Teaching Agile Hardware Design with Chisel

Scott Beamer
Computer Science and Engineering
University of California, Santa Cruz
Santa Cruz, CA, USA

sbeamer@ucsc.edu

Abstract—Agile hardware design techniques take the best
of software engineering methods and apply them to improve
hardware design productivity. Agile approaches not only reduce
the time to solution, but they can also produce solutions which
are better tailored to their target problems. Chisel provides the
perfect vehicle to teach these techniques as it allows for the
creation of reusable hardware generators. In this work, we outline
our experiences creating an agile hardware design course using
Chisel, and the lessons learned from teaching it four times. All
of the course materials are available as open source.

I. INTRODUCTION

As the development of leading chip manufacturing technolo-
gies slows and skyrockets in cost, hardware specialization is
essential to deliver efficiency improvements to enable com-
pelling applications [11]. As hardware designs have grown
in size and complexity, so too has their design and verifi-
cation costs. Fortunately, agile hardware design techniques
can greatly reduce these design costs through productivity
enhancements and even improve the quality of the result. Agile
development methods have revolutionized software develop-
ment [4], so naturally their thoughtful application to hardware
design has brought tremendous benefit [3], [16], [19].

In this work, we describe a course we created to teach
agile hardware design, and we emphasize the incremental
development aspects of agile rather than some of its trademark
software development activities (e.g. sprints). By focusing on
getting a minimum viable design running through the toolflow
as soon as possible, practitioners can better guide their design
effort to where it is needed for functionality or performance.

A waterfall development practice (in contrast to agile) can
often be the right decision based on the dynamics of the
engineering scenario. If the system is hard to modify once
constructed, it is logical to want to carefully plan and simulate
in advance and methodically move through development steps.
For example, if building a dam, once the concrete is poured, it
is infeasible to move the whole dam over by a foot. However,
software is trivial to recompile and re-execute, so small tweaks
are always possible, so iterative development in the agile style
is possible and even preferable. Unfortunately, many existing
hardware design methods and tools are more like pouring
concrete than software development, so waterfall practices
prevail. The concrete metaphor is especially apt for writing
Verilog. If a Verilog component provides exactly the right
functionality and it has been convincingly verified, it can be
endlessly reused and will stand the test of time. However, if

Close the Loop Design for Reuse

Make the Tools do the Work Design for Readability

Fig. 1. Recurring themes in the course

modifications are required, it can be brittle, especially with
regard to the confidence in its verification. A more flexible
hardware design language is needed to enable a more nimble
agile hardware development process.

The most productive hardware component to develop is
one that is successfully reused rather than developed from
scratch. To successfully reuse a component, it must provide
exactly the right functionality, and it must have performance
and resource usage commensurate with the desired application.
Mismatches in any of these aspects, even if subtle, can require
such fundamental modifications to the component that reuse
is more laborious than clean-slate design. Thus, achieving the
productivity benefits of reuse requires the reused component
closely align with the target application. Instead of a single
static design, a hardware generator can produce a design
instance according to given parameters to better match a
desired use case. These flexible generators are not powered
by high-level synthesis, but instead deliberate design and
metaprogramming by the generators’ creators.

We teach our agile hardware design course in Chisel [2]
because it helps on two fronts: support for incremental de-
velopment and enabling the creation of hardware generators.
Chisel and its tools are able to leverage the best of soft-
ware engineering (object-oriented programming, functional
programming, strong type system) to enable productive in-
cremental hardware development. Chisel is also great for
metaprogramming for creating hardware generators, which

would otherwise require bespoke polyglot solutions in which
one language emits another (e.g. Perl emitting Verilog [31]).

Our course has now been taught four times and has become
officially part of the course catalog as “CSE 228A: Agile
Hardware Design” at the University of California, Santa Cruz.
It even satisfies an elective course requirement. A point of
emphasis for creating this course was to make it accessible
to a wide range of students. Proficiency at agile hardware
design requires strong software development skills in addition
to traditional hardware design skills. Building a hardware
generator via metaprogramming is no trivial feat, as the the
creator must think of both language and hardware consid-
erations simultaneously. Few students have an opportunity
to develop both skills, so we designed the course to be
inclusive of both types of students. In other words, make
hardware designers embrace software development practices,
and encourage software engineers to apply their skills to
hardware design.

In the remainder of this work, we provide various details
on the course, its content, enabling technologies, and lessons
learned over its four offerings. We hope this will benefit not
only hardware design instructors, but also the agile hardware
design community to see how their cutting-edge practices are
being translated into the classroom.

II. COURSE CONTENT

Our course is one of the first academic courses on agile
hardware design. We designed the course using the backward
design technique [17] since we were creating a whole new
course. We identified our key learning outcomes, and worked
backwards to identify the various concepts, assignments, and
activities that would best lead student learning towards them.
We have also embraced the agile approach, by revising and
extending the course with each offering. We leverage the expe-
riences of students each term to identify and implement these
extensions to the course, whether they be new functionalities,
content, or even Chisel development best practices.

The primary learning objectives of the course include both a
concrete learning goal and a meta learning goal. The concrete
goal is to empower students to be able to go from a hardware
idea to a working hardware design via agile development
techniques. This includes a variety of concrete skills such
as: creating hardware generators, design considerations for
parameterization, incremental optimization, and using Chisel.

The meta learning goal is to view hardware design as a
programming opportunity. This includes abstract skills such
as: embracing the agile philosophy of continuous revision,
recognizing opportunities for automation, gaining a deeper
understanding of the key factors of a problem being solved by
metaprogramming a generator, and experiences from starting
a project to its release. The skills will be useful beyond
Chisel development and even hardware design, especially
when recognizing opportunities to apply agile techniques.

Four themes reoccur throughout the course that espouse the
course’s philosophy and main lessons (Fig. 1):

Close the Loop Improve through iterative revision, and not
an overly ambitious initial design. Strive to get the
minimum viable design running through the tools, and
then add on functionality and optimize. You can better
design and optimize a system once you see how things
fit together to best allocate your efforts.

Design for Reuse Reusing well-made components improves
productivity and reduces errors. Increase the flexibility
of your components to make them more reusable and
encapsulate that flexibility within a hardware generator.

Make Tools Do the Work Look for opportunities to make
the tools do the work instead of humans (e.g. logic
optimization, register retiming, integration). Understand
the capabilities and limitations of the tools and adjust
your design methodology accordingly.

Design for Readability Appreciate that code will be read
many more times than it is written. Thus, it is worth
revising code thinking about its readability as a primary
concern. Consider how to make the functionality and
purpose readily apparent.

The course is about agile hardware design, but naturally, it
must also cover Chisel, and by extension, even some Scala.
We arrange the course content to teach all three intermixed,
incrementally covering each as needed. At times, code aspects
are introduced as boilerplate, and then a few lectures later
the language mechanisms that enable them are revealed. For
example, in order to demonstrate the course theme of closing
the loop, the second lecture demonstrates a simple Chisel
module being elaborated to Verilog and tested in simulation,
but is only able to shallowly explain most of the code. Such
an integration requires covering a bit of Scala, Chisel, Verilog,
and ChiselTest.

There are two lectures that demonstrate incremental devel-
opment in practice with in-depth case studies. These lectures
give examples of a development roadmap that takes small steps
at a time to reach an impressive final result. The emphasis is
on identifying the simplest version to get started, building the
infrastructure around it, and incrementally optimizing it and
adding functionality. One case study designs a FIFO queue
(Fig. 2). It starts by making a single-entry queue and builds
testing infrastructure for it. Next it revises it to allow for a
parameterized number of entries, but it is implemented with
a shift register, so it can have bubbles. An improved design
removes those bubbles by using a priority encoder. That solu-
tion is made more scalable by using a circular buffer. Finally,
the design is made to be able to support more parameters to
increase flexibility. Along the way, each design is evaluated
in terms or functionality and performance, and deliberate
choices are made to improve it. The final queue design closely
resembles the Queue in Chisel’s standard library, and the case
study demonstrates how such an impressive module can be
incrementally developed.

III. COURSE STRUCTURE

To support different learning styles and to create an en-
gaging experience, the course engages in a variety of activ-

Queue

en: de

Producer Consumer

1) Conceptual Goal

io.eng.bits

—eng.valid
eng.bits deg.bits w
eng.valid deg.valid
£ng. ready <«—dea.ready
deg.valid
«—dea. ready

io. deq bits

3) Single-entry Queue

Producer

4) Shift Register Implementation

eng.bits
eng.valid
. eng.reagy

deg.bits

deg.valid C
2 I

Queue

2) More Detailed Interface

Priority
Encoder io.eng.bits
—eng.valid
<tna.ready |

deg.valid,
<«—deg.ready |

{4

io.deq.bits

5) Priority Encoder Implementation

Fig. 2. Figures from the FIFO queue design case study. Using an iterative approach, the design is progressively extended and optimized. The final form uses

a circular buffer (not shown).

ities: lectures, labs, homework, and a project. The course is
built around the project. The course starts highly structured
(lectures, labs, homework) to cover the needed foundational
skills to prepare students for the project. As the project starts
midway through the term, the course becomes more open-
ended, with lecture time slots dedicated to project meetings,
guest lectures, and fewer lab and homework assignments. The
second half of the course best supports the students as they
complete their projects and experience the primary learning
objective of the course. Ideally, concepts are introduced in
lectures, first coded in labs, substantially utilized in homework
coding assignments, and finally applied in the project.
Building the course around the project not only focuses on
the main learning outcomes, but its pedagogical strength can
be appreciated using Bloom’s Taxonomy [18]. Over the term,
the course activities shift from the lowest categories in the
taxonomy to the highest. At the end of the course, the project
primarily exercises the create category and since it makes up
a significant portion of the course, students kinesthetic en-
gagement with the material is memorable. The overall project
process including the presentation and meetings also engages
the evaluate and analyze categories. The preceding lab and
homework assignments engage with the apply and understand
categories, and the lectures engage remember. However, the
course’s code-first nature allows students to engage on higher
categories more of the time than a comparable course.

A. Lecture

Lectures are the primary instructional component of the
course, as there are no assigned readings. Embracing the agile
approach, the lectures are centered around incremental and
live coding. Each lecture’s concepts are interwoven between
examples and code demos, all within the same Jupyter note-
books (Fig. 3). Fitting code examples within a slide places
a much needed size constraint on the code length, and that
modest size is still sufficient to cover most concepts.

The live code enables a playful spirit while exploring the
code [28]. It is easy to make small tweaks, and immediately

see the outcome. When lecturing in this manner, once a rapport
is established with students, there can be frequent informal
questions as to what will happen when certain changes are
made. Although the instructor can often predict the outcome,
it is best to simply make the change and execute, as that
demonstrates what we hope students will try.

The first offering of the course occurred during fully remote
instruction due to the COVID-19 pandemic. From recent
experiences at that time, it was apparent that fully remote
lecture was even less engaging than a traditional in-person
lecture, which is already a disappointingly passive instruc-
tional technique. Since students would be watching the lectures
live on their computers, we decided to take advantage of that
situation. Instead of trying to compete for their attention, we
empowered them to explore by giving them access to the same
Jupyter notebooks the lecture was being given from'. That
enables them to experiment with the code in the lecture slides
and see immediate results.

When the instructor inevitably made the occasional mistake,
most students found this interesting rather than distracting.
The process of the instructor demonstrating the process of
debugging what went wrong and then fixing it, made the
course relatable and more representative of what their ex-
perience might be like. The live coding modality is also
ideal to demonstrate the course theme of designing code for
readability. The instructor will often show multiple ways to
implement the same functionality, and lead discussion and
debate about which is more robust or more clear.

During the structured portion of the course, there are 3 65-
minute lectures per week. As the course shifts to later open-
ended portion for the project, lecture time is often used for
project meetings, project presentations, and guest lecturers.
Lectures during this part of the course are not as critical for
students starting the project and include topics like physical
design and open source.

Uhttps://github.com/agile-hw/lectures

Scala Values Are References to Chisel Objects

¢ Our generators are simply instantiating Chisel objects and connecting them together

= Scala program allows us to control which objects & connections

¢ The connect operator (: =) assigns output of right hand side to input of left hand side

¢ Can use Scala references to name intermediate results

In []: class MyXOR extends Module {
val io = IO(new Bundle {

val a Input(Bool())

val b Input(Bool())

val c Output(Bool())

1)
val myGate = io.a ~ io.b
io.c := myGate

}

printVerilog(new MyXOR)

myGate

111>

Fig. 3. Example lecture slide that mixes diagrams and live code. This is from the third lecture, and it hopes to clarify the distinction between Scala references

and what they are referring to.

B. Labs

Labs are the first course activity for students to try out new
concepts after lecture. They are in Jupyter notebooks?, and the
emphasis is on making the smallest possible snippets to try
out a feature. With sufficient code provided (scaffolding), the
code needed to complete a lab task is typically only a few lines
(Fig. 4). Such a constrained example allows students to focus
on a specific feature or API without having to worry about the
context. The labs can be completed in the browser (thanks to
Binder [5]) and autograded promptly to give swift feedback.
There is one lab per week during the structured portion of the
course, and they can often be completed in under an hour.

C. Homework

Homework assignments follow the labs, and they provide
a much more substantial coding opportunity. The assignments
are crafted with specific learning outcomes in mind, including
demonstrating the iterative revision process. A task in a
homework assignment often extends the result of a prior
assignment. For example, a task in the first assignment is
to create a polynomial evaluator, and the second assignment
revises that evaluator to be parameterized and more flexible.
An early assignment may require only dozens of lines of

Zhttps://github.com/agile-hw/labs

code to complete, while a later assignment may require a few
hundred lines, especially when counting test cases. Students
are provided with the boilerplate to write tests as well as a
few example test cases, but these are typically insufficient.
Although the homework assignments are autograded, there is
sufficient ambiguity as to what causes a graded test case to
fail that students are rightly motivated to write their own test
cases. With the testing infrastructure in place, the effort to
write an additional test case can be made quite minimal.

D. Project

The project is the culmination of the course and executing
it well is the primary desired learning outcome. The goal is to
make students comfortable with having an idea, designing both
the end product and a roadmap to get there via incremental
development, and actually building the thing using reasonable
language features. Each project produces a unique hardware
generator. The preceding activities (lecture, labs, homework)
are designed to prepare students for the project.

The project is done in pairs over 6 weeks, overlapping with
the tail end of the structured portion of the course. Since each
project is unique, there is some variance in project size and
scope. As a guideline, we suggest the size of the final project
codebase may be 1.5 — 2x the size of the last homework
assignment. Although that may not seem large, for the project,

eee M - <
lab2/
' Jupyter lab2 (autosaved)
File Edit View Insert Cell Kernel

Widgets Help

B+ x @B 4+ % PRn B C »

Markdown

Problem 2 (3 pts) - Accumulator

= & Download & & O GitHub % Binder

hub.binder.curvenote.dev ¢ h + O

lab2 - Jupyter Notebook

Not Trusted | Scala ©

Memory: 280.2 MB /2 GB

Let's build an accumulator. Each cycle en is high, it willadd in to it's internal total. The internal total is visible as the output out . The

internal total should initialize to O on reset.

In []: class Accumulator(w: Int) extends Module {
val io = IO(new Bundle {
val in = Input(UInt(w.W))
val en = Input(Bool())
val out = Output(UInt(w.W))
2l

// YOUR CODE HERE
7?7

}

In [1: def testAccumulator: Boolean = {
test(new Accumulator(4)) { dut =>
// Cycle 0
dut.io.in.poke(@.U)
dut.io.en.poke(0.B)
dut.clock.step(1)
dut.io.out.expect(0.U)

Fig. 4. Example lab running in the cloud (via Binder)

the students produce everything, including the code, its design,
and the overall direction. The homework assignments have
clear directions and helpful skeleton code. When discussing
projects, the staff not only advises students on reasonable
scope and useful resources, but also seek to identify project
topics that are useful if only partially completed to avoid the
stress of an all-or-nothing situation.

Students first meet with the instructional staff to pick
a project topic including receiving suggestions. Next they
prepare a 1l-page proposal. They are given feedback on the
proposal during class time, and students find it helpful to listen
to the conversations with other groups. To better foster these
inter-group interactions, we schedule the discussion order such
that similar projects are back-to-back. To ensure continuous
progress on the project, they have a checkpoint where they
must submit a preliminary version of their project in which
some functionality is demonstrated. At the end of the term,
students present projects to their classmates. They are given
feedback immediately following these presentations, which
gives them opportunities to fix any shortcomings before their
final submission the following week. Although not required,
so far every project team has chosen to release their project
open source on GitHub.

IV. COURSE INFRASTRUCTURE

The course is powered by an array of software infrastruc-
ture, both to enable to hardware design as well as course
functions such as autograding. In this section, we overview
the various open-source tools we make use of. Beyond adding
new functionality, each term, a significant amount of effort is
required to modify the infrastructure to adopt updates in the
supporting infrastructure as well as find compatible versions.

A perennial challenge is also supporting the diversity of
computing environments students have on their laptops, so
when possible, we try to simplify what they need to install
or even completely eliminate it.

At the core, we use Chisel 3.6 with Scala 2.13.10. We held
off on using a newer version of Chisel since we extensively
use ChiselTest [9]. Much of the development in the course
focuses on RTL design, so we use ChiselTest to drive much
of the evaluation (and simulation). It is used in lecture, labs,
homework, and the project. ChiselTest greatly simplifies much
of the course actions, and when running it on treadle [33], it is
quite easy to install and operate. The Chisel language is being
continuously developed and improved, so perhaps by the next
offering, the core features will sufficiently replace ChiselTest
so we can migrate to the newest Chisel version.

The Jupyter notebooks power the lectures and labs, and we
enjoy Scala support within them thanks to Almond 0.13.14 [1],
reusing an integration originally pioneered by the Chisel Boot-
camp [7]. Almond not only enables Scala to run in Jupyter,
but it also brings Ammonite, a user-friendly Scala shell.
Ammonite allows for small snippets of Scala to run directly
without being part of a larger program. For lectures, we use the
RISE plugin [27] to make Jupyter notebooks into compelling
presentations, and we use the splitcell extension [32] to create
2-column layouts. The entire stack to run Chisel within Jupyter
is the most complicated installation of the course infrastruc-
ture, so we are grateful we can use Binder [5] to provide
these notebooks in the cloud for free. Thus, users can interact
with the lectures and labs by using only their browser, and the
complexity of installing the infrastructure is only required if
they choose to work locally. Most students use Binder.

We are indebted to the work of others for providing the

automation to autograde assignments. To collect student code
submissions and execute the autograders, we use Grade-
scope [12], a commercial service our university subscribes
to. For labs, we use nbgrader which conveniently allows
one to specify problems, solutions, and autograde Jupyter
notebooks [22]. Although nbgrader was designed for Python,
it works without issue with the Scala environment provided by
Almond. For homework assignments, students work on full-
fledged Chisel projects powered by sbt. To autograde home-
work, we use autograding support for Chisel on Gradescope
pioneered by dinocpu [20], [21].

We autograde both the lab and homework assignments. The
autograders execute within a virtual machine (VM) within
Gradescope that is triggered when a student submits, so they
can see the autograder results before the deadline. Students
typically will revise and improve their submission until they
achieve a perfect score. The autograder output is deliberately
terse, so when something doesn’t pass, students are incen-
tivized to write more tests on their own instead of brute forcing
options until it passes. Although the executions for grading
the labs use nbgrader and the homework assignments use sbt,
under the hood, both use tests from ChiselTest to check for
specific functionalities.

Syntax errors are a common challenge for anyone learning
a new programming language. For this reason, we strongly
encourage students to use a development environment that
provides code completion and on-the-fly syntax warnings, such
as an IDE like IntelliJ [15]. Most students chose VSCode due
to prior familiarity, but with Scala Metals [29], they are able
to enjoy the needed IDE-like functionalities.

V. EVALUATION

In this section we discuss both how students and the
course itself are evaluated. The points for students come from
grading the labs, homework assignments, and the project.
The homework assignments and labs are autograded, with
partial credit possible if only some of the test cases pass.
The autograder is unable to run if students do not properly
submit their files or there is a compile-time error, but students
are quickly notified of such an issue and they fix their
submission. The project is the majority of the grade, and it is
graded over a long time period including the proposal, initial
checkpoint, code review, presentation, and final submission.
The project grading rubric not only considers the scope and
technical success of the generator the project produces, but
also how they used an incremental process to develop it,
testing, automation, documentation, and code quality. There
was a deliberate decision to not use exams to evaluate students
but to instead grade the course on coding and the project as
that best evaluates how students engage with this content.

Since this is a new course, it is important to demonstrate
its utility. The most compelling evidence is the strength of
the students’ projects. These projects not only are impressive
technically, but nearly every student in the course makes a
great project. The instructor also teaches a conventional logic
design course in Verilog with waterfall techniques, and there

is a stark productivity difference between the final projects
for the two courses. The students in the agile course also take
the departmental course survey, in which the course scores
especially high, even for an elective course.

VI. RELATED WORK

There are a variety of existing educational offerings for
Chisel. Digital Design with Chisel, a textbook by Mar-
tin Schoeberl, is an introduction to digital design using
Chisel [30]. Designed for lower-division undergraduates, it
teaches hardware design from the beginning, with no expecta-
tion of prior Verilog experience. This book is helpful for our
course, and is thus a recommended book. However, our course
assumes more digital design experience for students coming
into the course in order for us to cover more advanced topics
and fully embrace agile design.

Chisel was initially created at UC Berkeley, so naturally,
many of the first educational artifacts were created there too.
The chisel-tutorial repository was the first, and it is a mix of
small problems with comments and READMEs to guide its
users as to what needs to be done [8]. It is not self-standing,
and users also needed to consult the Chisel documentation
to be instructed on the actual Chisel features and APIs. The
Chisel Bootcamp was a big step forward [7]. It is a set of
Jupyter notebooks that include both instructional material and
coding problems to work on. We reuse the Chisel-Jupyter
integration it pioneered. The bootcamp is designed to be done
in 1-2 days, while our course provides a much more thorough
introduction to Chisel, Scala, and agile hardware design.

To learn Scala, there are a variety of choices. Histori-
cally, much of the initial offerings were produced by Scala’s
designer, Martin Odersky. He co-authored Programming in
Scala [24], now in its fifth edition, as well as co-created a
5-course Scala sequence on Coursera [23]. For learning Scala
from a book, many have appreciated Li Haoyi’s book Hands-
on Scala Programming [13]. All of these materials are great,
but fortunately, that level of Scala knowledge is not required
to be a proficient Chisel user. Our course covers a sufficient
amount of Scala that any small knowledge gaps can often be
solved with a quick internet search.

VII. DISCUSSION

A natural question from students in the course is: “Where
in industry can I use Chisel?” Although Chisel is not widely
used in industry, we stand by our decision to teach the course
in Chisel. Primarily, we view Chisel as the best vehicle to
teach and experiment with agile hardware design techniques
and to make hardware generators. The meta skills they learn
from the course for how to incrementally design and look for
ways to leverage software engineering techniques to automate
and improve hardware design will be invaluable in whichever
language they use in their future careers [25]. After their
experiences in the course, students are also more open to ex-
perimenting with other emerging hardware design languages.

Over the four course offerings, the course has evolved and
improved. In addition to revising and refining assignments and

lectures each term, there have been some notable additions.
First, formal verification in Chisel [10] has been added as a
regular guest lecture complemented with a lab assignment.
Most recently, we have added code reviews, as a great way
for students to get more experience revising code and thinking
about readability. The combination of intermediate assign-
ments and deadlines for the project have been tweaked to
keep students on track and give them more time overall for the
project. Early course offerings had homework assignments that
frequently included cryptographic cyphers, which are a good
application of Chisel, but they proved to add an unnecessary
conceptual burden for students not well versed in cryptogra-
phy. Thus, we have replaced many of those assignments with
tasks that require far less prior knowledge.

The primary challenge for the course was content creation.
Since it was a new course, all of the lectures, assignments, and
their associated code had to be written by the staff. Creating
all of this material on-the-fly during the first offering was a
demanding undertaking. In subsequent offerings, significant
effort was expended revising and extending the course. By
open-sourcing all of the course’s materials, we hope to lower
the burden for others to make similar courses.

Each course offering has been unique due to the guest
lectures and the projects students choose to create. Some
notable guest lectures included other hardware description
languages (Pyrope [26], XLS [34]), core Chisel developers,
BOOM (large-scale usage of Chisel) [6], and other open-
source hardware design tools [14]. The student projects are
the highlight of the course, and some interesting ones include:
systolic matrix multiplier, game boy audio decoder, memory
controller, Smith-Waterman sequence aligner, and GPS.

The course is centered around an agile philosophy of using
incremental development to accomplish big feats. Using such
an agile philosophy does not mean there is no plan initially,
instead it emphasizes a willingness to re-evaluate and adjust
along the way.

This course is indebted to the open-source hardware com-
munity, and thus we are keen to give back. All of the course
materials® (lecture, labs, homework assignments) are released
open-source on GitHub*, and lecture recordings are available
on YouTube’.

ACKNOWLEDGEMENTS

We would like to thank UC Santa Cruz for providing the
opportunity for this course, both for its initial pilot and for
its eventual inclusion in the catalog as a regular course. We
also are grateful for the teaching assistants (TAs) who have
helped administer this course: Jason Vranek, Amogh Lonkar,
and Yuanpeng Liao. This course has benefited greatly from
generous guest lecturers, including Kevin Laeufer who created
the formal verification lecture. Finally, we are thankful for the

3https://classes.soe.ucsc.edu/cse228a/Winter24/
“https://github.com/agile-hw

Shttps://youtube.com/playlistlist=PLfrN7RIcMe6g2LBRJ LTHTdhijsSagORg(@3

si=jGQ6rAdgpEOz0xj3

students who took the leap by taking this new course and
enriched it with their enthusiasm, questions, and feedback.

REFERENCES

[1] Almond, a scala kernel for jupyter. https://almond.sh, 2015.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, et al. Chisel: constructing
hardware in a scala embedded language. Design Automation Conference
(DAC), pages 1216-1225, 2012.

[3] Yungang Bao and Trevor E Carlson. Agile and open-source hardware.
IEEE Micro, 40(4):6-9, 2020.

[4] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, et al. The agile manifesto, 2001.

[5] Binder. https:/mybinder.org, 2017.

[6] Christopher Celio, Krste Asanovic, and David Patterson. The berkeley
out-of-order machine (BOOM): An industry- competitive, synthesizable,
parameterized RISC-V processor. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2015-167, 2015.

[7] Chisel bootcamp. https://github.com/freechipsproject/chisel-bootcamp,
2017.

[8] Chisel tutorial. https://github.com/ucb-bar/chisel-tutorial, 2012.

[9] chiseltest. https://github.com/ucb-bar/chiseltest, 2018.

[10] Andrew Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen,
Kasper Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen,
Richard Lin, and Martin Schoeberl. Verification of chisel hardware de-
signs with chiselverify. Microprocessors and Microsystems, 96:104737,
2023.

[11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
In International Symposium on Computer Architecture (ISCA), pages
365-376, 2011.

[12] Gradescope. https://www.gradescope.com, 2014.

[13] Li Haoyi. Hands-on Scala Programming. 2020.

[14] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin DF Wong.
Opentimer v2: A new parallel incremental timing analysis engine.
IEEE transactions on computer-aided design of integrated circuits and
systems, 40(4):776-789, 2020.

[15] Intellij idea. https://www.jetbrains.com/idea/.

[16] Lizy Kurian John. Agile hardware design. IEEE Micro, 40(04):4-5,
2020.

[17] Michael S Kirkpatrick, Mohamed Aboutabl, David Bernstein, and
Sharon Simmons. Backward design: An integrated approach to a systems
curriculum. In SIGCSE, pages 30-35, 2015.

[18] David R Krathwohl. A revision of bloom’s taxonomy: An overview.
Theory into practice, 41(4):212-218, 2002.

[19] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben
Keller, Alberto Puggelli, Jachwa Kwak, et al. An agile approach to
building risc-v microprocessors. IEEE Micro, 36(2):8-20, 2016.

[20] Davis in-order (dino) cpu. https://github.com/jlpteaching/dinocpu, 2019.

[21] Jason Lowe-Power and Christopher Nitta. The davis in-order (dino) cpu:
A teaching-focused risc-v cpu design. In Proceedings of the Workshop
on Computer Architecture Education, pages 1-8, 2019.

[22] nbgrader. https://github.com/jupyter/nbgrader, 2014.

[23] Functional programming in scala specialization, Coursera. https://www.
coursera.org/specializations/scala, 2024.

[24] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima Inc, 2008.

[25] Luca Pezzarossa and Martin Schoeberl. Transitioning to chisel in
university education: Experiences and lessons learned. In Nordic Circuits
and Systems Conference (NorCAS), pages 1-7. IEEE, 2023.

[26] Pyrope, a modern hdl with a live flow. https://github.com/masc-ucsc/
pyrope_artifacts, 2018.

[27] RISE. https://github.com/damianavila/RISE, 2013.

[28] Marc J Rubin. The effectiveness of live-coding to teach introductory
programming. In SIGCSE, pages 651-656, 2013.

[29] Scala metals. https://scalameta.org/metals/, 2016.

[30] Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing,
2019.

[31] Ofer Shacham, Omid Azizi, Megan Wachs, et al. Rethinking digital
design: Why design must change. IEEE micro, 30(6):9-24, 2010.

[32] Jupyter split cells extension. https://jupyter-contrib-nbextensions.

readthedocs.io/en/latest/nbextensions/splitcell/readme.html, 2015.

] treadle. https://github.com/chipsalliance/treadle, 2018.

[34] Xls: Accelerated hw synthesis. https://google.github.io/x1s/, 2020.

