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ABSTRACT

Traditional techniques for marine life tracking use stationary re-
ceivers that detect and obtain measurements from tagged animals.
Recently, such static systems have been replaced by multiple mo-
bile robots, e.g., autonomous underwater vehicles (AUVs), equipped
with omni-directional hydrophones that can accurately localize ma-
rine life. In this paper, the application of homogeneous multi-AUV
systems to track and localize marine life is used as a motivating
example to develop new MRMP (Multi-Robot Motion Planning)
algorithms. These algorithms generate trajectories that maximize
a new fitness function that incorporates 1) probabilistic motion
models generated from historical data of live sharks, and 2) ideal
AUV formations for observing a shark from multiple sensor vantage
points. The two expansive RRT variants, named Independent State
Expansion (ISE) planning and Joint State Expansion (JSE) planning,
differ in how new samples are randomly generated during the al-
gorithm’s random search. The fitness function was developed to
quantify how accurately the positioning of AUVs would trilater-
ate the target animal. Through simulation, it was found that the
Joint planner was 70% faster with respect to run time than Inde-
pendent planner, while both could produce similar mean fitness
function values. The fitness for these variants was also measured
for simulations where different target motion models were used
when calculating the fitness function, highlighting the improved
performance when using actual target motion motion models.
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1 INTRODUCTION

Prior work in the subclass of motion planning for cooperative, dy-
namic target tracking often utilizes a variety of probabilistic models
but fails to utilize historical behavioral data to inform probabilistic
or predictive motion plans [2] [17] [25]. To the best of our knowl-
edge, this is the first work which combines multi robot motion
planning, probabilistic motion models, and historical behavioral
models to generate motion plans. The result is a motion plan which
incorporates predictive animal motion and responds according to
observations. This work utilizes predictive marine life tracking,
specifically white shark tracking, as a motivating example. How-
ever, the approach taken is agnostic of the creatures tracked and
can be applied to other tracking targets by updating the likelihood
function to the collected target data, desired distance function, and
robot dynamics. The MRMP algorithms presented use an extension
of Rapidly Exploring Random Tree (RRT) to take advantage of the
ability to rapidly explore high degree of freedom configuration
spaces and incorporate nonlinear system constraints.

Tracking marine life provides essential behavioral and ecological
data for understanding aquatic animals, evaluating marine species’
health, and discovering anthropomorphic affects on marine life.
A wide variety of tracking techniques exist to accomplish marine
life data collection including satellite transmitters, stationary re-
ceivers, and manual boat based tracking. However, each of these
techniques are limited by the requirement of satellite transmitters
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to surface [28], fixed localization area and accuracy [10], or human
intensive labor [8]. More recent studies have demonstrated the use
of hydrophones on AUVs to successfully track tagged marine life to
address these issues [8][6][13]. AUVs also enable tracking in larger
areas, increase tracking accuracy, and improve temporal resolution
[13]. These studies have experimentally validated the use of AUVs
in marine life tracking, but with limited work on optimized AUV
formations for localization.

Prior work on multi-AUV marine life tracking includes the devel-
opment of state estimation algorithms for localizing tagged sharks
[13]. However, this previous work does not address the issue that
shark state estimate representations are multi-modal probability
distributions and lacks considering such representations into mo-
tion planning. Related work using acoustic beacon localization for a
group of AUVs uses an information theoretic approach but does not
account for nonlinear movements of the tracked AUVs or use pre-
dictive behavioral models [23]. This work builds on the prior work
by creating MRMP algorithms that construct trajectories which are
optimal with respect to the expected shark motion generated from
probability distributions that represent real shark motion behaviors.

The main contributions of this work include:

o A novel multi-AUV RRT motion planner that generates kine-
matically feasible trajectories for tracking a common target.
The planner has two variants and an expansion modification
that increases planner success and trajectory fitness.

e A fitness function for multi-AUV trajectory optimization.

o New conditional probability models for shark behavior that
can be queried by the fitness function.

e Simulation results that highlight algorithm performance.

The paper is organized as follows. Section II discusses prior work
on motion models, robot target tracking, and localization. Section
III introduces the problem formulation. Section IV describes the
new shark motion models. Section V describes the MRMP algorithm.
Section VI describes simulation results.

2 BACKGROUND

Acoustic localization is the process of finding an object’s position in
space relative to the surrounding environment through sound. For
shark tracking, acoustic tags have been used to relay animal motion
information to nearby receivers. Hydrophone arrays mounted to
AUVs have been used as these receivers to successfully track and
gather population estimates on a variety of marine life [7][11].
When an acoustic tag emits a signal, positions can be estimated by
the relative receiving time between each hydrophone. The degree
of localization accuracy is partially determined by distance from
the object and, in the case of multiple AUVs, is also determined by
the relative headings and relative distance. However, uncertainty
can be sourced from ambiguous source angle due to symmetry in
time of flight. Prior work in single robot and multi robot shark
tracking has shown estimation, communication, and reducing this
uncertainty is feasible with multiple robots [8][13].

Active target tracking (ATT) involves dynamically following a
target with a robotic agent. In the case of multi-agent ATT, robots
need to avoid both obstacles and other robots. Current multi-robot
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ATT techniques include, but are not limited to, inter-agent repul-
sion, elliptical orbits, leader follower approaches, and Policy Gradi-
ents [16][4][3]. A large body of work has explored optimal robot
configurations for ideal sensor measurements and localization along
with uncertainty in target dynamics [17] [22] [24]. In the case of
robot soccer where agents triangulate positions around a moving
ball, a Nonlinear Model Predictive Controller used comprehensive
modelling of all system components and agents to predict the fu-
ture state and optimize robot to target formations while minimizing
uncertainty [19]. This decentralized approach couples each robot’s
position through its cost function in order to maintain a desired
geometry, but exclusively uses a nonlinear predictive controller in
order to avoid using a path planner.

While the algorithms used for robot tracking typically do not
include actual animal motion models, related work has been con-
ducted in developing such models. Position based animal motion
models typically fall into three main categories: Hidden Markov
Models (HMMs), State Space Models (SSMs), and Diffusion Pro-
cesses [21]. Prior work in ecological research have used HMMs
when state dynamics are unobservable and sampling frequency
is constant [18]. In marine life research, HMMs have successfully
been applied to label behavioral phases of bluefin tuna [20] and
tag recovery on white sharks [9]. When applying these models to
hydrophone sensors, a probabilistic model of the shark’s position
and heading is used. This accounts for the dual symmetrical local-
ization of hydrophone measurements and a low sampling rate of
once per minute. The shark’s behavioral model is predicted and
updated as either stationary, constant velocity, or a Hidden Markov
Model (HMM).

Multi Robot Motion Planning (MRMP) remains a fundamental
NP-hard problem in robotics. Approaches to MRMP aim to create
dynamically feasible and collision free trajectories for any given
number of robots and paired start to goal locations. Challenges
within solving MRMP problems include scalability, robustness, un-
certainty, communication, and optimization of multi robot paths
for tasks [27]. MRMP problems have typically been sub divided
in control strategies of centralized and decentralized. Centralized
approaches use full state information of all robots for more optimal
solutions [14], but are often difficult to deploy in field environ-
ments with limited communication and struggle with scalability.
Decentralized approaches trade guarantees on optimal paths for
scalability and relax reliance on communication. Due to the dif-
ficulty of underwater communication [12], this paper utilizes a
decentralized approach.

Prior work in decentralized Multi Robot Motion Planning (MRMP)
utilize a variety of path evaluation and path planning techniques
with a large focus in search based, deep learning, reduction, and rule
based algorithms [15][30]. Search based approaches have extended
traditional path planning algorithms with leading algorithms in-
cluding variants of ORCA [26]. While search based approaches
have shown large promise, ongoing improvements in run time,
scalability, and task relevant optimization remains ongoing.

3 PROBLEM FORMULATION

Given a set of A identical AUVs at initial states X; o for i = 0...A—-1,
each equipped equipped with inter-AUV communication and a
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sensor that provides position measurements Z; ; of a target being
tracked, the goal is to generate AUV trajectories that enable the
AUVs to autonomously track and follow the target in open water.

For each AUV i, a state at each time step t is defined as X; ; =
[xi.£, Yiz, Oit, vir, wir] where (x,y) corresponds to the 2D vectored
position of robot i at time ¢, 0; ; is robot i’s angular heading relative
to true North, and v,w correspond to the linear and angular velocity
respectively. An AUV i’s trajectory, is a sequence of states: T;
(X0, s Xi e ) -

To represent the target’s state, X ; = [Xsz, Ys,s, 0s,¢] at time ¢
and selected grid cell s with 2D (x,y) coordinates (i,j), a probability
distribution, P(Xs;), is used and updated based on received hy-
drophone measurements. The state of the target can be defined
as Xst = [Xs,t,Ys,t, Os,¢] at time t with 2D position (xs¢,ys ) and
heading 6. However, the belief state of the target is represented
as the probability distribution P(X; ;) which is updated based on
transition probabilities and, in the case of closed loop feedback,
incoming X ; measurements. P(Xs ;) is defined as a target relative
body frame matrix representing the likelihood of the target’s state
for each occupancy map grid cell. These trajectories are then to be
optimized to:

o Maximize the likelihood the target stays within a circular
formation created by the AUVs, thereby enabling multiple
sensor vantage points for increased tracking accuracy.

e Minimize the likelihood AUVs come within some threshold
distance of the target to prevent interference with target
motion behavior.

o Minimize the likelihood AUVs leave some threshold distance
of the target to maintain reliable hydrophone readings of the
shark’s acoustic tag.

The optimization of these trajectories is enabled by finding a
trajectory set T = [Ty...T4—1] that maximizes the following fitness
function:

tmax
Fm =Y Lpm (1)
=0 ‘max

F@y =" > pije COjuo) min (D(qiju) D(gi0))

i,jeP u,weR
@)

This fitness function in Eq. (1) sums the expected fitness over
all times across a horizon of ;45 seconds. The ratio % linearly
biases the function to fitness gained at the end of trajectory where p
is k constant. In Eq. (2), the expected fitness for time step ¢ includes
a sum over all cells i, j in a probability matrix P, and over all AUV
pairs in the trajectory set R. The term to the right of the summations
includes a product of the likelihood p; j 1 of the shark being located
at cell i, j at time step ¢, a AUV pair angle function C(), and an AUV
pair distance function D(). 0; j ., represents the relative heading
between two selected AUVs, u and v in the set of all robots R, with
the selected grid cell (i, j).

The distance function D() enables the AUVs to maintain the
target within sensor range while maintaining distance sufficient
not to disturb the target. To note, g; j ,, is defined as the 2D euclidean
distance between AUV u and cell (i, j). In Eq. (3), h is the desired
upper limit between an AUV and target marine life (e.g., 50 meters),
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and y = 0.05 is a smoothing factor. Fig. 1 illustrates the distance
function.

D(l) = ( ®)

1 1
1+ eU-M/(h) ) " (1+ (5 -Dom )

D)
0.5

20 30
1 (meters)

40 50 60 70

Figure 1: Graph of D(I) from Om to 70m.

The angle function C() rewards the AUVs for spreading out
around the target to provide multiple sensor vantage points. First,
the heading angle 3 ; ; from the state Xj ; of cell (i, j) in the proba-
bility map P position to each AUV is calculated. Second, the differ-
ences Af; i (r,s) = Pr,ij — Ps,i,j between these heading angles for
each AUV pair (s, r) are calculated. Third, difference errors can be
generated, (in the case where AUVs perfectly surround the target),
as 0;j(r,s) = |Bij(r,s) — 2m/A|. Finally, the input to C() is this
error averaged over all AUVs pairs to yield 8, j,¢ at time ¢ for cell

@i, j)-
3
1
1+ éi,j,t

4 SHARK MOTION MODELING

In this work, fitness is calculated as a function of the predicted
state of a shark — which is represented as a 2D time-dependent
probability distribution P, where the likelihood of being in cell (i, j)
of a 2D spatial grid is p; j: € [0,1] at time ¢. Notably 3; ; pi j,r = 1
V t. The probabilities p; j are generated by Markovian expansions,
in which:

C(01jt) = ( 4)

pijt = ZP(L Stk Lt =1)pg g1 ()
k1l

In Eq. (5), the likelihood of a shark being located at cell(i, j) at
time ¢ is a sum of the likelihoods of being located at all other cells
(k, 1) at the previous time step ¢ — 1, multiplied by the transition
probability p(i, j, t|k, I, t — 1).

To obtain transition probabilities p(i, j, t|k, I, t — 1), 22 juvenile
white sharks were acoustically tracked off the coast of southern
California [1]. Sharks were fitted with depth sensing transmitters,
allowing for 3D positioning of movements based on triangulation
within the 5 km? receiver array. This yielded 30,000 data points.
Normalizing the sharks headings, the 2D shark translations were
extracted and modeled as transition probabilities. Due to the large
majority of shark trajectories maintaining a depth between 0 to 1
meters, the algorithm variants are deployed in 2D but can be easily
extended to 3D. Notably, the transitions are conditional on shark
depth (Fig 2), and on shark velocity (Fig. 4).

When extracting the transition probabilities p(i, j, t|k, It — 1)
to calculate a shark location probability for any time time t, the
planner can use the most recent shark state measurement X g,
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and then translate and rotate the transition probabilities (e.g. those
shown in Figures 2 and 3) to be centered on the state X .
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Figure 2: Probability distributions modeling shark transitions over
1 minute, starting at (0, 0) and pointing in the positive x direction.
The shark is at the surface in (a), and the sea floor in (b).
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Figure 3: Probability distributions from shark data conditional
on current velocity, i.e. each subimage corresponds to a different
velocity range. The color legend is the same as in Figure 2.
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5 MRMP ALGORITHMS

This section introduces two variants of a multi-AUV RRT motion
planner that generates kinematically feasible, collision-free trajec-
tories. Given an initial state Xjo for each AUV i = 0...A — 1, and
initial shark state estimate Xy, both planners create a set of A
collision free trajectories, one trajectory for each AUV.

Algorithm 1 Expansive RRT Planner with A AUVs

1: G « InitializeTree(ng)

2. while planTime < planTimeBudget do
3 Nrandom < NodeSelection(G)

4 Nnew < NodeExpansion(nyandom)

5: if NoCollision(nyandoms tnew) and HighFitness(npew)
then

6: G « Nnew

7: if InEndGame(npe) and Fitness(npew) > F* then

8: n* e Npew

9: F* « Fitness(npew)

10: end if

11 end if

12: end while

13: T « TrajectoryFromNode(n*)

14: return T

As with traditional RRT algorithms, a tree G of nodes and edges
is grown from an initial node ny through sampling that gener-
ates random edges to new nodes. The two Independent State Ex-
pansion and Joint State Expansive planner variants, named ISE
and JSE hereafter, differ by the coordination strategies used dur-
ing the RRT expansion step in which new nodes are created. For
the ISE planner, the j*h node n j is defined by the state of all
A AUVs at some time step ¢, the fitness accrued following tree
edges to the node, and the node’s parent node in the tree, i.e.
nj = [t,Xozt: ... XA-1,5» F(nj), nparent]. For the JSE planner, node
nj is defined by the AUV states, the fitness accrued, the parent
node, and the 2D position X¢ of the center C of the AUV cluster,
ie. nj = [t, Xo,t5 - XA-1,t5 F(nj), nparent;XC]-

Both planners utilize five main steps: initialization, edge expan-
sion, collision checking, fitness evaluation, and end-game checking.
As shown in Algorithm 1, line 1, the planners initialize by creating
a tree G with the single node n¢ that incorporates the initial states
of all AUVs and becomes the root node of the tree.

On line 3 of Algorithm 1, a while loop is used to iteratively
add more edges to the tree G, until the planners time budget has
elapsed. For each iteration of the while loop, the tree G is first
sampled for a node n,4,40m to expand from. This node selection
step is accomplished by randomly sampling a point in space, and
then finding the closest node n, 4,40, in tree G. The closest node is
defined here as the minimum distance from an existing node in tree
G to the furthest robot’s prior distance. By taking the minimum
of the max change in robot position and orientation, this allows
workload to be distributed more evenly.
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N
!

Figure 4: In this example, node B is closer than node A to the
parent node’s prior robot states. The prior robot states are opaque
with the new generated node states in black.

Given the sampled node n,4,40m, the NodeExpansion function
on line 4 will generate a new node nue,y to potentially be added to
the tree. This new node must contain states of all A AUVs that are
kinematically reachable from their parent states in 1,440, These
states are generated differently depending on whether the JSE vs.
ISE planner is invoked.

Both planners start by initially generating a two component
trajectory consisting of a constant velocity random arc of radius r
and heading change A6;, and a constant velocity straight segment.
This is accomplished by first randomly sampling a velocity v; €
[9min, Umax], where vmin and vpex are dictated by the physical
robot’s capabilities. For a preset expansion time At, the expansion
distance is calculated as d = v;At. Subsequently, an expansion

heading change is randomly sampled A0; € [-Abmax, AOmax]-

Assuming a circular arc motion, the radius of the arc for constant
velocity tracking along the arc is r = ALG,

The ISE planner applies the arc segment motion to each AUV i’s
state X; r—1 of nyqndom- In Eq. (6) and (7), the new state positions
are a function the last state (term 1), arc geometry (terms 2,3), and
straight line segment geometry (term 4).

Xit = Xit—1 — rsinb;s—1 +rsin(0; -1 + AO) + vAt cos(0; ;-1 + AD)
Yir = Yi,r—1 +1cosb;s—1 —rcos(0;1—1 + AB) + vAt sin(0; ;-1 + AD)
Oir = 0ir—1+ A0

(6)

The JSE planner applies the arc segment motion to the center
state X ;1 of the cluster of AUVs of n,;,,40m. as opposed to X; r—1
above. The same update equations (6),(7),(8) can be used to update
the center state c instead of individual AUV i.

Once the JSE planner generates the new cluster center state X s,
each AUV’s individual state in the cluster can be calculated. First,
the new radius of the cluster is sampled p; € [pmin, Pmax] such
that dp; does not exceed the max velocity. Then, for AUV i, the
new node’s updated state position is calculated via:
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Xit = Xct + preospi

Vit = Ye,r + pesinfi )
2im
Pi=—

To ensure AUVs do not require velocities greater than v,,qx
when charged with following the outside turning arc in cluster
formation, all AUV velocities are scaled such that the fastest AUV
will not exceed vpmgx. Additionally, JSE allows at each expansion
for the radius from X¢ to each robot to expand by +/- .5 meters
and the variation from each robot from it’s prior state to increase
or decrease by +/- .5 meters. Final distance values are scaled for
velocity constraints to ensure reachability within v,;,4x. This allows
for JSE formation to expand and contract around obstacles.

After each expansion, a collision checker is queried to determine
if the edge from n,4,40m to Npew is collision free. The planner
leverages an iterative collision checker [5] that checks the kine-
matic trajectory for each AUV from the parent node state to the
new node state, for collision with static obstacles. The collision
checker expands on the prior through checking for each robot in
the potential added node, no robot crosses another robot’s path for
all nodes in the tree at timestep t.

On line 5, the algorithm also checks if new node nye,, has suffi-
cient fitness value to be added to the tree. Note the function in Eq.
2 is used for this evaluation. This process strongly biases the tree
to generating trajectories of high fitness (see results section below.

As shown on line 7, the algorithm checks if the new node belongs
to the end game region, and if the trajectory from node ng to npew
has a higher fitness function than previously discovered. If so, the
optimal end node n* is set and new best fitness value recorded (lines
8 and 9). To note, a node is determined to belong to the end game
region if its time stamp is greater than the preset trajectory time
horizon tpgx.

In order to deploy this algorithm in a decentralized manner, each
AUV begins with the same random seed to ensure random node
generation is the same across all AUVs. AUVs will communicate
their updated 2D positions prior to each trajectory replan using
either acoustic beacons with state estimation, token passing as
executed in prior work [29], or other communication methods.
Exact communication protocols are beyond the scope of this paper.

6 EXPERIMENTS AND SIMULATION RESULTS

Simulation experiments were conducted with C# implementations
of the algorithm running on a Dell XPS 15. All experiments utilize
AUVs that adhere to kinematic constraints, including a maximum
longitudinal velocity of 2.5 m/s and maximum angular velocity
of 7/4 radians/second. These constraints are representative of the
target robot, an L3Harris Iver3 AUV. The ISE planner initializes all
AUVs to be co-located with the shark, and the JSE planner initializes
AUVs evenly distributed on a circle with initial radius r centered on
the shark. The shark’s initial position is assumed to be known and
normalized to the center of the graph as this algorithm is designed
to be used post search. Baseline results were simulated using the JSE
planner with 4 AUVs under Markov Expansion with a shark speed
of 0.75 m/s. Unless otherwise specified, high fitness expansions
were used for baseline tests with 100 runs.
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Figure 5: The ISE planner under predicted and observed stationary
(top left), constant velocity (top right), and Markov models (bottom).

The planner was run in closed loop to highlight its adaptability
for real-time replanning and response to target motion observa-
tions. For the closed loop simulations described below, the planner
constructed new plans every 10 seconds, where each plan consisted
of 30 second duration trajectory sets. This helps the planner con-
sider future obstacles and adapt to observed shark movements. At
the start of each plan cycle, the simulated shark state is updated
by sampling from the probability matrix P(X; 10) generated by the
motion model in use. This shark state is provided to the planner as a
measurement with zero uncertainty. The planner uses this updated
state to seed the generation of probability map P, enabling fitness
function calculations for potential trajectories. An example of a
final ISE closed loop plan (Fig. 6) and final JSE closed loop plan (Fig.
7) are available for execution reference.

Both planner variants constructed higher fitness trajectories
when employing the high fitness expansions than without. As
shown in Figure 6, using a high fitness threshold value of 0.8 resulted
in the ISE planner yielding a mean fitness of 0.78 as opposed to
0.03 without high fitness expansions. Similarly, the JSE Planner
resulted in 0.82 with high fitness expansions and 0.01 without.
Across variable shark speeds from 0 to 1 m/s, both planner average
scores remained the same. Shark speeds above 1.5 m/s were unable
to be accurately tested due to limited transition modeling data.

Both the ISE and JSE planners were tested against predicted and
mispredicted belief models of the shark’s motion. Under correctly
matched models, the ISE planner resulted in a scores of 0.83, 0.83,
0.81 under stationary, constant velocity, and Markov models respec-
tively. Likewise, the JSE planner resulted in an average score of 0.81,
0.84, 0.82, respectively. The minimum fitness value produced with
the Markov model was greater than any other model’s minimum
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Figure 6: A 100 second trajectory plan generated by the ISE planner
using 4 AUVs. The shark is both anticipated and moving by the at
constant velocity of 0.75 m/s to the right. The highest probability of
the shark location is represented as a blue dot with the AUV paths in
black and obstacles represented with cyan circles.
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Figure 7: A snapshot at t=80 seconds for an executed JSE trajectory
plan using a markov shark model and 4 AUVS. The observed shark
path is in light blue with current shark position as a blue dot.
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Figure 9: JSE planner Scores under varying Motion Models

fitness. The Markov model also predicted best against itself, despite
not being deterministic. In summary, the Markov model not only
better represents the actual motion of white sharks being tracked,
but it proved robust to different models employed by the simulated
sharks. An example of plans under varying shark motion models
and actual shark motion models (Fig. 5) illustrates how the planner
changes under varying models and behaviors. Score representa-
tions of mismatched and matched motion models show the ability
of both planners to perform well under matched and mismatched
model conditions (Fig 8. and Fig. 9).

With both planner variants, each additional AUV caused the
overall fitness score to increase until a plateau in fitness was reached.
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Planner type by AUV number v. Score
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Figure 10: A score comparison to number of AUVs for ISE, JSE,
and adapted baseline RRT planner.

Specifically, with each added AUV, the resulting increase in score
had diminishing returns with little return occurring after 6 AUVs.
The ISE Planner repeatedly timed out after 7 AUVs represented by
the ‘X’ in Figure 10. Note the significantly improved fitness of both
planners’ trajectories when run using the high fitness expansion.

The main trade-off between the ISE Planner and the JSE planner
is run time. Run time for the ISE Planner proved to increase expo-
nentially as the number of robots increased while the JSE planner
increased linearly. This is due to recomputing the trajectories for
each robot in the ISE Planner while the JSE planner only computes
the center trajectory and extrapolates robots positions from the
updated point. This effectively removes the need for inter-robot
collision-checking, and therefore leads to many more successful
expansions. Between 2 and 4 robots, the ISE Planner is able to
compute robot trajectories with higher fitness scores than the JSE
planner, while avoiding timeout. Above this threshold, the ISE Plan-
ner frequently times out.

To provide a relative baseline for the ISE and JSE planners, a
traditional RRT algorithm was adapted to work for multiple robots
and evaluation functions. Namely, the traditional RRT planner has
been adapted by changing a node to represent a collection of robots
for score evaluation, where the minimum distance from a random
configuration to the closest node is redefined as the minimum
average of each robot’s position to each robot’s position in the
random configuration state. Additionally, a max angular velocity
and linear velocity of 7/2 and 2.5 m/s respectively have been set
to match constraints placed on ISE and JSE planners. High fitness
was not implemented for this planner and resulted in an average
score of .022 across variable robots.

7 CONCLUSION

This work presents two MRMP algorithms for multi robot target
tracking using predictive models to optimize robot formations in
simulation. When using correctly predicted motion models for fit-
ness function calculation, the algorithm generated average fitness
values of .78 and .82 out of the theoretical maximum of 1.0 for
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ISE and JSE planner variants respectively. When applied to multi-
AUV shark tracking, and incorporating a probabilistic model of the
shark’s position and future positions, robot formations are opti-
mized for stable, long term, trajectory planning. Against a baseline
RRT planner adapted for multiple robots and score evaluation, this
planner scored an average of .022 out of 1.0. Both planners with
high fitness outperformed this baseline.

In future work, one could deploy this simulated algorithm using
multiple Iver3 AUVs. Additionally, the current algorithm assumes
perfect communication and localization methods to accommodate
communication loss could help AUVs recover from mismatched
motion plans. The algorithms presented naturally extend to tracking
swarms as the probability distributions can become products over
multiple sharks and may be deployed in future work. Real world
comparisons in performance between tracking multiple and single
sharks with both ISE and JSE planners can be experimented with.
The planning approach outlined in this paper may be applied to
other multi agent active tracking problems including surveillance,
wildlife tracking, and search and rescue.
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