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Abstract

The precise atomic structure and therefore the wavelength-dependent opacities of lanthanides are highly uncertain.
This uncertainty introduces systematic errors in modeling transients like kilonovae and estimating key properties
such as mass, characteristic velocity, and heavy metal content. Here, we quantify how atomic data from across the
literature as well as choices of thermalization efficiency of r-process radioactive decay heating impact the light
curve and spectra of kilonovae. Specifically, we analyze the spectra of a grid of models produced by the radiative
transfer code Sedona that span the expected range of kilonova properties to identify regions with the highest
systematic uncertainty. Our findings indicate that differences in atomic data have a substantial impact on estimates
of lanthanide mass fraction, spanning approximately 1 order of magnitude for lanthanide-rich ejecta, and
demonstrate the difficulty in precisely measuring the lanthanide fraction in lanthanide-poor ejecta. Mass estimates
vary typically by 25%—-40% for differing atomic data. Similarly, the choice of thermalization efficiency can affect
mass estimates by 20%—-50%. Observational properties such as color and decay rate are highly model dependent.
Velocity estimation, when fitting solely based on the light curve, can have a typical error of ~100%. Atomic data
of light r-process elements can strongly affect blue emission. Even for well-observed events like GW170817, the
total lanthanide production estimated using different atomic data sets can vary by a factor of ~6.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Gravitational wave sources (677);
Transient sources (1851); Time domain astronomy (2109)

1. Introduction

Compact-object mergers involving a neutron star (NS) have
long been at the forefront of high-energy phenomena, from
short gamma-ray bursts (e.g., D. Eichler et al. 1989;
R. Narayan et al. 1992) to sites of rapid neutron capture
(r-process) nucleosynthesis (J. M. Lattimer & D. N. Schramm
1974, 1976; E. Symbalisty & D. N. Schramm 1982; D. Eichler
et al. 1989; C. Freiburghaus et al. 1999; S. Rosswog et al.
1999). The discovery of gravitational wave source
GW170817 and its electromagnetic counterparts AT2017gfo,
GRB170817A, and the resulting afterglow (B. P. Abbott et al.
2017; K. D. Alexander et al. 2017; 1. Andreoni et al. 2017;
I. Arcavi et al. 2017; R. Chornock et al. 2017; D. A. Coulter
et al. 2017; P. S. Cowperthwaite et al. 2017; M. C. Diaz et al.
2017; M. R. Drout et al. 2017; P. A. Evans et al. 2017;
A. Goldstein et al. 2017; G. Hallinan et al. 2017; L. Hu et al.
2017; M. M. Kasliwal et al. 2017; V. M. Lipunov et al. 2017;
R. Margutti et al. 2017; E. Pian et al. 2017; V. Savchenko et al.
2017; B. J. Shappee et al. 2017; S. J. Smartt et al. 2017;
M. Soares-Santos et al. 2017; N. R. Tanvir et al. 2017; E. Troja
et al. 2017; Y. Utsumi et al. 2017; S. Valenti et al. 2017;
A. S. Pozanenko et al. 2018; S. Sugita et al. 2018) confirmed
the connection between compact objects and some short
gamma-ray bursts (GRBs), ushering in a new era transient
multimessenger astronomy (see R. Margutti & R. Chornock
2021 and E. Nakar 2020 for detailed reviews). The multi-
wavelength electromagnetic radiation from AT2017gfo was the
kilonova (KN), which is mainly powered by the radioactive
decay of r-process material, and lasted between days and weeks
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depending on the wavelength at which it was observed
(V. A. Villar et al. 2017 and references therein). AT2017gfo
provided an unprecedented amount of data, and represents one
realization of KN emission in the broader phase space of
potential KN emission. Theory predicts and observations have
shown a wide diversity of KN emission as a direct result of the
three main properties of the ejecta launched during and after the
merger event: the mass, characteristic velocity, and heavy-
metal content (typically denoted as the mass fraction of
lanthanides, Xj,,, a product of r-process nucleosynthesis).

Encoded within the KN spectra is information about the
compact objects that created them and the fate of the remnant
(e.g., D. Kasen et al. 2017; D. Radice et al. 2020; D. Radice &
S. Bernuzzi 2023) as well as the evolution of the heavy-metal
content of the Universe (e.g., Y. Z. Qian & G. J. Wasserburg
2007; K. Hotokezaka et al. 2015; A. Wallner et al. 2015;
A.P.Jietal 2016; S. Rosswog et al. 2018). In order to make
meaningful progress on extracting this information, both high
accuracy and high precision measurements are required.
However, to construct simulations and models of KNe,
astronomers are required to make numerous choices for
prescriptions concerning the heating rate from the decay of
r-process material (J. Lippuner & L. F. Roberts 2015; Y. L. Zhu
et al. 2021; N. Sarin & S. Rosswog 2024), r-process decay
products (Y. L. Zhu et al. 2021), the velocity profile of the
ejecta (e.g., C. L. Fryer et al. 2024), how efficiently the
radioactive decay products of r-process material deposit their
energy into the ejecta (J. Barnes et al. 2016; S. Rosswog et al.
2017; M. Bulla 2023), the multidimensional structure of the
ejecta (e.g., K. Kawaguchi et al. 2018; R. T. Wollaeger et al.
2021; L. J. Shingles et al. 2023; M. Bulla 2023), or the
distribution of lanthanide-rich material within the ejecta as a
function of radius (D. Kasen et al. 2017).
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Another such assumption regards how the products of
r-process nucleosynthesis interact with the radiation of the KN.
The presence of a high lanthanide fraction manifests as an
infrared-bright transient, due to the extremely high opacity
(>10%cm® g ') in the optical and UV from the valence f-shell
electron of lanthanide elements (i.e., D. Kasen et al. 2013;
C. J. Fontes et al. 2020; M. Tanaka et al. 2020). Despite the
importance of the lanthanides in creating the characteristic
r-process infrared excess, the precise atomic structure of these
elements is highly uncertain, resulting in highly uncertain
opacities (D. Kasen et al. 2013). This uncertainty introduces an
additional systematic error source into modeling KNe that we
quantify here by using three sets of atomic structure data
produced from various codes (further explained in Section 3.1).

Additionally, as radioactive isotopes generated from r-process
decay, they release energy in the form of neutrinos, alpha
particles, beta particles, gamma-rays, and fission fragments. Each
species deposits a varying fraction of its energy into the ejecta. To
analytically describe this variable energy deposition, we use two
different prescriptions: a global mass-averaged efficiency where
all zones have the same thermalization efficiency (i.e., J. Barnes
et al. 2016), and a local density-based efficiency (i.e., J. Barnes
et al. 2016; M. Bulla 2023) where the thermalization efficiency is
based on the local conditions in each zone (further explained in
Section 3.2). Each approach leads to a different energy budget for
the KN to emit, which alters the resulting spectra and similarly
creates a systematic error source that we quantify here.

In Section 2, we discuss the setup of our radiative transfer
code simulations and the chosen range of ejecta parameters. In
Section 3, we discuss the different atomic data we vary as well
as the thermalization prescriptions. In Section 4, we present the
variance in the resulting light curves and spectra from the
different atomic data sets and thermalization prescriptions. In
Section 5, we quantify the error in parameter estimation based
on atomic data set and thermalization prescription. Finally, we
summarize our findings in Section 6.

2. Sedona and Initial Conditions Setup

We use the Monte Carlo radiative transfer code Sedona
(D. Kasen et al. 2006; N. Roth & D. Kasen 2015) to generate
synthetic spectra, from which we derive light curves and
bolometric luminosities. We explore a grid of models using
M <10.001, 0.01, 0.1] Mg, v, €[0.1, 0.3] ¢, and log,;,(Xjan)€
[-9, —4, —2] (where M is the total ejecta mass, v is the

characteristic velocity of the ejecta defined as v; = 25 and

E; is the total kinetic energy, and c is the speed of light). The
range of this grid is motivated by observational KN parameter
estimates of AT2017gfo (e.g., V. A. Villar et al. 2017;
M. W. Coughlin et al. 2018; M. Risti¢ et al. 2023), GRMHD
simulations of compact object merger events (e.g., D. Radice
et al. 2020), and nucleosynthetic yields of r-process ejecta (e.g.,
J. Lippuner & L. F. Roberts 2015). We generate synthetic
spectra for each combination of atomic data and thermalization
efficiency prescription to explore the impact on a wide extent of
expected theoretical KN emission.

We run each simulation as a spherically symmetric model
with 80 zones that are expanding homologously defined by a
temperature, density, velocity, composition, and size. We
initialize the model at time ¢, = 0.25 day after the merger, early
enough that radiative diffusion will not yet have caused
substantial energy loss, and Sedona homologously expands
the initial conditions while dynamically evolving the properties
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of each zone (or contracts in the case of simulating earlier
times). Homologous expansion sets in on a dynamical time-
scale that is ~1s, which is well before we initialize each
simulation. The density of each zone is defined by a broken

power law
-8
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where 6 and n are the power-law index of the inner and outer
ejecta, respectively, v, is the transition velocity between the two
power-law indices, M is the total mass, ¢ is time, and 7, is the
normalization constant. Following D. Kasen et al. (2017), we
adopt 6 = 1 and n = 10 as the broken power-law density profile
arises from disk models (e.g., the velocity distributions studied
in C. L. Fryer et al. 2024). The transitional velocity, v,, is

defined as
2E
v,:mvk:m,/ﬁ", )

where 7, is the normalization constant to ensure the ejecta has
total kinetic energy E;. The maximum velocity of each model is
3v, for 0.1c models and 2v, for 0.3¢ models, as after the
transition velocity the steep n= 10 power-law decline in
density rapidly makes the outermost ejecta mass negligible.

The composition of each model is based on solar abundance
patterns (or meteoric in cases where solar abundances are not
available) presented in M. Asplund et al. (2009), and r-process
residuals from J. Simmerer et al. (2004) for elements with
atomic number Z=31-70. This differs from the models
presented in D. Kasen et al. (2017), which use an even
distribution of nonlanthanide material as opposed to solar
abundance patterns. The composition is then normalized by
mass fraction such that all elements of Z= 58-70 have a total
mass fraction of Xj,, and all other elements have a total mass
fraction of 1 —Xj,,.- We do not consider any elements
of Z>171.

The level populations of each element are determined by
Local Thermodynamic Equilibrium (LTE). We expect non-
LTE (NLTE) effects to begin affecting the spectra on a
timescale by which the majority of the mass in the ejecta is
optically thin as determined by

M \0S . 05, -
f ~72 & k ) days, (3
NLTE (0.03M® ) (1 cm? gl) (0.1c ys. G

where M,; is the total mass ejected, ~ is the opacity of the
material, and v; is the characteristic velocity. Beyond this
timescale, the spectra will become less accurate, though, for the
purposes of comparing atomic data, can still be illuminating.
Each spectrum is calculated every 0.1 day starting from
t=0.1day to 35day with 1524 Ilogarithmically spaced
frequency points between 10" and 2 x 10'®Hz. Following
D. Kasen et al. (2017), we limit hydrodynamical time steps to
10% of the elapsed time, which is sufficient to resolve the
expansion evolution of the ejecta. However, we do not include
the physics of free neutron decay or shock breakout in order to
isolate the effects of atomic structure and thermalization

p(v) = ey
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efficiency, and so caution about the use of these models at
times 7 < 0.5 day.

At each time step, Monte Carlo packets (effectively bundles
of photons of a given wavelength that total up to a specified
energy amount) are released in accordance to the r-process
heating rate convolved with the thermalization efficiency and
interact with a zone through scattering and absorption. Monte
Carlo photons that reach the outer edge of the simulation
(defined by the maximum velocity) escape the ejecta and are
collected and binned in time and frequency to generate the
spectral time series of the model, with all relevant Doppler shift
and light travel-time effects taken into account for an observer
infinitely far away.

3. Model Experimental Variables

We consider three sets of atomic data and two thermalization
efficiency prescriptions for a total of six combinations. While
bound-bound transitions from lanthanide species dominate the
opacity, we still consider free—free and electron scattering
opacities in each model as they become more important at
longer wavelengths where lanthanides no longer dominate as
strongly and are simple to include from their analytic formula.
We do not consider bound-free absorption due to the
dominance of bound—bound absorption from lanthanides (i.e.,
kpenva=0 at S15eV while  Kppng~ 50 em’g™' at line
locations).

3.1. Atomic Data

We consider three atomic data sets that are commonly found
across KN modeling literature and each take a unique approach
to atomic modeling, which we label as follows:

1. Data set HULLAC—Z=31-70 data presented in
M. Tanaka et al. (2020);

2. Data set ATOMIC—Z=58-70 data presented in
C. J. Fontes et al. (2020);

3. Data set Autostructure—Code used in D. Kasen
et al. (2017), Z=13-28, 58-70.

Both atomic data sets Hebrew University Lawrence
Livermore Atomic Code (HULLAC) and Autostructure
employ the “Sobolev expansion opacity” for binning the large
number of lines from lanthanides. The “Sobolev expansion
opacity” utilizes the Sobolev approximation (V. V. Sobo-
lev 1960) for bound-bound transitions, which is applicable
when the thermal line width of a given line is negligible
compared to that of the expansion Velocity This is true for KN
e]ecta as the expansion velocity is typically of the order
10° kms ' while the thermal velocities are of the order
lkms™ ' (D. Kasen et al. 2013). The lines are then binned
within the broader frequency bins of the simulation. Atomic
data set ATOMIC also bins the lines, but instead employs a
“straight discretization” method that preserves the area under
the opacity curve (C. J. Fontes et al. 2020).

We do not include atomic data sets constructed entirely from
experimentally verified lines. While accurately producing the
strongest features will generate more readily comparable
spectra to observed KNe, the number of lines available for a
given ion (~100s) is insufficient, does not span the needed
wavelength range, and is only available for a limited set of
ions, preventing the generation of the overall opacity required
to run our simulations. In order to generate an overall opacity
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that can be used in a simulation, calibrated lines could be
integrated into the atomic data sets (as done by J. H. Gillanders
et al. 2022), though this would dilute the calibrated lines with a
forest of uncalibrated lines. Consequently, the lack of
calibration in the atomic data sets used in this work means
that the precise wavelength of any given feature will not be
accurate, but the comparisons of qualitative structure of
spectral features and the overall continuum and colors between
atomic data sets and resulting uncertainties that we focus on in
this work remain true. Including the limited number of
calibrated lines may bring atomic data sets into closer
alignment with each other and reduce modeling uncertainties,
but the requirement of incorporating a forest of uncalibrated
lines to generate the overall opacity will likely limit the
reduction in modeling uncertainty. We leave the investigation
of the impact of inclusion of calibrated data to future work.

3.1.1. Atomic Data Set HULLAC

M. Tanaka et al. (2018, 2020) generated theoretical atomic
data using the HULLAC (A. Bar-Shalom et al. 2001) for
elements Z=26-88, up to triply ionized species, in a self-
consistent and systematic way for a large number of elements.
As stated in M. Tanaka et al. (2020), this implies that spectral
features produced by this data set should not be used to identify
elements in the spectra of real KNe, rather the ensemble of
transitions represent what the general statistical properties of
the elements are as they have not been calibrated to
experimental wavelengths. For this work, we use elements
Z=31-70.

HULLAC assumes that the electron orbital functions are
represented well by a single electron Dirac equation with a
central-field potential that arises from spherically averaged
electron—electron interactions plus that of the nuclear charge.
Due to the aspherical nature of p, d, and f orbitals, this may
alter the energy level of orbitals.

3.1.2. Atomic Data Set ATOMIC

All data for elements Z= 58-70 are derived from opacity
tables provided at NIST-LANL (Y. Ralchenko et al. 2021),
which provide the electron scattering, bound-bound, bound-
free, and free—free opacities for up to triply ionized species over
the same grid of —T where h is the Planck constant, v is the

frequency of the photon ky, is the Boltzmann constant, and T is
the temperature. Each opacity is binned to the frequency grid of
our Sedona simulation, then bilinearly interpolated between
(logarithmic) density and (linear) temperature points to
calculate the opacity at any given temperature and density.
The opacity contribution from each atomic species is then
summed.

It is important to note that the opacities derived in the table
assume a pure composition of each element, which will have a
systematic offset from a mixed composition as the free electron
density is set by the ionization structure of multiple elements in
the mixed composition. The line-binned approach for bound-
bound transitions presented in the opacity tables agree with the
Sobolev approximation in the optically thin limit (C. J. Fontes
et al. 2020), though tends to produce higher opacities in the
optically thick regime due to the straight discretization method.
However, C. J. Fontes et al. (2020) argue that this discrepancy
in opacities in the optically thick regime may not be that
important to accurately model KN emission because the
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photons become trapped in the ejecta under those conditions.
NIST-LANL only includes lanthanides and actinides, so we use
the nonlanthanide elements binned as described in the section
above.

When calculating the energy levels of low ionization states,
ATOMIC also considers the difference between the calculated
ionization potential and the experimental ionization potential
provided by NIST. The energy levels of the calculated atoms
are then shifted by the difference between the two, but are
otherwise not calibrated to experimental wavelengths.

3.1.3. Atomic Data Set Autostructure

Data set Autostructure is the same atomic structure
code that is utilized in D. Kasen et al. (2017) and was used to
calculate KN spectra when it was the first to consider that
lanthanides were an important source of opacity in NS mergers
(D. Kasen et al. 2013). All lanthanide element data were
produced with the Autostructure code (N. R. Badnell
2011) up to quadruple ionized species, while all other elements
were sourced from the CMFGEN compilation (D. J. Hillier &
T. Lanz 2001). The atomic data produced by Autostruc-
ture have been optimized to produce the correct ground and
first two excited levels for the singly ionized element Nd while,
for all other elements, only the ground state was optimized.
Similarly to D. Kasen et al. (2017), we approximate elements
heavier than Z = 28 as lighter elements (while maintaining their
original total mass) since the behavior of the valence electron
should remain similar across any individual column on the
periodic table (e.g., Os and Fe as shown in D. Kasen et al.
2017).

3.2. Thermalization Efficiency Prescriptions

Each simulation receives an input of energy from the
r-process heating rate that is convolved with a thermalization
efficiency prescription. This thermalization prescription is
either applied on a by-zone basis (local) or shared among all
zones (global). We consider one r-process heating rate per unit
mass for all models defined by

O, = At® + Bie /%1 + Bye /% “4)

where A=8.49 x 10%ergg 's™!, a is —1.36, B, is 8.34 x
10%ergg™"'s™!, B, is 3.63 days, B, is 8.86 x 10%ergg's™ !,
and 3, is 10.8 days as defined by the heating rate per unit mass
for material of electron fraction Y, = 0.13, entropy per baryon
of 32k, and expansion timescale 0.84 ms from J. Lippuner &
L. F. Roberts (2015).

While N. Sarin & S. Rosswog (2024) have shown that
variable heating rates can also introduce a considerable source
of error in modeling KNe, we restrict our models to only one
r-process heating rate to isolate the effects of thermalization
efficiency on KN parameter estimation.

3.2.1. Global Thermalization Efficiency Prescription

For the global thermalization prescription, we use the
analytical formula presented in J. Barnes et al. (2016) (their
Equation (34)) to describe the thermalization efficiency of all
radioactive decay products in the r-process material:

fo () = 036) e +

In(1 + 2btd)] )

2btd
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where a, b, and d are determined by the total mass and
characteristic velocity of the ejecta and f,,(¢) is the fraction of
decay energy deposited in the ejecta divided by the total decay
energy emitted. The values derived in J. Barnes et al. (2016) are
an analytical fit to the total thermalization fraction determined
from numerical simulations of KNe with different masses and
velocities. Specifically, we use the values shown in Table 1 for
random magnetic fields in our simulations. It is important to
note that assumptions of magnetic field structure have the
potential to have a significant impact on thermalization
efficiency as particular magnetic field structures can allow for
nonlocal energy deposition (e.g., J. Barnes et al. 2016). For any
values and velocities between the presented values of the table,
we bilinearly interpolate each parameter.

The formula includes neutrino losses and J. Barnes et al.
(2016) find that the radioactive decay products carry approxi-
mately 20%, 45%, and 35% of the decay energy for beta
particles, gamma-rays, and neutrinos, respectively. However,
due to the functional form, the maximum efficiency at r = 0 day
is 72%, which is in rough agreement with other estimates from
R. T. Wollaeger et al. (2018).

3.2.2. Local Thermalization Efficiency Prescription

For the local thermalization prescription, we break down the
thermalization efficiency of each component of r-process decay
products according to the formula presented in J. Barnes et al.
(2016), S. Rosswog et al. (2017), and M. Bulla (2023):

In(1 + 27?)

fi(r’ 1) = 2,'72

(6)

tpz(ft), and A, is [1.2,
13, and 0.2]x 10 ""gem™s for alpha particles, beta
particles, and fission fragments, respectively, and fi(r, 1) is the
equivalent of f;,, but as a function of position and for a decay
product j. Following M. Bulla (2023), we assume that the
radioactive decay products carry 35%, 40%, 20%, 5%, and 0%
of the decay energy for neutrinos, gamma-rays, beta particles,
alpha particles, and fission fragments, respectively, as sup-
ported by the findings of J. Barnes et al. (2016) and
R. T. Wollaeger et al. (2018) for the distribution of decay
energy.

Neutrinos are assumed to escape immediately and do not
contribute to heating the ejecta due to low densities
(p<108%gcm > at all times simulated). This implies an
instantaneous loss of 35% of r-process heating energy at all
times and causing a maximum efficiency of 65% at r= 0 day.
Gamma-rays are simulated directly by injecting them into the
zone of r-process decay as 1 MeV photons where they can be
absorbed or scattered. While a more realistic distribution of
gamma-ray energies that emerge from r-process decay would
improve the accuracy of the simulations, the effect is likely
negligible as the difference in energy deposition from gamma-
rays of differing energies via Compton scattering is only
important in regions of optical depth ~1. Due to the low mass
and high speed of typical KN ejecta, the ejecta rapidly becomes
optically thin to gamma-rays on the scale of a couple days,
limiting the region of optical depth approximately 1% to a few
percent of the total ejecta mass and therefore only a few percent
of the r-process decay energy of which less than half is

where r is the position in the ejecta, 2n* =
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comprised of gamma-rays. To confirm this, we ran a
comparative KN model in which all gamma-rays were injected
as 0.5 MeV photons, which resulted in a higher optical flux by
a few percent compared to an identical model injected with
only 1 MeV photons.

However, both the global and local thermalization prescrip-
tions are limited by the nature of them being simplified
analytical forms to complex nuclear decay chains and
interactions. Fully simulating the decay products and corresp-
onding interactions with the surrounding material, while more
computationally expensive, would resolve some of the
uncertainties in modeling KNe and has been successfully
incorporated previously (e.g., K. Hotokezaka & E. Nakar 2020;
L. J. Shingles et al. 2023).

4. Kilonova Light Curve and Spectra

We first discuss the impact of atomic data set and
thermalization prescription on the observables of a fiducial
KN model of M =10">M_, v=0.1c, log,;(Xju) = —2

Figure 1 illustrates the differences in light curves caused by
the choice of atomic data and thermalization prescription for
the fiducial model; despite having the same ejecta parameters,
the LSST r and y filters, the JWST F115W, F277W, FS60W
filters, and bolometric luminosity curves, while initially within
~1 mag of each other, rapidly diverge as the ejecta becomes
optically thin. The optical filters, r and y, are strongly impacted
by the choice of atomic data for light r-process elements (31 <
Z < 50), as seen by comparing the differences between atomic
data sets HULLAC and ATOMIC (which share light r-process
atomic data) against Autostructure, similarly to as seen in
Figure 3 of L. J. Shingles et al. (2023) when the use of a
wavelength-calibrated Sr, Y, and Zr data set resulted in
significantly different spectra. The differences in lanthanide
atomic data most strongly impact the light curves in the NIR
and MIR JWST filters as each atomic data set creates an
entirely unique light curve with typical offsets of 4-6 mag by
Ot ~ 2 weeks.

The dotted lines and solid lines in Figure 1 represent the
global and local thermalization prescriptions, respectively. The
thermalization prescription has the greatest impact in optical
filters and at early times, with the global prescription increasing
the emission by 0.5-1 mag compared to that of the local
prescription. The local prescription accounts for the fact that
thermalization will be relatively lower in the low-density outer
layers of ejecta, from which much of the early emission arises.
Eventually, the bolometric luminosity curves of the two
prescriptions converge once the ejecta becomes optically thin
and the light curves maintain an approximately constant offset
as the KN fades.

4.1. Spectra

While the different atomic data sets generate remarkably
different light curves, they all agree on the same general
spectral features at early times: a doubly peaked spectrum with
the bluer peak at ~1 um and the second at ~1.5 um (though
this may largely be due to the peak blackbody wavelength for
temperatures typical of KNe, a few x 10> K, and qualitatively
similar high-opacity feature between the peaks) with a rapidly
decaying blue flux and a long-lasting red flux. Figure 2 shows a
spectral sequence from 2 to 15 days post merger of the fiducial
M=10"2 Mg, v=_0.1c, and log,,(Xjan) =—2 model using the
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local thermalization efficiency prescription for each atomic
data set.

The differences in line locations and strengths between
atomic data sets become most obvious in the late-time spectra
as distinct features from lines or line blends emerge. While
effects such as NLTE would likely alter the precise shape of the
spectra at these late times, the disagreement in the placements
of the lines illustrates the level of uncertainty in lanthanide
atomic structure. Furthermore, the pattern of lines is qualita-
tively different; the pattern of features is entirely unique and
not mirrors of other models shifted redward or blueward.
Extracting information based on locations of spectral features is
challenging, even when transitions with experimentally
determined wavelengths are matched to spectra (i.e., the
explanations of features in AT2017gfo as Sr1I from D. Watson
et al. 2019 or NLTE He Y. Tarumi et al. 2023, possible Y II from
A. Sneppen & D. Watson 2023, Te I from K. Hotokezaka et al.
2023).

4.2. Model Grid Light Curve Properties

Figure 1 clearly demonstrates that each atomic data set
results in substantial changes in light curve properties such as
peak magnitude and rise time to peak, color, decay rate post
peak, and time above half peak luminosity. In the following
sections, we use those metrics to quantify the differences
between models in more detail by expanding our analysis to the
grid of KN models with M€ [0.001, 0.01, 0.1] M.,
vk €10.1,0.3] ¢, and log((Xian)€ [—9, —4, —2], to identify
the impact of atomic data and thermalization prescription on
observational properties and how that impact changes with
ejecta properties.

4.2.1. Peak Magnitudes and Peak Times

Figures 3 and 4 show the peak magnitude and time since
merger for JWST and LSST filters, respectively, for each
model in the grid. We select these filters for their practical and
discriminating power; LSST carried out on the Rubin
Observatory, if equipped with Target of Opportunity capabil-
ities, has large discovery potential, thanks to the combination of
exquisite sensitivity and large field of view (i.e., R. Margutti
et al. 2018; I. Andreoni et al. 2022b) and JWST to put forward
quantitative expectations of KN brightness for purposes like
determining exposure time as well as the capability to constrain
atomic data set. For both LSST and JWST, the reddest bands
are the brightest and most useful for discriminating between
different model parameters. Furthermore, the effects of choice
of atomic data set already becomes apparent in the simple
observable of time of peak and peak magnitude and especially
so at redder filters; for the same ejecta parameters, while the
peak magnitude is approximately constant, the time at which
the KN achieves its peak shifts by almost four days in the
highest Xj,, models in the reddest JWST filters. Similarly, the
choice of thermalization efficiency prescription changes the
peak magnitude in most LSST filters by at least a magnitude.

4.2.2. Color

Figure 5 shows the color at the time of peak of the shorter
wavelength filter. There is clear correlation of color with ejecta
mass, velocity, lanthanide fraction, atomic data set, and
thermalization prescription. Higher X),, models produce redder
emission, more massive models reach a more luminous peak
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Figure 1. Comparing the fiducial model of M = 1072 Mg, v =0.1c, log,,(Xian) = —2 across the LSST r and y filters, the JWST F115W, F277W, F560W filters, and
bolometric luminosity curve with atomic data sets HULLAC, ATOMIC, and Autostructure in orange, blue, and green, respectively, at a distance of 40.7 Mpc.
Models using the local thermalization prescription are solid lines, while the global thermalization prescription is represented by the dotted line. The choice of atomic
data for light r-process elements (31 < Z < 50) has a dramatic impact on optical emission as seen by the differences between atomic data sets HULLAC and ATOMIC
against Autostructure. Differences in lanthanide atomic data result in a >3 mag difference at NIR and MIR wavelengths by ¢t ~ 2 weeks that only continues to
grow. The global thermalization prescription tends to increase emission across filters by 0.5-1 mag, especially at bluer filters and at early times while the ejecta is
optically thick. Notably, we would expect NLTE effects to become important at 6r ~ 13 days as per Equation (3).

magnitude, and models with higher characteristic velocities color-peak-magnitude space where the mass sets the starting
achieve similar or bluer colors than their slower counterparts. point along the peak-magnitude axis and the Xj,, determines
Effectively, each mass of the model grid forms arcs in the where along the arc the model sits. Choice of atomic data set
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Spectral Sequence by Atomic Dataset

w
o

NN
o wu
1 1

=
o
1

fy (1e-17 erg/s/cm?/A)
&
1

e
n
1

o
o
1

=
wn
1

o
0
1

fy (le-17 erg/s/cm?/A)
[
o
1

2/4)
= = O
T Ve

[oe]
1

4 -

fy (le-18 erg/s/cm
(o)}
1

o
n
1

fy (le-18 erg/s/cm?/A)
0
1

o
o

—— HULLAC
—— ATOMIC
— Autostructure

)
=
N
vl

1

fy (le-18 erg/s/cm?/A

e o o o =
o N [$4] ~ o
S wuw o u o

1 1 1 1 1

104 10°
Wavelength (4)

Figure 2. Spectral sequence of a M = 10’2M®, v =0.1c, log;;(Xjan) = —2 model using atomic data set HULLAC (orange), ATOMIC (blue), and Autostructure
(green) att =2, 3, 5, 10, and 15 days overlaid on top of the transmission curves of JWST photometric filters. At early times, the predictions from each atomic data set
agree relatively well, but rapidly diverge (particularly in the IR) and result in vastly different colors. The 67 = 15 days spectral comparison, while likely in a regime
where NLTE will affect the precise shape of features, particularly shows the uncertainty in the specific locations of lines between atomic data sets from the qualitative
differences in shape, which should remain unaffected by NLTE effects.
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Figure 3. Parameter space for peak absolute magnitude in each JWST NIRCam filter vs. peak time. Models using atomic data set HULLAC are in orange, data set
ATOMIC in blue, and data set Autostructure in green. Larger size corresponds to larger mass models. A black outline indicates that the local thermalization
efficiency prescription was used, while no boundary indicates global thermalization prescription. Circles, triangles, and squares indicate log;o Xj,, = —9, —4, and —2,
respectively. Hatches inside the markers indicate a model with characteristic velocity of 0.3¢, while those without indicate 0.1c. The effects of choice of atomic data
set already becomes apparent in the simple observable of time of peak and peak magnitude and especially so at redder filters; for the same ejecta parameters, while the
peak magnitude is approximately constant, the time at which the KN achieves its peak shifts by almost four days in the highest Xj,, models in the reddest filters.
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Figure 4. Same as Figure 3, except for each LSST filter u, g, r, i, z, and y. Similarly to the JWST filters, the reddest filters show the largest spread in days until peak
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sits at what color value the arc ends, with atomic data set
ATOMIC models generally ending at the reddest colors for the
highest Xj,, models. As a second-order effect, the choice in
thermalization efficiency prescription shifts the KN along the
arc with the global prescription resulting in a bluer KN and the
local prescription a redder KN. The farther apart the filters are
in wavelength space, the easier it becomes to distinguish KN
ejecta parameters based on where they fall in this parameter
space. However, observational limitations such as limiting
magnitudes will place constraints on the feasibility of sampling
maximally wavelength separated colors like g —7y, and so
colors with smaller wavelength separation like g — z may prove
more fruitful.

4.2.3. Decay Rate and Time Above Half Peak Luminosity

Figure 6 shows the rise rate in magnitudes per day in each
LSST filter as a function of magnitude at f= f,c. + 2 days.
Bluer filters like u, g, and r are much more rapidly decaying
than redder filters like i, z, and y with some models having
minimal decay. The light curves resulting from the atomic data
sets begin to diverge in characteristics with atomic data set
Autostructure models as the slowest declining in the
bluest filters while light curves from atomic data set ATOMIC
models tend to be more rapidly declining and therefore redder
than the light curves of other atomic data sets, though the
divergence is not sufficient to distinguish between atomic data
sets HULLAC and ATOMIC by decay rate alone.

Figure 7 shows the time spent in each filter above half the
peak luminosity. The emission in bluer filters rarely lasts more
than a few days above half maximum while the emission in red
filters can spend more than a week above half maximum. The
emission from atomic data set Autostructure models
stands out due to the longer times above half peak across all
filters by up to a factor of 2 as a result of the slower decay rate.

4.2.4. Bolometric Luminosity

Figure 8 shows the ratio of the bolometric luminosity curves
of the global to the local thermalization efficiency prescrip-
tions. The ratio has been smoothed then rescaled by a factor of
0.65/0.72 to correct for the disagreement in maximum
efficiency to ensure that any differences are due to the intrinsic
analytical formulae instead of a disagreement about the
assumed fraction of decay energy that escapes in neutrinos.
There is a clear difference in luminosity of factors between 0.8
and ~1.5 that evolve with time. This indicates that the two
thermalization prescriptions deposit a substantially different
amount of r-process decay energy in the ejecta, leading to
discrepancies in the bolometric luminosity.

Choice of atomic data set largely affects the shape of the
bolometric luminosity curve, as shown in the bottom right
panel of Figure 1. The fiducial atomic data set ATOMIC model
has a higher opacity and therefore traps more energy at early
times, resulting in a lower bolometric luminosity. The energy
then emerges at late times as the ejecta becomes optically thin,
which creates the brighter late-time bolometric luminosity
curve than the models using atomic data sets HULLAC and
Autostructure.

4.3. Atomic Data Systematic Uncertainty

The above figures show that the different atomic data sets
produce a range of KN colors for the same ejecta properties,
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with atomic data set Autostructure producing the bluest,
atomic data set ATOMIC producing the reddest, and atomic
data set HULLAC being in between the two. At smaller X,,, the
differences between atomic data sets HULLAC and ATOMIC are
minimal, as expected since they share nonlanthanide atomic
data, but are substantial for the highest Xj,, models where
lanthanide opacities dominate. For example, the highest X,,
and most massive models exhibit a scatter of almost 3 mag in
the u band while peaking at approximately the same time, while
in the y band, the scatter shrinks to less than a magnitude in
brightness and approximately a day in peak time (Figure 4).

The scatter of observational properties within an atomic data
set is typically quite similar, though offset from one another.
The offset for each atomic data set is most prominent in the
colors of each model (Figure 5), namely the g — i, r — i, and
r —z colors that span between 1.5 and 2 mag difference in
colors for the highest Xj,, models. This is also true of the decay
rate in each LSST filter, especially the bluest filters (Figure 6).
Many of the models with atomic data sets HULLAC and
ATOMIC so rapidly decay in the u band that most models have
dropped by more than 5 mag in a day, while atomic data set
Autostructure models are declining much more slowly at
~1.5magday'. The substantial difference in atomic data
means that the bluest filter that achieves a scatter across atomic
data sets of decay rate of less than 0.1 magday ' is the z
band, though this is likely due to the fact that the overall extent
of the color and decay rate phase space covered by the models
shrinks when looking at redder filters. The spread between
atomic data sets only grows for lower mass models, with a
spread of z-band decay rate of approximately 1 magday "

Therefore there is a tension in determining the optimal filter
for discerning KN ejecta properties; bluer optical filters like u,
g, and r have a higher intrinsic spread that can be utilized to
identify ejecta properties but are the most model dependent.
Redder optical filters like i, z, and y are less model dependent
but have a lower intrinsic spread and are more difficult to
discern ejecta properties.

At late times, the difference between atomic data sets is most
apparent in the IR colors. In Figure 2, the remaining features at
15 days dominate the predicted colors for each model, and their
different placements manifest as vastly different colors. Atomic
data set HULLAC is dominated by a feature at ~2.5 ym, while
atomic data set Autostructure has a number of features
spanning most JWST NIR filters. Atomic data set ATOMIC is
the only data set to have a long-lasting MIRI feature, resulting
in an extremely long-lived MIRI light curve and red color.
However, we caution using the LTE models presented here, as
line lists are incomplete for MIR wavelengths and the nebular
MIR spectra may be able to resolve individual atomic lines.

4.4. Thermalization Efficiency Systematic Uncertainty

The impact of thermalization prescription on observational
properties manifests as a systematic offset in a direction that
mimics more massive models across all atomic data sets and
ejecta parameters. For example, in Figures 3 and 4, the global
thermalization prescription drives points to brighter and later
peaks. Similarly, the global thermalization prescription pushes
a given KN to brighter and bluer colors in Figure 5.

Figure 8 shows the systematic brightness offset of the global
thermalization-prescription models compared to the local
thermalization-prescription models. Luminosity is most tightly
correlated with the ejecta mass through the r-process heating
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rate, as an increase in mass results in an increase in r-process
decay energy. The effect of thermalization efficiency prescrip-
tion on inferring the correct velocity measurement is negligible,
as it largely affects the overall normalization of the spectra at
each epoch.

Roughly, the 20%-50% offset in luminosity can correspond
to a difference in ejecta mass estimation of those factors. More
massive models appear to be less affected, with uncertainties up
to ~30%. This may be because the more massive models
remain optically thick for longer and the fraction of energy lost
by the outermost ejecta is more negligible compared to that of
the less massive models. Figure 8 additionally makes clear that
this systematic difference happens regardless of atomic data as
models with the same ejecta parameters eventually converge.
This is to be expected, as at early times when the ejecta is
optically thick and blackbody-like the difference in spectra is a
result of differing strong absorption features that allow a
varying luminosity to escape. As the ejecta becomes optically
thin, the luminosity of the KN becomes approximately the -
process heating rate as all radiation can instantly escape the
ejecta and so becomes the same across all models regardless of
atomic data set. Thus, the difference in luminosity between the
models reflects the underlying difference in thermalization
factors.

From Figures 3-8, it becomes immediately clear that treating
the thermalization efficiency prescription globally as opposed
to locally causes a systematic offset in model observable
properties approximately in the same direction across all atomic
data sets, masses, velocities, and lanthanide fractions for each
observable property. Generally, the global thermalization
efficiency prescription retains more energy in the ejecta than
the local thermalization efficiency prescription, resulting in
brighter KNe across all wavelengths, though especially at
optical wavelengths. Additionally, using a local thermalization
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efficiency prescription allows for more accurate modeling of
ejecta structures beyond those used in the numerical calcula-
tions of J. Barnes et al. (2016).

5. Effects on Parameter Estimation

The previous sections have shown that choices of atomic
data and thermalization prescription can lead to large
systematic offsets in observable properties and therefore in
the estimation of KN parameters. Here, we quantify the
systematic uncertainty due to thermalization efficiency pre-
scription and atomic data set.

In the era of LSST, there may be serendipitous discoveries of
KNe that are only discovered well after the transient has faded.
In these cases, the limited LSST data set collected can still
constrain valuable ejecta properties based on the characteristics
of the light curve (e.g., P. S. Cowperthwaite et al. 2019;
I. Andreoni et al. 2022a). In the following sections, we discuss
the impact the various atomic data sets and thermalization
prescription may have on parameter estimation for cases in
which there may only be a handful of photometric points across
a few bands.

5.1. Error Estimation with GWI170817

To illustrate the impact of the systematic uncertainty caused
by atomic data, we refit GW170817/AT2017gfo to derive
properties of the ejecta using each atomic data set. We fit the
light curves by adding together two 1D models, a low Xj,,
component and a high Xj,, component to mimic the polar, blue
ejecta and the red, dynamical ejecta interpretation of ejecta
components. While summing the emission does not take into
account effects of interaction between the two components, it is
sufficient to quantify the difference in parameter estimation
between the various atomic data sets and commonly used in
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Figure 9. Best-fitting light curve model for atomic data set HULLAC with bolometric luminosity points from M. W. Coughlin et al. (2018) and model bolometric
luminosity in the inset. M. W. Coughlin et al. (2018) extrapolates the SED to redward of 2.5 yum by fitting a blackbody to photometric points, which tends to
overestimate the true bolometric luminosities of the models presented in this work. The model tends to underproduce optical flux until z band, agree for J band, then
overproduce H and Ks bands while having a similar bolometric luminosity. This is likely indicative of too much reprocessing of optical light into IR and demonstrates

the difficulty of simplified 1D models fitting AT2017gfo.

other analyses (i.e., M. W. Coughlin et al. 2018). We present
these “fits” as relative estimates to capture the systematic error
between atomic data sets, not as absolute fits with statements
about the true parameters of GW170817.

We use a grid with masses M € [0.01, 0.02, 0.03, 0.04,
0.05] M, v, €10.05, 0.1, 0.2, 0.3] ¢, and log, ,(Xjan)€ [-9, —5,
—4, —3, —2] as components for each model. Additionally, we
include the models described in Section 2 for model-matching
purposes. We fit the light curve of g, 7, i, z, y, J, H, and Ks
filters presented in V. A. Villar et al. (2017) and references
therein at times 0 > 1 day to the equivalent LSST and 2MASS
filters by minimizing the weighted x> function

N

2 2
2 Wobs, i(yobs, i ym)
= Z 2 ’

X_

(N

i Om

where Wops, Yobss Ym» and ogops are the weights, observed
magnitude, model magnitude, and observed uncertainty,
respectively, and N is the number of observations. Once the
best-fitting model within the grid was identified, we then
iteratively tested a finer resolution grid around the lanthanide-
rich component. At each step, we generated 16 more models
that were half the logarithmic distance in Xj,,, half the linear
distance in mass, and half the linear distance in velocity to the
surrounding grid points.

However, since we use the equivalent LSST or 2MASS filter
to compare our models to GW170817, there are two additional
error sources that are not included in the photometric data
provided by V. A. Villar et al. (2017): the systematic offset of
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the LSST or 2MASS filter against the similar filter of the
observation and the scatter of points caused by the subtle
differences in filters across the telescopes used to observe
GW170817. As such, we artificially inflate the uncertainties of
each observation by a factor equal to the scatter of observed
magnitudes across each filter to account for the extra variance
of the data set. We then weight each point by dividing by the
number of data points with that filter to normalize such that
each filter holds an equal weight on the fit and prevent filters
with a large number of data points from dominating the fit.

The best-fitting model-matching parameters for each atomic
data set are listed in Table 1, and shown in Figures 9, 10, and
11. Importantly, the errors provided in Table 1 are representa-
tive of the spacing of the grid and do not reflect the true
statistical uncertainties of fitting the AT2017gfo data set; the
errors are provided to represent our coarse grid and of the
meaningfulness of the difference in parameter estimates
between the atomic data sets.

The best-fitting models using atomic data sets HULLAC and
ATOMIC are overluminous in the H and Ks bands while tending
to be slightly underluminous in optical bands (Figures 9, 10, and
11). However, the bolometric luminosity (shown in the upper
right corner of each Figure as calculated by M. W. Coughlin
et al. 2018 with the bolometric luminosity of the model in blue)
is approximately correct. Taken together, one explanation is that
this indicates these models produce approximately the correct
luminosity but reprocess too much of the optical emission into
the IR. Additionally, atomic data sets HULLAC and ATOMIC
have a long-lasting feature that aligns with the H and K filters
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Figure 10. Best-fitting light curve model for atomic data set ATOMIC. Similarly to Figure 9, ATOMIC overproduces H and Ks bands while underproducing optical
emission, especially at ¢r 2 5 days, though the bolometric luminosity curve is consistent.

Table 1
“Best-fitting” Model-matching Ejecta Parameters from our x? Fitting of GW170817 Data

Data Set

M, Vi 1og; o Xian1 M, Vo log1o Xian2 Total Lanthanide Mass X
(107> M) © (107> M) © M)
HULLAC 2.57513 0.05+30! —3.25%513 155943 031092 —9#2 15%107° 1.12
ATOMIC 25043 0.05+591 —3.75°043 25043 0270013 —912 4x107° 1.26
Autostructure 279013 0.05+30! —31043 2793 0.375%3 —4103 22x107° 0.319

Note. Uncertainties are based on grid spacing.

but has a steep decline in flux just blueward the J filter, causing
the large color difference that does not exist in atomic data set
Autostructure models.

However, the large IR output is needed to achieve the late-
time IR color observed in GW170817. M. M. Kasliwal et al.
(2022) present Spitzer IR photometric points and limits at
0t=43 and 74 days for 3.6 and 4.5 ym. While we recommend
caution when extrapolating the LTE models presented in this
work to such late times, the data presented in M. M. Kasliwal
et al. (2022) can help to constrain models. At 6t =43 days,
GW170817 has a 3.645pum color of >1.3mag. By
0t =74 days, the same color is > —0.8 mag. While high X,
and high mass models using atomic data sets HULLAC and
ATOMIC are capable of achieving the brightness of the 4.5 um
photometry point, the 6r=43days minimal color is more
constraining and only achieved by models using atomic data set
ATOMIC under LTE assumptions in the equivalent JWST filters.
While effects like NLTE, including actinides or super-heavy
elements, or late-time enhanced heating rate from 2%4Ca
(E. M. Holmbeck et al. 2023) that are not included in these
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models will likely alter these colors, the color evolution provides
an ideal avenue to constrain atomic data and abundances.

This is in sharp contrast to even the most massive (M =
0.1 M) and lanthanide-rich (log;y (Xj,n) = —2) models using
atomic data set Autostructure, which are insufficiently
bright at 4.5 um by approximately 4 mag. NLTE radiative
transfer will be critical to accurately modeling the color
evolution out to such late times and has the potential to
meaningfully constrain the atomic data of heavy metals. This
has already been done with some success, as K. Hotokezaka
et al. (2022) identified a handful of candidate species capable of
producing the bright 4.5 ym flux without 3.6 ym flux such as
Se I, W III, Os 11, Rh IT, Rh 111, and Ce IV using experimentally
identified lines in the NIST database. Interestingly, the lack of a
similar 4.5-3.6 um color in the KN candidate associated with
GRB 230307A (A.J. Levan et al. 2024) could be indicative of
substantial composition differences among KNe and have
implications for galactic r-process nucleosynthesis.

The inability of the models presented here to reproduce the
IR light curve of AT2017gfo points to a tension in KN
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Figure 11. Best-fitting light curve model for atomic data set Autostructure. atomic data set Autostructure is the only data set presented here that was
capable of producing sufficiently long-lasting optical bands and not over-producing IR filters by more than a magnitude at early times, likely due to its treatment of

light r-process elements.

modeling where it is necessary to produce a bright enough IR
transient at late times, but not so bright that the early-time IR is
overproduced. There are multiple possible avenues through
which this issue could be resolved, including a radial gradient
of Xian, NLTE effects, a more realistic 3D ejecta structure, or
variations in r-process heating. Critically, this tension indicates
that, with idealized 1D models, there is no atomic data set that
will perfectly fit the data.

Table 1 shows that the parameter most impacted by changing
atomic data sets is the heavy-metal content of the ejecta; the
estimates range from the smallest amount of heavy metals
using atomic data set ATOMIC (4 X 10°° M) to the most with
atomic data set Autostructure (2.2 x 107> M), differing
by a factor of ~6. Despite this high level of variance in
lanthanide mass between models, the bolometric luminosity is
well approximated by the models at 6z 2 1 day. The lanthanide-
rich component varies by ~0.75 orders of magnitude while the
lanthanide-poor component can vary much more substantially
by 5 orders of magnitude. However, at such low Xp,,, the
models are largely insensitive to changes until log;o(Xj,) ~ —4
as the lanthanide bound-bound opacities become subdominant,
which is likely the cause of such large uncertainty.

Mass and velocity are less impacted by changes in atomic
data set, with agreement among the models within +0.005 M,
and velocity within £0.1c. Total mass is even less impacted
across the atomic data sets, as it remains constant across all
“best-fitting” models. The overall level of agreement in mass
and velocity may be a result of optical filters dominating the fit,
as there were five optical filters and only three IR filters.
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5.1.1. Comparison to Other Works

While we stress that our fitting methods are based on model
matching and are meant to quantify the error caused by
thermalization efficiency prescription and atomic data, it is
nonetheless helpful to place the derived numbers in context of
those already found for AT2017gfo.

We consider three different estimates of the parameters from
AT2017gfo, listed in Table 2, from V. A. Villar et al. (2017),
M. W. Coughlin et al. (2018), and M. Risti¢ et al. (2023).
The “fits” presented in this work most closely resemble
the estimations of M. W. Coughlin et al. (2018), with most
parameters agreeing within ~1o, though the estimates of
M. W. Coughlin et al. (2018) are often larger. This is to be
expected as there are many similarities between the process that
went into fitting the light curves; M. W. Coughlin et al. (2018)
used the models from D. Kasen et al. (2017) in their fitting
process, which used atomic data set Autostructure and is
the closest in agreement. To represent a two-component KN,
M. W. Coughlin et al. (2018) also summed two 1D models.
The slight disagreement in Xj,, and <lo mass larger estimate
may also be a result of differences in composition, where the
D. Kasen et al. (2017) models that M. W. Coughlin et al.
(2018) use had a flat distribution of nonlanthanide material, as
opposed to the solar abundance distribution used in the models
presented here. Notably, the errors on each parameter derived
in M. W. Coughlin et al. (2018) also most closely match those
presented in this work and are larger than errors presented in
many other works. This is a result of the M. W. Coughlin et al.
(2018) incorporating a 1 mag uncertainty into their model



THE ASTROPHYSICAL JOURNAL, 975:213 (21pp), 2024 November 10

Brethauer et al.

Table 2
“Best-fitting” Ejecta Parameters from the Literature of GW170817 Data with 1o Errors

Source M, Vi 10gX1an1 M, V2 10g10X1an2
(1072 M,,) (© (1072 M.) (©

M. W. Coughlin et al. (2018)—Light Curve 3.091183 0.1+3:58 —1.61493¢ 2,578 0.17:59 —4.73504!

V. A. Villar et al. (2017)—2 Component 5591 0.14979:9%4 K =3.6510% cm? ¢! 2.3797 0.256799% K=05cm? g

M. Risti¢ et al. (2023)—Weighted 191733 0.2+ —1.28* 1.58%93 0.13 =55 —oo®

Note.
# Quantity was fixed in modeling.

fitting and represent one way to proceed with modeling
systematic model uncertainties.

M. Risti¢ et al. (2023) uses models produced with atomic
data set ATOMIC for their fitting process, and imposes a fixed
composition with no lanthanides in the lanthanide-poor
component and a log;,(Xj.,) ~ —1.28 lanthanide-rich comp-
onent. Their mass estimates are smaller than those we derive
for atomic data set ATOMIC, though this could be due to their
radiative transfer simulations being run in 2D as opposed to
1D, which can lead to smaller mass estimates due to treatment
of photon interaction between the two components (i.e.,
K. Kawaguchi et al. 2018). Additionally, the fixed higher
Xian in their lanthanide-rich component will cause more optical
light to be reprocessed into IR for a longer time. To
compensate, a faster lanthanide-rich component would cause
a faster decline in IR bands to match AT2017gfo, possibly
resulting in the finding of a higher velocity than our model-
matching fits. As for the lanthanide-poor component, the lower
characteristic velocity (Av ~ 0.07¢) would generate a longer-
lasting optical transient and potentially “replenish” some of the
additional optical light that had been reprocessed into IR due to
the higher Xj,, in the lanthanide-rich component.

Finally, we compare our results to that of the two-component
fit from V. A. Villar et al. (2017). The total mass of the two-
component model in V. A. Villar et al. (2017) is approximately
double that of the model-matching estimates presented here, as
well as a much faster lanthanide-rich component (Av ~ 0.1c¢)
and somewhat slower lanthanide-poor component (Av
~ 0.05¢). This may be a result of their wavelength-independent
opacity models, which would underpredict the opacity at
optical and UV wavelengths while overpredicting the opacity at
IR wavelengths. As a result, less emission will be reprocessed
into the IR, creating a brighter optical light curve and a fainter
IR light curve. To create a sufficiently bright IR transient, the
gray opacity scheme will require a more massive lanthanide-
rich component. However, to prevent the model from
remaining too bright for too long, the fitting procedure may
have favored a higher velocity model.

5.2. “Error Estimation” Self-comparison

To more generally quantify how atomic data uncertainties
affect KN parameter estimations, we consider each model in a
given atomic data set and find a best-fitting model from the
other two atomic data sets. We use the same grid used to “fit”
the GW170817 data, and only use local thermalization
efficiency prescription models. We again use a weighted x>
fitting (Equation (7)) to determine the best-fitting model with
the weighting to equalize the importance of each band. Each
model is fit using absolute magnitudes. Due to the large
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disagreement in optical data between atomic data sets HULLAC
and ATOMIC with atomic data set Autostructure as well
as avoid biasing due to similarities in the optical of atomic data
sets HULLAC and ATOMIC from their shared nonlanthanide
data, we only fit for J, H, and Ks bands. We apply this fitting
method for models with log,,(Xjan) = —4, as the bound-bound
transitions of lanthanides will eventually become subdominant
to nonlanthanides at smaller values of X,,.

The baseline model has data sampled at a frequency of 1 day
plus a ¢t determined randomly by a Gaussian distribution of
=0 and 0=0.2 to mimic a nightly observing campaign.
Additionally, for each photometric point, we add Gaussian
noise with standard deviation equal to the scatter of the
approximately similar filters in GW170817.

Figure 12 shows the results of this exercise for each
combination of mass and characteristic velocity with log,,(Xj,n) =
—2, =3, and —4 from the top row to bottom row. When using
atomic data set HULLAC to fit models run with atomic data set
ATOMIC and vice versa, there is good agreement in mass, velocity,
and Xj,, estimation overall for log,,(Xj,,) = —4, —3. However, at
higher characteristic velocities like 0.2 and 0.3c, a =£1dex
uncertainty in Xj,, begins to emerge. Similarly, at low velocity-
high mass end, a +0.01 M, (20%-25%) offset emerges.

Yet, the highest Xj,, fitting reveals a much larger uncertainty
with velocity estimations being incorrect by ~0.1—0.2¢ and
mass estimates off by £0.02 M., (25%—-40%) for some of the
highest mass models. For 8 out of the 20 models, atomic data set
ATOMIC requires a smaller Xj,, to reproduce a similar IR light
curve to those made by atomic data set HULLAC, with most of
those being at the higher velocity end. In the other direction,
when fitting atomic data set ATOMIC models with those from
atomic data set HULLAC always requires the highest Xjq,.

Atomic data set Autostructure consistently struggles to fit
the light curves from atomic data sets HULLAC and ATOMIC, and
vice versa. While the mass estimates are the most accurate, they
still tend to be incorrect by ~0.02 M., (25%—40%), and up to
0.05M. (>100%). Figure 12 clearly shows a degeneracy
between X, and velocity, with the lower Xj,, models fitting
lower velocities better because the IR peaks are more delayed in
low Xj,, models of atomic data set Autostructure, compared
to the much more immediate brightening produced by atomic data
sets HULLAC and ATOMIC. The faster atomic data set
Autostructure models achieve their IR peaks much more
rapidly, and so there are better fits at higher Xj,,. Despite the
major discrepancy in Xj,, of the base atomic data set
Autostructure model and the ejecta parameters of the
atomic data sets HULLAC and ATOMIC fits (7-8 dex), the reduced
x* is ~0.27, indicating a high quality fit. This discrepancy is
reduced in the lower Xj,, models, though at the cost of incorrectly
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Figure 12. Best-fitting models for atomic data set HULLAC, ATOMIC, and Autostructure models for the left, middle, and right, respectively. At each point on the
model grid, the left, middle, and right symbol connected by a line represent the best-fitting model from each atomic data set in the same order as the columns (thus the
“correct” symbol is on the left, middle, and right for the left, middle, and right columns, respectively). Color corresponds to the best-fitting X),,,, while a circle, triangle,
square, and pentagon represent a best-fitting velocity of 0.05, 0.1, 0.2, and 0.3c, respectively. Size of the marker correlates to the best-fitting mass. Atomic data sets
HULLAC and ATOMIC fit each other with the highest accuracy, though at higher velocities, a 1 dex discrepancy in Xj,, emerges with atomic data set HULLAC
underestimating Xj,,, and the highest Xj,, models disagree on mass and velocity estimates by 25%—-40% and 0.1-0.2c, respectively. Atomic data sets HULLAC and
ATOMIC have very similar fits to atomic data set Autostructure models as they (i) require much lower Xj,, and high velocities to match the IR of
Autostructure models, (ii) tend to overestimate the velocity by 0.1-0.2¢, and (iii) incorrectly estimate the mass by one grid step (20%—50%). When fitting other
models with atomic data set Autostructure models, atomic data set Autostructure often overestimates the mass by as much as a factor of 3 at low velocities,

and consistently struggles to fit the correct velocity at all.

estimating the velocity as almost all models are best fit by models
of velocity 0.05c¢.

Velocity agreement improves at higher velocities and lower Xi,,,
but Xj,, estimates get worse at higher velocities. Mass estimates
tend to consistently be off by ~0.01 or 0.02 M, across all atomic
data sets, though reaching as high as 0.07 M, for a 0.03 M., model.
However, spectroscopy is capable of giving a direct measurement
of the characteristic velocity and thus break uncertainties, making
many of the error estimates for velocity moot. In cases where
spectroscopy was not obtained or impossible to obtain, such as a
target that is too faint or a KN that was discovered in the LSST
archives, these errors may become applicable.

5.3. Impacts on Galactic Nucleosynthesis

Based on the systematic uncertainties in mass and Xj,,
estimates in the previous sections, here we propagate the impact
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of those uncertainties to conclusions about KN r-process as the
source of galactic r-process elements. Following a prescription
similar to that of S. Rosswog et al. (2017), we can approximate
the amount of lanthanides in the Milky Way, assuming that all
lanthanides come from a single type of event, as:
Mgy = R X Mej X Xian X Tmw,

®)

where M,,, is the total lanthanide mass in the Milky Way, R is
the rate of mergers per year in the Milky Way, M, is the
average ejected mass, and Ty is the age of the Milky Way.
Under this prescription, to achieve the same amount of
lanthanides in the Milky Way, a decrease in the compact object
merger rate would have to be compensated by a proportional
increase in the typical mass of the ejecta and vice versa,
assuming a constant Xj,,. J. Lippuner & L. F. Roberts (2015)
calculate that, at most, material undergoing the r-process can
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achieve Xj,, ~ 35%, though the typical low Y, material is much
closer to 10%, placing an upper limit for that parameter.

Therefore, the errors presented above (Sections 4.3, 4.4, 5.1,
5.1.1, 5.2) directly translate into the same percent errors in the
required compact object merger rate: a 0.75 dex uncertainty in
Xian translates to roughly a factor of 6 change in the compact
object merger rate (assuming the same ejecta mass), and the
25%-40% mass error from atomic data as well as 30% error
from thermalization efficiency would require a factor of ~1.3
—1.4 change in compact merger rate.

To place these errors in context, currently the estimates of
compact merger rates are 360—1800 events Gpc > yr~ ' based on
Chandra and XMM-Newton short gamma-ray bursts (A. Rouco
Escorial et al. 2023), 101700 BNS merger events Gpc > yr '
(90% confidence) based on LIGO rates (R. Abbott et al. 2023),
and 244f?§g merger events Gpc > yr ' based on population
synthesis studies from C. Kim et al. (2015) and a conversion
factor of 1.16 x 10> Milky Way-like galaxies Mpc > from
J. Abadie et al. (2010), as discussed in S. Rosswog et al. (2017).

While there are still many other sources in error of the
compact merger rate such as the opening angle distribution of
gamma-ray burst jets or the minimum gamma-ray luminosity
(A. Rouco Escorial et al. 2023), and assumptions about the
underlying NS population-like mass and spin (R. Abbott et al.
2023), among those presented in this work the lanthanide mass
fraction has the highest impact.

6. Conclusions

In this paper, we presented the systematic uncertainties in KN
ejecta properties that arise from variance in thermalization-
efficiency prescriptions and unknown lanthanide atomic data
based on fitting light curves of both real KN data from
AT2017gfo as well as cross-fitting synthetic light curve models.
We presented KN models that span the expected ejecta mass,
velocity, and X),, range using three atomic data sets and two
thermalization-efficiency prescriptions. We show that the typical
errors quoted in parameter estimates (such as a 0.02, 0.05, 0.08 dex
in mass error (M. Breschi et al. 2021; M. Risti¢ et al. 2023;
P. T. H. Pang et al. 2023), 0.3 dex in Xj,error (J. H. Gillanders
et al. 2022), <3% in velocity error (M. Breschi et al. 2021)
do not include the model uncertainties and are significantly
smaller than the the 20%-50% uncertainty in mass caused by
thermalization prescription and 25%-40% from atomic data
uncertainty. Xj,, can vary by 0.75 orders of magnitude for the
lanthanide-rich component and as much as 5 orders of magnitude
for the lanthanide-poor component by comparing model-
matching fits of AT2017gfo light curves (the significantly higher
uncertainty on the lanthanide-poor component is likely due to the
subdominance of bound-bound transitions at such low Xj,,).

Fitting IR light curves with models generated from other
atomic data sets reveals a typical mass error of 20%—-40%,
though the error can be as high as a factor of 3. Velocity errors
are typically 0.1-0.2¢ (~100%), though spectroscopic follow-
up would help to eliminate this uncertainty. Similarly, errors in
Xian are more severe at higher Xj,,, with a typical error of +1
order of magnitude.

The uncertainties derived in this work imply the total inferred
lanthanide production of BNS mergers can vary by a factor of
~6. Therefore, if BNS merger events are the sole contributor of
lanthanides to the r-process enrichment of the Milky Way, the
merger rate required to reproduce the abundances seen in the
Milky Way have an additional uncertainty factor of ~6.

20

Brethauer et al.

While the work presented here identified a few sources of
systematic uncertainties, there are still many other systematics
that are worthwhile to explore further. NLTE effects,
compositional gradients, asymmetries in the ejecta, variable
radioactive heating rates, the inclusion of fission and fission
fragments, and delayed thermalization may impact the light
curves and spectral series substantially.

Spectral sequences will be able to reduce the impact of some,
though not all, of the uncertainties presented in this work.
Spectra can provide a much more direct estimate of ejecta
velocities, inform viewing angle dependencies, and at late
times, MIR spectra could constrain individual atomic abun-
dances as well as inform atomic data modeling.

This work highlights the need for progress on both the
theoretical and observational front to better constrain under-
lying KN physics. A nearby KN targeted by facilities such as
JWST would provide ample data in the MIR to identify
important lines and constrain atomic models, indicating the
need for sufficient Target of Opportunity request availability.
Further GRMHD simulations of compact object mergers
containing a NS can constrain ejecta morphology and ejection
mechanisms to inform radiative transfer models, and therefore
make more realistic assumptions for more accurate models.
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