quad (2)$$

182 Visualized as a surface in \mathcal{R}^3 , this *rbf* kernel has the shape of (half) a Gaussian bell curve
 183 rotated around the location of a center $c \in \mathcal{R}^2$. In the photon-data analysis, $c \in \mathcal{R}^3$
 184 and the surface is in \mathcal{R}^4 . More formally, the Gaussian probability density function is

$$f_{normpdf} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(\frac{x-\mu}{\sqrt{2}\sigma})^2} \quad (3)$$

185 with standard deviation σ and mean μ of the population; replacing $\sigma = s$ and $\mu = 0$
 186 yields eqn. (4):

$$\Phi(r) = \sigma\sqrt{2\pi}f_{normpdf} \quad (4)$$

187 Following the calculation of the density field, an auto-adaptative threshold func-
 188 tion is applied to separate signal and background photons. The auto-adaptive capabil-
 189 ity means that the algorithm adapts automatically to changes in background in the pho-
 190 ton point cloud, as are typical for night-time data (low background) and day-time data
 191 (high background) and changes in apparent surface reflectance, which may be caused by
 192 changes in albedo of the ice surface. In addition, the auto-adaptive threshold function
 193 can correct for some undesired instrument effects.

194 The DDA-ice is an auto-adaptive algorithm, which uses the mathematical concept
 195 of an artificial neural network (NN) (the *rbf*) in an entirely new way, but it is not a NN.
 196 Herein lies the reason that, while conceptually advanced, the DDA is computationally
 197 inexpensive, a property which makes it feasible to process surface heights for the entire
 198 cryosphere.

199 The DDA-ice utilizes a ground-following algorithm that adapts to the roughness
 200 of the surface or the crevasse morphology, with higher resolution for rough surfaces, such

201 as crevassed ice surfaces, and lower resolution for smooth surfaces. All DDA algorithms
 202 are driven by a set of algorithm-specific parameters, which can be optimized, but once
 203 the parameters are set, the algorithm will run without further adjustment (“auto-adaptively”).
 204 Before running the actual DDA-ice, a cloud-ground separation algorithm is applied to
 205 ascertain that returns from clouds are not mistaken for ground returns. The algorithm
 206 steps are illustrated in ((U. Herzfeld, Trantow, et al., 2021), Fig. 4, see also Fig. S1) with
 207 parameters given in Table S1.

208 **3.3 Detection of Water in Crevasses: DDA-ice-2**

209 The DDA-ice-1 performs the following steps, (0) cloud-ground separation, (1) signal-
 210 noise separation, (2) calculation of the density field, (3) auto-adaptive threshold func-
 211 tion, (4) surface-height determination (using a roughness-adapting ground follower). The
 212 main idea for detection of a secondary surface is to analyze the data field of the photons
 213 that remain after the photons identified as primary signal returns are masked out. This
 214 is accomplished by a trick termed “running density twice”: We run algorithm steps (0)
 215 through (4), which results in the signal photons heights from density-1. Then the steps
 216 (2)-(4) are applied to the field of remaining photons, but with different parameters, op-
 217 timized to capture the characteristics of a second-order reflector. For example, a large
 218 kernel is used in density-run two to find a weak reflector. For the problem of water-in-
 219 crevasses, a similar type of ground follower is used for the second surface as for the pri-
 220 mary surface. The maximal depth of water in crevasses can be estimated from the dif-
 221 ference of the two surfaces at the bottom of a crevasse.

222 **3.4 Depth Measurement of Water in Crevasses**

223 To derive an estimate of depth of water in crevasses, we use a simple ad-hoc ap-
 224 proach in this paper, based on the apparent water depth in the two photon surface height
 225 profiles, which is calculated from range, and correction for the speed of light in water.
 226 For each crevasse, we determine apparent water depth as the difference between the low-
 227 est point in the top surface profile (water surface) and the lowest point in the bottom
 228 surface profile (crevasse bottom), identified by the surface followers of the DDA-ice-2.

229 The true depth of water is then determined by correcting for the speed of light in
 230 water, according to Snell’s Law:

$$d_{true} = \frac{d_{app}}{n_{water}} \quad (5)$$

231 Where d_{true} is the actual depth of water in the crevasse, d_{app} is the apparent depth
 232 of water or the range difference, and n_{water} is the refractive index of light in water, 1.33.

233 In figure 1d, the apparent depth of the water-filled crevasse is approximately 7.0
 234 m. When corrected for the speed of light in water, the real depth is 5.4 m.

235 **3.5 Detection and depth measurement of water in melt ponds: DDA-
 236 bifurcate**

237 The idea of a bifurcating algorithm is to identify locations where two geophysically
 238 valid surfaces exist (U. Herzfeld et al., 2023). The DDA-bifurcate aims to accomplish
 239 this for analysis of the ICESat-2 ATL03 photon cloud over land ice surfaces. A key fea-
 240 ture of the DDA-bifurcate is the ability to detect bifurcating reflectors in situations where
 241 the stronger reflector can be the lower or the higher reflector and the two reflectors may
 242 have different spatial distributions and material/reflection properties. The algorithm ap-
 243 plied here to the detection of melt ponds and melt streams on ice sheets and ice shelves
 244 is similar to the DDA-bifurcate-seaice (DDA-bif-seaice for short), developed for the prob-
 245 lem of melt ponds on Arctic sea ice, described in (U. Herzfeld et al., 2023). Because sea-
 246 ice melt ponds are much smaller and more shallow than land-ice water features, the prob-
 247 lem of their detection and depth measurement is mathematically more difficult.

248 **4 Results I: Detection of Water in Surge Crevasses as Indicator of Ma-
 249 ture Surge Phase Processes**

250 [FIGURE 1 here]

251 **4.1 Crevassing and Detection of Crevasses in ICESat-2 ATLAS Data**

252 The objective of this section is to demonstrate applications of analyses of dry and
 253 wet crevasses as indicators of surge evolution for the current surge of the NGS. The DDA-
 254 ice-1 facilitates surface-height determination of crevassed ice surfaces in ICESat-2 AT-
 255 LAS, as described in (U. Herzfeld, Trantow, et al., 2021; U. C. Herzfeld et al., 2022). This
 256 detection capability, which has been applied to analyze the surge process in the NGS based
 257 on two years of ICESat-2 data (2019 and 2020) (Trantow & Herzfeld, 2024b), is illus-

258 trated in Figures 1a,b,j. At first impression, the results in these three figures are sim-
 259 ilar.

260 In addition to crevasses as morphological features, the ICESat-2 photon point cloud
 261 includes information on occurrence of water in crevasses, as is typical during the mature
 262 phase of a surge. As a first approximation, this can be derived from the density field,
 263 calculated by the DDA-ice-1. Comparison with co-located airborne image data, collected
 264 during our ICESat-2 airborne validation campaign over the NGS within several days of
 265 the ICESat-2 data acquisition (U. C. Herzfeld et al., 2022), shows that the segment in
 266 Fig. 1a (from ICESat-2 Reference Ground Track (RGT) 450) stems from an area with
 267 dry crevasses which are partly filled with old snow (Fig. 1e,f), whereas the segment in
 268 Fig. 1b,j (from RGT594) stems from an area of wet crevasses and crevasses with firn close
 269 to melting (Fig. 1g,h). As both the GoPro image (Fig. 1e) and the density field for RGT450
 270 indicate, there are a few exceptions, which consist of areas of old snow just starting to
 271 melt. Closer scrutiny of the density fields indicates that clusters of photons with rela-
 272 tively high density are associated with the wet-crevasse area. The density value associ-
 273 ated with a photon is indicated by the color of the larger, colored dots (for a photon iden-
 274 tified as signal), with background photons given as small, black dots. Areas of water-
 275 logged, dense firn are depicted as green clusters (Figs. 1b,j), whereas areas of dry/less
 276 dense snow appear as blue signal photon clusters (Fig. 1a). Standing water appears as
 277 a horizontal segment of photons, returned from the surface of the water body in a crevasse
 278 (Fig. 1b,d) [note that the RGT594 crosses the edge of the field of wet crevasses, Fig. 1i].
 279 The next algorithmic objective is the identification of a secondary surface related to wa-
 280 ter detection: The DDA-ice-2 (section (4.2)).

281 **4.2 Occurrence of Water in Crevasses and its Detection and Measure-
 282 ment in ICESat-2 Data. Density as an Indicator of Cryospheric Ma-
 283 terials**

284 As the surge progresses, a new phase is entered, called the mature phase of the surge.
 285 Characteristic of this phase is the sudden occurrence of water locally in some crevasse
 286 fields. Detection of water in crevasses, which is the signature of a change in the englacial
 287 hydrological system of the glacier, requires a new algorithm capability. This is where the
 288 DDA-ice-2 comes in.

289 Application of the DDA-ice-2 to the data from RGT594 results in the identifica-
290 tion of a secondary surface that follows the bottoms of the water-filled crevasses. Figs.
291 1d,k demonstrate that the areas of higher density, indicative of water-logged firn iden-
292 tified in Figs. 1b,j (section (4.1)), are located between the upper (red line) and the lower
293 (green line) surface heights (see also Supplement Fig. S1). In Figure 1d, the apparent
294 depth of the water-filled crevasse is approximately 7.0 m, using the approach described
295 in (3.4). When corrected for the speed of light in water, the true depth is 5.3 m.

296 Cross-reference between ICESat-2 data and satellite image data, given in Figures 1i,
297 1, serves two purposes. First, the location of the two reference ground tracks (RGTs),
298 superimposed on a MAXAR WorldView-1 image, indicates that the three examples stem
299 from crevasse fields in the region in upper Negribreen, which opened at a similar time
300 (in 2017, per our field observations (U. C. Herzfeld & Trantow, 2021)). One of these crevasse
301 fields transformed into an area of wet crevassing, indicating the localized nature of wet
302 versus dry crevassing.

303 Segment 12 of RGT594 crosses the edge of a field of wet crevasses, allowing iden-
304 tification of a single crevasse with standing water, whereas adjacent crevasses in segments
305 12 and 13 contain water-logged firn that is close to melting, and this situation can be
306 identified using the DDA-ice-2. In contrast, segment 24 of RGT 450 crosses a field of crevasses
307 filled with old snow. Because there is typically a lack of coincident data between differ-
308 ent types of satellites (ICESat-2, LandSat) and airborne observations, we extend the anal-
309 ysis of water in crevasses to water-logged firn in crevasses, as a means to form a larger
310 data base across larger time differences of observations during which the snow can melt.
311 In our analysis, the satellite image for the NGS is from 2019-08-11, field data from 2019-
312 08-13, RGT594 data from 2019-08-05 and RGT450 data from 2019-07-29. The combi-
313 nation of satellite imagery, imagery from the airborne validation campaign and analy-
314 sis with the DDA-ice-1 and the DDA-ice-2 facilitates the identification of different cryospheric
315 materials inside the crevasses (water, water-logged firn, old snow) which cannot be achieved
316 from imagery alone. In conclusion, the DDA-ice-2 approach yields localized information
317 on the transition between dry and wet crevassing and thus provides a unique type of ad-
318 dditional information, which cannot be derived from image analysis.

319 Furthermore, the analysis suggests that a proxy classification of cryospheric ma-
320 terials based on the density value may be feasible. The DDA-ice-2 identifies the crevasse

321 bottom as a secondary surface also for the field of crevasses filled with old snow (Fig. 1c),
 322 because of the density difference between the primary reflector (here: old snow that has
 323 fallen into the crevasses) and the secondary reflector (crevasse bottom). In all cases of
 324 crevasses that are partly filled with a different material than ice, we derive the height
 325 difference of surface-from-density-1-run minus surface-from-density-2-run. Then, den-
 326 sity characteristics can be used to identify wetness of the material in the crevasses. More
 327 specifically, these density characteristics are based on relative density of clusters of sig-
 328 nal photons (for more detailed information on the material characterization, see Supple-
 329 ment, section 1). Regardless of the material that may be obstructing the laser's view of
 330 the crevasse bottom, the DDA-ice-2 always finds the surface height of the crevasse bot-
 331 tom (see also, (U. C. Herzfeld et al., 2022)).

332 5 Results II: Melt Features

333 Melt pond occurrence, depth, and morphology are extracted from ICESat-2 ATL03
 334 data by application of the DDA-bifurcate, described in section (3.5). To demonstrate the
 335 DDA-bifurcate capabilities, we apply the algorithm to examples from two different en-
 336 vironments: (1) The Amery Ice Shelf in East Antarctica, where large melt streams formed
 337 during a melt event in January 2019 (Fig. 2a) (Fricker et al., 2020) and (2) the region
 338 of the drainage basin of Sermeq Kujaleq (Jakobshavn Isbræ, Ilulissat Ice Stream), West
 339 Greenland. The Greenland region provides examples during of several stages of melt pond
 340 formation.

341 [FIGURE 2 here]

342 5.1 Large Melt Streams Amery Ice Shelf

343 The Amery Ice Shelf encompasses a small portion of the Antarctic coastline, but
 344 drains water from 16% of the total mass of the East Antarctic Ice Sheet (Fricker et al.,
 345 2002). In this work, four melt ponds from the Amery Ice shelf are examined (Fig. 2b-
 346 e), which were recorded in ICESat-2 RGT 81, beam gt2l (strong, green in Fig. 2a), on
 347 January 2, 2019 and in same-day Landsat-8 data (Fricker et al., 2020). We analyze the
 348 same examples here.

349 The morphology of the melt streams varies across the four examples. Figure 2b ex-
 350 amplifies two adjacent melt streams of approximately 5 m depth, which perhaps were

part of a larger connected melt stream system that was divided by a frozen center. The melt streams have a diameter of several hundred meters (800 m for both streams combined). Figure 2c depicts a melt stream with a variable and rough ice bottom, which could indicate refreezing at the base of the stream. The third example captures two separate melt streams, with the second stream located close to the edge of Amery Ice stream (Fig. 2e). The edge of the second pond (at 2.1258×10^6 m along-track distance) continues seamlessly from the slope outside of the pond to the sub-pond area, which illustrates that the bifurcation algorithm and the ground follower work together resulting in morphologically realistic representations. This gives credibility to the variable shapes of other stream edges. Figure 2f depicts a single, large melt stream with a smooth bottom ice surface and a maximal depth of 8 m. Notably, the DDA-bifurcate avoids the saturation effect that can affect ICESat-2 data and is seen in the secondary horizontal high-density area at an apparent location of 0.43m below the surface (at 2.1258×10^6 m along-track distance). Instead of defaulting to the secondary false signal (range delay), the DDA-bifurcate correctly identifies the pond bottom. The DDA-bifurcate algorithm detects all ponds/melt streams and does not report false positives (Fig. S3).

5.2 Melt Ponds on the Greenland Ice Sheet During Complex Formation Stages

The analysis of melt ponds in the Sermeq Kujalleq (Ilulissat Ice Stream or Jakobshavn Isbræ) drainage basin, Greenland, is used to demonstrate that the DDA-bifurcate can be used to provide information on the characteristics of melt pond formation, which is sufficiently detailed to form a data basis for analysis of glacio-hydrological processes. For four ponds in the Sermeq Kujalleq drainage basin, we compare cross-sections of surface heights from ICESat-2 data with Landsat-8 imagery (Fig. 2d,g-n, S3).

Figures 2g,i show a fully developed melt pond with a continuous pond bottom at approximately 4m depth seen in the DDA-bifurcate result and a deep-blue, continuous pond surface seen in the Landsat-8 image. With no ice or firn obstructing the surface, the DDA-ice-bif algorithm accurately identifies the edges of the pond along with a very distinct bottom surface. Density of the pond surface is high, resultant from high reflectivity of the water surface, whereas the pond bottom has a low density and photons are returned from a region with a vertical spread, indicating penetration of the 532 nm signal into the pond bottom material.

383 Melt ponds during the formation process are detectable with the DDA-bifurcate
 384 (Fig. 2h,j,k,m) as well. At the initial stage of formation, an emerging melt pond can take
 385 on a crescent shape (Fig. 2h) with perimetral valleys of water that surround semi-solid
 386 ice (Example 2, Fig. 2j). As the melt process continues inwards from the perimeter, a
 387 medial ice island or floating ice structure can form, as depicted by the pond in Exam-
 388 ple 3 (Figs. 2k,m), which reaches depths of 8 m.

389 More complex melt scenarios can also be investigated with the DDA-bifurcate, as
 390 depicted in Example 4 (Figure 2l,n), where a pond forms in variable cryospheric surface
 391 types, ranging from near molten ice closer to the interior of the pond to solid, undisturbed
 392 ice on the outside of the pond. The DDA-bifurcate reveals well-defined sections of melt
 393 and frozen or semi-frozen ice. The bottom of the pond has a wavy morphology and reaches
 394 depths of 7m. In the melt footprint, depth of the pond bottom varies between the three
 395 individual melt areas detected and is non-uniform, which the DDA-bifurcate handles well.
 396 The melt process is likely the result of several melt and refreezing instances. Thus, the
 397 need for accurate detection of melt features is demonstrated by Fig. 2n because, as the
 398 melt process continues from relatively new melting occurrences, more complex morpholo-
 399 gies arise.

400 An approach for melt-pond determination, described in (Arndt & Fricker, 2024)
 401 and applied to ponds on the Greenland Ice Sheet, is limited to analysis of features of a
 402 minimum along-track size of 140 m and relatively clear surface and bottom representa-
 403 tion in the ATL03 photon point cloud. In contrast, the DDA-bifurcate does not require
 404 a-priori information on the location of water bodies; it is a fully automated algorithm
 405 for detection of water features across a large range of sizes and types of complexity, with
 406 determination of the heights of the top and bottom surfaces, wherever such exist, and
 407 defaults to the (single) ice-surface height between ponds.

408 6 Summary and Conclusions

409 6.1 Overview and Mathematical Methods

410 This paper describes an approach for detection and measurement of supraglacial
 411 and near-surface water in ICESat-2 ATLAS data, to provide information on two essen-
 412 tial and characteristically different processes: glacial acceleration and melting. As wa-
 413 ter in crevasses can also be the indicator of changes in the englacial hydrological system

414 of a glacier which are hard to observe directly, but provide key information on the surge
 415 process, we use the terminology of “water-in-ice” as the focus for the objectives of this
 416 paper.

417 The DDA family of algorithms, which include first-order (DDA-ice-1) (U. Herzfeld
 418 et al., 2017; U. Herzfeld, Trantow, et al., 2021) and second-order algorithms (DDA-ice-
 419 2 and DDA-bifurcate) (U. Herzfeld et al., 2023), facilitates an analysis of ICESat-2 ATL03
 420 photon data sets that is suited to provide the basis for cryospheric process studies, as
 421 complex surface types are correctly identified and extracted from the photon point cloud.
 422 The main concepts and mathematical principles of the algorithms are described in this
 423 paper. Results of the DDA-ice-2 include signal-photon classification and first- and second-
 424 order surface height profiles of the ice surface and crevasse bottoms. Importantly, we find
 425 that distinction between different cryospheric materials such as snow, old snow/firn, water-
 426 logged firn and water in crevasses is possible based on signal photon density relative to
 427 background noise density in crevasses. Thus, the analysis in this paper also indicates that
 428 the density field holds characteristic information about the relationship between cryospheric
 429 materials and their interaction with the 532nm signal of the ATLAS system, which is
 430 a problem that has only been tapped into superficially (Smith et al., 2018).

431 The DDA-bifurcate facilitates automated detection of melt ponds and melt streams
 432 without a-priori information on location and returns surface heights of the ice surface
 433 and the melt-feature bottom (where recorded in the data), it defaults to the (single) ice-
 434 surface height between ponds. All DDA-ice algorithms are auto-adaptive w.r.t. changes
 435 in background typical of day-time and night-time data. As such, the DDA-bifurcate con-
 436 stitutes a significant advance over previous work on detection of melt features on land
 437 ice.

438 The only limitation to detection of water in ice, based on ICESat-2 data, is the along-
 439 track distribution of the coverage typical of satellite altimeter data, which suggests that
 440 image data be used in addition.

441 6.2 Geophysical Applications and Results

442 Geophysical applications center on two problems: (1) The surge process, and there,
 443 the detection of crevasses and of water and other types of cryospheric material inside them,
 444 exemplified for the current (2016-present, 2024) surge of the Negribreen Glacier System,

445 Svalbard. (2) Melt processes, as manifested in the examples of large melt streams in the
446 Amery Ice Shelf, Antarctica, and smaller ponds indicative of complex morphogenetic pro-
447 cesses in the drainage basin of Sermeq Kujaleq, Greenland. Airborne validation data,
448 collected in August 2019 during the Negribreen surge (U. C. Herzfeld et al., 2022), is used
449 to demonstrate accuracy of results.

450 **Surging.** In the first set of case studies, we apply the DDA-ice-1 and the DDA-
451 ice-2 to capture the two most significant stages of a surge: (1) The first stage of a surge
452 is characterized by formation of fresh crevasses with typically clear-cut edge, which are
453 the signature of the rapid acceleration that occurs as the surge starts. These are found
454 by application of the DDA-ice-1.

455 (2) The occurrence of water-filled crevasses marks the start of the mature surge phase.
456 The occurrence of water-filled crevasses is the signature of a transition from an EDS to
457 an IDS, where established drainage pathways are destroyed and the water flow through
458 the glacier system is altered (Kamb, 1987; Trantow & Herzfeld, 2024a). ICESat-2 data
459 analysis with the DDA-ice-2 yields unique data on water in crevasses as a signature of
460 otherwise hard-to-observe changes in the interior of the glacier. In conclusion, the new
461 detection capability will enable us to investigate the processes that control the unique
462 dynamics of a surge and the hitherto incompletely understood evolution of hydrologi-
463 cal changes.

464 **Melting.** Case studies of melt features, analyzed using the DDA-bifurcate, demon-
465 strate that the algorithm can provide valuable data sets for the study of melt evolution.
466 In an analysis of ICESat-2 data collected during a rare melt event in the Amery Ice Shelf
467 in East Antarctica in January 2019, the DDA-bifurcate was applied to detect large melt
468 streams that extended across a significant portion of the Amery Ice Shelf. This is a rel-
469 atively simple detection problem, as the melt stream crossings measured several hundred
470 meters. Augmenting the melt part of our study, smaller and more complexly shaped melt
471 ponds are observed in the Sermeq Kujaleq (Ilulissat Ice Stream) drainage basin of the
472 Greenland Ice Sheet. Here, the DDA-bifurcate is applied to create data sets that doc-
473 ument several stages of the melt-formation process, providing spatial and depth infor-
474 mation from ICESat-2 data and Landsat-8 image data. Again, we can see that the DDA
475 yields information that is not easily (or not at all) attainable otherwise.

476 **Open Research Section**

477 (1) ICESat-2 data products, e.g. ATL03, are freely available through NASA at
478 <https://earthdata.nasa.gov/> (release 3 and 4 used in this paper) and is provided by the
479 National Snow and Ice Data Center (NSIDC).

480 (2) Data collected as part of the Negribreen Airborne Geophysical Campaigns, collected
481 by the authors and their extended team, are available through the NSF Arctic Data Cen-
482 ter and can be accessed at <https://arcticdata.io/data/10.18739/A2QF8JK7T> (U. C. Herzfeld
483 & Trantow, 2021).

484 (3) Landsat-8 data are freely available through the U.S. Geological Survey, e.g., through
485 the USGS Global Visualization Viewer (GloVis) (<https://glovis.usgs.gov/>).

486 **Acknowledgments**

487 Thanks are due to Matthew Lawson, Jacob Hans and Camden Opfer, all members
488 of the Geomathematics, Remote Sensing and Cryospheric Sciences Laboratory at the Uni-
489 versity of Colorado Boulder, for contributions to DDA-ice algorithm development and
490 parameter optimization, to the ICESat-2 Project, especially Thomas Neumann, Nathan
491 Kurtz, David Hancock and Anthony Martino for collaboration and support regarding
492 ICESat-2. Maxar WorldView value-added image data products were received through
493 the Polar Geospatial Center, University of Minnesota, Minnesota, U.S.A. Research and
494 data collection were supported by the U.S. National Aeronautics and Space Adminis-
495 tration (NASA) Earth Sciences Division under awards 80NSSC18K1439 and 80NSSC20K0975
496 by the U.S. National Science Foundation (NSF) under awards OPP-1745705 and OPP-
497 1942356 (Office of Polar Programs); Principal Investigator for all awards is Ute Herzfeld.
498 The helicopter was provided by the Norwegian Polar Institute and operated by Airlift.
499 Collection of airborne data was conducted with permission of the National Security Au-
500 thority of Norway, the Civil Aviation Authority of Norway and the Governor of Sval-
501 bard, registered as Research in Svalbard Project RIS-10827 “NEGRIBREEN SURGE”.
502 The data collection was also partly supported through a 2018 Access Pilot Project (2017-0010)
503 of the Svalbard Integrated Observing System (SIOS). All this support is gratefully ac-
504 knowledged. All this support is gratefully acknowledged.

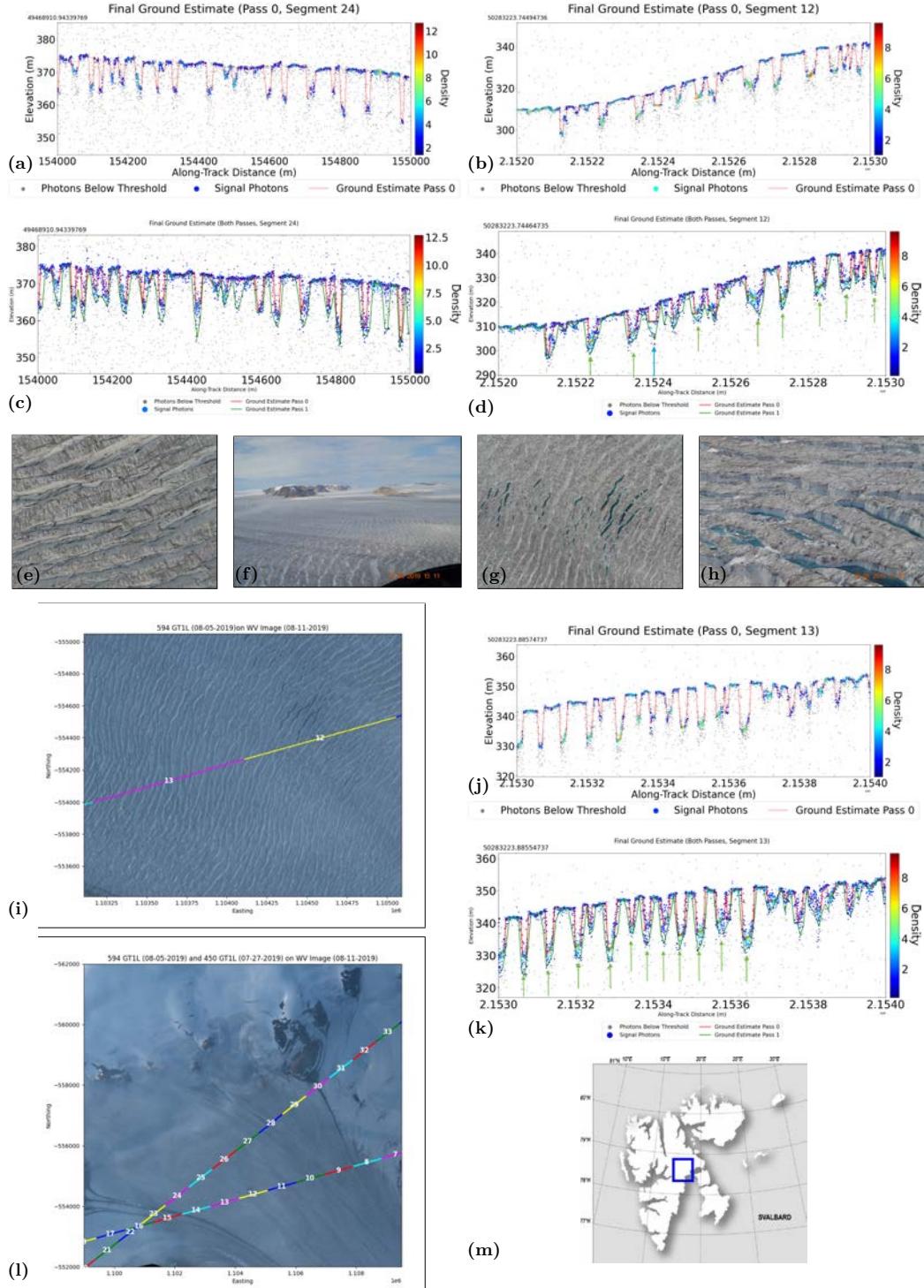
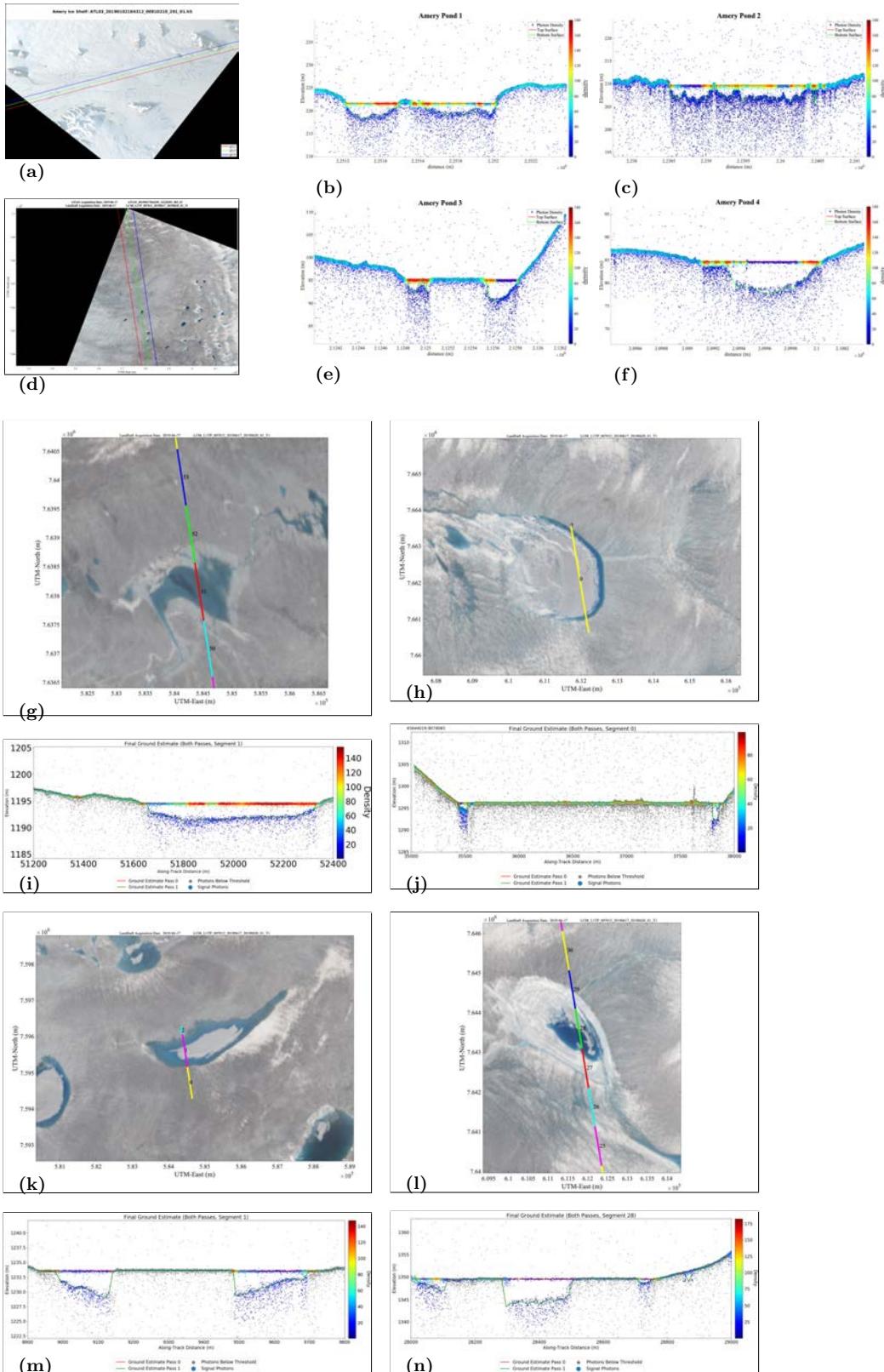



Figure 1. Detection of dry crevasses and water in crevasses on Negribreen Glacier System, during the maturing phase of its surge (2019). *Caption continued on next page.*

Figure 1. Detection of dry crevasses and water in crevasses on Negribreen Glacier System, during the maturing phase of its surge (2019). Comparison of analyses with the DDA-ice-1, DDA-ice-2, airborne image data collected during the 2019 ICESat-2 airborne validation campaign, and WorldView imagery. (a, b, j) Primary surface detected in ICESat-2 ATL03 data over surge crevasses on upper Negribreen during the surge, using the DDA-ice-1. Ground follower and density field from density-run 1, with signal photons identified by large dots with dot color indicating density. (a) DDA-ice-1 photon classification, density field and ground follower from ICESat-2 ATL03 data from RGT 450-1L, collected 2019-07-25, strong beam, day-time data, granule ATL03_20190727132129_04500405_004_01_gt11, segment 24 (for relationship between beams and spots, see Fig. 3 and Table 1 in (U. C. Herzfeld et al., 2022));(b) DDA-ice-1 photon classification, density field and ground follower from ICESat-2 ATL03 data from RGT594-1L, collected 2019-08-05 at dusk, strong beam, granule ATL03_20190805232841_05940403_004_01_gt11, segment 12(c) DDA-ice-2 photon classification, density field and ground follower from ICESat-2 ATL03 data from RGT 450-1L, collected 2019-07-25, day-time data, granule ATL03_20190727132129_04500405_004_01_gt11, segment 24, matching DDA-ice-1 run in Fig. 1a;(d) DDA-ice-2 photon classification, density field and ground follower from ICESat-2 ATL03 data from RGT594-1L, collected 2019-08-05 at dusk, strong beam, granule ATL03_20190805232841_05940403_004_01_gt11, segment 12, matching DDA-ice-1 run in Fig. 1b. Green arrows indicate water-logged firn, blue arrow standing water in crevasses.(e - h) Photographs of ice surface, taken during ICESat-2 airborne validation campaign, 2019-August-13. Locations of images matched to ICESat-2 ATL03 data using GPS data from airborne campaign (Fig. S2) (U. C. Herzfeld & Trantow, 2021). Strong beam and corresponding weak beam do not map the same ground locations due to 90-m ground track separation and along-track separation.(e) GoPro for RGT 450.1L (collapsed snow bridges),(f) Photo for RGT 450.1L,(g) GoPro for RGT 594.1L (water in crevasses),(h) Photo for RGT 594.1L. (i) Ground-track location of ICESat-2 ATL03 data from RGT594 GT1L: Fig. 1b,d segment 12 crevasses filled with water and water-logged firn , Fig. 1j,k segment 13 crevasses with water-logged firn, superimposed on WorldView 2 multispectral image from 2019-August-11 (WV02_20200801124218_10300100AA721300_20AUG01124218-M1BS-504570334070.01_P004_u16ns3413.tif),(j) DDA-ice-1 photon classification, density field and ground follower from ICESat-2 ATL03 data from RGT594-1L, collected 2019-08-05 at dusk, strong beam, granule ATL03_20190805232841_05940403_004_01_gt11, segment 13 (k) DDA-ice-2 photon classification, density field and ground follower from ICESat-2 ATL03 data from RGT594-1L, collected 2019-08-05 at dusk, strong beam, granule ATL03_20190805232841_05940403_004_01_gt11, segment 13, matching DDA-ice-1 run in Fig. 1j. Green arrows indicate water-logged firn in crevasses.(l) Ground-track location of ICESat-2 ATL03 data from RGT450 GT1L and RGT450 GT1L superimposed on WorldView 2 multispectral image from 2019-August-11 (same image as in Fig. 1i).(m) Location of Negribreen Glacier System in Svalbard.

Figure 2. Identification of melt ponds and measurement of pond depth. Caption continued on next page.

Figure 2. Identification of melt ponds and measurement of pond depth.

(a) Ground-track location of ICESat-2 ATL03 data from 2019-01-02, RGT81, Granule ATL03_20190102184312_00810210_003_01.h5, with center beam 81-2L in green, the beam used for analysis in (Fig. 2b,c,e,f) and Figure S1. Plotted over same-day Landsat-8 imagery (Jan 2, 2019). (b,c,e,f) Analysis of melt streams on Amery Ice Shelf with DDA-bifurcate for the ATL03 RGT beam in (a). Note pond depth is pseudo-depth (not corrected for speed of light in meltwater). (d) Overview of ICESat-2 tracks for RGT-1161 on Jakobshavn drainage basin over Landsat image from 2019-06-17. (g)-(n) Melt ponds in Sermeq Kujalleq (Ilulissat Ice Stream/ Jakobshavn Isbræ) drainage basin, Greenland, from ICESat-2 ATLAS data from 2019-06-17 [RGT 1222] (g,i) and 2019-06-13 [RGT 1161] (k, m) with corresponding Landsat imagery, collected 2019-06-17 (f,h,j,l), same-day for RGT 1222 and 4-days apart for RGT 1161. (g,i) Simple melt pond with clear water surface [from ICESat-2 granule ATL03_20190617064249_12220303_003_01.h5 channel gt1l](h, j) Melt pond during formation [from ICESat-2 granule ATL03_20190617064249_12220303_003_01.h5 channel gt1l] Landsat8 image from 2019-06-17. Same day as ICESat-2 data set. (k,m) Complex situation of floating ice, developing melt pond and frozen ice areas. Landsat8 image from 2019-06-17. ICESat-2 data collected 2019-06-13, just 4 days before the Landsat-8 image. [ATL03_20190613065109_11610303_003_01.h5, RGT 1161, channel gt2l]. (l,n) Melting starting around the edges of a future pond. Landsat8 image from 2019-06-17. ICESat-2 data collected 2019-06-13, just 4 days before the Landsat-8 image. [ATL03_20190613065109_11610303_003_01.h5 RGT 1161, RGT 1161, channel gt3l.]

507 **References**

508 Arndt, P. S., & Fricker, H. A. (2024). A framework for automated supraglacial
 509 lake detection and depth retrieval in icesat-2 photon data across the green-
 510 land and antarctic ice sheets. *The Cryosphere*, 18(11), 5173–5206. doi:
 511 10.5194/tc-18-5173-2024

512 Banerjee, D., Garg, V., & Thakur, P. K. (2022). Geospatial investigation on transi-
 513 tional (quiescence to surge initiation) phase dynamics of Monacobreen tidewa-
 514 ter glacier, Svalbard. *Advances in Space Research*, 69(4), 1813–1839.

515 Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., & King, M. A. (2012).
 516 Short-term variability in greenland ice sheet motion forced by time-varying
 517 meltwater drainage: Implications for the relationship between subglacial
 518 drainage system behavior and ice velocity. *Journal of Geophysical Research:*
 519 *Earth Surface*, 117(F3).

520 Buckley, E. M., Farrell, S. L., Herzfeld, U. C., Trantow, T. M., Baney, O. N., Dun-
 521 can, K., ... Webster, M. (2023). Observing the evolution of summer melt
 522 on multiyear sea ice with ICESat-2 and Sentinel-2. *The Cryosphere*, 17(9),
 523 3695–3719. (Published 2023/08/31) doi: 10.5194/tc-17-3695-2023

524 Clarke, G. (1987). Fast glacier flow: Ice streams, surging, and tidewater glaciers.
 525 *Journal of Geophysical Research*, 92, 8835–8842.

526 Farrell, S., Duncan, K., Buckley, E., Richter-Menge, J., & Li, R. (2020). Mapping
 527 sea ice surface topography in high fidelity with ICESat-2. *Geophysical Research
 528 Letters*, 47(21), e2020GL090708. doi: 10.1029/2020GL090708

529 Fricker, H. A., Allison, I., Craven, M., Hyland, G., Ruddell, A., Young, N., ...
 530 Popov, S. (2002). Redefinition of the amery ice shelf, east antarctica, ground-
 531 ing zone. *Journal of Geophysical Research: Solid Earth*, 107(B5), ECV 1-1-
 532 ECV 1-9. Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JB000383> doi: <https://doi.org/10.1029/2001JB000383>

533 Fricker, H. A., Arndt, P., Brunt, K., Tri Datta, R., Fair, Z., Jasinski, M., ...
 534 Wouters, B. (2020). ICESat-2 Meltwater Depth Estimates: Application to
 535 Surface Melt on Amery Ice Shelf, East Antarctica. *Geophysical Research Let-
 536 ters*, 48. doi: 10.1029/2020GL090550

537 Hall, D. K., Comiso, J. C., DiGirolamo, N. E., Shuman, C. A., Box, J. E., & Koenig,
 538 L. S. (2013). Variability in the surface temperature and melt extent of the

540 greenland ice sheet from modis. *Geophysical Research Letters*, 40(10), 2114–
541 2120.

542 Herzfeld, U., Hayes, A., Palm, S., Hancock, D., Vaughan, M., & Barbieri, K.
543 (2021). Detection and Height Measurement of Tenuous Clouds and Blow-
544 ing Snow in ICESat-2 ATLAS Data. *Geophysical Research Letters*, 48. doi:
545 10.1029/2021GL093473

546 Herzfeld, U., McDonald, B., & Weltman, A. (2013). Bering Glacier and Bagley Ice
547 Valley surge 2011: Crevasse classification as an approach to map deformation
548 stages and surge progression. *Annals of Glaciology*, 54(63), 279–286. doi:
549 10/3189/2013AoG63A338

550 Herzfeld, U., Palm, S., Hancock, D., Hayes, A., & Barbieri, K. (2022). *ICESat-2*
551 *Algorithm Theoretical Basis Document for the Atmosphere, Part II: Detection*
552 *of Atmospheric Layers and Surface Using a Density Dimension Algorithm,*
553 *v14.0, August 30, 2022, Geomath Code Version v120.0, ASAS Code Release*
554 *v5.6, ATLAS Data Product ATL09.* NASA ICESat-2 Project. (477p) doi:
555 10.5067/CP08GNGYS4YJ

556 Herzfeld, U., Trantow, T., Buckley, E., Farrell, S., & Lawson, M. (2023). Au-
557 tomated detection and depth measurement of melt ponds on sea ice from
558 ICESat-2 ATLAS data — the DDA-bifurcate-seaice. *IEEE Transactions*
559 *of Geoscience and Remote Sensing*, 1-16. (published April 18, 2023) doi:
560 10.1109/TGRS.2023.326807

561 Herzfeld, U., Trantow, T., Harding, D., & Dabney, P. (2017). Surface-height
562 determination of crevassed glaciers — Mathematical principles of an Auto-
563 Adaptive Density-Dimension Algorithm and validation using ICESat-2 Simu-
564 lator (SIMPL) data. *IEEE Transactions in Geoscience and Remote Sensing*,
565 55(4), 1874–1896. doi: 10.1109/TGRS.2016.2617323

566 Herzfeld, U., Trantow, T., Lawson, M., Hans, J., & Medley, G. (2021). Surface
567 heights and crevasse types of surging and fast-moving glaciers from ICESat-2
568 laser altimeter data — Application of the density-dimension algorithm (DDA-
569 ice) and validation using airborne altimeter and Planet SkySat data. *Science*
570 *of Remote Sensing*, 3, 1-20. doi: 10.11016/j.srs.2020.100013

571 Herzfeld, U. C., Lawson, M., Trantow, T., & Nylen, T. (2022). Airborne Validation
572 of ICESat-2 ATLAS Data Over Crevassed Surfaces and Other Complex Glacial

573 Environments: Results From Experiments of Laser Altimeter and Kinematic
574 GPS Data Collection From a Helicopter Over a Surging Arctic Glacier (Negri-
575 breen, Svalbard). *Remote Sensing*, 14, 1185-1224. doi: 10.3390/rs14051185

576 Herzfeld, U. C., & Trantow, T. (2021). *Airborne Laser Altimeter, Global Posi-*
577 *tioning System (GPS), Inertial Measurement Unit (IMU) and Imagery Cam-*
578 *paign of the Surging Negribreen Glacier, Svalbard, in July 2017 and July 2018.*
579 <https://arcticdata.io/catalog/view/doi:10.18739/A23J39249>. doi:
580 10.18739/A23J39249

581 Kamb, W. B. (1987). Glacier Surge Mechanism Based on Linked Cavity Configura-
582 tion of the Basal Water Conduit System. *Journal Geophys. Res.*, 92(B9), 9083-
583 9100.

584 Kochtitzky, W., Winski, D., McConnell, E., Kreutz, K., Campbell, S., Enderlin,
585 E. M., ... Jiskoot, H. (2020). Climate and surging of Donjek glacier, Yukon,
586 Canada. *Arctic, Antarctic, and Alpine Research*, 52(1), 264-280.

587 Liu, J., Enderlin, E. M., Bartholomaus, T. C., Terleth, Y., Mikesell, T. D., & Beaud,
588 F. (2024). Propagating speedups during quiescence escalate to the 2020-2021
589 surge of Sít'Kusá, southeast Alaska. *Journal of Glaciology*, 1-12.

590 Main, B., Copland, L., Flowers, G., Dow, C., Van Wychen, W., Samsonov, S., &
591 Kochtitzky, W. (2024). Topographic and hydrological controls on partial and
592 full surges of Little Kluane Glacier, Yukon. *Journal of Glaciology*, 1-37.

593 Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., ...
594 Zwally, J. (2017). The Ice, Cloud, and land Elevation Satellite-2 (ICESat-
595 2): Science requirements, concept, and implementation. *Remote Sensing of*
596 *Environment*, 190, 260-273. doi: 10.1016/j.rse.2016.12.029

597 Markus, T., Stroeve, J., & Miller, J. (2009). Recent changes in arctic sea ice melt
598 onset, freezeup, and melt season length. *Journal of Geophysical Research*,
599 114(C12024), 1-14. doi: 10.1029/2009JC005436

600 Masson-Delmotte, V., Zhai, A., Pirani, S., Connors, C., Péan, S., Berger, N., ...
601 Zhou, B. e. (2021). *AR6: Climate Change 2021: The Physical Science Basis.*
602 *Contribution of Working Group I to the Sixth Assessment Report of the In-*
603 *tergovernmental Panel on Climate Change.* Cambridge University Press. doi:
604 doi:10.1017/9781009157896

605 Mayer, H., & Herzfeld, U. (2000). Structural glaciology of the fast-moving Jakob-

606 shavn Isbræ, Greenland, compared to the surging Bering Glacier, Alaska, USA.
607 *Annals of Glaciology*, 30(1), 243–249.

608 McMillan, M., Nienow, P., Shepherd, A., Benham, T., & Sole, A. (2007). Seasonal
609 evolution of supra-glacial lakes on the Greenland Ice Sheet. *Earth and Plane-*
610 *tary Science Letters*, 262(3-4), 484–492.

611 Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M., MacFerrin, M.,
612 & Grigsby, S. (2016). Derivation and validation of supraglacial lake volumes on
613 the Greenland Ice Sheet from high-resolution satellite imagery. *Remote sensing*
614 *of environment*, 183, 294–303.

615 Neumann, T., Brenner, A., Hancock, D., Robbins, J., Gibbons, A., Lee, J., ... Re-
616 bold, T. (2022a). *ATLAS/ICESat-2 L2A Global Geolocated Photon Data,*
617 *Version 6.* NASA National Snow and Ice Data Center Distributed Active
618 Archive Center. (Boulder, Colorado USA) doi: 10.5067/ATLAS/ATL03.006

619 Neumann, T., Brenner, A., Hancock, D., Robbins, J., Gibbons, A., Lee, J., ... Re-
620 bold, T. (2022b). *ICESat-2 Algorithm Theoretical Basis Document for Global*
621 *Geolocated Photons ATL03, release 006, 2022.* NASA ICESat-2 Project.
622 (211p) doi: 10.5067/GA5KCLJT7LOT

623 Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C.,
624 ... Thomas, T. C. (2019). The Ice, Cloud, and Land Elevation Satellite-2
625 mission: A global geolocated photon product derived from the Advanced To-
626 pographic Laser Altimeter System. *Remote Sensing of Environment*, 233,
627 111325. doi: 10.1016/j.rse.2019.111325

628 Nghiem, S., Hall, D., Mote, T., Tedesco, M., Albert, M., Keegan, K., ... Neumann,
629 G. (2012). The extreme melt across the greenland ice sheet in 2012. *Geophysi-*
630 *cal Research Letters*, 39(20).

631 Oltmanns, M., Straneo, F., & Tedesco, M. (2019). Increased Greenland melt trig-
632 gered by large-scale, year-round cyclonic moisture intrusions. *The Cryosphere*,
633 13(3), 815–825.

634 Ryan, J., Smith, L., Van As, D., Cooley, S., Cooper, M., Pitcher, L., & Hubbard, A.
635 (2019). Greenland Ice Sheet surface melt amplified by snowline migration and
636 bare ice exposure. *Science Advances*, 5(3), eaav3738.

637 Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. *Nature*,
638 368, 803–806.

639 Smith, B. E., Gardner, A., Schneider, A., & Flanner, M. (2018). Modeling biases in
640 laser-altimetry measurements caused by scattering of green light in snow. *Re-*
641 *mote Sensing of Environment*, 215, 398–410.

642 Sneed, W., & Hamilton, G. S. (2007). Evolution of melt pond volume on the surface
643 of the Greenland Ice Sheet. *Geophysical research letters*, 34(3).

644 Spergel, J. J., Kingslake, J., Creyts, T., van Wessem, M., & Fricker, H. A. (2021).
645 Surface meltwater drainage and ponding on amery ice shelf, east antarctica,
646 1973–2019. *Journal of Glaciology*, 67(266), 985–998.

647 Stocker, T. F., Qin, H., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., ...
648 Midgley, P. M. e. (2013). *Climate Change 2013: The Physical Science Ba-*
649 *sis. Contribution of Working Group I to the Fifth Assessment Report of the*
650 *Intergovernmental Panel on Climate Change*. Cambridge University Press.

651 Stroeve, J. C., Mioduszewski, J. R., Rennermalm, A., Boisvert, L. N., Tedesco, M.,
652 & Robinson, D. (2017). Investigating the local-scale influence of sea ice on
653 Greenland surface melt. *Cryosphere*, 11(5), 2363–2381.

654 Sundal, A., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., & Huybrechts, P.
655 (2009). Evolution of supra-glacial lakes across the Greenland Ice Sheet. *Re-*
656 *mote Sensing of Environment*, 113(10), 2164–2171.

657 Tedesco, M., Mote, T., Fettweis, X., Hanna, E., Jeyaratnam, J., Booth, J., ...
658 Briggs, K. (2016). Arctic cut-off high drives the poleward shift of a new
659 Greenland melting record. *Nature Communications*, 7(1), 1–6.

660 Trantow, T., & Herzfeld, U. C. (2018). Crevasses as indicators of surge dynam-
661 ics in the Bering Bagley Glacier System, Alaska: Numerical experiments and
662 comparison to image data analysis. *Journal of Geophysical Research: Earth*
663 *Surface*, 123(8), 1615–1637. doi: 10.1029/2017JF004341

664 Trantow, T., & Herzfeld, U. C. (2024a). Evolution of a Surge Cycle of the Bering-
665 Bagley Glacier System From Observations and Numerical Modeling. *Journal*
666 *of Geophysical Research: Earth Surface*, 129(1), e2023JF007306. doi: 10.1029/
667 2023JF007306

668 Trantow, T., & Herzfeld, U. C. (2024b). Progression of the surge in the Negri-
669 breen Glacier System from two years of ICESat-2 measurements. *Journal*
670 *of Glaciology (accepted for publication 20-Jun-2024)*, *Earth ArXiv (preprint:*
671 *doi.org/10.31223/X5NT1Z)*. doi: doi.org/10.31223/X5NT1Z

672 Truffer, M., & Echelmeyer, K. A. (2003). Of isbrae and ice streams. *Annals of*
673 *Glaciology*, 36(1), 66–72.

674 Williamson, A., Banwell, A., Willis, I., & Arnold, N. (2018). Dual-satellite (sentinel-
675 2 and landsat 8) remote sensing of supraglacial lakes in greenland.

676 Wood, M., Rignot, E., Fenty, I., Menemenlis, D., Millan, R., Morlighem, M., ...
677 Seroussi, H. (2018). Ocean-induced melt triggers glacier retreat in Northwest
678 Greenland. *Geophysical Research Letters*, 45(16), 8334–8342.

679 Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., & Steffen, K. (2002).
680 Surface melt-induced acceleration of Greenland ice-sheet flow. *Science*,
681 297(5579), 218–222.