Version of Record: https://www.sciencedirect.com/science/article/pii/S0022000023000685
Manuscript_3a48e2a43d54bf02b1e9448a7ad6468a

Restrained medium access control
on adversarial shared channels™™**

Elijah Hradovich?®, Marek Klonowski®, Dariusz R. Kowalski®

¢ Faculty of Fundamental Problems of Technology, Wroctaw University of Science and
Technology, Wroctaw, Poland
bSchool of Computer and Cyber Sciences, Augusta University, Augusta, Georgia, USA

Abstract

We study the fundamental problem of utilization of the channel shared by
stations competing to transmit packets on the channel. In their turn, packets
are continuously injected into stations’ queues by an adversary at a rate at
most p packets per round. The aim of the distributed medium access control
algorithms is to successfully transmit packets and maintain system stability
(bounded queues). We further restrain algorithms by introducing an up-
per bound k on the allowed number of active stations in any given round.
We construct adaptive and full sensing protocols with optimal throughput 1
and almost optimal throughput 1 — € (for any positive €), respectively, in a
constant-restrained channel. On the opposite side, we show that restricted
protocols based on schedules known in advance suffer from a substantial drop
of throughput, at most min{% L1 We compare our algorithms experimen-

7 logn
tally with well-known backoff protocols.

Keywords: multiple-access channel, restrained channel, contention
resolution, adversarial queueing, throughput, stability

1. Introduction

Problem. Networks of different kinds and purposes commonly contain areas
of contention between different actors over the access to common medium.

*Preliminary version containing some results presented in this paper occurred as [1]

**Supported by Polish National Science Center (NCN) - grant
UMO-2015/17/B/ST6/01897 (first and second author), and by the Polish National
Science Center (NCN) grant UMO-2017/25/B/ST6/02553 and the National Science
Foundation Grant No. 2131538 (third author).

Preprint submitted to Journal of Computer and System Sciences July 5, 2023

© 2023 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022000023000685

The medium constrains a system by collisions or denial of service, when more
than one device attempts to use it simultaneously. In our study we model
actors by stations and a common resource by a shared channel. This model
is also known as a multiple-access channel (MAC). In this model, there are
n stations, each with a unique Id, connected to the same communication
medium. Number n and the space of Ids is known by each station. Stations
attempt to transmit packets via the shared communication channel in discrete
intervals of time, called rounds. Due to the constraints of the channel, at
most one successful transmission can happen at any round. While the original
model allowed all of the stations to observe the channel every round, we
introduce channel restraint £, limiting the number of stations able to be
active (i.e., transmit or listen) in any round by k. The restraint accounts
for the cost of non-transmitting stations’ activities (e.g. , power required for
listening to the channel’s feedback), which in many settings is comparable to
the cost of transmission attempts.

We focus on dynamic scenario when an adversary injects (in an arbitrary
way) at most 0 < p < 1 packets per round, on average, to stations’ buffers.
The primary goal is to design algorithms that guarantee stability, that is,
a property that the sizes of queues in buffers stay bounded, for the highest
possible injection rate p, which we will be calling throughput. Another impor-
tant aim is to minimize channel restraint to achieve the maximum possible
(i.e., in non-restrained classical channel) throughput.

Our contribution. In this work we investigate how the channel restraint k,
understood as the upper bound on the number of active stations per round,
influences the throughput on that channel for different classes of algorithms.
We construct optimal or nearly-optimal solutions for different classes of pro-
tocols studied in the literature (see [2]): achieving throughput 1 for adaptive
protocols (i.e., algorithms that can use channel history and additional con-
trol bits attached to messages), throughput 1 — € (for any positive €) for
full-sensing protocols (i.e., algorithms that can use channel history but not
control bits), and throughput ©(nlo’; 7—) for non-adaptive protocols (i.e., al-
gorithms that follow a fixed schedule of transmissions starting they got the
first packet). The latter result is complemented by the upper bound for this
class min{ %, @} All the performance bounds of algorithms are presented
in Table 1.

The main conclusion from our results is that for some classes, i.e., adaptive

and full sensing protocols, we are able to construct strongly restrained algo-

Algorithm Sec. ‘ Injection Queues Restraint Class

12 O’CLOCK-AD 3 p=1 O(n? + p) 2 Adaptive

12 O’CLOCK-Fs 4 p<1 O(n? + B) 3 Full-sensing with CD
K-LiGHT 1S 5 p<© (@) UNKNOWN k Non-adaptive
Impossibility 5 o> min{%, &} Stable k Non-adaptive

Table 1: A summary of the performance bounds of algorithms and impossibility results,
broken into four main sub-topics. The adversary is of type (p, 8), where p is the injection
rate and (3 is the burstiness coefficient. The abbreviations used to specify properties
or algorithms are as follows: IS = interleaved selectors, CD - collision detection. 12
O’cLoCK-AD and 12 O’CLOCK-FS stand for 12 O’CLOCK adaptive and 12 O’cLOCK full-
sensing respectively.

rithms without decreasing throughput of the system (i.e., comparing to the
respective families of protocols without channel restraint described e.g. in
[3]). Note that for the adaptive class of algorithms we were able to achieve
the maximum possible throughput for the smallest possible channel restraint.
Surprisingly, in some other classes, e.g. , non adaptive protocols, restraining
the channel may substantially limit the throughput of efficient solutions. An-
other consequence is that the amortized number of transmissions/listenings
per packet is constant for our adaptive and full sensing algorithms, while
it is O(nlog®n) for the non adaptive one. Let us stress that our non adap-
tive algorithm uses a newly introduced combinatorial structure, called k-light
selector, which we thoroughly study for its own independent interest.

Previous and related work. To the best of our knowledge, adversarial
packet injections on multiple-access channel (without restricting energy) were
considered for the first time in the context of contention resolution by Ben-
der et al. in [4] and Chlebus et al. [5]. The authors of the former paper
considered maximal possible throughput of randomized backoff protocols in
queue-free model, while in the latter work deterministic distributed broad-
cast algorithms in the model of stations with queues were studied. Further
results in this line considering the maximum rate for which stability of queues
is achievable include Bender et al. [6], Chlebus et al. [3] and Anantharamu et
al. [7],[8], wherein the authors considered a wide spectrum of models with
respect to adversary’s limitations and capabilities of stations and the channel
(e.g. , distinguishing collisions from the silence on the channel). Algorithms
with a partial knowledge of adversary strategy with attention to packet la-

tency were studied by Bienkowski et al. [9]. Chlebus et al. in [10] studied
limitations of hearing on MAC in relation to universal stability.

This work can be seen as a continuation of the research line from Chlebus et
al. [3] paper (see also references therein) for a new model with limiting the
number of active stations (i.e., the restraint). In particular we use the same
taxonomy of the models of communication channels (w.r.t. stations capabili-
ties) and classes of protocols as in [3]. Let us stress, however, that limiting the
number of transmissions requires completely different algorithmic approach
as well as using different analytic techniques.

On the other hand, there are some papers dealing with energy constraints in
parallel environment, however for substantially different models/problems.
For instance, Chlebus et al. [11] consider energy restricted parallel routing.
Randomized queue-free constant throughput-based model for contention res-
olution with only bounds on transmission energy being known was studied
by De Marco et al. [12]. Energy-efficient leader election, size approximation
and census in single-hop networks were studied by Chang et al. in [13]. Ear-
lier research on energy complexity of leader election and related problems
includes Jurdzinski et al. [14, 15] and Nakano et al. [16].

Explicit construction of selectors and selective families was studied by In-
dyk [17] and Chlebus et al. in [18]. Universally strong selectors in relation
to packet-oblivious routing on multi-hop networks were studied by Cholvi et
al. in [19].

Algorithms managing energy usage were discussed in the surveys by Al-
bers [20] and Irani and Pruhs [21]. Routing subject to energy constraints
have been by Chabarek et al. [22] and Andrews et al. [23, 24]. Reducing
network energy consumption via sleeping and rate-adaptation was addressed
by Nedevschi et al. [25]. Distributed power control improving the energy
efficiency of routing algorithms in ad hoc networks has been proposed by
Bergamo et al. [26].

Ethernet local area data networks are typically under-utilized; energy conser-
vation schemes for shutting down network interfaces when using the Ethernet
were proposed by Gupta and Singh [27]. Gunaratne et al. [28] investigated
policies to dynamically modify the link data rate based on the demand im-
posed on the link rate as a means to reduce the energy consumption in
Ethernet installations.

Hardware-related challenges were studied by Ogierman et al. [29], with a
focus on adversarial jamming limited by the energy budget in MAC proto-
cols. Physical layer effects on a single hop fading channel were also studied

4

by Fineman et al. [30], with particular attention to the spectrum reuse en-
abled by fading.

Motivation. The fundamental problem of accessing a single medium by
multiple devices is faced in many distributed systems, including processor
transactional memory, radio networks communication medium, access to a
shared resource on machines or data-centers. When more than one device
attempts to access it simultaneously, a collision or denial of service occurs.
However, the number of simultaneous attempts also matters, both in practice
and, as we will show in this work, in theory. In practice, channel access could
be constrained by physical factors, such as power, energy or availability.
For instance, the "energy” spent by devices during such access attempts
could be capped, in order to minimize its waste (because at most one of the
attempting stations may succeed). Another motivating example comes from
hardware systems, which often are designed with a spike (maximal) power
use in mind to prevent meltdown or blackout. The above examples show
potential applications of our results, obtained in the context of contention
resolution problem, to other related problems on restrained channels.

Organization of the paper. In Section 2 we present a formal model. Sec-
tion 3 is devoted mainly to adaptive (strongest), algorithm, wherein stations
can adapt their behaviour to the communication channel and add some infor-
mation to the transmitted packages. We construct an algorithm that needs
only a constant number of stations being switched on in each round, which
guarantees stability for an adversary even for p = 1. In Section 4 we discuss
weaker full-sensing protocols. We construct an algorithm with a collision-
detection mechanism that is stable for an adversary with any p < 1 — 1/n.
The weakest type of algorithms (non adaptive), wherein all actions are set
before the execution of the algorithm, are discussed in Section 5. In Section 6
we present experimental results for the constructed algorithms as well as a
comprehensive comparison with commonly used (also in real-life systems)
back-off protocols.

2. Model

System. We follow the classical model of a shared channel, e.g. , [3, 31]. In
this model we distinguish n stations attached to a transmission medium,
called a multiple-access channel (MAC), working according to the following

1 2 3 4 5 6 7 8 9 10 N

A X

B X X X X X

Cc X X

D X X X X
B> - - D> C> - - - A-> B> D>

Figure 1: Example channel states by stations activity: top row represents rounds from
1 to 11; leftmost column stands for station names A, B,C, D; ”"X” stands for the trans-
mission of the corresponding station in the corresponding round; bottom row stands for
the resulting state of the channel in the end of the round with the arrow representing
successful transmission by the referred station; ”-” stands for silence channel feedback.
Rounds 1,4,5,9,10,11 resulted in successful transmissions; rounds 3, 6,8 resulted in col-
lisions; rounds 2,7 were silent. Note that the channel feedback for rounds with collision
and silent rounds is the same.

rules: (1) a packet transmitted by a station reaches all the stations instan-
taneously; (2) a packet is successfully received if its transmission does not
overlap with any other transmissions.

We restrict attention to synchronous ’slotted” model, in which stations use
local clocks ticking at the same rate and indicating the same round numbers.
It is assumed that each station knows n. Global round numbering is available
to the stations.

Each round consists of phases: transmission, listening and data processing.
The stations, according to their programs, attempt either to transmit in the
first phase or to listen to the channel in the second phase. The duration of a
round and the size of a packet are mutually scaled such that it takes a round
to transmit one packet.

We say that a station hears a transmitted packet when the station receives
the transmitted packet successfully as feedback from the channel.

If exactly one station transmits a packet in a round then all the stations that
are switched-on! in this round hear the packet, including the transmitting
station.

When at least two stations transmit their packets in the same round then

'In the basic model we assume that all stations are switch-on all the time. We deviate
from this assumption in extensions of the model when only a limited number of stations
can be switched-on in a single round.

no station can hear any packet in this round, including the transmitting
stations. We call this situation to be a collision on the channel. A round
during which no packet is transmitted is called silent. An example of channel
states relation to stations activity can be seen in Figure 1.

1 2 3 4 &5 6 7 8 9 10 M

A X X

B X X X X X

C X X

D X X X X
Bz=188= | D= C-> | = | A= B-> D->

Figure 2: Example channel states by stations activity for channels with collision detec-
tion: top row represents rounds from 1 to 11; leftmost column stands for station names
A,B,C,D; ”X” stands for the transmission of the corresponding station in the corre-
sponding round; bottom row stands for the resulting state of the channel in the end of the
round with the arrow representing successful transmission by the referred station; ”-”
stands for silence channel feedback; ”—" stands for collision channel feedback. Rounds
1,4,5,9,10,11 resulted in successful transmissions; rounds 3,6, 8 resulted in collisions;
rounds 2,7 were silent.

Collision detection. Optionally, algorithms can rely on the capability to dis-
tinguish silence from collision on the channel. This capability is known as col-
lision detection mechanism or simply collision detection. Collision detection
enhances channel feedback to three possible output states: successful trans-
mission (with station name, if there is one in the packet), silence and collision.
It is assumed that names cannot be recovered from packets participating
in collision, thus only the fact of the collision occurrence can be recorded.
An example of feedback of the channel with collision detection can be seen
in Figure 2.

Packet arrival. We assume that packets are kept in individual queues by each
station, till they are successfully transmitted. Packets arrival to stations’
queues is called injection. We assume that an adversary can inject packets
to stations of his choice according to limitations characteristic for a given
adversary. Those limitations include injection rate p and burstiness 5, where
p and [are numbers such that 0 < p < 1 and f > 1. The adversary
(p, B) is defined as follows: in each continuous time interval of length ¢, the

adversary can inject at most p -t + 8 packets, in total; in any single round,
the maximum number of packets that the adversary can inject is |5 + p|.
This adversarial model of packet injection is called leaky bucket; it was used
before to model traffic in shared channels, in particular in [2, 3].

Channel restraint. In our paper [1] we introduced a concept of channel re-
straint each station can be at one of two states — switched on (on-mode) or
switched off (off-mode). Only a switched-on station in a given round can
transmit a packet or listen to the channel. In a round in which a station
is switched on, the station can set its timer to any positive integer ¢, which
results in the station spending the next ¢ rounds in the off-mode and re-
turning to the on-mode immediately afterwards. The following is assumed:
(1) it costs one unit to keep a station switched on in a round, and (2) it costs
a negligible amount to keep a station switched off in a round. When repre-
senting the whole system’s channel expenditure in a given round, we make
it equal to the number of stations that spend this round switched on. The
upper bound on the number of stations that can be switched on simulta-
neously in a round is the channel restraint of the system. A multiple-access
channel system is determined by the total number of available stations and
the channel restraint. We assume that the adversary can inject packets into
the station packet queue independently from the station mode. Therefore,
the adversary can inject packets to stations in off-mode.

Protocol quality measures. We distinguish the following quality and perfor-
mance measures of algorithms:

Stability — queues of all stations stay bounded by some function on model
parameters n, p, f at any round;

Mazximal latency — the maximal number of rounds spent by a packet in sta-
tion’s queues;

Channel restraint — upper bound on the number of online stations in one
round (we also say that the channel is k-restrained);

Throughput — the injection rate p for which all executions of the algorithm
are stable. Usually we are looking for maximal possible throughput?.

The queue size measure of an execution of an algorithm is defined as the
maximum number of packets queued in all stations in a round of this execu-

2Note that the maximal throughput may not exists. In such a case we try to find a the
limes superior of throughputs.

tion. The latency measure of an execution of an algorithm is defined as the
longest span of rounds a single packet have spent in stations queues. Both
the queue size and latency are natural performance metrics of algorithms and
are represented as functions of the size of the system n and the type of an
adversary p,b. If the latency of an algorithm is bounded then queues are
bounded as well, since a queue’s size at a station is always a lower bound
on the delay of some packet handled by this station. We say that an algo-
rithm is stable, against a class of adversaries, if the queue size is bounded,
for a given number of stations and an adversary in this class.

An algorithm has a wuniversally bounded latency when latency is bounded
against each adversary of injection rate less than 1; we refer to such algo-
rithms as universal.

Knowledge. We say that a property of a system is known when it can be used
in codes of algorithms. It is assumed throughout that the size of the system n
and the channel restraint £ < n are known, but the adversary parameters
p, 8 are not. Algorithms may have their correctness and performance bounds
depend on the magnitudes of the unknown parameters of the communication
environment. For example, an algorithm may be stable or have bounded
latency for sufficiently small injection rates.

Algorithm correctness. We say that a protocol with channel restraint k£ and
injection rates p is correct, when queues of all stations stay bounded at all
times independently from adversary strategy and the number of switched-on
stations is at most k.

Classes of protocols. Current classification in the literature, c.f., [2, 8], con-
siders the following classes of distributed protocols, depending on their com-
putational power in a round:

Adaptive protocols — each station may access the history of transmissions
and each packet contains the unique name of the sender. Moreover the sender
can add a constant number of bits to each packet, which other stations can
read and make future decisions based on this information.

Full-sensing protocols — each station may access the history of transmissions
and each packet contains the unique name of the sender. However, no extra
bits can be added to a packet.

Non-adaptive protocols — each station computes some function, with its
unique name and round number as an input, determining whether a trans-
mission attempt should be made. Note that in the model without a global

9

clock, the round number is local (the number of rounds that passed from
the one when the first packet is injected into a given station). Whenever a
station has a packet to be transmitted, the station broadcasts it as long that
the function indicates that an attempt needs to be done.

Backoff protocol can be described as a randomized non-adaptive algorithm
with a fixed initial sequence of probabilities assigned to subsequent rounds.
The probability of transmitting is a function of the station’s name and the
round number.

Note that these algorithm classes assume that each station has a unique name
(also referred to as ID).

3. Adaptive protocol 12-O’CLOCK

3.1. Protocol description

The 12-O’cLOCK(n) algorithm, where n is the number of stations in the
system, schedules exactly two stations to be switched on in a single round
— one in the transmitting role and another in the listening role. Since only
one of those stations has the right to transmit, collision never occurs and
the channel restraint is 2. The algorithm allows for any adversary burstiness
value [3.

High level description. We call a group of n consecutive rounds a cycle if the
last round 7 of the group satisfies = 0 mod n. End-of-cycle (or 12-O’clock)
rounds play an important role in coordination and decision making during
the execution; they also motivate the name of the algorithm.

Every station keeps an ordered list of all the stations. These lists are the
same in every station at the beginning of a cycle; at such a moment they
represent one list, which we call the list. Initially, the list consists of all the
stations ordered by their names.

Stations take the transmitting role in their order on the list. The process
of assigning transmitting stations to rounds can be visualized as passing
a virtual token from station to station, such that a station holding the token
is in the transmitting role. Station spends one round in the listening role
before taking the token, in order to learn the status of the channel. When
a cycle ends, then the token is typically passed on to the next station on the
list. The order determined by the list is understood in a cyclic sense, in that
the first station assumes the transmitting role after the last one in the list
has concluded its assignment. An exception for this process occurs when the

10

transmitting station is moved to become the head of the list while keeping
the token.

The exception is handled as follows: a transmitting station B holding the
token has the right to keep it when it has at least 3n packets in its queue.
In such a case the station considers itself Big and informs other stations about
its status, by suitably setting a toggle bit in packets. All of the stations while
in the listening role, learn from this bit that they have no right to take the
token.

Station B has the right to keep the token until the first end-of-cycle (12-O)
round with queue size not greater than 3n — once this condition is fulfilled,
the station considers itself to be Last-Big, has the right to hold the token for
one more full cycle and informs other stations by setting another toggle bit
in its packets. By the end of this last cycle, all stations move B to the head
of the list. Starting with the next cycle stations follow their routine, with
station B being the head of the list and B holding the token to transmit
in the first round of the cycle. This mechanism allows transmitting stations
to stretch cycles, possibly indefinitely, should the adversary inject packets
in a certain way, e.g. , into one station only.

Technical description. Station can be at one of the five states: Idle, Listening,
Transmitting, Big or Last-Big. The last three states are given the right
to transmit; they could be encoded by two bits when attached to the packet
by the transmitting station. The Listening state is dedicated to listening,
while in the Idle state the station is switched off. Finite state machine for
the relationship between those states can be found on Fig. 3.

Pseudo-code. We assume that each station has its internal information saved
in the local object called s. The internal information includes the list of sta-
tions, the state of the station (i.e. Idle, Listening, Transmitting, Big or
Last-Big), as well as methods allowing to modify this information. The
pseudo-code of the algorithm is presented as two procedures:
transmissionPhase (Algorithm 1) — executed in the transmission phase
of the round;

listeningPhase (Algorithm 2) — executed in the listening phase of the
round.

Both procedures are executed by switched-on stations.

Methods. Procedures rely on the following methods:

11

switch-off

itch-
Idle vt Listen
Big heard
Q <3n no Big heard
12-0 Q@ > 3n
Last Big Big
Q < 3n A 12-0
- 12-0 Q> 3nV-12-0

Figure 3: Finite state machine for a station in 12-O’clock adaptive algorithm executed
independently on each station. Circle nodes represent states. Arrows are actions associated
with state transitions, they happen with a tick of clock. Note that from the system
perspective there are two stations with starting state being Transmitting and Listening
respectively, otherwise the starting state is Idle as shown. Descriptions on arrows represent
extra checks performed by the algorithm: @ stays for station queue size; n for system size;
12-0 for the end-of-cycle round; channel state heard by a station is described by: Big
heard for packets with big or last-big bit being toggled. Arrows switch-on and switch-off
represent a global clock-based decision for choosing on-mode and off-mode respectively.

12

Procedure transmissionPhase (round, station)

switch station.state do

case Transmitting do

if station.queue > 3n then

station.state := Big;

station.transmit();

else

if station.queue > 0 then
station.transmit();

station.state := Idle;

case Big do

if round = 0 mod n AND station.queue < 3n then

station.state := Last-Big;

station.moveBigToFront(station.id);

station.transmit();

case Last-Big do
station.transmit();
if round = n - 1 mod n then
‘ station.state := Transmitting;
Algorithm 1: 12 O’clock adaptive algorithm, transmission phase.

moveBigToFront (station ID) — moves station of the input ID to the front
of the (local) station list;

transmit () — transmits a packet from the station queue, attaches ID and
state information to it;

shouldWakeUp () — checks the idle timeout of the station, that is, the number
of rounds left until its predecessor could be in the Transmitting state. It
starts from n — 1 when the station drops the Listening state, and decreases
by 1 each round. Upon becoming 0, the procedure outputs “true” and the
station switches to Listening state.

Initialization. In the beginning all but the first two stations are in the Idle
state, while the one with the smallest ID is in Transmitting state and its
successor is in Listening state.

Idle state. In this state the station does not access the channel, it only keeps
updating its idling time until the next wake-up — each round decreases
by 1. The starting number of idling rounds is either n or n — 1 or n —
2, depending on the state from which the station switches to Idle and the

13

Procedure listeningPhase(station, channel)
switch station.state do
case Idle do

if shouldWakeUp() then
‘ station.state = Listening;

o

ase Listening do
switch channel.state do
case Silence do
‘ station.state = Transmitting;
case Normal do
‘ station.state = Transmitting;
case Big do
‘ station.state = ldle;
case Last-Big do
station.state = ldle;
station.moveBigToFront(channel.transmitterld);
Algorithm 2: 12 O’clock adaptive algorithm, listening phase.

packet on the channel, see the description of Listening and Transmitting
states below. When the idling time decreases to zero, the state switches
to Listening.

Listening state. Station in the Listening state updates the local station list
when the Last-Big transmission occurs on a channel. It changes its state
to Transmitting upon receiving a packet from a station in the Transmitting
state or upon no packet received. Otherwise, it becomes idle for the next
n — 1 or n rounds until wake-up. The latter idling time is caused by move
of Last-Big station from behind of the Listening station location on the list
of stations, to the front, therefore increasing the Listening station location
on the list by 1.

Transmitting state. The Transmitting state is taken (from Listening state)
by a station once per cycle in the round corresponding to its current position
on the list of stations, unless there is a Big or Last-Big station in this round.
Station in the Transmitting state changes its state to Big and transmits
if its queue size is bigger than 3n. Otherwise, it transmits being in the
Transmitting state, provided it has a packet in its queue, and changes its
state to Idle (in order to awake in its listening turn during the next cycle,
after n — 2 rounds).

14

Big state. At the end of each cycle, each Big station checks whether its queue
size is still bigger than 3n; if not, it changes its state to Last-Big. In any prior
round, the Big station transmits a packet and remains in the same state. The
following property can be easily deducted: once a station changes its state
to Big (which happens when being in its regular Transmitting state), it stays
there till the end of the cycle; it may then continue throughout whole next
cycles, until it changes to Last-Big state at the end of one of them.

Last-Big state. Station in the Last-Big state transmits until the end of the
cycle. It changes its state to the Transmitting in the end of the cycle after
the last transmission happens. Note that, due to the condition of switching
from Big to Last-Big state, a station remains in the Last-Big state during
this whole cycle, from the beginning when it switched from the state Big
to the end when it switches to Transmitting.

3.2. Protocol correctness and performance analysis

Consider the total size of the queues in the beginning of the cycle. If the size
is greater than ¢ = n(3n — 1) + 1 we say that the cycle belongs to a dense
interval, otherwise it belongs to a sparse interval (here we consider intervals
of time). This way the execution of the algorithm consists of interleaved
dense and sparse intervals, each containing a number of whole cycles.

In relation to a fixed interval, we consider the following terminology: sta-
tion is pre-big in a given round of the interval if it has not been in the Big
state during this interval before that round, and it is post-big if it has been
at least once in the Last-Big state during the interval by that round. Station
is potentially-big if its queue size is bigger than 3n (i.e., the size allows the
station to become Big eventually) or it is in a Big or Last-Big state. Note
that this newly added terminology serves for the purposes of analysis only.
We use the lower case writing convention to distinguish the newly added
terms from the station states.

Observe that each station is pre-big in some prefix of the interval and post-big
in some (disjoint) suffix of the interval; each of these periods could be empty
or the whole interval. In-between of being pre-big and post-big, a station
is continuously in a Big state.

We define the following types of cycles depending on availability of Big and
Last-Big stations:

Type-1 cycle: without any Big or Last-Big station. Token is being passed
in the Round-Robin way, by adapting Listening and Transmitting states.

15

This means that at any single round there is one station in the Transmitting
state and one in the Listening state.

Type-2 cycle: with a station S starting to transmit as Big in some round
of the cycle. Here, the token is being passed in the Round-Robin way by ap-
plying sequence of Listening and Transmitting states to each station on the
list, until S transmits. Since S becomes Big, it keeps the token afterwards till
the end of the cycle. Note that stations at Big and Transmitting states cannot
occur simultaneously in the same round, because once there is a Big station
all Listening stations immediately switch to Idle state instead of switching
to Transmitting state.

Type-3 cycle: with a Big station S holding the token for the whole cycle.
Upon waking-up in Listening state, a station will learn about the state
of S and become idle until their scheduled wake-up round in the next cycle.
Type-4 cycle: with a Last-Big station S keeping the token for the whole
cycle. Station can be in the Last-Big state only for a one cycle and after
being in the Big state (at the end of the previous cycle). All stations after
switching from Idle to the Listening state will learn about the Last-Big state
of S and become idle until their scheduled wake-up round in the next cycle.
The local lists of stations stay synchronized in the beginning of cycles; in fact,
only the type-4 cycle changes the order of stations, and the whole cycle
is needed to do it consistently in all stations (when they act as listeners) so
that they all apply the move of the Last-Big station to the beginning of their
local lists by the end of the cycle.

Lemma 3.1. Each cycle is of one of the above four types.

PROOF. Algorithm’s initialization conditions (Subsection 3.1) enforce that
the first cycle type is either type-1 or type-2, as there is no Big or Last-
Big station in the beginning. Type-1 can be followed only by the type-1 —
if there is no potentially-big station during the cycle, or by the type-2 cycle
otherwise. In the type-2 cycle the Big station is chosen during the cycle, and
thus the cycle can be followed by the type-3 cycle — if the Big station queue
size is above 3n at the end of the cycle, or by type-4 otherwise. The case
of type-3 cycles is the same as the ones of type-2 described above, as in both
types there is a Big station at the end (which determines conditions for the
next cycle); they can be followed only by a cycle of type-3 or type-4. The
type-4 cycle can be followed by type-1 — if there is no potentially-big station,
or by type-2 cycle otherwise. Using an inductive argument over cycles, it can
be concluded that each cycle is of one of the four defined types. 0J

16

Lemma 3.2. In any dense interval, a station can cause a silent round (i.e.,
is in state Transmitting but has an empty queue) at most n — 1 times while
being pre-big.

Proor. Silent rounds occur when some station holds the token but has
no packets in its queue. Note that it is only possible for stations in Trans-
mitting state, as stations in any of Big states have more than n packets
in their queues.

Assume that station S has no packets in its queue. Within a dense interval,
in each round there is a potentially-big station. For any cycle, if potentially-
big station is before S in the list, then S would receive no token or receive
it and decrease its position in the list. The position of S cannot decrease
more than n—1 times, as there can be no potentially-big station after S if it is
last in the list. When S is the last on the list it either never has a possibility
to transmit or becomes potentially-big. Pre-big station life-cycle terminates
once the station is in the Big state by definition. ([l

Lemma 3.3. In any dense interval, post-big or in a Big state station causes
no silent round.

PRrROOF. By definition of Big state, a station must have had more than
3n packets in its queue in the beginning of the current cycle or in the round
of the cycle when it turned into the Big state. Therefore, in each round of the
cycle it has packets and causes no silent round.

A post-big station S can be in any of the states. In the case of Listening and
Idle states, the station does not attempt to transmit, thus it cannot cause
a silent round. The case of Big state was already analyzed. If the station
enters Last-Big state, it switches to this state from the Big state having more
than 2n packets in its queue, thus in each round of the cycle it has packets
and causes no silent round.

It remains to analyze the case when S is in the Transmitting state. Upon
leaving the Last-Big state for the last time, it had at least n packets in its
queues and was placed in the beginning of the list of stations, by the algorithm
construction. Then, observe that S has had an opportunity to transmit
only at some type-2 cycle, when there is no potentially-big station before
it on the list or when S'is potentially-big at the time it switches from Listening
to Transmitting state. In the latter case, instead of staying in Transmitting
state it immediately switches to Big state, in which case we already analyzed
in the beginning of the proof.

17

In the former case, either potentially-big station after S becomes Big, which
implies that in some of the next cycles, it switches to Last-Big state and the
position of S on the list decreases without causing any more silent rounds,
or S receives no token and so it cannot cause a silent round by default.
The position cannot decrease more than n — 1 times, because there can
be no potentially-big station after S if S is the last on the list (the argument
is similar to the one from the proof of Lemma 3.2). Since S had at least
n packets when switching from its Last-Big state, it can transmit and decrease
its position at most n — 1 times or become Big, whatever comes first; in any
case, it has at least one packet when transmitting. 0

Theorem 3.4. The 12 O’clock adaptive protocol achieves throughput 1 on the
channel with restraint 2 and the maximum number of packets stored in round
is at most O(n? + B).

Proor. Consider an adversary with injection rate p = 1 and a burstiness
£. Within a sparse interval, there can be no more than ¢ + n + [packets
in the stations at the end of any cycle for dense interval threshold /. Indeed,
the biggest possible number of packets that the system can start a cycle
with is equal to ¢, and the adversary can inject no more than n 4+ 8 packets
in n consequent rounds of the cycle. Once the queue size becomes greater
than ¢ in the beginning of a cycle, the sparse interval terminates and the
dense interval begins.

In the remainder, we focus on dense intervals. Note that in the beginning
of a dense interval, the number of packets in the system is at most ¢ + n
plus the burstiness above the injection rate (upper bounded by /); indeed,
as in the beginning of the preceding cycle the interval was sparse, the number
of packets was not bigger than ¢, and during that cycle the adversary could
inject at most n packets accounted to the injection rate plus the burstiness.
Within any dense interval, a station in the Big or Last-Big state is guar-
anteed to be in each cycle, by the pigeon-hole principle. It makes type-1
cycle impossible to occur. Consider type-3 and type-4 cycles: during those
cycles a packet is transmitted in every round, and thus a silent round can-
not occur; hence the number of packets does not grow (except of burstiness
above the injection rate, but this is upper bounded by £ at any round of the
interval, by the specification of the adversary). In type-2 cycles, post-big
stations cannot cause silent round, by Lemma 3.3, and stations in Big state
cannot cause silent rounds as they always have more than 2n packets pend-
ing. Hence, type-2 cycles may have silent rounds caused only by pre-big

18

stations. However, there can be no more than n — 1 pre-big stations in the
system in the beginning of the dense interval (because there is at least one
potentially-big station). Each pre-big station can cause no more than n — 1
silent rounds, by Lemma 3.2. Observe that in each cycle with a silent round
some potentially-big station will change its state to Big — silent round would
not occur if there was a potentially-big station with higher position in the
list than any empty station. Hence, there can be no more than n — 1 cycles
with silent rounds caused by same (pre-big) station. To summarize, there
are at most n — 1 cycles with silent rounds for each of at most n — 1 pre-big
stations, resulting in the upper bound of £ + (n — 1)2 + n + 3 on system
queues. Since only one of those stations has the right to transmit, collision
never occurs and channel restraint is 2. OJ

Note that the algorithm requires each station to store the list of stations with
some auxiliary data (that is linear w.r. to the system size n). We do not
see it as a limitation for most of the cases however, since station queue size
is square to the system size in the worst case, as we prove it above.

That is, packets in the station queue should be stored in some sort of memory.
To fairly compare different protocols — the queue size needs to be taken into
an account together with the size of the state. To the best of our ability,
we performed such a comparison by running simulations of algorithms in
Section 6. Figure 7b is of particular interest in that context.

4. Full-sensing protocol 12 O’CLOCK

4.1. Protocol overview

The 12-O’crLocK full-sensing with collision detection protocol is an adapta-
tion of the protocol described in Section 3 to the more restrictive algorithm
class. In this class, the protocol has no ability to attach control bits to indi-
vidual packets. Let us stress however that the protocol maintains the ability
to add transmitting stations’ identities to individual packets.

Similarly to the original algorithm, each station maintains the copy of the
ordered list of stations referred as the list. There is a conceptual token
permitting a station to transmit a packet to the channel. The token is passed
in Round-Robin way following the order of the list. Stations are scheduled
to switch on and listen to the channel one round before receiving the token.
More precisely, for each round ¢, algorithm schedules two stations to be
switched on — station S holding the token and station S’ following S in the

19

order of the list. Station S transmits a packet from its queue if it has one,
and station S’ listens to the channel. Station S’ claims the token at round
t + 1 if S transmission was successful or there was a silence on the channel.
Station S switches off in the end of the round ¢t if there was collision on the
channel (we describe how collisions can occur below) or the size of its queue
is less than 3n, where n is the number of stations.

In contrary, when station S discovers at round ¢ that the size of its queue
is greater than 3n, S becomes big and withholds the channel starting from
round ¢t + 1. It follows that, there are three switched on stations at round
t 4+ 1: S — as it has claimed the token by withholding the channel, S’ —
as it has received the token by following the order of the list, and S” —
the station following S’ in the order of the list and scheduled to listen to
the channel. The token ambiguity at round ¢ 4 1 results in collision if both
S and S’ have packets in their queues. However we use the fact of the collision
to inform both S’ and S” about the claim of station S on withholding the
channel. In the case of S” having no packets to transmit, there is no collision
at round ¢t + 1. It follows that only the packet transmitted by S is heard
on the channel, hence both S’ and S” recognise that S holds the token
by extracting transmitter identity from the packet. For both of these cases,
station S” learns that it cannot take the token at round ¢ + 2, therefore
no more collisions occur.

Withholding the channel by station S lasts until the first round 7 satisfying
the following conditions: (1) the queue size of S is less than 2n and (2) round
71is a 12 O’clock round — meaning that 7 mod n = 0.

Before round 7 and while S is big, stations listen to the channel following the
order of the list. Whenever such a listening station S’ learns that S is big,
S" moves the identity of S to the top of its local copy of the list. Since
S can become big only with its queue size counting not less than 3n packets,
there are at least n rounds with station S transmitting while being big.
Therefore all of the stations learn that S is big and local copies of the list
are synchronized by the end of round 7. Starting from round 7 stations pass
the token following the new order of the list and the system returns to the
initial configuration.

By distinguishing silence from collision, the algorithm is able to manage edge
cases, see the description below.

However, due to collisions the protocol is not universally stable, albeit we will
prove its stability against injection rates p < "T_l

20

switch-off collision heard

switch-on

Idle

no predecessor heard

@ < 3n V collision heard silence V predecessor heard

Q <2n A 12-O () > 3n A no collision heard

Big

Q>2nV-12-0

Figure 4: Finite state machine for a station in 12-O’clock full-sensing algorithm algorithm
executed independently on each station. Circle nodes represent states. Arrows are actions
associated with state transitions, they happen with a tick of clock. Note that from the
system perspective there are two stations with starting state being Transmitting and
Listening respectively, otherwise the starting state is Idle as shown. Descriptions on arrows
represent extra checks performed by the algorithm: @ stays for station queue size; n for
system size; 12-O for the end-of-cycle round. Channel states are described as silence
heard, collision heard, predecessor heard, no predecessor heard for station detecting silence,
collision, predecessor or not predecessor transmissions on the channel respectively. Arrows
switch-on and switch-off represent a global clock-based decision for choosing on-mode and
off-mode respectively.

21

Technical description. We consider three channel states: Silence when there
is no transmission, Transmission when there is single transmission on the
channel, Collision when there is more than one transmission. Stations can
be at one of four states: Idle, Listening, Transmitting or Big. The last two
states are given the right to transmit; they are distinguished by the order
in the list — only Big station can transmit out of the order of the list; in the
only one possible case when Big station transmits within the order, collision
occurs and later transmissions clarify the system state. The Listening state
is dedicated to listening, while in the Idle state the station neither transmits
or listens. We describe these states later in this section. As previously
we assume that transmission happens before the listening phase. Simplified
finite state machine for the relationship between those states can be seen
in Figure 4.

Pseudo-code. We assume that each station has its internal information saved
in the local object called s. The internal information includes the list of sta-
tions, the state of the station (i.e. Idle, Listening, Transmitting or Big), as
well as methods allowing to modify this information. We also assume that
there is a globally accessible channel information — containing the state of
the channel (Silence, Collision, Transmission) and the identity of the trans-
mitting station (if there was a successful transmission). The pseudo-code
of the algorithm is presented as two procedures:

transmissionPhase (Algorithm 3) — executed in the transmission phase
of the round;

listeningPhase (Algorithm 4) — executed in the listening phase of the
round.

Procedures are executed by switched on stations.

Methods. The algorithm relies on the following methods:

moveBigToFront (station ID) — moves station of the input ID to the front
of the (local) station list;

transmit () — transmits a packet from the station queue, with attached ID;
shouldWakeUp () — checks the idle timeout of the station, that is, the num-
ber of rounds left until its predecessor can be in the Transmitting state.
Depending on the moment of when the station switches to Idle state, the
starting value is either n or n — 1 or n — 2 and decreases by 1 each round.
Upon becoming 0, the procedure outputs “true” and the station switches to
Listening state.

22

Procedure transmissionPhase (station)
switch station.state do
case Transmitting do
if station.queue > 0 then
station.transmit();
station.transmitted = true;
case Big do
‘ station.transmit();
Algorithm 3: 12 O’clock full-sensing algorithm, transmission phase.

Initialization. In the beginning all but the first two stations are in the Idle
state, while the one with the smallest ID is in Transmitting state and its
successor is in the Listening state.

Idle state. In this state the station does not access the channel, it only keeps
updating its idling time until the next wake-up — it decreases by 1 each
round. The starting number of idling rounds is either n or n — 1 or n —
2, depending on the state from which the station switches to Idle and the
packet on the channel, see the description of Listening and Transmitting
states below. After awakening, i.e., when the idling time decreases to zero,
the state switches to Listening.

Listening state. A station in the Listening state considers all three channel
state cases, in the following way.

Collision on the channel occurs only when a Big station S interrupted its
successor. No information is available on the channel, hence the Listening
station keeps its state unchanged for one more round in order to hear an 1D
of the Big station. Note that there will be two stations in the Listening state
and one in the Big state next round. Both listening stations would recognize
S as Big and update their local station lists accordingly.

Upon hearing a silence, the Listening station knows that it will not inter-
rupt a Big station transmission next round and thus it changes its state
to Transmitting.

Finally in case of the transmission on the channel, the Listening station
checks transmission ID on the channel and either it takes the token from
its successor, or becomes idle and updates the local station list if it was not
its predecessor’s transmission. It becomes idle for the next n — 2, n — 1
or n rounds until subsequent wake-up; more specifically, the first idling time

23

Procedure listeningPhase (round, station, channel)

o

ase

ase

o

switch station.state do
case Idle do
if shouldWakeUp() then
‘ station.state = Listening;
ase Listening do
switch channel.state do

case Silence do
‘ station.state = Transmitting;
case Collision do
‘ station.state = Listening;
case Transmission do
if channel.transmitterld=predecessor.id then
‘ station.state = Transmitting;
else
station.state = Idle;
station.moveBigToFront(channel.transmitterld);

Transmitting do
switch channel.state do

case Silence do
‘ station.state = Idle;
case Collision do
station.state = Idle;
station.moveBigToFront(predecessor.id);
case Transmission do
if station.transmitted then
if station.queue > 3n then
‘ station.state := Big;
else
‘ station.state = Idle;
else
station.state = Idle;
station.moveBig ToFront(predecessor.id);

Big do
f mod(round,n) = n-1 AND station.queue < 2n then

station.state := Transmitting;
station.moveBigToFront(station.id);

Algorithm 4: 12 O’clock full-sensing algorithm, listening phase.

24

n — 2 occurs when station waited additional round after collision on the
channel, the second idling time n — 1 occurs when the station hears a Big
station which is currently located after it on the list of stations, and the last
idling time n occurs when the Big station was located before it on the list.

Transmitting state. The Transmitting state is taken by a station once per
cycle in the round corresponding to its current position on the list of stations,
unless there is a Big station in the beginning of that round.

A station in the Transmitting state changes its state to Idle when there is a si-
lence on the channel — it is possible only when it had no packets and there
was no Big station in the beginning of this round. In the case of collision,
it updates its local station list by moving its predecessor from the list to the
front, as its is the only station which transmission on the channel would allow
the Transmitting station to change its state from Listening to Transmitting.
If a Transmitting station was successfully heard on the channel, there can
be no Big station transmission in this round. Additionally, if the station has
a queue size exceeding 3n, it changes its state to Big and keeps transmitting
accordingly starting from the next round. Otherwise, it changes its state
to Idle, in order to awake in its listening turn during the next cycle, after
n — 2 rounds. If the station has not transmitted but a single transmission
occurs on the channel, then this is a transmission from predecessor of Big
station (any other Big station would cause the station not to switch to the
Transmitting state in the first place, as it would switch directly from the Lis-
tening to Idle) which has not caused a collision only because the Transmitting
station has had no packets to transmit. In this case the station behaves ac-
cordingly — updates the local list of stations and changes its state to Idle.

Big state. At the end of each cycle, a Big station checks whether its queue
size is still bigger than 2n; if not, it changes its state to Transmitting. In
any other round, the Big station transmits a packet and remains in the same
state. The following property can be easily deducted: once a station changes
its state to Big (which happens when being in Transmitting state), it stays
there at least till the end of the next cycle; it may then continue throughout
the whole next cycles, until it changes to the Transmitting state at the end
of some of them.

4.2. Protocol correctness and performance analysis

Similarly to the Adaptive protocol analysis, we consider the sum of the
queues’ sizes in the beginning of a cycle. If the sum of queues’ sizes is greater

25

than ¢ = n(3n—1)+1 we say that it belongs to the dense interval, otherwise
it belongs to the sparse interval. This way any execution of the Full-sensing
algorithm consists of dense and sparse intervals. In relation to a fixed inter-
val we consider the following terminology: station is pre-big if it had never
been in the Big state and it is post-big if it was at least once in the Big state,
during the considered cycle. Station is potentially-big if its queue size allows
it to become Big (provided other necessary conditions would hold) or it is
in the Big state. Each cycle can be only of one of the three types:

Type-1. Without any Big station. Token is being passed in the Round-
Robin way, by adapting Listening and Transmitting states. This means that
at any single round there is one station in the Transmitting state and one
in the Listening state.

Type-2. With a Big station S starting to transmit as Big in some round
of the cycle. Here, the token is being passed in the Round-Robin way by ap-
plying the sequence of Listening and Transmitting states to consecutive sta-
tions on the list, until S transmits for the second time. The successor of sta-
tion S cannot recognize S as Big since S is supposed to transmit by the
default Round-Robin way of passing the token within the list order. Col-
lision occurs if the successor of S has a packet to transmit. Otherwise,
in the case of successful transmission, stations in Listening and Transmitting
states active at this round would read the Big station ID from the transmis-
sion, both changing their states to Idle afterwards. Otherwise the station
in the Transmitting state learns from the collision about the state of .S, and
then it changes its state to Idle and updates the local station list. The sta-
tion which was in the Listening state at that time learns about the state
of S a round after the collision, since it could not be a successor of any Big
station.

Type-3. With a Big station S keeping the token for the whole cycle. All but
one station after waking-up in the Listening state will learn about the state
of S and become Idle until the next cycle. However, there is a station which
would not recognize S as Big, but it will be interrupted by its transmission.
Through the collision on the channel it would however learn about the state
of S, an then it changes its state to Idle and updates the local station list.
The following two lemmas justify the usage of cycles defined above and pro-
vide the limit on the number of collisions. They will be used implicitly in the
analysis.

Lemma 4.1. FEach cycle is of one of the three above types.

26

PrOOF. The initial conditions of the algorithm specified in Subsection 4.1,
enforce the system to start in the type-1 cycle. Type-1 cycle can be followed
by another type-1 cycle, if there is no potentially big station, or by a type-2
cycle otherwise.

In a type-2 cycle the Big station is chosen, and therefore it can only be fol-
lowed by a type-3 cycle — this is because the Big station needs to transmit
more than n packets in order to start to consider changing its state, which
may happen only at the end of some cycle.

A type-3 cycle, with a Big station keeping the token (to transmit) for the
whole cycle, can be followed either by the same type of a cycle if the adversary
keeps injecting packets into the Big station, or by a type-1 cycle if there
is no potentially-big station, or by a type-2 cycle otherwise. 0

Lemma 4.2. No more than one collision per cycle can occur.

ProoOF. Note that in a type-1 cycle collision may not occur, as at any sin-
gle round there is station in the Transmitting state and another one in the
Listening state.

In a type-2 cycle no collision occurs until the second transmission of a station
in the Big state, by the same reasoning as for type-1 cycles. If the Big station
successor has packets in its queues there is a collision on the channel. The
station in the Transmitting state becomes Idle at the end of this round until
the next cycle. Stations further down on the list cannot have the Big station
as predecessor and would wake up in the Listening state, learn about the Big
station from its transmission and change their state directly to Idle, hence
there can be no more collisions.

A type-3 cycle with a Big station S holding the token. Consider the case,
when type-2 cycle precedes. We divide stations of the system into two groups:
group-A consists of stations after the Big station S on the list, which have
already learned about the state of S and updated their local lists of stations.
Group-B are stations before S on the list, which had no occasion to do so.
If group-A is empty, then there is a single succeeding to S station in the
group-B. It causes one collision due to assumption of default Round-Robin
predecessor, which is S. The rest of the stations in this cycle will switch
directly from the Listening to Idle state, thus no more collisions occur. If
both group-A and group-B are not empty, then no station in the group-B
can have S as predecessor, because S is down in the list for any station
in group-B by definition, and its not last on their outdated list version since

27

group-A is not empty. Due to group-A stations having their lists updated,
S is the first station in their lists, which together with nonempty group-B
assumption makes it impossible to any station from the group-A to have
S as predecessor. It follows that all of the group-A and group-B stations
would change state directly from Listening to Idle, thus no collision occurs.
If group-B is empty or type-3 cycle precedes the current cycle, then the cyclic
order of the list does not change (i.e. each station has the same successor
and predecessor in the beginning and the end of the cycle). It follows that
there is a single succeeding to S station which causes a single collision due
to assumption of default Round-Robin predecessor, which is station S. No
more stations can have S as predecessor, thus the rest of the stations would
change state directly from Listening to Idle and no more collisions occur. [

We call a round with collision caused by station in the Big state an assertion
round. In relation to cycles we assume that there is an assertion round
in every cycle, since this is the worst possible case — no more than one collision
in a cycle can occur by Lemma above. By a silent round we understand any
non-assertion round with no successful transmission. We say that a station
causes a silent round if during this round it is in state Transmitting; note
that it may occur only if the station has empty queue in this round. Observe
also that there cannot be a Big station in a silent round, as stations in Big
state have more than n packets in their queues.

Lemma 4.3. In any dense interval, a station can cause a silent round at most
n — 1 times while being pre-big.

Proor. Silent rounds occur when some station holds the token but has
no packets in its queue. Assume that a station S has no packets in its queue.
Within dense interval, in each round there is a potentially-big station. For
any cycle, if potentially-big station is before S on the list, then S would
receive no token or receive it and decrease its position on the list. The
position of S cannot decrease more than n — 1 times, because there can
be no potentially-big station after S if it is the last on the list. Since in the
dense interval there is always a Big station, S as the last station in the list
either has no possibility to cause silent round (when some other station S’
before it in the list changes state to Big), or becomes Big itself. Pre-big
station life-cycle terminates once station is in the Big state by our definition,
hence through the whole pre-big life-cycle station S may cause no more than
n — 1 silent round. U

28

Lemma 4.4. In any dense interval, a station causes no silent round while
being post-big or in a Big state.

PROOF. A post-big station S could be in a Big state, Transmitting state
or in one of the other two states. In the latter case, it does not attempt
to transmit, hence it cannot cause a silent round. If the station enters Big
state, it switches from the Transmitting state at some round of the cycle,
having more than 3n packets in its queue; it’ll switch back to the Transmit-
ting state when having less than 2n packets in the end of the cycle. Thus,
in any round of the cycle the number of packets cannot drop below n, and
hence no silent round occurs.

It remains to analyze the case when S is in the Transmitting state. Upon
leaving the Big state for the last time, it had at least n packets in its queues
and was placed in the beginning of the list of stations, by the algorithm
construction. Then, observe that S has had an opportunity to transmit
only at some type-2 cycle when there is no potentially-big station before
it on the list or when S is potentially-big at the time it switches from Listening
to Transmitting state. In the latter case, instead of staying in Transmitting
state it immediately switches to Big state, in which case we already analyzed
in the beginning of the proof. Otherwise (i.e., in the former case), either
some potentially-big station after S becomes Big, which implies that in some
of the next cycles, it will switch back to Transmitting state and the position
of S on the list decreases without causing any more silent rounds, or S receives
no token and so it cannot cause a silent round by default. The position cannot
decrease more than n — 1 times, because there can be no potentially-big
station after S if S is the last on the list (the argument is similar to the one
from the proof of Lemma 4.3). Since S had at least n packets when switching
from its Big state, it can transmit and decrease its position at most n — 1
times or become Big, whatever comes first; in any case, it has at least one
packet when being in Transmitting state. 0

Theorem 4.5. The 12 O’clock full-sensing protocol achieves throughput 1 —
% on a channel with restraint of 3 and the maximum number of packets stored
in a round 1s at most L + (n —1)> +n+ = 0(n*>+ B).

PROOF. Injection rate stability limit of 1 —% follows from inability to identify

a Big station B by B station successor in the list. This results in potential
collisions every cycle and in consequence wasting one each of n rounds.

29

The analysis of bounds on the queue size bases upon sparse and dense in-
tervals defined above. Within a sparse interval, there can be no more than
¢+ n+ B packets in the stations at the end of any cycle. Indeed, the biggest
possible number of packets that the system can start a cycle with is equal
to £, and the adversary can inject no more than n + packets in n conse-
quent rounds of the cycle. Once the queue size becomes greater than ¢ in the
beginning of a cycle, the sparse interval terminates and the dense interval
begins.

In the remainder, we focus on dense intervals. Note that in the beginning
of a dense interval, the number of packets in the system is at most £ +n+ (.
indeed, as in the beginning of the preceding cycle the interval was sparse,
the number of packets was not bigger than ¢, and during that cycle the
adversary could inject at most n packets accounted to the injection rate plus
the burstiness.

Within any dense interval, a station in the Big state is guaranteed to exist
in each cycle, by the pigeon-hole principle. It makes type-1 cycle impossible
to occur. Consider type-3 cycles: during those cycles a packet is transmitted
in every round, and thus a silent round cannot occur; hence the number
of packets does not grow (except of burstiness above the injection rate, but
this is upper bounded by £ at any round of the interval, by the definition
of the adversary).

In type-2 cycles, by Lemma 4.4 silent rounds cannot be caused by post-big
stations and stations in Big state cannot cause silent rounds as they always
have more than 2n packets pending. Hence, type-2 cycles may have silent
rounds caused only by pre-big stations. However, there can be no more
than n — 1 pre-big stations in the system in the beginning of the dense
interval (because there is at least one potentially-big station). Each pre-
big station can cause no more than n — 1 silent rounds, by Lemma 4.3.
Observe that in each cycle with a silent round some potentially-big station
will change its state to Big — a silent round would not occur if there was
a potentially-big station with higher position on the list. Hence, there can
be no more than n — 1 cycles with silent rounds caused by same (pre-big)
station. To summarize, there are at most n — 1 cycles with silent rounds
for each of at most n — 1 pre-big stations, resulting in the upper bound
of £ + (n —1)?> + n+ 3 on the sum of the queue sizes in a round. O

30

4.3. Stability bound improvement

It was proved in [3] that it is not possible to construct a full-sensing stable
protocol against an adversary p = 1 for a system with a number of stations
bigger than 3. Below we show how the 12 O’clock full-sensing protocol can
be modified to withstand injection rates higher than 1 — %

Lemma 4.6. For any given p < 1, the 12 O’clock full-sensing protocol can
be modified to be stable against the adversary with injection rate p .

PRrROOF. Algorithm may handle any injection rate p smaller than 1 by fol-
lowing the strategy:

e Transmitting station considers itself Big when it has more then 2n + kn
packets, where k > ﬁ is a positive integer;

e Transmitting station remembers of being interrupted by its predecessor,
and instead of waking up after the subsequent nearly n rounds, as in the
original 12 O’clock full-sensing protocol, it wakes up after kn rounds.

This way interruption may happen only once in kn rounds and the adversary
with injection rate of p = 1— ﬁ can be handled. We adjust the sparse/dense
border value to ¢ = n((2 + k)n — 1) + 1, since the Big station definition
has changed. Following the logic of the proof of Theorem 4.5, in any dense
interval there are at most k(n — 1) cycles for each of at most (n — 1) pre-big

stations, resulting in the upper bound of total queue size of ¢/ + k(n — 1) +
n+ B = O0(kn*+ B). O

5. Non-adaptive protocols

In this section we consider non-adaptive protocols in k-restrained model,
specified in Section 5.1.

In Section 5.2 we prove two limitations for this class of protocols. One of these
limitations restricts the protocol class to use global-clock mechanism and it is
followed as the basic requirement later through this section.

Next, we introduce a new combinatorial construction called k-light selectors,
c.f., Sections 5.3 and 5.4. This construction is an extension of the well known
selectors concept and we believe that it can be of independent interest.

We utilise k-light selectors to design an algorithm that is throughput-optimal
up to the multiplicative polylogarithmic factor. The algorithm works in k-

restrained channel and achieves throughput © <ﬁ2(n)>, see Sections 5.5
and 5.6.

31

5.1. Specification of non-adaptive protocols

In non-adaptive protocols, the decision to attempt to transmit is a func-
tion of the round number and the Id of the station. In effect, the schedule of
transmission attempts can be represented by an unbounded binary sequence,
in which 1 at position ¢ represents an attempt to transmit in round ¢, where
rounds are counted since the packet became pending, and 0 represents paus-
ing. The round number is computed locally in the model without a global
clock. That is, the round number is computed as the number of rounds from
the injection of the first packet.

In our paper, we operate on non-adaptive protocols adjusted with a global
clock mechanism, wherein the round number is common for all stations.
Note that pseudo-random number generators, commonly used by randomized
protocols (including Backoff), often use the global time reference as the seed
— it could be seen as analogous to our definition of non-adaptive protocols,
which, based on the global time, compute 0-1 decisions about transmission
attempt in subsequent rounds.

In our design of efficient non-adaptive protocol in Section 5.5, we will use the
global clock mainly to synchronize transmission sequences across stations.
The transmission sequences will be specified based on a selector family, de-
fined and constructed in Sections 5.3 and 5.4.

5.2. Upper bound on throughput

We first prove that access to global clock is necessary to have non-trivial
stability of k-restrained non-adaptive protocols, for any non-trivial k£ < n.

Lemma 5.1. For any p > 0 and k < n, there is no k-restrained determinis-
tic non-adaptive algorithm, without a global-clock mechanism which is stable
for injection rate p.

PROOF. Assume, to the contrary, that P is a k-restrained deterministic non-
adaptive protocol without a global clock that is stable for injection rate p > 0
in the system of n stations. Then, for each station .5;, there is a default
transmission schedule p;, where 7 is the index of the station. Note that p;
does not depend on global time, because we assumed that P does not have
access to it. Because P is stable for a positive injection rate, each p; contains
a first occurrence of transmission event, indicated by bit 1 at some position
of the sequence; call this position t;.

32

Since the system is not equipped with the global clock mechanism, each
station S; will run its corresponding schedule p; regardless of the round it
starts considering a packet. Let us say that s; is the first round when station
S, receives a packet, and thus it starts executing its transmission schedule. It
follows that the first transmission of station .5; occurs at round s;+t;. In order
to overload the system, the adversary follows the strategy: choose round e
as e = max{ty,...,t,}; inject first packet to station S; at round s; = e — t;.
Under such adversarial scenario, all n stations transmit at round e, which
violates the k-restrained assumption for k& < n. This contradiction proves
the lemma. Note that applying this scenario requires waiting for sufficient
number of rounds to be able to inject n packets. This is however eventually

possible for any p > 0. In this construction, we used burstiness equal to n.
O

Next, we show instability result for the considered protocols for sufficiently
large injection rates, even if the global clock is provided.

Theorem 5.2. Non-adaptive algorithms in the k-restrained channel with

global clock, where k < n, cannot achieve throughput higher than min{%, loén .

PROOF. Assume first that % < @. Directly from the definition of stability,

we show that the system cannot be stable if p > % Namely, for any arbitrary
threshold T' we show that the adversary can inject packets generating a queue
of size greater than T" during some 7 consecutive rounds. Parameter 7 is to
be fixed later. The channel restraint of £ implies that at most £ stations
can be active in a single round and, therefore, during 7 consecutive rounds
there could be at most 7 - k station activities in total. In particular, at most
7 - k times, stations will be given an opportunity to transmit a packet and
decrease their queues. There are n stations in the system, hence, by pigeon-
hole principle, there is a station S; for some j € [n] that is allowed to transmit
at most T—nk packets during the considered 7 rounds.

Non-adaptive protocols with a global clock provide the adversary with a power
to know stations schedules in advance, as the adversary can calculate val-
ues of the protocol function for any round and each station; hence, it can
pick the station S; in advance. Once the station S; is chosen, the ad-
versary can inject |7 - p| packets into the queue of S; during 7 rounds.
It follows that station S; at the end of 7 considered rounds has at least
|7-p] =7 -k/n>71-(p—Fk/n)—1 packets. In order to go beyond the

33

threshold 7" it is enough to take 7 such that 7- (p — k/n) — 1 > T, that is,
7> (T+1)/(p—k/n). Observe that such finite 7 exists since, by our initial
assumption, p — k/n > 0.

The second case, when the minimum formula equals to @, follows directly

from Theorem 5 in [32]. O

5.3. k-light Selectors
Let us consider a set N = {1,...,n} and its subsets S, X,Y C N. We say

that S hits X if |[SN X| =1, and S hits an element z if x € S. We say that
S avoids Y if [SNY|=0.

Definition 1. We say that a family S C 2V is a (n,w)-selector if for any
subset X C N such that w/2 < |X| < w there are w/4 elements hit by at least
one subset from S.

Note that this definition is a special case of a selective family [18]. The intu-
ition behind § is as follows: we can “separate” at least a fraction of elements
of any subset X (of appropriate size) using sets that belong to S.

Definition 2. We say that S = (n,w)-selector is k-light if any S € S satisfies
|S] < k.

Theorem 5.3. k-light (n,w)-selector of size m = O ((w + n/k)logn) exists.

Proor. We divide the proof of the formula

m = O ((w+n/k)logn) (1)
into two parts. The first part of the formula, O (wlogn) for w > %, comes
directly from Lemma 1 done by Chrobak et al. [33].

To prove the remaining part, let us assume that w > 1 and w is divisor of n.
Let m be the size of a selector to be fixed later. Let us choose independently
m random subsets of {1,...,n} of size | = 2. That is, S = (S1,...,5)
is a random family. Let us consider any fixed sets X,Y C {1,...,n}, such

34

that w/4 < |X| <w; |Y| < w/4 and a random S;.

() (™M
()

(n— X[=YD=t X[= X =Y -

. nt - n—l+1H

Pr[S; avoids Y and hits X| =

o ©)

w 225, @l 5, -1
4][4 4 4

> > 1——
n n—1 n (n—l—l—Q)

w ., n 5o\
>4 w 1_4_ > Z o —)
> (n/4) _4exp(5)=c>0

Let us bound the probability that for any sets X, Y such that w/4 < | X| < w
and |Y| < w there exists an i such that S; hits X and avoids Y. The
probability of complementary event can be roughly bounded as follows:

)gd::; (I;) yzw; (|}7z|) (1—¢c)™ <wn®™(1—c)™

< n4w(1 . C)m < 6ZLu)lIl?‘L—7‘r11n(1—c) <1.

(3)

Note that the last inequality holds for some m = O(wlogn) — for such m
the random structure S = (51, S, . . ., S,) with probability greater then zero
hits any X and avoids any Y of an appropriate sizes. Thus such a structure
must exist and in consequence we can take & and use it for the reminder
of the proof.

Now we show that S is a (n,w)-selector. Let us take any X such that
w/2 < |X| <wand Y = (. By the property of S there exists S;, such that
it hits X. Let {r} = |S;, N X|. Now let us construct X = X \ {r} and
Y =Y U{r}. Sincestill w/4 < |X| <w and |Y| <w/4 we can find S;, € S,
such that it hits the truncated X and avoids Y = {71} thus there exists
ry = |S;, N X|. Then we set X = X \ {2} and Y =Y U {r}. We iterate
such separation w/4 times to get w/4 distinct elements that are chosen from
the initial X. Thus we get the first case of the theorem.

To prove the second part of the formula (1) O ((n/k)logn) for 2 > w, first
we need to construct an Z-light selector S’ of size m = O(wlogn). Clearly,
this is possible using the above construction. Then we need to partition each

35

Si € 8" into [=] sets of size at most k to obtain a “diluted” selector. This
results in m = O(75wlogn) = O(F logn) sets of size at most k. O

5.4. Construction of selector in polynomial time

The previous section has provided a proof that k-light selectors exist, but
does not specify how it can be constructed. It turns out that the construction
is not trivial, therefore in the current section we present a polynomial time
construction of k-light selectors. It uses two major components: dispersers
and superimposed codes.

Dispersers. A bipartite graph H = (V,W, E), with set V' of inputs and
set W of outputs and set E of edges, is a (n,{,d, d, e)-disperser if it has the
following properties: |V| = n and |W| = ¢d/d; each v € V has d neighbors;
for each A C V such that |A| > ¢, the set of neighbors of A is of size
at least (1 — ¢)|W|. Ta-Shma, Umans and Zuckerman [34] showed how to
construct, in time polynomial in n, an (n, ¥, d, d,€)-disperser for any ¢ < n,
some & = O(log®n) and d = O(polylog n).

Superimposed codes. A set of § binary codewords of length a, represented
as columns of an a x b binary array, is a d-disjunct superimposed code, if it
satisfies the following property: no boolean sum of columns in any set D
of d columns can cover a column not in D. Alternatively, if codewords are
representing subsets of [a], then d-disjunctness means that no union of up
to d sets in any family of sets D could cover a set outside D. Kautz and
Singleton [35] proposed a d-disjunct superimposed codes for a = O(d?log?b),
which could be constructed in polynomial time.

Polynomial construction of light selectors. We present a construc-
tion method for k-light (n,w)-selectors of length m = O (w polylog n) for
m = O (% polylog n) and k > 2 for k < I, in time polynomial in n.
Such setting is equivalent to constructing k-light (n,w)-selectors of length
m = O ((w+ n/k) polylog n) in time polynomial in n. The construction
combines specific dispersers with superimposed codes. Let 0 < & < 1/2
be a constant. Let G = (V,W, E) be an (n,w/4,d, 0,)-disperser for some
§ = O(log®n) and d = O(polylog n), constructed in time polynomial in 7,
c.f., [34]. Let Ng(v) stay for the set of neighbors of node v € V in graph
G. Let M = {M,...,M,} be the rows of the ¢-disjunct superimposed
code array of n columns, for a = O((¢d)?log®n), constructed in time poly-
nomial in n, c.f., Kautz and Singleton [35]; here § is the parameter from the
disperser GG and ¢ > 0 is a sufficiently large constant. W.l.o.g. we could

36

uniquely identify an ¢th of the n columns of the superimposed code with ith
node in V.

For a constant integer ¢ we define a k-light (n,w)-selector S(n,w, k,c) with
length at most min{n, a|W|a}, for some a to be defined later, which consists
of sets S;, for 1 < ¢ < m. Consider two cases. For the case when n < m|W|a,
we define S; = {i}. In the case of n > a|W|a, we first define sets Fj
as follows: for j = za +y < a|W/|, where z,y are non-negative integers
satisfying x +y > 0, F} contains all the nodes v € V' such that v is a neighbor
of the z-th node in W and v € M,; ie., Fpory = M, N Ng(z). Next,
we split every Fj into [|Fj|/k] subsets S of size at most k each, and add
them as elements of the selector S(n,w, k,c). Note that each set S; from
S(n,w, k, ¢) corresponds to some set F; from which it resulted by the splitting
operation; we say that F} is a parent of S; and S; is a child of Fj. In this
view, parameter « in the upper bound m < a|W|a could be interpreted as
an amortized number of children of a set F;. We will show in the proof of the

following theorem that o < "d'(06),: log”n a“l,w + 1.

Theorem 5.4. S(n,w, k,c) is a k-light (n,w)-selector of length
m = O (min{n, (w+ n/k) polylog n}) (4)
for a sufficiently large constant ¢, and is constructed in time polynomial in n.

PROOF. First we show that S(n,w, k,c) is a k-light (n,w)-selector, for suf-
ficiently large constant ¢ > 0. Second, we consider the more complex case
of n > a|Wl|a.

Let set A C V be of size between w/2 and w. Suppose, to the contrary, that
there are less than w/4 elements in A hit by some sets in S(n,w, k,c). It
implies that there is a subset B C A of size w/4 + 1 such that none of the
elements in B is hit by sets from S(n,w, k, ¢).

Claim. Every w € Ng(B) has more than ¢ neighbors in A, where ¢d is a dis-
junctness parameter of M. The proof is by contradiction. Assume, for sim-
plicity of notation, that w € W is the w-th element of set W. Suppose,
to the contrary, that there is w € Ng(B) which has at most ¢d neighbors
in A. More precisely, that |[Ng(w) N A| < ¢d. By the fact that M is a co-
disjunct superimposed code, for a = O((¢d)?log® n), we have that, for every
v € Ng(w) N A, the equalities

Fary N A= (M,N Ng(w))N A =M, ([Ng(w)nA) ={v} (5

37

hold, for some 1 <y < a.

This holds in particular for every v € B N Ng(w) N A. There is at least
one such v € BN Ng(w) N A, because set BN Ng(w) N A is nonempty due
to w € Ng(B) and B C A. The existence of such v is in contradiction with
the choice of set B. More precisely, B contains only elements which are not
hit by sets from S(n,w,k,c), but v € BN Ng(w) N A is hit by some set
Fy.a4y, thus is also hit by some children S; € S(n,w, k,c) of Fy.q4+y. This
makes the proof of the Claim complete.

Recall that |B| = w/4+ 1. By dispersion, the set Ng(B) is of size larger than
(1 — ¢)|W|, hence, by the Claim above, the total number of edges between
the nodes in A and Ng(B) in graph G is larger than

(1—e)[W|-cd=(1-¢e)O((w/4+4+1)d/5) - cd > wd , (6)

for a sufficiently large constant c. This is a contradiction, since the total
number of edges incident to nodes in A is at most |A| - d = wd. Tt follows
that S(n,w, k, ¢) is a k-light (n,w, k)-selector, for a sufficiently large constant
c.
Before estimate the length m of this selector, note that the union of all sets
F; in the case n > a|W|a is at most a - (|V| - d), because an element in some
F}; corresponds to some edge in the disperser and repeats at most as many
times as the number of rows a in the superimposed code M. Hence, the
amortized number of children S € S(n,w, k, ¢) of a set F}, parameter «, is at
most
a-(|V]-d) 1
ko W

The length m of this selector is thus at most

+1. (7)

. 2 2
min{n, a|Wl|a} = O (min {n,(52 log®n - wd/§ + nd (05]1 log n}) (8)

= O (min {n, (w + n/k) polylog n}) ,
since d = O(polylog n) and § = O(log® n).

The case n < a|W|a is clear, since each element ¢ in a set A of size between
w/2 and w occurs as a singleton in some selector’s set, mainly in S;. U

5.5. Protocol K-LIGHT INTERLEAVED SELECTORS

W.l.o.g., to avoid rounding, assume that n is a power of 2 and therefore logn
is an integer. We consider a sequence of Sy, ..., Siogn, Where S; is k-light

38

(n 21)- selector of size m;. Let S? be the j-th set of the i-th selector. That is,

= {S},...,S"}. Let us consider the round number ¢ that can be uniquely
represented ast = jlogn-+ifor1 <i<logn and j > 0. Station x transmits
at round ¢ if and only if x has a packet to be transmitted and z € §7 ™°¢ ™!,
The order of sets of selectors “activating” stations is crucial for performance
of the algorithm and motivate its name. This order is depicted on the Fig. 5.

5.6. Protocol correctness and performance analysis

Obviously in a single round at most k stations can transmit, since the sets Sf
consist of at most k elements. We now analyze the performance of the pro-
tocol.

Theorem 5.5. Assume that in round t there are r stations with nonempty
queues, such that 2 <r < 2. The system will make at least 27 /16 packets
heard on the channel before the round t' = t+8> 7_ mylogn for some j > i.

PROOF. Let us first consider a set Xy C {1,...,n} of stations such that
|X0| =rand 27t <r < 2. Let S; = {S},..., 5"} be a (n,2")-selector and
Siv1 ={S},..., 5"} be a (n,2")-selector for some i < logn. We assume

that stations frorn Xo have non empty queues of packets. We observe all
stations during 7' = m; + m,;,, rounds. We assume that the adversary can
add packets to queues (even to initially empty queues) during the execution
of the algorithm. Let X; be the set of nonempty stations in round . In the
J-th round stations from X; NS transmit for j < m; and X; N .S/ ™ for
J > m;. In other words, in consecutive rounds transmit nonempty stations
pointed by sets from §;, then stations from S, ;.

Lemma 5.6. If less then 2i/16 different stations has transmitted during
T rounds of the process then | Xr| > min{r + 2°/8,2:1}.

Sl 1 1 1

!

sl 52 53 52 55 52 52 53 54 55
!

sl § 53 54 55 56 51 S§ Sg sg‘;

Figure 5: Interleaved Selectors: A = {S1, Sa, S5}, where §; = {St, 52}, S = {S3,..., 55}
and S = {S1,...,S5}.

39

PROOF. Let Y = Uszl X; \ Xo be the set of all stations filled by the adver-
sary during the process. Let O* be the set of stations that are transmitted
during the process. Moreover, let 7(X) denote the set of the stations that
transmitted at least once in the static case with the initial set X of nonempty
stations, i.e. when the adversary does not add any packets.

Clearly, |T(XoUY)| < |O*| +|Y|. Indeed, adding Y to the set of stations
with nonempty queues can increase the number of transmitting stations only
by |Y]. On the other hand if a transmission of a station is blocked in the
original process it must be also blocked in the case if all X, UY stations are
nonempty at the beginning.

Let us consider two cases. In the first we assume | X, UY| < 272, In follows
that |7 (Xo UY)| > 2'/4 because of the properties of selectors. Thus 2°/4 <
|O*| + |Y|. We assumed however that |O*] < 2¢/16 , thus Y] > 3/16 - 2°.
That is, the adversary added packets to at least 3/16 - 2 initially nonempty
stations but less then 2°/16 has transmitted. Finally in he round T a least
r + 2¢/8 are nonempty. In the remaining case, if |Xo U Y| > 272 and only
at most stations 2¢/16 transmitted, the lemma holds trivially. 0

Note that in any contiguous segment of (m; + m;;1)logn rounds, all sets
of stations with nonempty queues from selectors §;, S;11 are allowed to trans-
mit (see Fig 5). Following Lemma 5 after (m; +m;;1)logn executed rounds
at least one of the three events occurred: (1) 2°/16 transmitted; (2) the num-
ber of stations with nonempty queues increased by 2¢/8; (3) there is at least
2it1 nonempty queues.

Note that event (3) may occur at most logn — i times, similarly event (2)
may occur at most 8(logn — i) times till reaching the state of at least
2"~ nonempty stations. Thus, after at most 28" ' (m; + myy1)logn +
Miogn logn = O(% log® n) rounds at least a fraction of nonempty stations will
transmit at least one packet. 0]

Combining Theorem 5.5 with Theorem 5.3 we get:

k
nlog?n

Corollary 5.6.1. The protocol achieves throughput © (> on k-restrained

channels.

6. Algorithms simulations

In order to evaluate efficiency of developed protocols, we performed sim-
ulations for both new and existing algorithms and compared the results.

40

We analyzed the impact of the execution length, system size and injection
rates on the queue sizes and channel restrain [36].

We collate Adaptive and Full-sensing versions of the 12-O’CLOCK algorithm
as well as 8-light INTERLEAVED-SELECTORS and ROUND-ROBIN algorithms
with BACKOFF exponential and polynomial algorithms. Our main simula-
tion goals are to analyze and compare the following across the considered
protocols:

General workflow for stable injection rates;

Maximal throughput, - we look for the lowest injection rates where queue
size or latency show dependency on the number of rounds passed (because
practically time-dependent behavior indicates instability);

Channel restrain below critical injection rates, so that channel restrain
in stable executions could be evaluated.

A summary of the obtained results is presented in Figures 6-8b. Experi-
ment results are presented without error bars to improve clarity, as several
graphs are present in each figure. Each recorded result is an average of 120
experiments of one million rounds each.

6.1. Simulation tmplementation details

We have implemented algorithms 12 O’CLOCK adaptive and full-sensing ver-
sions, 8-light INTERLEAVED-SELECTORS, Round-Robin, as well as exponen-
tial, linear and square polynomial versions of BACKOFF algorithm in Java
and Julia programming languages.

Backoff protocols. BACKOFF protocol is a popular randomised contention
resolution algorithm. We follow the model and algorithm description from [31].
This kind of algorithm is defined as follows: each station S maintains a posi-
tive integer value w called window-size. For each round ¢ with station S hav-
ing a packet in its queue, S randomly (uniformly) selects a transmission
round t', such that ¢ > ¢ and ' < t + w. The initial value of the window
size is w = 1 by default. If there is a collision on the channel at round ¢,
S refers to the window function f defined by the algorithm to compute new
window size w: w' = f(w). Otherwise the window size is reset: w = 1. Popu-
lar window functions include polynomial, square polynomial and exponential
functions.

For the purposes of the simulation, we follow the parameters of window size
functions defined in [31] as 2w, 2w? and 2* for polynomial, square polynomial
and exponential functions respectively.

41

Additionally, in our simulation the size of the window w is capped at con-
stant 2048. Capping the window size is a technique commonly utilised
in practice. It allows to protect protocols from unnecessary increase of the
window size and thus improves their worst-case stability.

Non-adaptive protocols. Round-Robin protocol allows any station ¢ to trans-
mit alone in rounds ¢ modulo n. 8-light INTERLEAVED-SELECTORS are based
on randomly generated binary matrices, tested to satisfy the definition of k-
light (n,w)-selector. Note that finding such selector is possible due to the
small size of the utilised construction.

Adversary. In order to perform simulations, we need to define the behaviour
of the adversary. We have chosen strategy of the adversary that seems
to be challenging for the algorithm and reflects some real-life scenarios.
We define an adversary by three parameters used at each round r: injec-
tion rate p — the probability that an adversary will have one more packet
in its stock, burst-probability p — the probability of adversary making a deci-
sion to inject all of the stock packets at once, and finally the stock size limit
[— a constant forcing the adversary to inject all of its stock packets once the
stock size is equal to 3.

We utilise two types of packet distribution in this section. We say that the
packet distribution is uniform when the adversary selects stations to inject
to with the same probability P = % If uniform distribution is not specified,
we assume that the adversary selects a station to inject to .S; with probability
P, where i € {1,2,3,...,n}: Py =Py =5+ 5=; Piso = 5.

Injection rate p and burst-parameter p have values in (0,1). Note that the
burst-probability parameter models the adversary injection behavior: be-
tween rare bursts of large numbers of packets (close to 0) and steady flow
(close to 1). The stock-size 3 is a constant equal to 256, basing on operational
buffer size limits. After performing some preliminary experiments for differ-
ent values of p, we have chosen p = 0.5 for this presentation — it occurred
not to influence the performance as much as expected.

Metrics. We took into consideration several measurements of queues of a
protocol (at round 7):

max-max - a maximal queue size of a single station occurring up to round
r;

avg-max - an average, taken over r rounds, of a maximal queue size of sta-
tions at a round;

42

- gVg-aVQ = aVQ-Max +e Max-avg = = max-max

11 . e e . I e .

1000 1

Queue size

i o e B S Bt okt Al Sk et ke A St e S et At Bl %0 S B A R L % A %A LY LS R A AT L

0
0.00E+0 2.50E+5 5.00E+5 7.60E+5 1.00E+6

Rounds

Figure 6: 12 O’cLOCK full-sensing protocol queues against injection rates p = 0.968,
started with queues in each station equal to ¢ = 96 during 1 mln rounds for a system size
32 against uniform packet distribution.

max-avg - a maximal over r rounds of an average queue size of all stations
at a round;

avg-avg - an average over r rounds of an average queue size of all stations
in a round.

Note that the max-max and max-avg measurements can not decrease and
are always divergent against an adversary without burstiness limit (with
probability 1).

Comparison of those measurements for 12 O’CLOCK full-sensing can be seen
in Figure 6 for system size n = 32 against uniform packet distribution. The
12 O’cLock full-sensing protocol started with 3n = 96 packets per station
(i.e., the total system queue size equal to 3n?) stabilizes against injection
rate p = 0.968, which is slightly smaller than the theoretical stability bound-

ary p = % = 0.96875, for all four measurements and its both avg-max
and avg-avg measurements decrease after handling the starting queues burst
(Figure 6).

Based on the above results, we have chosen the avg-max measurement for
further comparison of protocols. This is because when considering other three
ways of measuring: max-max is highly volatile for the randomized protocols
(and thus it would not be fair for comparison randomized and deterministic
protocols) while avg-avg and max-avg do not envision the worst case scenario

43

we are focused on in this work. Note that the avg-avg measurement, studied
in [31] and in many other previous papers considering stochastic injections,
may yield stability while having single queues many times above the studied
average.

6.2. Bounds on stable injection rates

In order to see how system queues behave for different system sizes, we have
combined simulation results for system sizes n € {4,5,...,32} on a single
plot (Figure 7a).

We have excluded the full-sensing version of 12 O’CLOCK since its results are
similar to the adaptive version in most of the considered scenarios. In this
section we discuss the combined boundaries in Figure 7a and the stable in-
jection rates depicted in Figure 7b defined as minimal injection rates p for
system size n required to make the value of avg-max measurement to exceed
the constant value § = 1024.

Throughput of BACKOFF algorithms achieved in our simulations is similar
to the results of simulations conducted by Hastad et al. [31]. The only dif-
ferences are constants on the observed throughput. This difference between
the two results can be explained by the following: we implemented more
adversarial behavior instead of Poisson distribution, used 1 million instead
of 10 millions iterations for experiment length, avg-max measurement instead
of avg-avg (to better capture worst-case behavior), and finally we set-up
a maximal window size limit to comply with real applications of BACKOFF.
Specifically, the maximal window size limit improves the efficiency of ex-
ponential BACKOFF protocol in comparison to other versions of BACKOFF
protocols in our context.

Non-adaptive protocols have the same Round-Robin implementation of se-
lectors for system sizes n € {4,5,...,15,17,18}, because we were unable
to generate better (n,w)-selectors for w < n/2 required for INTERLEAVED-
SELECTORS in those cases. It follows that their plots overlap. The best
achieved stability bound is around p = 0.6 for system size n = 4, and it grad-
ually decreases with the increasing system size (in a pace resembling hyper-
bola). On the other hand, we can observe an improvement of INTERLEAVED-
SELECTORS over Round-Robin protocol for bigger systems: for some system
sizes its stability range is even a few times bigger than the stability range
of Round-Robin. The irregular shape of INTERLEAVED-SELECTORS stable
injection rates in Figure 7b is caused by selectors being generated inde-
pendently for each (larger) system size, which leaves a scope for further

44

PR
1000 PR L
U

0.8

@

3

3
>

Queue size
o
3
3
Injection rates

IS
3
3

N
S
S

0.2

I o S

D R

)

¥ 0.0
02 0.4 0.6 0.8 10 : 5 10 15 20 25 30

Injection rates System size

o
o

(a) Queue size by injection rates p € [0, 1]. (b) Stable injection rates by system size.

<—< Round-Robin ¥—v Backoff linear e—e 12 O'clock Adaptive ~ #—# Backoff exponential
»— Interleaved-Selectors == Backoff square &—a 12 O'clock Full-sensing +— State-aware

(c) Relation between markers, colors and protocols.

Figure 7: Average round channel access and stable injection rates by system size.

optimization of the quality of selectors.

Backoff protocols display dependency of queue stability on system size, and
the following two phenomenons can be observed. First, the lower rank poly-
nomial/function of BACKOFF protocol the wider extremes in stable injection
rates it achieves for different system sizes, e.g. , p € [0.55,0.7] for exponential
version versus p € [0.45,0.8] for square and p € [0.4,0.85] for linear version,
c.f., the values of p at the top boundaries of corresponding regions in Fig-
ure 7a. The second observation is that for smaller system sizes the protocols
with lower rank function achieve higher stable injection rates while for larger
systems (starting from some size specific for the considered functions) the
tendency is opposite c.f., Figure 7b.

12 O’clock protocols have the least negative impact of an increase of system
size over queue size stability, with 12 O’CLOCK adaptive protocol being
a champion in this terms, c.f., Figure 7b. Note that the stable injection rates
of 12 O’cLocK full-sensing protocol improve with increasing system size.

6.3. Channel restraint and stability

In order not to discriminate randomized BACKOFF protocols, which may
obtain large channel access peaks from time to time (unlike our deterministic
protocols that ensure bounded channel access at any round), we count how
many stations were switched-on on average (over rounds) to evaluate channel
restraint. In Figure 8a we show the ratios of channel accesses and queue
size of the considered protocols to the corresponding performances of 12
O’cLOCK adaptive protocol.

45

15

10

Ratio

Channel access
s =
< o
4
4

0
7 R — i
2 i H i i
0.0 0.2 0.4 0.6 0.8 10 10?2 101 10° 10! 102 10° 104 10° 106
Injection rates Queue size

(a) Ratios of the average round channel accesses (b) Average round channel accesses against queue
(solid lines) and the queue size (dotted lines) of sizes in logarithmic scale, with markers set every
a protocol to the corresponding performance of 12 0.1.

O’cLocK adaptive protocol.

<+— Round-Robin ¥—¥ Backoff linear e—e 12 O'clock Adaptive +—¢ Backoff exponential

»— Interleaved-Selectors =—=a Backoff square s—a 12 O'clock Full-sensing +— State-aware

(c) Relation between markers, colors and protocols.

Figure 8: Average round channel access against queue sizes for injection rates p € [0, 1]
and system size n = 32.

Observe that for BACKOFF protocols the total number of stations attempting
to transmit or listen to the channel each round is close to the system size,
when these protocols work within their stable boundaries. In contrary, the
12 O’cLocK and non-adaptive protocols have a small number of switched on
stations per round and this number is bounded by the respective constant.
In order to better illustrate bi-criteria comparison of protocols, we compare
them with the STATE-AWARE protocol, which has full knowledge about all
of the queues in the beginning of each round and transmits a packet from
a station from the biggest queue. Note that this algorithm is a concept
introduced to provide a reference to the performance of other protocols. It
uses itself a global knowledge that is not accessible to the stations in the
MAC model.

This protocol models close-to-optimal queues and channel access for given
injection rates. Figure 8b presents our results in logarithmic scale: more effi-
cient protocols in restraint-queue dimensions are closer to the STATE-AWARE
protocol, as it represents the best performance algorithms can achieve. This
makes 12 O’CLOCK adaptive protocol our champion for all injection rates
and 8-light INTERLEAVED-SELECTORS to be the second for injection rates
lower than p = 0.3. (Full-sensing version of the 12 O’CLOCK protocol has
been omitted from the graphs as it behaved similarly to its adaptive version
in our experiment).

46

7. Conclusions and discussions

We have proposed the k-restrained model for multiple access channels and
studied throughput and queue stability of deterministic contention resolution
protocols. We have developed protocols with proven constant upper bound
on channel restraint and throughputs 1 and 1 — 1/n, respectively for adap-
tive and full-sensing classes of protocols. K-LIGHT SELECTORS non-adaptive
algorithm, though achieving smaller throughput, is provably almost optimal
in the its restricted class of protocols. It was achieved thanks to a newly de-
veloped combinatorial tool, k-light selector. Proving accurate upper bounds
on queue sizes of these protocols is an interesting open problem, as well as
their further improvements by modifications of these protocols.

Simulations have shown preliminary evidence of performance in case of an
adversary imposing asymmetrical queue load to the system (comparing to
pure stochastic models). BACKOFF protocols were studied as the most com-
monly used contention-resolution approach. Experiments have repeated [31]
results in regard of tendencies, with some differences in actual values of mea-
surement, most likely caused by few differences in implementation details.
BACKOFF protocols have shown limited throughput, stability, and inability
to have small queues and channel restraint at the same time. 12 O’CLOCK
protocols, on the other hand, have shown excellent stability combined with
low channel restraint.

References

[1] E. Hradovich, M. Klonowski, D. R. Kowalski, Contention resolution on
a restrained channel, To appear in 26th IEEE ICPADS (2020).

[2] B. S. Chlebus, D. R. Kowalski, M. A. Rokicki, Adversarial queuing on
the multiple access channel, ACM Transactions on Algorithms (TALG)
8 (2012) 1-31.

[3] B. S. Chlebus, D. R. Kowalski, M. A. Rokicki, Maximum through-
put of multiple access channels in adversarial environments, Dis-
tributed Computing 22 (2009) 93-116. URL: http://dx.doi.org/10.
1007/s00446-009-0086-4. doi:10.1007/s00446-009-0086-4.

[4] M. A. Bender, M. Farach-Colton, S. He, B. C. Kuszmaul, C. E. Leis-
erson, Adversarial contention resolution for simple channels, in:

47

[11]

SPAA, 2005, 2005, pp. 325-332. URL: http://doi.acm.org/10.1145/
1073970.1074023. do0i:10.1145/1073970.1074023.

B. S. Chlebus, D. R. Kowalski, M. A. Rokicki, Adversarial queuing on
the multiple access channel, ACM Trans. Algorithms 8 (2012) 5:1-5:31.
URL: http://doi.acm.org/10.1145/2071379.2071384. doi:10.1145/
2071379.2071384.

M. A. Bender, J. T. Fineman, S. Gilbert, M. Young, How to scale
exponential backoff: Constant throughput, polylog access attempts, and
robustness, in: Proceedings of the Twenty-seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 16, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2016, pp. 636—654.
URL: http://dl.acm.org/citation.cfm?id=2884435.2884482.

L. Anantharamu, B. S. Chlebus, M. A. Rokicki, Adversarial mul-
tiple access channels with individual injection rates, Theory Com-
put. Syst. 61 (2017) 820-850. URL: https://doi.org/10.1007/
s00224-016-9725-%. do0i:10.1007/s00224-016-9725-x.

L. Anantharamu, B. S. Chlebus, D. R. Kowalski, M. A. Rokicki, Medium
access control for adversarial channels with jamming, in: A. Kosowski,
M. Yamashita (Eds.), Structural Information and Communication Com-
plexity, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 89-10.

M. Bienkowski, T. Jurdzinski, M. Korzeniowski, D. R. Kowalski, Dis-
tributed online and stochastic queueing on a multiple access channel,
ACM Trans. Algorithms 14 (2018). URL: https://doi.org/10.1145/
3182396. d0i:10.1145/3182396.

B. S. Chlebus, V. Cholvi, D. R. Kowalski, Universal stability in
multi-hop radio networks, Journal of Computer and System Sciences
114 (2020) 48-64. URL: https://www.sciencedirect.com/science/
article/pii/S0022000020300544. doi:https://doi.org/10.1016/j.
jcss.2020.05.009.

B. S. Chlebus, E. Hradovich, T. Jurdzinski, M. Klonowski, D. R.
Kowalski, Energy efficient adversarial routing in shared channels, in:
The 31st ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 19, ACM, New York, NY, USA, 2019, pp. 191-200.

48

[12]

[13]

[16]

[17]

URL: http://doi.acm.org/10.1145/3323165.3323190. doi:10.1145/
3323165.3323190.

G. De Marco, G. Stachowiak, Asynchronous shared channel, in: E. M.
Schiller, A. A. Schwarzmann (Eds.), Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing, PODC 2017, Washington,
DC, USA, July 25-27, 2017, ACM, 2017, pp. 391-400. URL: https://
doi.org/10.1145/3087801.3087831. doi:10.1145/3087801.3087831.

Y.-J. Chang, T. Kopelowitz, S. Pettie, R. Wang, W. Zhan, Expo-
nential separations in the energy complexity of leader election, in:
Proceedings of the 49th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2017, ACM, New York, NY, USA, 2017,
pp. 771-783. URL: http://doi.acm.org/10.1145/3055399.3055481.
doi:10.1145/3055399.3055481.

T. Jurdzinski, M. Kutylowski, J. Zatopianski, Efficient algorithms for
leader election in radio networks, in: PODC 2002, 2002, pp. 51-57. URL:
http://doi.acm.org/10.1145/571825.571833. doi:10.1145/571825.
571833.

T. Jurdzinski, M. Kutylowski, J. Zatopianski, Weak communication
in single-hop radio networks: adjusting algorithms to industrial stan-
dards, Concurrency and Computation: Practice and Experience 15
(2003) 1117-1131. URL: https://doi.org/10.1002/cpe.783. doi:10.
1002/ cpe . 783.

K. Nakano, S. Olariu, Randomized initialization protocols for ad hoc
networks, IEEE Transactions on Parallel and Distributed Systems 11
(2000) 749-759. doi:10.1109/71.877833.

P. Indyk, Explicit constructions of selectors and related combinatorial
structures, with applications, in: Proceedings of the Thirteenth Annual
ACM-STAM Symposium on Discrete Algorithms, SODA ’02, Society for
Industrial and Applied Mathematics, USA, 2002, p. 697-704.

B. S. Chlebus, D. R. Kowalski, Almost optimal explicit selectors, in:
FCT, 2005, pp. 270-280.

V. Cholvi, P. Garncarek, T. Jurdzinski, D. R. Kowalski, Optimal packet-
oblivious stable routing in multi-hop wireless networks, in: A. W. Richa,

49

[20]

[21]

[22]

23]

[24]

[25]

C. Scheideler (Eds.), Structural Information and Communication Com-
plexity, Springer International Publishing, Cham, 2020, pp. 165-182.

S. Albers, Energy-efficient algorithms, Communications of the ACM 53
(2010) 86-96.

S. Irani, K. Pruhs, Algorithmic problems in power management, ACM
SIGACT News 36 (2005) 63-76.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright,
Power awareness in network design and routing, in: Proceeding of
the 27th IEEE Conference on Computer Communications (INFOCOM),
2008, pp. 457-465.

M. Andrews, A. F. Anta, L. Zhang, W. Zhao, Routing and scheduling
for energy and delay minimization in the powerdown model, Networks
61 (2013) 226-237.

M. Andrews, A. Fernandez, L. Zhang, W. Zhao, Routing for energy min-
imization in the speed scaling model, in: Proceedings of the 29th IEEE
International Conference on Computer Communications (INFOCOM),
2010, pp. 2435-2443.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall,
Reducing network energy consumption via sleeping and rate-adaptation,
in: Proceedings of the 5th USENIX Symposium on Networked Systems
Design & Implementation (NSDI), 2008, pp. 323-336.

P. Bergamo, A. Giovanardi, A. Travasoni, D. Maniezzo, G. Mazzini,
M. Zorzi, Distributed power control for energy efficient routing in ad
hoc networks, Wireless Networks 10 (2004) 29-42.

M. Gupta, S. Singh, Dynamic Ethernet link shutdown for energy con-
servation on Ethernet links, in: Proceedings of IEEE International Con-
ference on Communications (ICC), 2007, pp. 6156-6161.

C. Gunaratne, K. Christensen, B. Nordman, S. Suen, Reducing the
energy consumption of Ethernet with adaptive link rate (ALR), IEEE
Transactions on Computers 57 (2008) 448 —461.

50

[29]

[30]

[32]

[33]

[34]

A. Ogierman, A. Richa, C. Scheideler, S. Schmid, J. Zhang,
Sade: competitive mac under adversarial sinr, Distributed
Computing 31 (2018) 241-254. URL: https://doi.org/10.1007/
s00446-017-0307-1. doi:10.1007/s00446-017-0307-1.

J. T. Fineman, S. Gilbert, F. Kuhn, C. Newport, Contention resolution
on a fading channel, in: Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 16, ACM, New York, NY,
USA, 2016, pp. 155-164. doi:10.1145/2933057 .2933091.

J. Hastad, T. Leighton, B. Rogoff, Analysis of backoff
protocols for multiple access channels, SIAM Journal on
Computing 25 (1996) 740-774. URL: https://doi.org/10.
1137/S0097539792233828. doi:10.1137/50097539792233828.

arXiv:https://doi.org/10.1137/S0097539792233828.

P. Garncarek, T. Jurdzinski, D. R. Kowalski, Local Queuing Un-
der Contention, in: U. Schmid, J. Widder (Eds.), 32nd Interna-
tional Symposium on Distributed Computing (DISC 2018), volume 121
of Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018,
pp. 28:1-28:18. URL: http://drops.dagstuhl.de/opus/volltexte/
2018/9817. doi:10.4230/LIPIcs.DISC.2018.28.

M. Chrobak, L. Gasieniec, W. Rytter, Fast broadcasting and gos-
siping in radio networks, Journal of Algorithms 43 (2002) 177 —
189. URL: http://www.sciencedirect.com/science/article/pii/
S0196677402000044. doi:https://doi.org/10.1016/S0196-6774(02)
00004-4.

A. Ta-Shma, C. Umans, D. Zuckerman, Loss-less condensers, unbal-
anced expanders, and extractors, in: J. S. Vitter, P. G. Spirakis,
M. Yannakakis (Eds.), Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, ACM,
2001, pp. 143-152. URL: https://doi.org/10.1145/380752.380790.
doi:10.1145/380752.380790.

W. H. Kautz, R. C. Singleton, Nonrandom binary superimposed codes,
IEEE Trans. Inf. Theory 10 (1964) 363-377. URL: https://doi.org/
10.1109/TIT.1964.1053689. d0i:10.1109/TIT.1964.1053689.

51

[36] E. Hradovich, Multiple access channel simulations, 2022. URL: https:
//github.com/ilkadi/Multiple-Access-Channel-Simulations.
doi:10.5281/zenodo . 6666530.

52

