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Abstract—A large volume of work has already studied various
aspects of a synchronous multiple access channel (MAC). How-
ever, synchronization is costly and far from reality. Very little is
known in the case when stations communicating on the channel
may observe asynchronous behavior. Unfortunately, in certain
strong asynchrony settings it is impossible to ensure even a small
positive throughput (deterministically). Hence, in this paper, we
study whether a limited amount of synchrony is already enough
for obtaining stability and high throughput.

More specifically, we present a novel model to capture a
bounded asynchrony, where the “bounded” aspect is captured
by an upper bound R on the length of any asynchronous
time slot. We design two distributed deterministic algorithms
to schedule transmissions of dynamically arriving packets at
asynchronous stations, which guarantee optimal throughput for
all but one packet injection rates and bounded queues at any
time (this combination is sometimes known as optimal stable
throughput). One of these algorithms is collision-free, while
the other, instead, avoids control messages. Combining these
results with our impossibility results we characterize exactly the
very limited case where there is an inherent difference between
synchronous and asynchronous networks for obtaining optimal
stable throughput for this problem. As a subroutine, we design
a new leader election algorithm for this model and prove upper
and lower bounds on the number of slots. Interestingly, when
R is a constant, our results match (asymptotically) the known
results in synchronous slotted networks, while if R is a larger
parameter, our lower bound proves that an additional factor of
Ω( R

logR ) is necessary in the formula on the number of slots.
Index Terms—Multiple access channel, Bounded asynchrony,

Leader election, Dynamic packets injection, Packets’ transmis-
sion problem, Stable throughput.

I. INTRODUCTION

Shared channels have been investigated intensively for a
long time (e.g., [1]). They occur not only in radio and LAN
networks but also in other contexts that involve broadcast
where mutual exclusion would be desirable. Examples range
from body cells (that may secrete some molecules that can be
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detected by other cells [2]) to various variants of PRAM ( [3],
[4]), multiprocessor computing ( [5]), or even blockchains.

Informally speaking (for now, definitions appear later),
when a network station transmits alone, its message is de-
livered to the stations on the channel successfully. However,
transmissions (of more than one station) that overlap in time
are lost.1 and the channel capacity is thus essentially wasted.

Most of the research concentrates on synchronous networks.
The idea is to partition the time into equal-duration periods
(slots). Every slot is assumed to start (and ends) simultane-
ously for all stations and is long enough for the transmission
(and reception) of exactly one packet. Good performance has
been shown for such synchronous networks. For example,
even though packet transmissions are sometimes unsuccessful
(so the channel is sometimes effectively wasted), it was
shown e.g. in [6]–[10] that, even with deterministic protocols,
synchronous slotted networks guarantee a max stable injection
rate of 1, that is, the throughput there is the same as the average
arrival rate, even for a packet arrival rate as high as 1 packet
per slot.2 Moreover, this is also a stable output, that is [6],
output obtained with the length of the queues of packets to be
transmitted at the stations being bounded, see e.g. [6], [11].

Much less research has been performed regarding networks
that are less synchronous. This is likely to have happened
because of the much poorer performance obtained. Some
asynchrony did appear already in the famous pioneering Aloha
project [12]; specifically, synchronized slots were not assumed.
Each station chose a random time to transmit. It was shown
later that adding more synchrony, namely, using slotted Aloha,
obtained stability even for a much higher arrival rate [1].

Unfortunately, adding synchronization incurs various costs,
sometimes to the point where tight synchronization is not
feasible. For example, tight synchronization may be too costly
for weak devices such as those in a sensor network (e.g.,
[13]). It may also be too costly when the shared channel
models access to some remote, or a distributed resource, or

1There exist many model variations regarding channel feedback.
2Note that the throughput cannot exceed 1 because at most one packet can

be successfully transmitted in a slot.
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the case where the propagation delays vary significantly (e.g.
because of significant differences of the distances of stations
from the shared resource). In other cases, synchronization has
evolved in nature but has not become very tight (e.g., [14]–
[16]). Attackers may pose another hurdle to synchronization.
Differences in speed may also be harder to avoid when the
channel access is performed by software, rather than by spe-
cialized hardware (such as in SDN, e.g., [17]). Synchronization
also involves costs such as using (costlier) dedicated hardware
(rather than using asynchronous processes controlled by an
operating system), losing some of the bandwidth on control
fields and signals, causing faster devices to wait, etc. To com-
plete the picture, note that even under tight synchronization,
the synchronization is never perfect. This paper asks whether
high stable throughput can be obtained with a much lower
level of synchrony.

A. Contributions

We formulate a partially asynchronous slotted channel
model. We still assume that each station i can transmit exactly
one of its packets in each of i’s slots. (More formal definitions
appear later in Section II.) However, the actual slot lengths are
controlled by an online adversary who can make the decision
about when to end a slot. A slot’s length in an execution can
vary from 1 to some r that is unknown to the algorithm but
is upper bounded by some R ≥ 1 that is known.3 We do not
assume that stations can measure the lengths of the slots.

We assume channel sensing (a weaker form of collision
detection) and the ability to use acknowledgments – these
are very popular assumptions in the design of shared channel
communication protocols, motivated by classes of TDMA
and CSMA/CA collision-avoiding wireless protocols or ICMP
and WiFi control frames, see e.g., [1], [18]. Additionally,
we consider the impact of two other popular model features:
the ability to send control messages and the requirement for
collision avoidance.

As a technical contribution, we present deterministic al-
gorithms, lower bounds, and instability results for packet
transmission – see Table 1 for a summary. Our algorithms are
presented in a form of diagrams, for two reasons – to focus
better on responding to channel events and adversarial packet
injections, and also since it helps to code the algorithms in
most of programming languages. Alternative forms, the pseu-
docodes, are presented in the full version of this paper [19].

Single successful transmission (SST): The first problem
we study (SST), is really a form of leader election. Multiple
stations may have messages to transmit, and the protocol
makes sure that exactly one of them succeeds. The analo-
gous problem has been studied for synchronous channels in
several settings (e.g., [20]–[22]). ABS, our protocol for SST,
is presented in Section III. The maximum number of slots
(possibly of different lengths) experienced during the protocol
by any station is O(R2 log n), see Theorem 1. We show that
this is optimal up to an O(R logR) factor, see the lower

3R may result, for example, from timeouts used in practice.

bound Ω
(
R ·

(
logn
logR + 1

))
in Theorem 2. Interestingly, for

a constant R, these bounds match (asymptotically) the known
results for protocols relying on synchronized slots [20], [23].
On the other hand, our lower bound shows that the impact
of bounded asynchrony with upper bound R to a simple but
fundamental leader election problem is with a factor at least
Ω( R

logR ).
Intuitively, what we would have like to do in the leader

election protocol, is to have a station transmit if, say it has
1 in its least significant bit. Then, a station with a zero there
would hear this transmission and drop out of the competition.
However, asynchrony can make the stations’ relative speeds
different and unknown which makes it hard to know when
to listen. Moreover, the uncertainty regarding “where in its
execution is a station” accumulates as long as the station is
silent. The number of different combinations of slot sizes in
a schedule grows exponentially with the length of the silent
period of a schedule. The simple trick is that every station must
transmit rather often during the protocol as long as it competes
for leadership. This allows the other stations to estimate the
ratio between the slot times. Hence, the algorithm manages to
re-balance the search between groups of stations even though
those use different waiting times.

The proof of the lower bound, on the other hand, uses
a novel technique of “mirror executions” created by the
adversary under bounded asynchrony, to prevent stations from
transmitting alone (and thus winning).

While the ideas behind algorithms and lower bounds may
look simple at first glance, the technical details are often
challenging due the fact that the number of intersections
among transmitting slots increases by a factor exponential in
R. In particular, it is not immediately clear how to solve the
SST problem optimally with respect to both R and log n (in
the synchronous case, R = 1 and all it takes is a simple binary
search using collisions, in Θ(log n) rounds, see [20], [23]).

Packets transmission problem (PT) under dynamic pack-
ets’ arrivals: The main set of results considers the PT task
where (a possibly infinite number of) packets are injected
(“arrive”) to the system dynamically, each to the queue of
one station, at times that are selected by an adversary. The
protocol is required to transmit all the packets. The (rather
common) measure of success used is Max Stable Rate (MSR):
the maximum injection rate ρ of packet injection under which
the protocol still obtains stability (that is, there exists an upper
bound on the number of packets that were already injected but
have not yet been transmitted successfully).

A part of our contribution is the adaptation of the definition
of the arrival rate to the current case where packet transmission
durations are not equal, (see Section II). As a motivation,
consider the following example: if the transmission of a certain
packet by station v requires, say, two of the slots of station
u then clearly, no network can have stable throughput if one
new packet is injected at v in every slot. An injection rate of 1
should in such case be defined to have a new packet injected
(on average) every two time slots of u. This would keep u
fully busy at all times. Let us emphasis that such weights are
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Allows
Ctrl. Msg.

Allows
Collis.

Our Contribu-
tion for R > 1

Stable ρ Queue
Sizes

Sec. /
Thm.

State-of-
Art R = 1

Stable ρ Queue
Sizes

Ref.

No No Instability no ρ > 0 N/A V / 4 RRW any ρ < 1 ρn+b
1−ρ [11]

No Yes AO-ARRoW any ρ < 1 2rR4n logn+b
(1−ρ)2 IV / 3 MBTF any ρ ≤ 1 2(n2+b) [6]

Yes No CA-ARRoW any ρ < 1 2nR2+b
1−ρ VI / 6 MBTF any ρ ≤ 1 2(n2+b) [6]

Yes Yes Instability no ρ = 1 N/A V / 5 MBTF any ρ ≤ 1 2(n2+b) [6]

Fig. 1. A summary of main technical results. The first two columns state main model features – algorithms allowing control messages and/or collisions
could be more efficient than those without these features. The next four columns describe our results for bounded asynchrony (R > 1) – name, range of
max stable rate (MSR) ρ, upper bounds on queue sizes, and the references to the section and theorem. Our results are stated in four rows, starting from the
most restrictive model features (first result, No control messages, and No collisions allowed) to the most efficient ones (last result). Performance formulas are
in simplified forms and the formula for AO-ARRoW assumes we use ABS algorithm for leader election. The last four columns describe the known results
in the synchronous setting (R = 1), for corresponding model features (for comparison) – the ranges of max stable rate (columns 4 and 8) are, surprisingly,
different for bounded asynchrony (R > 1) and for full synchrony (R = 1), which shows a fundamental difference between synchronous and (bounded)
asynchronous channels.

not known to the algorithm, which still needs to adapt and
control queue lengths.

In Sections IV and VI, we design two distributed algorithms
to schedule transmissions of ongoing injection of packets that
guarantee max stable rate close to the optimal 1. One of
these algorithms, AO-ARRoW, is not allowed to send control
messages, it sends only genuine packets; on the other hand,
collisions may occur, and the algorithm mitigates the impact
of collisions online. The other algorithm, CA-ARRoW, avoids
collisions completely (i.e., no two transmitting slots overlap
in any execution of the algorithm); however, it uses additional
control messages.

In Section V, we prove complementary impossibility results
(1) if a protocol obeys both constraints (that is, does not allow
control messages nor collisions), then it cannot guarantee a
positive max stable rate, and (2) that even with both control
messages and allowing collisions, no protocol can achieve
max stable rate exactly 1. These are crucial differences from
the synchronous channel see [6], [7], [11]. There, max stable
injection 1 can be obtained, and this, even without control
messages and with collision avoidance.

We comment that in the table, we do not compare directly
our results to those obtained for traditional protocols such
as Aloha, slotted aloha or CSMA because of the significant
differences between the models. Still, it may be interesting
to note that for the task of ongoing transmission of multiple
packets by multiple stations, we obtain stability for rates
as high as desired, while if one uses Aloha for that task,
stability, as mentioned above, was obtained only for a rather
low rate [1], [12]. Moreover, combining our algorithms and our
impossibility results, we characterized the difference between
synchronous and asynchronous networks: both can achieve
the same throughput while keeping bounded queues (and for
a constant R, also the same asymptotic queue sizes) except
for the case where injection rate is exactly 1. (However,
for the subroutine task of leader election, that is, of trans-
mitting a single packet successfully, the model of Aloha
allows a shorter time).

B. Related Work
Various papers addressed the performance (and other mea-

sures of stability) of networks that are asynchronous in the
sense that the time is not split into slots, see e.g., [24]. Other
papers addressed the impact of coding, e.g., [25], a subject
not addressed here. Cover et al. [26] considered random codes
on an asynchronous channel with two players, showing that
the error converges to zero. Another example of a two-user
asynchronous channel coding includes work by Yemini et
al. [27]. Generalization to more than two players could be
found in Zhang et al. [28] and Shahi et al. [29].

Chlebus and Rokicki [30] addressed a different problem of
transmitting a small number of packets across a multi-hop
topology, (not every station could hear every other station), in
a different definition of asynchrony. Still, they proved various
lower bounds showing various inefficiencies resulting from
asynchrony.

Many papers considered a channel with the same slots’
length but shifted arbitrarily – different wake-up times with
a single packet each, no global clock, randomized protocols,
latency, and throughput. For references, cf. De Marco and
Stachowiak [31].

II. ADDITIONAL DEFINITIONS

We consider a Multiple Access Channel (MAC) with n sta-
tions, each having a unique integer ID in set [n] = {1, . . . , n}.4

Stations attempt to transmit their packets successfully on the
channel. For that, we model the channel as a “base station”
that receives the packet upon a successful transmission but
does not participate in the protocol otherwise. The channel
(successfully) receives a transmission T made by a station
only if no other transmission occurs at a time that overlaps
with T (cf. [1]). Note that, for simplicity, we assume that the
time at base station is continuous.5

Each station is associated with a partition of the time axis
R≥0 into (finite) intervals, referred to as slots, so that for each

4Our results also hold if IDs are in [nc], for some constant c > 1.
5Otherwise, one would need to define whether two transmissions in the

same slot of the base station collide even if their times do not overlap; this
can be solved but is less simple to describe.
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silence silence

silence silence

silence silence

i1 feedback
i1 action

i2 feedback
i2 action

i3 feedback
i3 action

listen transmit listen

listen transmit listen

listen listen transmit

silence busy

silence busy

busy busy

listen transmit listen

listen transmit listen

listen listen transmit

Fig. 2. The figure shows a possible transmission schedule of three stations i1, i2, i3 – in synchronous execution (on the left) and in asynchronous one (on
the right). Between the slots of each station, the station receives feedback based on the actions of all the other stations. A dotted line represents checking the
actions of all other stations. This feedback (provided to a station at the end of each of its slots) is either silence or busy (for a listening station) or ack (for
a station that just finished transmitting successfully) and is shown above the corresponding station’s action. The synchronous execution successfully solves
SST (station i3 transmits successfully in its third slot) while the asynchronous execution does not solve SST (potentially, asynchrony requires more slots).

station i ∈ [n] and index j ≥ 1, the j-th slot of i is denoted
by Sj

i = [sji , s
j+1
i ). These partitions are determined by the

adversarial scheduler so that each station i ∈ [n] is only aware
of its own partition, in the sense that i knows (in real-time)
whenever slot Sj

i ends and slot Sj+1
i begins, but does not

know about slots of other stations.6 In particular, stations do
not possess a global clock (nor even a local one).

A station can be either listening or transmitting. (We also
use the status “idle” in the hope that this may make the intu-
ition of some algorithms clearer, however in this paper, “idle”
is equivalent to “listening”.) The feedback of the channel is
such that at the end of a slot, both the transmitter and each
listening station i know whether a successful transmission
ended in the slot. (This transmission may have started in some
previous slot of i.) We term this feedback acknowledgment, or
ack for short. If no transmission ends successfully, then station
i can distinguish between the case that the slot was silent (no
station’s transmission overlapped) and the case that there were
one or more transmissions there. (But it cannot know whether
there was an interference, or if so, whether the interference
lasted during the whole slot or just during a part of it, etc.).
The latter feedback is called busy (channel). See Fig. 2 for an
illustrative example.7

For a given adversarial schedule of delays, we denote by
r ∈ [1, R] the supremum of slot times over all time slots in
that schedule.Stations know bound R but not the value of r.

Definition 1 (Leaky-bucket adversary with cost): A leaky-
bucket adversary is described with two parameters: injection
rate ρ and burstiness b. Injection rate ρ denotes how often
packets may arrive on average. Burstiness b denotes how many
packets can be injected in a short period of time.

6This means, for example, that slots of different stations can partially
overlap and that the j-th slot of one station may have no overlap with the
j-th slot of another station.

7Note that our definition of channel feedback is consistent with classic
communication models, e.g., IEEE 802.11, and is slightly weaker than the
notion of Collision Detection used in the theory of radio networks [20] (which
allows each station to detect simultaneous transmissions of many stations).

The cost of a packet p is the amount of time that the slot
used to successfully transmit p eventually take.8 During any
window of t time, all stations together may receive packets of
up to ρ · t+ b cost.

III. SINGLE SUCCESSFUL TRANSMISSION (SST)

An algorithm for solving SST efficiently is now presented,
as well as general lower bound on the number of slots of any
deterministic solution in our setting. This algorithm is used as
a subroutine in our PST protocols in Section VI.

A. Description of algorithm ABS (Asymmetric Binary Search)
ABS is parameterized by the upper bound R on the length

of a slot. It implements a distributed binary search (for the
minimum ID) on a partially asynchronous channel. In more
details, the actions of a station are divided into phases. In the
ith phase, the station compares the ith bit of its ID (starting
from the least significant one) to that of others by possibly
transmitting and by listening to the channel feedback (before
and after the transmission or instead). If the station’s bit b at
the ith position is 0 then the station listens for a relatively
short time (for threshold = 3R slots or until sensing busy
channel) while in the case that the bit value is 1 – it may take
up to threshold = 4R2 + 3R slots. In the case that the
channel was all silent during the listening period, the station
attempts to transmit itself – if the transmission is successful,
i.e., the station gets an acknowledgment (ack) feedback from
the channel at the end of the transmitting slot, then it exits
the algorithm “with winning”; otherwise, it repeats the above
procedure with the next bit from its ID (i.e., it executes the
next phase). A station that at any point hears a collision while
not transmitting itself, drops out of the algorithm (exits “by
elimination”). See Figure 3 for a simplified diagram.
Notation. Underlined commands, transmit and listen, denote
corresponding operations on the channel; each such operation
starts at the beginning and finishes at the end of a slot.

8This time is not known to the stations and does not have to be decided
until the actual transmission.
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Recall that all local operations (not underlined) are done
in-between of two consecutive slots. Italic commands are
typically used for channel feedback, received and processed
by a station at the end of the slot. Typewriter font text is used
for local variables. The values of these variables are unique to
each station and cannot be accessed by other stations unless
transmitted over the channel.

a) Analysis of algorithm ABS: A station with ID i that
has not exited the algorithm is called alive or active. First,
observe that each phase at any (alive) station i takes at least
two slots: at least one in the loop waiting for silent feedback
from the channel, see box (1) in Figure 3, and at least one
in the loop listening for threshold slots (or until busy
channel), see boxes (3) and (4). Moreover, if the station
does not exit the algorithm at the end of the phase (i.e., it
switches to the next phase), the phase has at least 3R + 2
slots, because it means that the second listening loop lasted
exactly threshold slots (and threshold ≥ 3R) and there
is an additional one transmission slot at the end of the phase.

Next, we prove some auxiliary lemmas. The following
lemma captures the main point of the algorithm. On the face of
it, since the slot sizes of different stations differ by unknown
amounts, they could have reached their corresponding phase h
at different time, so they would not have been able to compete
according to the value of the hth bit of their respective IDs.
The following lemma shows that the algorithm does manage
to synchronize them. The rest of the proof of the algorithm is
more standard. Some of the following proofs are just sketches.
More detailed proofs appear anonymously in [19].

Lemma 1: All alive stations start their corresponding phases
within r time of each other.

Proof sketch: Proof by induction on the number of
phases. In the first phase, all the stations wake up simultane-
ously, so the lemma holds. Next we assume that all the alive
stations entered some phase h within r time of each other and
we show that all the stations that remain alive after h enter
the next phase h+ 1 within r time of each other.

Consider the first station s to start a transmission during the
current phase h (see box (5)). Let us call that time t. Since the
other stations entered phase h at most r time later than station
s did, they are all in the listening loop (box (3) or (4)) by
time t. All the stations that did not start their transmission by
time t will hear that the channel is busy during their listening
loop (box (3) or (4)) and therefore exit the algorithm. Only
stations that started transmitting at time t can remain alive.
Which means that all the stations that enter the next phase
end their transmissions (and thus begin the next phase) within
r time of each other.

Next, consider a liveness property.
Lemma 2: For any time t > 0, if there was no successful

transmission in the execution of algorithm ABS by time t, i.e.,
no station has exited with winning, then there is at least one
station executing the algorithm at time t (i.e., the station that
has not exited by elimination).

Proof sketch: Assume the converse. Since there was no
successful transmission, some station s must have exited by

elimination (box (6)). That means that s heard that the channel
was busy (in box (3) or (4)), i.e., some other station s′ was
transmitting (box (5)). Station s′ either exits by winning or
survives to the next phase. A contradiction in both cases.

The next two lemmas are used to show progress.
Lemma 3: Consider a phase h at live stations. Denote by

B0, B1, a set of alive stations that have their bit b equal 0 or
1, respectively, in their phase h (in box (2)). If both sets are
non-empty, then all stations in B1 will no longer be alive at
the end of their phase h.

Proof sketch: Note that at least one station in B0

transmits before any station in B1 does. Hence, the latter hear
the channel is busy and exit the algorithm.

Lemma 4: No two stations transmit in disjoint time slots in
any phase.

Proof sketch: Assume by contradiction that some station
s1 ends its transmission at time t1 before some other station s2
starts its transmission at time t2 > t1. Hence, station s2 hears
busy channel while s1 transmits and s2 exits by elimination.
It means that s2 does not reach time t2 and cannot start a
transmission at t2, which contradicts our initial assumption.

Lemma 5: Each phase of a station takes O(R2) slots.
Proof: Consider a phase h and station i which is alive

in it. By Lemma 1, all stations start their phase h at times
differing by at most r.

Let us analyze the first listening part, i.e., the part cor-
responding to box (1). Station i first listens (box (1)) until
hearing a silent channel. It can hear a busy channel only if a
transmission of some other station i′ in its previous phase h−1
overlaps the listening slot of station i – this is because a single
phase takes at least 3R + 1 listening slots (at least 3R from
box (3) or (4), plus at least 1 from box (1)) before a single
transmission, thus i′ could not be in a transmitting slot of any
phase smaller or larger than h− 1. Thus, the transmission of
station i′ must have started before station i entered phase h.
That transmission will end at most r time after i entered phase
h. Listening for r time may take at most r slots. Then, station
i will listen 1 more slot in order to finally hear silence. This
means that the listening part (box (1)) of station i takes at
most r + 1 ≤ R+ 1 slots.

The next part takes at most 4R2 + 3R time slots, by
definition. Finally, there is at most one more transmitting slot.
Altogether, the total number of slots is O(R2).

Theorem 1: Algorithm ABS solves the SST problem in
O(R2 log n) slots, corresponding to O(R2r log n) time.

Proof: The number of time slots and the corresponding
time bound come directly from the description of the algorithm
and by Lemma 5 – there are O(log n) phases, each having
O(R2) slots. Let us now prove correctness.

As the first observation, we show that if there is a successful
transmission of some station i in its phase h, then all alive
stations exit with winning or by elimination by the end of
their phase h. Suppose, to the contrary, that at least one alive
station, say j, does not exit. It means that it attempted to
transmit at the end of its phase h but has not succeeded. This
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(1) listen until
first silencestart

(2) b← next bit of ID

(3) listen 3R slots
or until first busy

(4) listen 4R2 + 3R
slots or until first busy

(5) transmit one slot

(6) exit by elimination

(7) exit with winning

b = 0

b = 1

silence

busy
silence

busy

ack

no ack

Fig. 3. Diagram of an automaton defined by algorithm ABS(R) at station with binary ID. Labels (1), ... in the beginning of each box are for reference purpose.

transmission cannot overlap with the transmission of station i,
as otherwise, station i would not be successful. Consequently,
we have at least two non-overlapping transmissions in phase
h, contradicting Lemma 4.

Second observation, for any fixed phase h, there is at most
one station exiting its phase h with winning. Suppose, to the
contrary, that there are at least two such stations, call them i, j,
in some phase h. It means that both their transmissions suc-
ceeded, so they cannot overlap, which contradicts Lemma 4;
thus the second observation is proved.

By straightforward inductive argument, we deduce from the
first and the second observations that there could be at most
one station exiting the ABS algorithm with winning.

It remains to prove that there is at least one station exiting
the protocol by winning. Indeed, by the second observation, it
will be a unique station in the whole protocol, and by the first
observation – when it exits in some phase h, all other stations
also exit (but by elimination) by the end of their phase h.
Suppose, to the contrary, that no station exits ABS by winning.
By Lemma 2 applied to the very last time t, there is at least
one station that does not exit the protocol by elimination. So
it remains to show that some station s is eliminated, to show
progress. Consider the sets of stations that are alive at the
beginning of their last phase of ABS, and partition them into
sets B0 and B1 depending on the value of their bit b in that
phase being 0 or 1, respectively. Only the following three cases
could occur:

Case 1: |B0| > 1 or |B1| > 1. The argument is symmetric,
thus w.l.o.g. we may assume |B0| > 1. Consider some i, j ∈
B0. They both have 0 as the value of the currently processed
bit of their ID, therefore their IDs must differ in some earlier
position h. W.l.o.g. assume that bit h of station i is 0 while bit
h of station j is 1. Consider their phases h. They were both
alive at that phase, and thus by Lemma 3, station j would no
longer be alive at the end of its phase h. This is a contradiction
with the assumption that j is alive at the beginning of the very
last phase – thus this case cannot hold.

Case 2: |B0| = |B1| = 1. Directly from Lemma 3, the
station in B1 would stop being alive at the end of phase h,

making this case contradictory.
Case 3: |B0| + |B1| = 1. If only one station, say i, is

alive in the last phase, then no other station intervenes and it
successfully transmits and exits with winning, which is again
a contradiction finalizing the proof that at least one successful
transmission occurs. More precisely, let t be the time when
station i starts the last phase. By Lemma 1, all other stations
have exited by time t+r. As all of them exited by elimination,
there was no successful transmission in the preceding phase.
Hence, throughout the whole last phase the channel is silent,
unless station i would transmit. Such transmission happens,
as station i does not sense a busy channel during its listening
period, and as no other station transmits during the last phase
of station i, this transmission is successful. This completes the
proof.

B. Lower Bound for the SST Problem

Our key concept in proving a lower bound is based on
mirror executions, in which every participating station receives
feedback that “mirrors” its channel activity. More precisely,
an execution of an algorithm on a (partially asynchronous)
channel is a mirror execution if for any slot of any participating
station, the channel feedback is silence if the station listens,
and “busy channel” without an acknowledgment otherwise.
Observe that as long as the execution is a mirror one, there is
no successful transmission of any station taking part in it.

Theorem 2: Any deterministic algorithm solving the SST
problem requires Ω

(
r ·

(
logn
log r + 1

))
slots. In particular, if

the adversary chooses r = R, the lower bound becomes
Ω
(
R ·

(
logn
logR + 1

))
, and for a constant R it is Ω(log n) –

the same as on a purely synchronous channel.
Proof: We need to show that there is an execution of

some stations in which one of the stations does not terminate
before finishing its r · ( logn

log r + 1) slots. We may restrict the
discussion to the case of R ≥ r ≥ 4, as otherwise both R, r
would be constant and we could apply a logarithmic lower
bound Ω(log n) that holds for some worst-case execution even
if slots are synchronized, cf. [23].
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Until the last paragraph of this proof, we assume n ≥ 2r;
the remaining case will be analyzed at the very end. The
adversary constructs an execution in an online manner, in
consecutive synchronized phases, each consisting of r slots
of each participating (i.e., alive) station. At the beginning of
each phase h, at time th, there is a set of alive stations Ch. We
assume t1 = 0 and C1 = [n]. The adversary aims to preserve
the following invariant at the beginning of phase h+ 1:

• Ch+1 ⊆ Ch and |Ch+1| ≥ n/(2r)h;
• th+1 = th + r · g, for some g ∈ [1, r];
• there is a mirror execution in which all stations in

Ch+1 participate, each having r slots in each phase, and
which finishes by time th+1 (and hence, no successful
transmission of any of them).

The proof of the invariant is by induction on the phase number
h. At the beginning of phase 1, it clearly holds as C1 = [n].

Suppose the invariant holds up to the beginning of phase
h – we prove that it also holds at the beginning of phase
h+1. For all the stations in Ch, the adversary computes their
transmit/listen schedule in the mirror execution guaranteed by
the invariant by time th. Then, it extends each of them by
subsequent r slots, under the assumption that in each slot the
channel feedback is mirroring their transmit/listen choice. This
extension is meanwhile virtual, in the sense that so far, we have
not shown that it may exist in a real execution – however, we
will show that for some of the stations in Ch it is possible
to obtain such an extension of their actions and together they
result in a mirror execution.

Specifically, let ζi be such an extension of activities of
station i ∈ Ch for phase h + 1 – again, it is defined by the
algorithm run at station i, under the history of previous phases
and the virtual assumption that channel feedback mirrors the
station action. We denote ζi[x] = 0 if station i listens in the
slot x of the extension, and ζi[x] = 1 if station i transmits.
Note that we may ignore idle slots as they do not get any
feedback and thus could not change the action of the station
in the next slot (formally, denote idle slots by ζi[x] = ∗ and
in the following analysis w.l.o.g. we could treat ∗ as 0). Let
f(i) be the number of interleaved maximal blocks of 0’s and
1’s in ζi if the first maximal block is of 0’s, and f(i) be the
number of such blocks plus r if the first maximal block in
ζi is a block of 1’s. Note that f(i) ∈ {1, . . . , 2r}, and more
precisely, f(i) ∈ {1, . . . , r} when the first maximal block in
ζi is a block of 0’s and f(i) ∈ {r + 1, . . . , 2r} if the first
block of ζi is a block of 1’s.

Since there are at most 2r different values of f(i), by a
pigeonhole principle there is a value g of f(i) such that are
at least '|Ch|/(2r)( stations i in Ch with value g of function
f(i); we put all these stations in the newly created set Ch+1. It
clearly satisfies the first point of the invariant at the beginning
of phase h+ 1.

If g ≤ r, the adversary takes any station i ∈ Ch+1 and
constructs a delay schedule block by block. Specifically, all
slots in a given block in ζi are uniformly enlarged such that
their total length is r. This way, the total time length of
the r slots in ζi (partitioned into g blocks) is rg. Moreover,

blocks are aligned in time across the participating stations
in Ch+1. Since all ζi, for i ∈ Ch+1, start with a block
of 0’s and have the same number of subsequent blocks,
a straightforward inductive argument (over the number of
blocks in ζi) proves that actually blocks of 1’s are aligned
(in their starting times) with corresponding blocks of 1’s at
other participating stations in Ch+1 (and the same holds for
corresponding blocks of 0’s). Hence, in this execution of
stations in Ch+1, the blocks of listening slots are aligned and
result in feedback “silent”, and correspondingly, the blocks
of transmitting slots are aligned resulting in feedback “busy
without acknowledgment”. It yields mirror execution, extended
to phase h. Hence, the third invariant is proved, while the
second follows from the alignment of g blocks, containing r
slots in total (per station), over time rg.

In the case of g > r, we use the same argument as
above but with respect to g − r blocks instead of g; This
is because g > r means that, in the definition of f(i) = g, an
artificial +r has been applied to the actual number of maximal
blocks, in order to distinguish extensions ζi that start with a
block of 1’s from the extensions starting with a block of 0’s
(the former get values in {r + 1, . . . , 2r} while the latter in
{1, . . . , r}). This completes the proof of the invariant, as long
as the newly defined set Ch+1 is non-empty. I.e., in at least
log2r n = logn

log(2r) phases. Here, in order to assure that the
formula on the number of phases is at least 1, we use the
initial assumption of n ≥ 2r.

In case 2r > n, there is only one phase, in which a single
transmitting slot of one station makes the channel busy for
any r slots of another station. Hence, the theorem is proved.

IV. PACKETS TRANSMISSION WITHOUT CONTROL
MESSAGES, UNDER DYNAMIC PACKET ARRIVAL

We now turn to describe the first algorithm for the on-
going transmissions problem PT. Algorithm Adaptive Order
Asynchronous Round Robin Withholding, or AO-ARRoW in
short, is described in Figure 5. Informally, we use the ABS
algorithm in Section III-A, as a leader election subroutine. The
selected leader (winner) transmits all the packets in its queue
and then waits (see below). The losing stations wait until the
transmissions from the winner are finished and then compete
again in the next leader election.

In order to guarantee stability, and that no stations are
starved from transmitting, a station that is done transmitting is
not immediately eligible to transmit again. A station (whose
queue is not empty) becomes eligible if it listens for n − 1
leader elections Alternatively, to prevent a deadlock (if some
stations never have packets), a station becomes eligible if it
listens to “enough” silence slots that guarantee that no stations
are currently eligible. (“Enough” is called the threshold
and is equal to the length of the longest possible period of
silence during the leader election, note that the number of
consecutive silent slots needs to be multiplied by R.)

The main new trick is again one that reduces the uncertainty.
In more details, the algorithm synchronizes all the stations that
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become eligible, so that they rejoin the competition more or
less at the same time. (This is useful for the leader election
subroutine). To synchronize, (a) such a station waits for an
additional R· threshold slots and then (b) transmits a
packet. On hearing such a transmission, every station thus
waiting to rejoin starts a new round of leader election.

Let A be the length in slots of subroutine
Leader Election(R), B – an upper bound on the time
that any station can spend in a long silence with non-empty
queue and S = nRA+b+B

1−ρ . Let us now define a value that we
show later is a bound on the total cost of (all the) the packets
that are in (all the) queues at any given time.

L = max {L1, L2} , where

L1 = S +
(nRA+ S)ρ+ b

1− ρ
, and

L2 = (Sρ+ nRAρ+ b+B) + (n+ 1)RAρ+Rρ+ b .

Theorem 3: For any adversary with injection rate ρ < 1
and burstiness b ≥ 1, the total cost of packets in the queues
in AO-ARRoW never exceeds L.

Using a common term in adversarial queuing theory (e.g.
[32]), the theorem shows that AO-ARRoW is universally
stable. If the Leader Election(R) used is ABS(R) then we get
A = log n

(
2R2 + 2R+ 1

)
and B = r(4R2+3R)R(R+1)+

2 = O(rR4).
For proving the theorem, we need some preparations.
Definition 2: Wasted time is a period of time in which no

successful packet transmission (by any station) occurs.
Notice that at each time, algorithm is in one of 2 states:
1) at least one station is in boxes (2), (4) or (5) in Fig. 5, or
2) all the stations are in boxes other than (2), (4) and (5).
Definition 3: Let t1 be a moment in time when the algorithm

exits state 2. Let t2 be the next moment when the algorithm
exits state 2 again. The time interval [t1, t2) is called a phase.

Definition 4: We divide each phase into subphases. A
subphase starts at the beginning of the phase or at the end
of the previous subphase. A subphase ends after n leader
elections and their associated transmissions in box (4) or when
the algorithm enters state 2.

See Figure 4 for an illustration of an execution of AO-
ARRoW in terms of phases and subphases.

Lemma 6: Consider a subphase such that at the start of the
subphase, the total cost of packets in all the queues is X such
that X ≤ S = nRA+b+B

1−ρ .
Then, the total cost of packets in all the queues is at most

S + (nRA+S)ρ+b
1−ρ ≤ L at all times during the subphase.

Furthermore, the total cost of packets in all the queues is at
most Sρ+ nRAρ+ b at the end of the subphase.

Proof: The subphase lasts at most T = nRA + X + I
time, where I ≤ Tρ + b is the total cost of packets injected
during the subphase. It follows that

T ≤ nRA+X + Tρ+ b

T (1− ρ) ≤ nRA+X + b

T ≤ nRA+X + b

1− ρ
.

Therefore, the total cost of packets in all the queues at any
time during the subphase is at most

X + I ≤ X + Tρ+ b ≤ X +
nRA+X + b

1− ρ
ρ+ b

1− ρ

1− ρ

= X +
(nRA+X)ρ+ b

1− ρ
.

Using X ≤ S, we obtain the result in the lemma.
We will now bound the total cost of (all the) packets (in all

the) queues at the end of the subphase.
Let α ≤ X+ I denote the total cost of packets successfully

transmitted during the subphase. Note that all packets in the
queues at the start of the subphase are successfully transmitted
during the subphase, i.e., α ≥ X .

Note that the subphase lasts T ≤ nRA+ α time. The total
cost of packets in queues at the end of the subphase is at most

X + I − α ≤ X + (Tρ+ b)− α

≤ X + (nRA+ α)ρ+ b− α

= X + nRAρ+ b− α(1− ρ)

≤ X + nRAρ+ b−X(1− ρ)

= Xρ+ nRAρ+ b

≤ Sρ+ nRAρ+ b .

Lemma 7: Consider a subphase such that at the start of the
subphase, the total cost of packets in (all the) queues is X
such that X ≥ S = nRA+b+B

1−ρ . Then, the total cost of packets
in queues is at most X + (n+ 1)RAρ+ Rρ+ b at all times
during the subphase. Furthermore, the total cost of packets in
queues is at most X −B at the end of the subphase.

Proof: Suppose the total cost of packets at the start of
the phase is X ≥ S. All the packets that were available at
the start of the subphase are transmitted during the subphase,
so the subphase lasts at least X time. Let T ≥ X denote the
length of the subphase. There is at most W = n · RA time
wasted during the subphase. Therefore, at least T −W time
is spent on successful transmissions. The total cost of packets
injected during the subphase is at most I = T ·ρ+b. Therefore,
the total cost of packets at the end of the subphase is at most

X + I − (T −W ) ≤ X + Tρ+ b− (T − nRA)

= X − T (1− ρ) + nRA+ b

≤ X −X(1− ρ) + nRA+ b

= Xρ+ nRA+ b.

Since X ≥ S = nRA+b+B
1−ρ , we get X(1−ρ) ≥ nRA+b+B

and thus Xρ+nRA+b ≤ X−B, i.e., the total cost of packets
decreased by at least B by the end of the subphase.

We will now calculate an upper bound on the total queue
sizes at any time during the subphase. Denote the start of
the subphase as time 0. Take any point in time t during the
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Start phase 1 Start phase 2

1 2 . . . n 2n < m · n < m · n
subphase 1 subphase 2 . . . subphase m long silence

Fig. 4. A timeline representation of how the phases and subphases change as the number of leader elections increases. The numbers on the timeline represent
the number of leader elections that passed since the start. The variable n is the number of stations involved in the algorithm, and m represents the number
of subphases in the phase (we later prove that m is finite).

(1) begin iterationstart

(2) leader election

(3) listen
repeatedly

(4) transmit all
packets and

wait← n − 1

(5) listen
for silence

(6) wait←
wait−1

(7) wait← 0

(9) listen
threshold ·R
slots and transmit

to synchronize

(8) listen
for silence

queue not empty
and wait = 0

queue empty
or wait #= 0

success

failure

a station wins
Leader Election

silence for
threshold

consecutive slots

Fig. 5. Diagram of an automaton defined by algorithm AO-ARRoW(R) of a station with a wait variable initially set to 0. Numbers in brackets at the start
of each box are labels used for reference.

subphase. There were j ≤ n leader elections and Y total cost
of packets transmitted up to t. Therefore, t ≥ jRA+Y . In case
t is during a packet transmission, we get t < jRA+Y +R. In
case t is during a leader election, we get t < (j+1)RA+Y .
In all cases, we get jRA+ Y ≤ t < (j + 1)RA+ Y +R.

The total cost of packets in queues at time t is at most
C = X + I ′ − Y , where I ′ ≤ tρ + b is the total cost of
packets injected during the subphase up to time t. Note that
I ′ ≤ ((j + 1)RA+ Y +R) ρ + b, so C = X + I ′ − Y ≤
X + (j + 1)RAρ + Rρ + b − Y (1 − ρ). We want an upper
bound on C. Therefore, we pick the worst case j = n and
Y = 0. We get that C ≤ X + (n+ 1)RAρ+Rρ+ b.

Lemma 8: Consider a phase such that the total cost of
packets in queues is at most Sρ+ nRAρ+ b+B at the start
of the phase.

Then, the total cost of packets in queues is at most L at
all times during the subphases of the phase. Furthermore, at
the end of the last subphase of the phase, the total cost of all
packets in the queues is at most Sρ+ nRAρ+ b.

Proof: We will show by induction that all subphases

within the phase start with at most Sρ+ nRAρ+ b+B cost
of packets in the queues. The base of the induction is trivial
since the start of the first subphase coincides with the start of
the phase and the total cost of packets at the start of the phase
is Sρ+ nRAρ+ b+B.

Now we present the induction step. Consider any subphase
s1 such that the total cost of packets in queues is at most
Sρ + nRAρ + b + B at the start of the subphase. We will
show that the next subphase s2 (if it exists) also starts with at
most Sρ+ nRAρ+ b+B cost of packets in the queues.

Let the total cost of packets in queues at the start of
subphase s1 be X . We consider two types of subphases:

• short subphase is a subphase such that X ≤ S;
• long subphase is a subphase such that X > S.
Consider that s1 is a short subphase first. According to

Lemma 6, the total cost of packets in queues at the end of
s1 is no more than Sρ+ nRAρ+ b.

Consider that s1 is a long subphase now. According to
Lemma 7, the total cost of packets in the queues at the end of
s1 is no more than X − B ≤ (Sρ+ nRAρ+ b+ B)− B =
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Sρ+ nRAρ+ b.
Notice that in both cases, s1 ends with at most Sρ+nRAρ+

b cost of packets in the queues. Therefore, this is also the cost
when the next subphase, s2, starts.

This completes the induction proof By repeating the argu-
ment one more time, we can conclude that at the end of the
last subphase of the phase, the total cost of all packets in the
queues is at most Sρ + nRAρ + b. Furthermore, according
to Lemma 6, the total cost of packets in the queues never
exceeds L during any short subphase of the phase. According
to Lemma 7, the total cost of packets in the queues never
exceeds (Sρ+ nRAρ+ b+B) + (n+ 1)RAρ+Rρ+ b ≤ L
during any long subphase of the phase.

Proof of Theorem 3:
Consider an arbitrary leaky-bucket adversary with costs with

injection rate ρ < 1 and a burstiness b ≥ 1. We will show that
the cost of all packets waiting in the queues never exceeds L.

We prove by induction that the total cost of packets in
queues is at most Sρ+ nRAρ+ b+B at each phase’s start.

If there is a long silence before the first phase, the long
silence lasts at most B time, which means there are at most
Bρ+ b ≤ Sρ+nRAρ+ b+B cost of packets injected before
the first phase starts. Otherwise, the first phase starts at the
beginning of the execution, and thus there can be at most
0 ·ρ+ b = b ≤ Sρ+nRAρ+ b+B cost of packets at the start
of the first phase. This completes the base of the induction.

For the inductive step, assume a phase p1 started with at
most Sρ+ nRAρ+ b+B cost of packets in the queues. We
will show that the next phase p2 starts with at most Sρ +
nRAρ + b + B cost of packets in the queues as well. Let Z
denote the total cost of packets at the end of the last subphase
of p1. According to Lemma 8, Z ≤ Sρ+ nRAρ+ b.

If Z > 0, then the long silence lasts at most B time and
the total cost of packets in queues at the start of p2 is at most
Z +Bρ+ b ≤ Sρ+ nRAρ+ b+B.

If Z = 0, then there is at most B time after the first packet
is injected during the long silence and before the long silence
ends. In this case the total cost of packets in queues at the
start of p2 is at most Bρ+ b.

In both cases phase p2 starts with at most Sρ+nRAρ+b+B
cost of packets in the queues. By the power of induction, the
total cost of all packets in the queues is at most Sρ+nRAρ+
b+B at the start of every phase.

According to Lemma 8, the total cost of packets in the
queues does not exceed L during any phase. Therefore, the
cost never exceeds L, which completes the proof.

V. INSTABILITY RESULTS

We first show the instability of collision-avoidance algo-
rithms without control messages.

Theorem 4: For any injection rate ρ > 0 and for any
bound L > 0 on the maximum number of packets waiting
in the system (sum of packets waiting in all stations), for
any collision-avoidance algorithm which cannot send control
messages, there exists an injection pattern such that the total
number of packets waiting in the stations’ queues exceeds L.

Proof: Let us fix L > 0 and ρ > 0. First, the adversary
picks two arbitrary stations s1 and s2. Only these two stations
will receive any packets. The adversary picks a number S >
2L−1
ρ(R−1) , e.g., S = ) 2L−1

ρ(R−1)*+ 1.
The first packet injection into s1 occurs at the end of slot

S of s1. After that, more packets are being injected into s1
at the rate ρ/2. Let α denote the number of slots of station
s1 that passed since the end of slot number S until the first
attempt at packet transmission by s1, assuming s1 heard only
silence on the channel until slot S + α. Note that α < 2L+1

ρ ;
otherwise after S+α slots, station s1 would accumulate over
L packets in its queue.

Similarly, the first packet injection into s2 occurs at the end
of slot S of s2, and more packets are being injected into s2
at the rate ρ/2. Let β denote the number of slots of station
s2 that passed since the end of slot number S until the first
attempt at packet transmission by s2, assuming s2 heard only
silence on the channel until slot S + β. Again, β < 2L+1

ρ , or
otherwise over L packets would accumulate in the queue of s2
in the alternative scenario where only s2 receives all packets.
Without loss of generality, let us assume that α ≤ β.

Let the adversary fix the length of all listening slots of s1
to some 1 ≤ X ≤ R. Similarly, the adversary fixes the length
of all listening slots of s2 to some 1 ≤ Y ≤ R. Note that if

(S + α)X = (S + β)Y , (1)

then a collision is generated, i.e., the algorithm is not collision-
free. Equation 1 holds if and only if X

Y = S+β
S+α . Using 0 ≤

α ≤ β < 2L−1
ρ and S > 2L−1

ρ(R−1) , we get

X

Y
≥ S + α

S + α
= 1 ≥ 1

R
, and thus:

X

Y
<

S + 2L−1
ρ

S + 0
<

2L−1
ρ(R−1) +

2L−1
ρ

2L−1
ρ(R−1)

=
1

R−1 + 1

R− 1
= R ,

i.e., the adversary can choose 1 ≤ X,Y ≤ R such that a
collision (implied by the fact that Eq. 1 holds) is generated.

To summarize, we have noted that if α ≥ 2L+1
ρ or β ≥

2L+1
ρ , then the corresponding queue will exceed L. Otherwise,

i.e., α,β < 2L+1
ρ , the adversary can force a collision, so the

considered algorithm is not a collision-avoiding algorithm.
Next, consider the impossibility of MSR 1.
Theorem 5: There is no stable algorithm when packet

arrivals are controlled by an adversary with arrival rate ρ = 1.
Proof sketch: Note that for an algorithm to be stable

with arrival rate 1, an algorithm must transmit packets at all
times, except possibly, for some finite amount of time. idea
behind the proof is to note that whenever one station s1 stops
transmitting to allow another station s2 to transmit, there may
be some wasted time after s1 stops transmitting and before
s2 starts transmitting. In fact, the adversary can guarantee this
will happen by misaligning the slots, using the asynchrony.

Now, the adversary can force the algorithm to change the
transmitting station infinitely often just by stopping to inject
packets to the transmitting station. Hence, an infinite amount
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begin phase listen until the next sequence of
consecutive transmissions ends increase turn

listen for
2R slots

transmit
noise for
one slot

transmit
all packets

turn #= id

turn = id queue
empty

queue not
empty

Fig. 6. Diagram of an automaton defined by a single phase of algorithm ARRoW(R). The ID variable is unique to a singular station.

of time is wasted and ALG cannot be stable against adversaries
with injection rate ρ = 1.

VI. COLLISION-FREE PACKETS TRANSMISSION WITH
CONTROL MESSAGES, UNDER DYNAMIC PACKET ARRIVAL

In this section, we consider algorithms that never generate
collisions. However, the stations can transmit control mes-
sages, i.e., even a station with an empty queue can spend a
slot transmitting, which can be utilized as a signal to other
stations. We do not assume that stations can read the content
of transmitted packets, not even that of the control messages
(even if the transmission is successful).9 Note that just the
knowledge that a message is being transmitted is useful, even
though the message cannot be read.

A. Algorithm description
The algorithm presented in this section is a version of

AO-ARRoW protocol – we call it Collision-Avoidance Asyn-
chronous Round Robin Withholding, or CA-ARRoW for short.
It has two parameters: the space of all IDs, [n], and an
anticipated upper bound on asynchrony, R. We allow stations
without packets to transmit an empty signal, i.e., give a signal
that is identical to packet transmission.

The stations take turns transmitting, cyclically starting from
the station with ID 1. Each station has a variable turn,
which indicates the station ID whose turn it is, and a variable
counter. A station i, during its turn, transmits all the packets
waiting in i’s queue or an “empty” signal if i has no packets.
Once station i + 1 (wrapping cyclically) hears the end of
transmissions (hears a silent slot after hearing transmissions)
from station i, it waits for 2R slots and then begins its turn.
A part of station’s execution between changing variable turn
is called a phase, see Figure 6 for phase diagram.

Algorithm discussion: Note that, CA-ARRoW is closer
in spirit to traditional Round Robin. However, the asynchrony
makes Round Robin itself problematic here. Intuitively, when-
ever a station u hears some transmission, it can upper bound

9The motivation comes from various types of encoding, arising from
privacy, and various technologies where packets are encoded by some other
entities, such as a Base Station, but not by other transmitting stations.

the number of slots that have passed in some other station
(using the value of R and the number of slots that passed in u
since the previous transmission). It can use this upper bound
to avoid collisions. However, if many stations do not have any
packets to transmit, the uncertainty accumulates and the upper
bound grows exponentially. We use control messages (empty
signals) to break long periods of silence.

B. Algorithm analysis

Theorem 6: Algorithm CA-ARRoW is universally stable.
The theorem can be formally proven similarly to Theorem 3,

but the lack of long silence makes it simpler. The general
idea is as follows. For every cycle of n stations taking their
turns withholding the channel, there is at most n · 2R ·R time
wasted (“wasted” according to Definition 2). If a cycle starts
with a sufficiently large total cost of packets in the queues
X ≥ 2nR2ρ+b

1−ρ , then more packets will be transmitted than
injected during the cycle. Thus, there exists a bound L =
2nR2ρ+b

1−ρ +2nR2 = 2nR2+b
1−ρ such that the total cost of packets

in the queues never exceeds L.

VII. DISCUSSION AND OPEN PROBLEMS

This paper is just an initiation of research into asynchrony
and partial synchrony in a shared communication medium.
Among the many remaining questions, one may ask is the
synchronization we used the minimum one required for achiev-
ing high MSR or even throughput? In a sense, this question
is similar to the question in the famous work of [33] on
the minimum synchronization required for consensus. Can
one obtain similar results under assumptions that are relaxed
further? (E.g., one may assume that the bound R exists but is
not known, and/or collisions cannot be detected by transmitters
and/or listening stations and/or if acknowledgments are not
provided). Can one do with less knowledge on the system
(e.g.,knowing how many stations there are)? Are the methods
used here applicable to the case that messages of remote
nodes suffer longer delays? One may also check what may
the advantages of the use of randomization be (if any).
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Further study may also consider cognitive radio, multi-
hop networks, or/and the impact of failures. We expect sub-
stantially different results than in synchronous channel(s). In
addition, we studied and used one simple primitive – leader
election (SST) – while it would be interesting to study and
apply others (such as point-to-point communication) as well
as other network structures (when not all nodes are neighbors
of each other). Finally, one should study the practical impli-
cations of the proposed algorithms.
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