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Abstract—Safety and security concerns surrounding Internet-
of-Things (IoT) platforms for smart homes have spurred the
development of defense mechanisms to safeguard against un-
expected behaviors in accordance with safety and security
policies. However, the need to manually craft policies in tool-
specific languages increases the burden on humans. Previous
attempts to address this issue have fallen short, either lacking
portability or requiring human intervention in other forms.
Therefore, in this paper, we propose iConPAL, an automated
policy authoring assistant for IoT environments. iConPAL accepts
a policy description in natural language (English) and translates
it into a specific formal policy language. iConPAL leverages the
capabilities of modern large language models (LLMs), employs
prompt engineering to automatically generate few-shot learning
prompts for the LLM, and post-processes the LLM’s response
to ensure the validity of the translated policy. We implemented a
prototype of iConPAL and evaluated it on our curated dataset of
290 policies. We observed that iConPAL successfully translated
93.61% policies, of which 93.57% were semantically correct.
iConPAL’s high accuracy makes it suitable for assisting ordinary
users in drafting policies for smart homes.

Index Terms—IoT Security, Policy Authoring and Enforcement

I. INTRODUCTION

The rapid expansion of programmable Internet-of-Things
(IoT) platforms has enabled affordable automation solutions
for smart homes, utilizing a myriad of low-cost IoT devices
[1-3]. Concurrently, safety and security concerns surrounding
smart homes have taken center stage, prompting the develop-
ment of defense mechanisms mitigating unexpected/insecure
behaviors on these platforms [4-21]. Defenses vary in terms
of their core mechanisms—static analysis, dynamic analysis,
and runtime monitoring—yet their primary focus remains on
safeguarding against unexpected behaviors in accordance with
safety and security policies, each defining expected IoT system
behavior for installed devices. However, the requirement to
manually craft policies in tool-specific languages increases the
burden on humans, diminishing the appeal and adoption of
these defense tools. Therefore, it is crucial to automate this
policy authoring process.

Prior work [9, 11, 13, 16, 17, 22-24] attempts to reduce
the human burden by employing automated policy synthesis
mechanisms. However, these approaches fall short for several
reasons. Firstly, they require either a collection of execution
traces (such as event logs or user activities) from the smart
home, labeled with acceptable and unacceptable outcomes
(i.e., positive and negative examples) [9], or access to the
source code of installed automation apps [13, 16, 17]. These

requirements impose significant human effort, which may be
outright impossible in some cases due to inaccessible source
code or a lack of traces. Secondly, the synthesized policies are
often limited in scope, as they can only express invariants—
a subset of policies [11, 13]. Finally, the policy synthesizers
are tightly coupled with their respective defense tools, and the
synthesized policies are specific to the current smart home,
lacking portability altogether.

On the other hand, prior work [25] explores the concept
of training non-tech-savvy users to formulate their desired
policies using a formal policy language through an online user
study. Participants underwent gradual training through various
tutorials and were evaluated on their ability to draft policies
in the trained language. The overwhelmingly low success
rate suggests that these policy languages are too complex
for ordinary users to grasp and utilize effectively for policy
composition.

In this paper, we propose iConPAL, an automated policy
authoring assistant. iConPAL takes a natural language de-
scription of a policy from a user as input and produces the
policy translated into an expressive formal policy language
tailored for various IoT defense mechanisms. Unlike prior
work, iConPAL does not have the same limitations: (a) It does
not necessitate execution traces (e.g., event logs) or source
code of automation apps; (b) It uses a policy language that is
not tied to any specific defense tools but is expressive enough
to capture policies beyond invariants (e.g., linear temporal
logic); (c) It is highly portable and not dependent on any
particular defense tools or smart home setup; and (d) It does
not require users to learn the policy language. These features
make iConPAL a user-friendly tool for policy creation in IoT
environments.

At its core, iConPAL relies on a pre-trained large language
model (LLM) like ChatGPT and Llama2. These modern
LLMs demonstrate a nuanced ability to understand natural
languages and perform various tasks, including translation.
While iConPAL utilizes an LLM’s capabilities, merely tasking
it with translating a policy description into a specific formal
policy language proves futile, as no LLMs are trained for
our target policy language. Furthermore, re-training or fine-
tuning an LLM presents challenges due to the substantial
computational resources required and the need for a vast
dataset containing pairs of («, ), where « represents the
natural language description of a policy and [ represents the
translated policy expressed in the policy language.

Instead of re-training or fine-tuning, iConPAL utilizes the



prompt-based in-context learning capability of LLMs. iCon-
PAL employs prompt engineering to automatically generate
few-shot learning prompts for the LLM by incorporating
numerous types of contexts, such as samples of policy trans-
lation, the grammar of the policy language, and a tutorial to
teach the language. Given a few-shot learning prompt, the
LLM responds with the translated policy. While a context
plays an important role in the translation, not all contexts are
equally effective for the translation task, as we observed cer-
tain combinations yield better accuracy than others. iConPAL
utilizes a subset of these contexts to form a few-shot learning
prompt for translating each new policy description. Note that
these contexts are pre-computed and remained unchanged over
time. Samples of translations are derived from our small
dataset (290 translations) curated through exploration and
consultation of prior work in the IoT security landscape.
Rather than creating a new policy language, we have extended
an expressive policy language from [9].

To increase the success rate of the translation, iConPAL
employs various methods, such as syntax validation and
prompt refinement. Syntax validation enables iConPAL to
identify syntax errors in the LLM’s response, while prompt
refinement allows it to adjust the prompt based on identified
errors and query the LLM again to avoid repetition of the
error. iConPAL iteratively refines the prompt until it receives
a syntactically valid translation or reaches a query threshold.
Consequently, iConPAL either produces a translated policy,
which is syntactically valid, or fails to do so.

While syntactic validation of a translated policy is crucial,
semantic validation is equally, if not more, important. Al-
though a policy translated by iConPAL is syntactically valid,
it might lack semantic validity. Manual semantic validation
is possible but burdensome. To address this, we devised an
automated approach using an LLM. Therefore, in evaluating
iConPAL’s effectiveness, we conducted both manual and au-
tomated semantic validation of the translated policies.

We developed a fully functional prototype of iConPAL using
Python 3.10. For the syntax validator, we utilized ANTLR
4.13.1. Our prototype is not tied to any specific LLM like
ChatGPT. Instead, we integrated a generic prompt template
within iConPAL and equipped it with an LLM client. This
client relays each prompt request to our offshore LLM gateway
server, which is capable of interfacing with multiple LLM
backends, such as ChatGPT, Llama2, and Mixtral. Notably,
any change in the LLM backend will not disrupt the operation
of iConPAL. When interfacing with an open-source, locally-
deployable LLM like Llama2 and Mixtral, the gateway will
operate on a GPU-backed server. However, for a cloud-
based LLM like ChatGPT, our gateway simply implements
a lightweight wrapper to communicate with the respective
vendor’s web API, which does not require any local GPUs.

We evaluated iConPAL on 290 policy descriptions from
our dataset. Firstly, we assessed iConPAL’s efficacy in trans-
lating a given policy description, measuring its success rate.
iConPAL successfully translated policies at a rate of 93.61%.
Among these successfully translated policies, 93.57% were

semantically valid. Secondly, we conducted an ablation study
to identify the contribution of iConPAL’s components to its
effectiveness, allowing us to determine the optimal configura-
tion. Thirdly, we evaluated how iConPAL’s performance varied
with different LLMs. We found that OpenAI’s GPT-4 produces
the highest success rate of 93.61%, whereas Llama2 with
13B parameters had the lowest success rate 13.53%. Finally,
while we manually analyzed the reported semantic validation
rate in the aforementioned experiments, we also assessed the
effectiveness of our automated semantic validation approach.
We observed that the automated approach is 78% accurate
and has the potential to serve as a first-stage filter for manual
semantic validation, thus reducing the burdens on humans
while incurring minimal financial cost. iConPAL is available as
open-source at https://github.com/syne-lab/iconpal.
Contributions. This paper makes the following contributions:

o We proposed iConPAL, an automated policy authoring as-
sistant designed to translate natural language policy descrip-
tions into a specific formal policy language. iConPAL relies
on the power of LLMs and employs several components to
automate the translation process.

o We curated a small dataset comprising 290 policy translation
examples and a tutorial for the policy language.

« We implemented a fully functional prototype of iConPAL
and evaluated its effectiveness using policies from our
dataset. iConPAL generated 93.61% syntactically valid poli-
cies, of which 93.57% were also semantically valid.

o To the best of our knowledge, iConPAL is the first auto-
mated policy authoring assistant for IoT defense solutions.

II. PRELIMINARIES

IoT Devices and Platforms. Smart homes are composed of a
myriad of IoT devices. A device can have one or more sensors
or actuators or both. For example, a surveillance camera has
motion sensors and actuators to turn on/off the camera for
recording video and audio. A device with actuation capabilities
can be operated through instructions (aka, commands) sent
from a remote entity (e.g., a mobile app, a cloud provider,
an IoT platform). Similarly, a device with sensing capabilities
senses a change in its surrounding environment (e.g., a mo-
tion). Each device maintains the current status of its capability
as an internal state and notifies the remote entity of any change
in its internal state. These notifications are also referred to as
events that the remote entity or the automation application can
act upon.

Programmable IoT platforms (e.g., SmartThings, Open-
HAB, IFTTT) have paved the way for regular users to turn
their traditional homes into full-fledged smart homes. While
IoT devices are essentially part of the physical world, it is
the platform that not only hosts the customized automation
of the user’s choice but also connects the IoT devices with
the cyber world. Therefore, a platform plays the major role
in orchestrating the automation and monitoring of IoT devices
installed in a smart home.

Automation Apps. Customized automation are primarily en-
coded as short applications/programs (in short, apps). Plat-



forms like SmartThings, OpenHAB, and HomeAssistant al-
low users to install and edit directly the source code of
the apps. On the other hand, platforms like IFTTT and
Zapier allow users to configure apps using their graphi-
cal web interface. By and large, an app follows a trigger-
action paradigm. Consider an automation app for an outdoor
camera to be “if motion_detected, turn on recording
video and notify the user’s phone app”. Upon sens-
ing a motion, the sensor notifies the platform about this
motion_detected event, which in turn will trigger the
platform’s app engine to execute this camera app to take
actions. The execution of this app will result in sending
a recording.turn_on() command to the camera and a
notification to the user (i.e., notify_user()). While these
platforms and apps work together to facilitate customized
automations for smart homes, they have also introduced a new
attack surface to smart homes [26-28]. For instance, remote
adversaries can exploit flaws in these apps [4, 18, 26] or third-
party services [9, 13] to create security or safety issues.
Policies and Defense Mechanisms. Several defense mech-
anisms have been proposed to address the threats from apps
and mitigate the safety and security issues of smart homes [4—
11, 13, 16, 18]. These defenses often revolve around enforcing
countermeasures based on policies, where a policy expresses
a certain behavioral condition of a smart home that must
be satisfied at all times (e.g., a safety property [29]). While
static analysis based defenses [4, 18] proactively identify any
app that could potentially violate a given policy, runtime
monitoring based approaches [6, 7, 10, 11, 13] dynamically
prevent any app’s contemplated actions that would violate a
given policy at runtime.

Consider “the outdoor camera must not be turned
off when the user is in vacation” be a policy. At first
glance, this policy may appear to follow the trigger-action
paradigm of apps. However, policies are different from apps,
because policies express conditional relationships among the
behavior of smart home devices, unlike apps that dictate
actions when a triggering condition is satisfied. This pol-
icy can also be interpreted as a logical implication like
“UserAway = Camera_is_ON”, which will be evaluated as
false in a smart home execution scenario when UserAway
becomes true but Camera_is_ON turns false. Now if an
app issues a command to turn off the camera when the user is
away, a defense must recognize that this command will violate
the stated policy and therefore take appropriate measures —
either notifying of such potential violations [10] or blocking
the actions in question [6, 7].

Policy Languages. Unlike apps, writing policies has been
daunting and complicated for regular smart home users (who
are mostly non-tech-savvy). Apps are relatively straightfor-
ward to program because of their simplified structures, which
align with how humans think, and the support of visual
programming editors offered by platforms. On the contrary,
policies are complex as they are conditioned on the current
state or the execution history (traces) of a smart home. Prior
work attempted to address the trade-off between usability

and functionality, thereby resulting in many types of domain-
and tool-specific policy languages, inspired by propositional
logic, quantifier-free first-order logic, temporal logic, and so
on. While some languages can only express system invariants
(i.e., policies conditioned on the current state of the home),
others can express variants of temporal logic (i.e., policies
conditioned on the execution history). In any case, writing
a policy demands users to deal with the idiosyncrasies of the
tool’s policy language and to possess a nuanced understanding
of the IoT system’s corner cases, which is almost impossible
for non-tech-savvy users.
Large Language Models (LLMs). The recent success of pre-
trained large language models (LLMs), such as ChatGPT, has
demonstrated LLMs’ ability to comprehend natural language
instructions and carry out domain-specific tasks across diverse
topics, without re-training the entire model. LLMs have been
used for many common tasks, including, text translation. Given
an instruction, also known as prompt, to translate a text
from one language (e.g., English) to another (e.g., French),
LLM can respond with the translated text. For example, with
a prompt like “Translate the following text into
French: "LLMs are powerful"”, ChatGPT responds “Les
LLM sont puissants”. Such translations are possible be-
cause LLMs like ChatGPT were trained on a substantially
large dataset of both languages and therefore LLMs learned
the general rules and dependencies within each language.
However, translating a policy from its natural description
in English to a policy language is challenging because LLMs
are not trained on the target policy language. To overcome
this challenge, re-training or fine-tuning the model is a huge
undertaking as it requires a large labeled dataset and significant
computing resources. Instead, LLMs can be taught a domain-
specific task by including a few labeled examples of the task in
the prompt, also known as a few-shot prompting technique. By
carefully crafting and employing such examples in prompts,
LLMs can be successfully adapted to carry out this domain-
specific task.

III. OUR APPROACH: ICONPAL

We present our problem definition and a high-level work-
flow of iConPAL, along with its critical components.

A. Problem Definition

Let X be a set of policy descriptions written in English
(a natural language) and « be a policy description such that
a € X. Consider L, a domain-specific policy language and
G, a grammar to produce each 3 € L. In other words, /3 is a
policy written in the policy language L. T represents a tutorial
written for humans teaching how to write policies in L. E
denotes a set of sample pairs of manually translated policies,
ie, E = {{a,8)|a € ¥ and § € L}. Existing information
pertaining to the policy language and the translation comprise
our knowledge base, KB = {G, T, E}. Now, we can define
the policy translation operation as 7 C ¥ x 2KB x IL. In other
words, («;,C, B;) € T means that 3; is the translated policy of
«; with respect to a configuration of the knowledge base, C €



Input: When the smoke is detected, the alarm must sound
Output:

If SmokeDetected Then AlarmSound

SmokeDetected = (SmokeSensor.status == "Detected")
AlarmSound = (Alarm.status == "Sound")

Fig. 1: An example of a policy translation using iConPAL

2KB_ Implementing a 7 is undecidable as the completeness
and soundness cannot be achieved simultaneously.

Instead, iConPAL is designed to realize 7;conpAar, @ subset
of T, while striving to achieve soundness. To formulate
TiconpraL, We need to first define two functions. Let SynValid
be a function to check syntactic validity and defined as
SynValid : § x G — {true,false}, where S is a set of
all possible strings (i.e., L. C §). Given a string s € S and a
grammar G, SynValid can determine if s is syntactically valid
with respect to G. Similarly, let SemValid be a function to
check semantic validity and defined as SemValid : ¥ x L —
{true,false}, where ¥ and L are defined as above. If «
is a policy text and g is a translated policy, SemValid can
determine if 3 is semantically valid with respect to a.
Definition. Given a policy text a« € ¥ and a configuration
of the knowledge base C € 2%B, Ticonpar can be defined
as Ticonrar = {{(&,C, B)|SynValid(8,G) = true}, where
B € L. iConPAL develops Ticonpar U {{a,C,L)}. This
means when iConPAL succeeds in translating «, it outputs
5, but when iConPAL fails to translate, it outputs | (i.e., a
message like "translation failed"). A syntactically valid
policy (e.g., B) is not necessarily semantically valid. To ensure
semantic validity, iConPAL utilizes SemValid to check if 3 is
semantically valid, i.e., SemValid(a, 8) = true.

B. Overview of iConPAL’s Design

Given a policy description «, iConPAL translates it to a
format (S) written in the desired policy language. Instead
of designing a new policy language, iConPAL leverages an
existing policy language [9], which is expressive and generic
enough to capture different policies common for IoT systems.
We have extended the grammar (G) of this language (L) with
some operators (see Appendix A).

Example. iConPAL takes the description of a policy in English
as an input and outputs the corresponding translated policy
written in I, as shown in Figure 1. A user wants to ensure
that the fire alarm must sound whenever the smoke sensor
detects smoke. The user can utilize iConPAL to obtain the
translated policy, where SmokeDetected and AlarmSound are
predicates and defined as conditions on the state of the device.
iConPAL’s Workflow. Figure 2 presents the architecture of
iConPAL. Internally, iConPAL consists of multiple individual
modular components that work in concert to translate a given
policy description. The user writes a description of the in-
tended policy, referred to as a policy text «, in the iConPAL’s
interface (@). iConPAL forwards « to its prompt generator
(®). The prompt generator utilizes a knowledge base (KB)
consisting of a collection of example translations (E), the

grammar (G) of the desired policy language L, and a tutorial
(T) for humans to write policies using G. While iConPAL
allows the user to select any preferred combination C € 2XB
as a prompt config, the default configuration of iConPAL uses
the combination that yielded the best result in our evaluation
(see § V). Given a prompt configuration, the prompt generator
constructs an intermediate few-shot prompt (p) composed of
« and information from KB according to C (®). Note that p
follows a generic template, not tied to any particular LLM.
Our LLM client takes in p, converts it into a full-fledged
prompt (), and sends vy to our off-shore LLM server that
interfaces with several LLMs (e.g., ChatGPT, Llama2) (®).
Note that « follows a customized prompt template (shown in
Figure 3) that is devised for our LLM client and server and is
expressive enough to encode information required for actual
prompts to query all 7 LLMs we used in our evaluation. Upon
the receiving the query, the LLM backend generates a response
() containing the translated policy (@®). Often, A is surrounded
by explanations or comments for the user, and therefore, our
response extractor extracts the policy formula (¢) from A (®).
iConPAL employs a syntax validator (i.e., a parser for G)
to check if ¢ is syntactically valid. If so, iConPAL outputs
the valid translated policy S (@). If not valid, iConPAL is
equipped with a refinement feature to guide the LLM by using
the validator generated error message (R). If this option is
enabled, the prompt refiner creates a refined prompt (V) by en-
capsulating the last v, the last received ), and R and forwards
¥ to the LLM client (®) to initiate the next round of query.
This refinement loop continues until ¢ becomes valid or the
iteration reaches a user-provided threshold. Upon reaching the
threshold, iConPAL outputs L (i.e., translation failed).
What iConPAL outputs (i.e., ) is only syntactically valid.
However, semantic validity of 3 is not part of this pipeline
and is conducted separately, as shown in Figure 4. For se-
mantic validation of the translated policy (), we introduce an
automated approach, AutoSemVal, by harnessing the power
of an existing LLM and differential checking. Let 3 be the
translated policy of the text ov. AutoSemVal queries the LLM
for a natural language description of 3, which we refer to as
a’. Next, AutoSemVal constructs another prompt to ask the
LLM to assess if both « and o’ are equivalent. In other words,
AutoSemVal checks if two descriptions of the policy (/) have
the same semantic meaning. The response of the LLM dictates
whether [ is semantically valid or not. Furthermore, for the
assessment of iConPAL’s efficacy, we performed a manual
semantic validation of 3 in parallel (as shown in Figure 4).

C. Knowledge Base

iConPAL utilizes a knowledge base to construct an ef-
fective learning prompt for guiding the LLM to translate
the given policy description. Currently, iConPAL incorporates
three types of the policy-translation related information into
the knowledge base: a grammar of the policy language, a
tutorial to use the grammar for translation, and a collection of
sample policy translations. While more types of information
can be added to the knowledge base, we observed these three
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Fig. 2: iConPAL’s architecture and workflow

Role: You are a natural text to policy translator.

Contexts:

{Grammar information}

{Tutorial information}

{Example_1: translation of text to policy}

{Example_n: translation of text to policy}
Task:

Translate the following natural text to policy language.
"When the smoke is detected, the alarm should sound."

Fig. 3: The structure of a full prompt (7). Texts in braces {...}
are placeholders
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Fig. 4: Semantic Validation of iConPAL’s translations

types are readily available and enough to translate policies
with high accuracy.

Grammar (G). iConPAL uses the grammar G of Maverick’s
policy language [9]. We have encapsulated G using the syntax
of Extended Backus-Naur Form (EBNF) [30]. Based on the
prompt configuration, some of our generated learning prompts
include G to help the LLM learn the underlying policy
grammar. We decide to include G in the learning prompts
because G is a context-free grammar and modern LLMs
understand context-free grammars.

Tutorial (T). We developed a full tutorial to help humans
learn the nuances of the grammar G and write a policy
in this language. We decide to include this tutorial in the
learning prompts so that the tutorial can help LLM learn how

to construct a policy in this language. However, we quickly
realized the length of the full tutorial was becoming a limiting
factor as each LLM has a maximum allowed length for a
prompt in terms of tokens (words) and the closed-source LLMs
charge financially (USD) based on the prompt size. If a prompt
crosses this limit, the LLM will raise an error, hindering the
translation process. To address this issue, we devised two more
variations of the tutorial: simplified and summarized. While the
simplified tutorial has less information than the full tutorial,
the summarized tutorial is essentially a short gist. Both the
simplified and the summarized tutorials were generated with
the help of ChatGPT (using GPT-3.5).

Example translations (E). Pre-trained LLMs perform demon-
strably well if a prompt includes some task-specific examples
for the LLM to learn [31], eliminating the need for re-training
or fine-tuning LLM’s parameters. To harness this power of
LLMs fueled by few-shot prompts, we need a collection of
policy translation examples, from their English description to
the policy language format. Unfortunately, no such publicly
available dataset exists. Therefore, we manually curated a
small dataset of policy translations. We collected a set of
policy descriptions from the recent IoT literature and manually
converted each description into a policy using G.

We varied the number of examples in the prompt to identify
the minimum number of examples required to achieve the best
accuracy. Our evaluation reveals that 3 examples are enough
(§V-B2). Furthermore, not all the examples are relevant for
the policy text in question. To identify relevant examples, we
devise a categorical approach to classify each policy text.
We systematically classified the policy texts of our dataset
into eight categories. While doing so, we also formulated
a pattern-based definition for each category. Although our
dataset includes the manual categorization of each policy text,
iConPAL employs an automated approach to classify a policy
text into one of these 8 categories by using an LLM. iConPAL
encapsulates these categorical definitions in the prompt, asking
the LLM to classify the policy text in question. Additional
details on the dataset will be discussed in section V.



Algorithm 1: Prompt Generator

Input : The prompt configuration C, policy text «,
category list £, policy to category map M,
and knowledge base KB

Output: The prompt

tutorial < retrieveTutorial (KB, C)

grammar < retrieveGrammar (KB, C)

if C.categorizer = “manual” then

| category « getPolicyCategory (a, M)

AW N =

W

else if C.categorizer = “11m” then
6 | category « askLLMToCategorize (a, L)

7 else
8 L category « random (£)

9 cnt <+ getExampleCount (C) // cnt: Example Count

10 examples < retrieveSimilarExamples (KB,
category, cnt)

11 prompt <— concat (tutorial, grammar, examples,
)

12 return prompt

D. Prompt Generator

The prompt generator in iConPAL is a pivotal component,
which we will describe here. While space restricts detail
on other components, understanding it offers insights into
iConPAL’s inner workings.

Algorithm 1 outlines how the prompt generator operates. It
takes in a prompt configuration C, the knowledge base KB, the
list of category definitions £, the policy-to-category map M,
and a policy text « as input. It retrieves the desired tutorial and
the grammar from KB as dictated by C. However, depending
on the configuration C, tutorial and grammar can also be
& (empty).

Now, the policy text o will be categorized based on the
selection strategy (i.e., C.categorizer) specified in C. It supports
three variations: manual, 11m, and random. In the manual
approach, it utilizes the map M to categorize «. In the 11m
approach, it queries the LLM to categorize « according to the
definitions in £. In the random approach, it randomly selects
a category for a.

Next, the prompt generator focuses on the learning ex-
amples. It determines the number of examples (i.e., cnt)
mentioned in C and extracts cnt examples from the same
category as «. Again, if cnt is 0, then examples will be &.
Finally, it concatenates tutorial, grammar, examples, and
« to construct the prompt, which will be returned as its output.
Appendix J presents the actual LLM prompts and responses
while translating two policy texts as case studies.

IV. IMPLEMENTATION

We now discuss the implementation of some components of
iConPAL and how we addressed some technical challenges.
Prompt Generator. We implemented the prompt generator
in Python 3.10 (118 LoC). Based on a prompt configuration

written in JSON and the input policy text, the prompt generator
creates a learning prompt in a customized format that will
include a combination of one of the tutorials, the grammar,
and some example translations from our knowledge base.
Syntax Validator. We implemented a policy language parser
for the syntax validator using Python 3.10 and ANTLR 4.13.1.
We used ANTLR to define the grammar (G) of the policy
language IL and generate the parser. The grammar is 50 lines.
The custom code added to the ANTLR generated parser is
only 56 LoC. This parser can validate the syntax of a policy
with respect to G.

Response Extractor. Despite requesting only the translated
policy, responses from some LLMs include additional com-
ments and explanations. To extract the policy from the re-
sponse, we implemented a response extractor in Python 3.10
(32 LoC). Technically, we leveraged our policy parser to
validate the syntax of each line of the response, one at a time,
and reconstructed the translated policy by combining the valid
lines only.

LLM Gateway Server and Client. iConPAL uses an LLM
solely for inference, with each LLM having its own interface.
Instead of direct interfacing, we connect iConPAL to an LLM
gateway via a client-server approach. The client, integrated
into iConPAL, remains LLM-independent, while the gateway
server interfaces with each LLM. To handle model variations,
the server provides a unified HTTP interface, operating off-
shore. For details, see Appendix F.

V. EVALUATION

In this section, we present a comprehensive evaluation of

iConPAL. Our assessment covers both the effectiveness of its
end-to-end operation and the performance of its individual
components.
Dataset and Categorization. To prepare few-shot learning
prompts for LLMs, we need to embed a few examples of
policy translations along with the policy description in ques-
tion. We manually curated a dataset of policy translations. We
collected 290 natural language (English) descriptions of IoT
policies that describe how IoT systems should behave. These
policies are sourced from 16 recent IoT security literature [4—
9, 13, 16, 18, 21-23, 32-35] spanning 2015-2023. Most of
these sources proposed IoT defense systems and used a set
of policies for their evaluation. We manually converted each
description into a policy using the language grammar (G).

Recall that our prompt generator relies on policy categoriza-
tion to decide which examples to be embedded into a prompt.
We manually classified the policy texts in our dataset into
eight categories. This categorization was based on the structure
of their English descriptions. For instance, policies like “In
any situation, surveillance cameras must remain on.” and “In
any situation, front doors must remain locked.” are grouped
together in category Gl, as they assert a state that must be
true with/without any triggering event/condition. Appendix H
presents the rest of the categories along with their policy count.

While these 8 categories may be influenced by our dataset’s
policies, drawn from recent IoT literature, we consider them



to offer a broad representation. Additionally, new policy types
can be seamlessly integrated into iConPAL’s configuration
without requiring modifications to its implementation.

Dataset creation (policy collection and translation) took 26
person-hours and the categorization task took 7 person-hours.
One author curated and translated policies while two others
verified translations independently to ensure accuracy.

In evaluation, our policy dataset served as both the knowl-

edge base and the test set. For each experiment, we maintained
a disjoint knowledge base and test set, with the latter also
functioning as a holdout dataset.
Experimental Setup. We employed both closed- and open-
source LLMs, 7 models in total. For closed-source models, we
used OpenAI’s GPT-3.5 [36] and GPT-4 [37]. For open-source
models, we used Llama2-13B [38], Llama2-70B (Quantized)
[39], Mistral [40], Mixtral [41], and Yi-34B [42]. We used our
in-house developed LLLM gateway server and client to interact
with these models. We deployed the Llama2-70B model in its
quantized version on a server with 2 NVIDIA A100 GPUs
and 250 GB RAM, while other open-source models ran on a
server with 1 NVIDIA A100 GPU and 125 GB RAM. GPT-
3.5 and GPT-4 were utilized through OpenAI’s API endpoints
for inference.

We primarily used GPT-3.5 to evaluate iConPAL’s efficacy,
unless stated otherwise. Each inference was conducted on an
LLM with no chat history to prevent bias. Results represent the
average of 3 runs due to financial constraints from GPU server
rentals and API usage. Initially, we tried free-shared GPU
servers, but encountered delays due to resource availability.
Research Questions. We seek to answer the following re-
search questions:

« RQ1. How effective is iConPAL in translating policies from
natural description (text)? (§ V-A)

« RQ2. How do different components contribute to iConPAL’s
effectiveness? (§ V-B)

e RQ3. How do different LLMs contribute to iConPAL’s
effectiveness? (§ V-C)

+ RQ4. How effective is our LLM-powered automated seman-
tic validation? (§ V-D)

« RQS. What is the incurred overhead of iConPAL in terms
of cost and time? (§ V-E)

A. RQI: Effectiveness of iConPAL

We evaluated the effectiveness of iConPAL in translating
policies from their descriptions in natural language (we refer
to them as policy texts).

For this assessment, we used the optimal prompt config-
uration identified in our ablation study (§V-B). The optimal
configuration utilizes GPT-4 as the translation LLM, a model
temperature of 0.5, the full tutorial, and three similar examples.
If the LLM produces a syntactically invalid policy, we refined
the learning prompt by embedding the syntax error as addi-
tional context, repeating this process up to twice. Even after
refining the prompt twice, if the LLM produces a syntactically
invalid policy, iConPAL outputs L (i.e., “translation failed”).

TABLE I: Reference of Notations

Symbol | Description

Succ. Successful

Sem. Semantic

Cr Total policy texts of the test data set

Cyr Count of Successful translation

Csm Count of Semantically valid policies

Ry, Rate of successful translation w.r.t. Cr

Rom Rate of semantically valid policies w.r.t. C'r
Rsmtr | Rate of semantically valid policies w.r.t. Ct,

CEax Count of policy examples in a learning prompt
Selgz | The example selection strategy used for a prompt

TABLE II: Effectiveness of iConPAL (using the optimal
prompt configuration). Notations are explained in Table 1.

Total (C'y) Successful Translation Semantic Validation
T Ctr Rtr Csm Rsm Rsmtr
266 249 93.61% 233 87.59% | 93.57%

Out of 290 policy descriptions in our dataset, we manually
translated 24 policy texts, 3 from each of the eight categories,
and used them as our knowledge base. The remaining 266
policy texts are used as our test data set (a holdout data set)
to assess iConPAL’s effectiveness. For each test policy text,
our prompt generator selected 3 similar examples using the
manual selection strategy from our knowledge base.

To ensure reliability, we conducted the experiment three
times with different example sets. Table II shows the average
of the three runs. We observed that iConPAL successfully
translated 93.61% policies (249 out of 266). Among these,
93.57% (233 policies) are semantically valid (i.e., the trans-
lated policy matches its natural description). Policies that lack
semantic validity fail to capture the nuances of the natural
text. Appendix B shows such an example. Appendix I provides
additional insights on translation validity and consistency.

B. RQ2: Ablation Study

We performed an ablation study on iConPAL to assess
the impact of its components on effectiveness. The study
comprised three segments: (i) the effect of three knowledge
base components, (ii) component-specific variations, and (iii)
prompt refinement effects. Using GPT-3.5 as the model and a
temperature of 0.5, we conducted each experiment three times
with different example sets to account for variance.

1) Effect of three knowledge base components: Our knowl-
edge base comprises three components: examples (E), tutorial
(T), and grammar (G). We evaluated the individual and
combined effects of these components on iConPAL’s efficacy,
as reported in Table III.

For experiments involving examples in the prompt, we
manually translated 8 policy texts (1 from each of the eight
categories) out of 290 to serve as our knowledge base, leaving
282 for testing. For each test policy text, our prompt generator
selected 1 similar example using the manual selection strategy
from the knowledge base. In other experiments, where exam-
ples were not included in the prompts, we used all 290 texts
as the test dataset.



TABLE III: Effect of three components of the knowledge base
(examples (E), the tutorial (T'), the grammar (G)). v: present,
X: not present. Notations are explained in Table I

Components Succ. Translation | Sem. Validation
E T. G. TOtal(CT) Ctr Rtr Cs m Rs m
IV |/ 282 229 81.21% 179 63.48%
/X 282 228 80.85% 180 63.83%
I X |/ 282 127 45.04% 104 36.88%
v | X X 282 141 50.00% 114 40.43%
X | vV | Vv 290 211 72.76% 150 51.72%
X | V| X 290 227 78.28% 155 53.45%
X1 x|V 290 0 0.00% 0 0.00%
X | X X 290 0 0.00% 0 0.00%

Without examples, tutorial, or grammar in the prompt, the
translation rate (R;.) was 0.0%. Even after adding grammar
alone, R, remained at 0.0%, indicating the LLM’s struggle
with complex grammar and syntax errors in policy creation.
Adding just one example increased R;, to 50.0%, while using
only the full tutorial resulted in R; of 78.28%. Combining
both tutorial and examples proved most effective, yielding an
Ry, of 80.85% and a semantic validity rate (Rg,,) of 63.83%.

Combining G with T and E slightly increases R;., but
decreases Rg,,, demonstrating a negative impact. Our EBNF-
format grammar, though concise (25 lines, 524 tokens), over-
whelms the LLM, hindering its ability to generate syntactically
correct translations. This aligns with findings from [43], where
increasing grammar complexity led to LLM unreliability. Nat-
ural language descriptions of grammar yielded better results,
as observed with our tutorial. Thus, T and E together represent
the most effective combination for iConPAL’s performance.

2) Effect of component-specific variations: We studied the
impact of various example selection strategies, prompt sizes,
and tutorial types.

e (a) Impact of example selection. We assessed how dif-
ferent example selection strategies in learning prompts affect
policy generation quality. Recall that we had three selection
strategies: manual, LLM, and random. § policy examples, one
for each of 8 categories, were chosen as the knowledge base
from 290 policies, leaving 282 for testing.

For the manual strategy, we utilized the manually assigned
category of each test policy text and included the corre-
sponding category’s example. For the LLM strategy, GPT-3.5
categorized the policy text, and we included the correspond-
ing example. Finally, the random strategy involved randomly
selecting one of the eight examples to include in the prompt.

Table IV displays iConPAL’s average rates for each example
selection strategy. The manual strategy had the highest trans-
lation rate (R;,) at 78.01%, followed by the LLM strategy at
77.30%. The LLM strategy also achieved the highest semantic
validity rate (Rg,,). Given its comparable performance to
manual selection but without additional human effort, the
LLM-powered strategy is recommended as iConPAL’s default.

e (b) Impact of the number of examples. We evaluated
the impact of varying the number of examples in the prompt
(Cg.) on iConPAL’s efficacy, ranging from 0 to 3 examples.
Table V illustrates the corresponding rates.

We selected policy examples (pairs of policy text o and

TABLE IV: Impact of example selection strategies. Notations
are explained in Table I

Strategy Succ. Translation | Sem. Validation

(Selgz) Total(Cr) Ctr Rir Csm Rsm

Random 282 215 76.24% 143 50.71%
Manual 282 220 78.01% 171 60.64%
LLM 282 218 77.30% 174 61.70%

TABLE V: Impact of the number of examples in a prompt.
Notations are explained in Table I

Count Succ. Translation | Sem. Validation

(CE;\”) TOtal(CT) Ct'r Ryr Csm Rsm
0 290 204 70.34% 138 47.59%
1 282 220 78.01% 171 60.64%
2 274 221 80.66% 171 62.41%
3 266 221 83.08% 180 67.67%

translated policy () for each category from our dataset to
comprise our knowledge base. The remaining policy texts
served as the test dataset. For instance, to prepare prompts
with 3 examples, we utilized 24 translated examples (3 for
each category) out of 290. iConPAL was then tested with the
remaining 266 policy texts. Prompts with 3 examples showed
superior performance, with a translation rate of 83.08% and
semantic validity of 67.67%.

While theoretically possible to increase the number of ex-
amples, we limited our experimentation to a maximum of three
due to constraints on prompt length and cost. Furthermore, we
found that employing two rounds of refinement on a prompt
with three examples yielded only marginal performance im-
provement compared to the first refinement (more in § V-B3).

e (¢c) Impact of the tutorial type. We assessed how
different variants of the same tutorial affect iConPAL’s ef-
ficacy. Recall that we had three variations: full, simplified,
and summarized. The full tutorial offers detailed step-by-step
instructions and examples. The simplified version, generated
by GPT-3.5 using the full tutorial, has simplified instructions
and examples. The summarized version, also generated by
GPT-3.5, includes simplified instructions without examples.
Token counts, as per OpenAl’s Tokenizer, are: full (1212
tokens), simplified (888 tokens), and summarized (296 tokens).

We chose 8 policy examples, one for each category, from
290 policies to comprise the knowledge base, leaving 282 for
testing. For each test policy text, our prompt generator utilized
the manual selection strategy to select 1 similar example. Table
VI shows the achieved rates for each tutorial type. Prompts
generated with the full tutorial had the highest translation rate
(80.85%) and semantic validity (63.83%).

The success of prompts with the full tutorial is due to its
detailed instructions with examples. However, this option is
the most costly due to its longer token length. Conversely, the
simplified tutorial can be a more economical choice, albeit
with a slight reduction in iConPAL’s efficacy.

3) Effect of Prompt Refinement: We assessed how prompt
refinement affects iConPAL'’s efficacy. Recall that when iCon-
PAL’s translation LLLM generates a syntactically invalid policy,
we refine the learning prompt using the syntax error and ask



TABLE VI: Impact of the tutorial type. Notations are ex-
plained in Table I

. Succ. Translation Sem. Validation
Tutorial Total(C'r) o T, o o
Full 282 228 80.85% 180 63.83%
Simplified 282 220 78.01% 171 60.64%
Summarized 282 148 52.48% 119 42.20%

TABLE VII: Effect of prompt refinement. Notations are ex-
plained in Table I

Refinement Total(Cy) Succ. Translation | Sem. Validation
Limit ™ Rir Com Rsm

0 266 230 86.47% 192 72.18%

1 266 238 89.47% 197 74.06%

2 266 241 90.60% 198 74.44%

LLM to regenerate the policy. In this experiment, we varied
the number of prompt refinements from 0 to 2.

Out of 290 policies, we chose 24 policy examples, 3 from
each category, to form our knowledge base, leaving 266 for
testing. For each test policy text, our prompt generator used
the manual selection strategy to select 3 similar examples from
the knowledge base.

Table VII displays the achieved rates, notably, both rates
consistently improved with each refinement. Following the
2nd refinement, iConPAL’s average translation and semantic
validity rates reached 90.60% and 74.44% respectively. We
anticipate further refinements would enhance policy quality,
albeit at increased translation costs. However, prompt length
limitations in LLMs constrain indefinite refinement.

C. RQ3: Variation in LLMs

We evaluated the effect of the model (LLM) and its tem-
perature on iConPAL’s efficacy.

1) Effect of the model temperature: The model temperature
influences the randomness of a LLM’s responses. We assessed
how adjusting the model temperature parameter influences
iConPAL’s efficacy by varying the temperature (0.0, 0.5, 1.0,
and 1.5) of GPT-3.5. We conducted the experiment three times
with different example sets to account for variance.

As before, we selected 8 policy examples, 1 from each
category, as our knowledge base, leaving 282 for testing.
For each test policy, our prompt generator chose 1 similar
example using the manual selection strategy. Table C1 displays
the achieved rates. Notably, a temperature of 0.5 yielded the
highest translation and semantic validity rates at 78.37% and
61.70% respectively. Higher temperatures increase random-
ness, resulting in more diverse but potentially invalid policies.

2) Effect of the model (LLM): We evaluated the impact
of seven different language models (LLMs) on iConPAL’s
efficacy: GPT-3.5, GPT-4, Llama2-13B, Llama2-70B (Quan-
tized), Mistral, Mixtral, and Yi-34B. Our study utilized a
consistent learning prompt configuration (full tutorial with 3
examples), allowed prompt refinement twice, and maintained
a temperature of 0.5 across all LLMs.

Out of 290 policies, we selected 24 policy examples, 3
from each category, as our knowledge base, leaving 266 for

testing. For each test policy text, our prompt generator selected
3 similar examples using the manual selection strategy.

Table C2 presents the performance rates for each LLM.
GPT-4 notably outperformed other models, achieving trans-
lation (R;-) and semantic validity (Rs,,) rates of 93.61% and
87.59% respectively. GPT-3.5 closely followed with rates of
90.60% for R;, and 74.44% for R,,,. Among the remaining
models, Llama2-70B (Quantized) surpassed all, while Llama2-
13B exhibited the lowest performance.

The varied performance of different LLMs in the same task
is influenced by factors like size, architecture, and training
datasets [44]. These underlying details are often undisclosed.
The impact of LLM selection on iConPAL’s performance is
evident in Table C2. GPT-4’s superior performance aligns with
its market dominance. Larger models like Llama2-70B tend
to outperform smaller ones like Llama2-13B, highlighting the
significance of model size.

D. RQ4: Automated Semantic Validation

Recall that not all policies translated by iConPAL are
semantically valid, and the rates (Rsy,,) we reported so far
were manually assessed. Three authors spent a total of 83
person-hours validating 13,964 translated policies, averaging
0.36 minutes per policy.

To streamline the semantic validation of a translated policy,
iConPAL developed AutoSemVal, an LLM-powered auto-
mated approach (see Figure 4). AutoSemVal was supplied
with the full tutorial and 3 similar example translations for
each policy. By using GPT-3.5 as the translation LLM, it
achieved 85% precision, 88% recall, 78% accuracy, and 86%
F1 score, effectively identifying semantically valid policies
while minimizing false positives and negatives (see Table G4).
However, it struggled to identify semantically invalid poli-
cies, recognizing only 42% of them. We also observed that
AutoSemVal’s efficacy remained almost identical for both
GPT-3.5 and GPT-4. Appendix G presents this comparison,
along with insights on AutoSemVal’s misclassified policies.

E. RQ5: Performance Overhead

Having addressed the efficacy of iConPAL in previous
research questions, we now discuss its performance overhead
in terms of time and financial cost. Due to space constraints,
we provide only the total overhead here: 40 hours of time
and a total cost of 169.05 USD for all conducted experiments.
Further breakdown is available in Appendix D.

VI. DISCUSSION

Automated Semantic Validation. iConPAL’s automated se-
mantic validation currently achieves a 78% accuracy rate.
Nonetheless, as LLMs improve, it holds the potential to serve
as an initial filter, further reducing the already minimal human
effort required for manual semantic validation in comparison
to manual policy translation (see Appendix E).

Grammar Dependent. The current prototype of iConPAL
is specific to the policy language (L) and the grammar (G)
proposed by [9]. We picked a language that is powerful enough



to express many types of policies. Yet, it is possible that the
translated policies in G may not be directly utilized for some
specific language (say, ") based on a different grammar (say,
G’). For example, IoT defense solutions like [5, 8, 45] use
a different policy language other than Maverick’s [9]. We
can address this concern in two different approaches: (a) we
can replace G with G’ and update the collection of policy
translation examples for this new G’; and (b) we can employ a
source-to-source parser-based translator to convert iConPAL’s
output 3 written in G to 3’ written in G’. The latter approach
is relatively easier and less cumbersome as these grammars are
straightforward and unambiguous, unlike natural languages,
and writing parser-based translators is not challenging.
Implications for Practice and Research. Our prototype of
iConPAL can translate policies for Maverick [9], a recent
IoT defense solution, out-of-the-box. Additionally, iConPAL
is adaptable to other IoT defense solutions like IoTGuard
[5] and IOTSAFE [8], as previously noted. This adaptability
will streamline the comparative evaluation of IoT defense
solutions using testing platforms like VetloT [46] against
IoT policy benchmarks. Despite promising results, iConPAL’s
semantic validation accuracy is currently 87.59%, indicating
room for improvement. While this accuracy warrants caution
in real-world deployment of the translated policies, iConPAL
substantially advances automated policy authoring for IoT
defense solutions. We believe it will spur further research in
the IoT field, ultimately leading to enhanced accuracy.
Threats to Validity. The main threat is the generalizability of
our findings, addressed by using a diverse set of IoT policies
from existing literature. We conducted experiments 3 times to
address result variance and used multiple independent authors
for manual validation to minimize validation risks.

VII. RELATED WORK

Security and safety concerns in smart homes have led to
numerous policy-enforcing mechanisms [4-21] to protect users
from misconfigurations and vulnerabilities. However, these
mechanisms often require users to write complex policies in
specific formats. iConPAL addresses this issue by automating
policy authoring from natural language descriptions.

In an attempt to reduce the burden on end-users, prior work
adopted several approaches: (a) template-based policy forms
for the users to fill out [8, 14, 15], (b) temporal property
synthesis based on static analysis of IoT apps and the users’
interactions with the apps [16, 17, 24], (c) invariant synthesis
based on supplied positively and negatively labeled execution
traces [9], and (d) feedback-based systems that block all
sensitive scenarios and ask users to resolve at runtime [10, 47].
Unfortunately, they fall short in reducing human burden. Both
template-based and property-synthesis still require users to
have a decent knowledge of IoT apps and temporal logic.
The invariant synthesizer imposes the additional requirement
of various execution traces. Finally, feedback-based systems
can render users vulnerable to fatigue attacks, consequently
leading to security failures. On the contrary, iConPAL re-
quests the policy description from end-users in English and

then automatically translates the policy into a domain-specific
policy language, thereby eliminating the steep learning curve
associated with writing correct IoT policies.

Natural language processing and speech recognition have
been employed in prior work. Goffinet et al. [48] proposed a
speech assistant that poses questions to users and recognizes
their intentions, which are then used to generate policies.
Helion [22] developed a statistical smart home model based on
user-supplied smart home descriptions. This model is utilized
to generate realistic test events rather than policies directly. In
practice, policy creation involves human intervention. While
these methods necessitate multiple interactions with users,
iConPAL offers an automated policy generation process that
requires no user involvement during translation.

Prior work [49-53] have utilized LLMs to translate nat-
ural language sentences into Linear Temporal Logic (LTL)
formulas. However, these systems typically handle only sim-
ple descriptions, often limited to coarse-grained commands.
Efficient-Eng-2-LTL [51] and Lang2LTL [52] generate
LTL expressions from structured commands to guide robot
actions. n12spec [53] is a human-in-the-loop translator that
utilizes LLMs for translating sub-formulas of the given natural
description. NL2LTL [50] fills in existing templates, and NL2TL
[49] processes specialized command structures but cannot
handle simple free-form texts like “If A, then not B.” While
NL2LTL can identify devices involved in a policy description,
it fails to recognize each device’s status, crucial for IoT poli-
cies. In contrast, iConPAL comprehends fine-grained, device-
specific information within free-form policy descriptions and
encodes necessary details in the translated policy.

Additionally, recent work has also demonstrated the use of
LLMs for various translation-related tasks: extracting invari-
ants (in natural language) from hardware design specifications
[54], identifying contradictions in natural-language statements
[55], and generating code from specifications [56]. Similarly,
iConPAL uses LLMs for natural language processing but
focuses on translating IoT system policies, which require
handling intricate device-specific details and fine-grained con-
ditions unique to IoT systems. This necessitates a specialized
in-prompt learning campaign with IoT-specific examples, a
tailored policy-language tutorial and refinement.

VIII. CONCLUSION

We introduced iConPAL, an automated assistant for crafting
safety and security policies in smart homes. By translating
natural language descriptions into a formal policy language
without human intervention, iConPAL addresses a key chal-
lenge in traditional IoT defenses. Leveraging modern LLMs,
iConPAL achieved a 93.61% successful translation rate, with
93.57% of these being semantically valid, highlighting its
potential to advance research in the field.
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APPENDIX A. ABSTRACT GRAMMAR

According to the policy language of [9], a policy is 2 ::=
A;Ij, where an invariant [; can be written in using the



Input:
Fire sprinkler should only be on when there’s fire
detected in the home.

Output:

If FireDetected Then FireSprinkler(On
FireDetected = (FireDetector.status == "Detected")
FireSprinklerOn = (FireSprinkler.status == "On")

Fig. B1: Semantically invalid policy generated by iConPAL

TABLE Cl1: Effect of the model temperature. Notations are
explained in Table I

TABLE C2: Effect of the model (LLM). Notations are ex-
plained in Table I

Succ. Translation Sem. Validation

Model Total(C'r) om b o o
GPT-4 266 249 93.61% 233 87.59%
GPT-3.5 266 241 90.60% 198 74.44%
Llama2-70B 266 231 86.84% 181 68.05%
Mixtral 266 202 75.94% 176 66.17%
Mistral 266 187 70.30% 131 49.25%
Yi-34B 266 93 34.96% 72 27.07%
Llama2-13B 266 36 13.53% 24 9.02%

TABLE D3: Policy translation cost and duration for different

following grammar:

I ::=1If ® Then ¥

®::=p | P1 and P2 | &1 or P2 | not ¢ | true

U ::= & | Ul since U2 | yesterday ¥
pu=tl®t2 | pl and p2 | pl or p2 | not p | true
tu=x¢eV | {const.) | func.(t1,... t,)

The policy invariant [ follows the pattern: “If & Then ¥~
where ® and U are logical expressions. ¢ can be a predicate p,
the constant true, or logical combinations of them. ¥ includes
standard past temporal operators like since and yesterday,
along with the logical expression ®. This flexibility lets us
express more complex invariants by considering past events.
The predicate p can be a relational operator @ (such as <,
=) applied to a pair of terms or logical combinations of
multiple predicates. A term ¢ can be a variable x from the
set of variables V/, a constant (const.) (“ON”, “OFF”, 5), or a
function func. applied to one or more terms (e.g., timer(x)).

APPENDIX B. AN EXAMPLE OF A SEMANTICALLY
INVALID POLICY

Figure B1 shows an example. The correct policy should
be “If FireSprinklerOn Then FireDetected”, capable
of flagging a violation of the policy when FireSprinkler
in ON even if there is no fire. But the generated policy
is semantically incorrect because iConPAL’s LLM failed to
recognize that the given text essentially expresses an ‘only
if’ relationship. We observed that for some different texts,
the LLM accurately translated when ‘only if’ was used in
the description.

APPENDIX C. RESULTS OF RQ3

The impact of the model selection on iConPAL’s perfor-
mance is shown in Table C2, and the impact of the model
temperature on GPT-3.5 is presented in Table Cl1.

Temperature | Total(Cy) gﬂcc- Tra“;ation gem. Va“‘]l;ﬁon models (Duration in minutes and Cost in USD)
tr tr sm s

0.0 282 219 | 77.66% 173 | 61.35% EJ S

0.5 282 221 7837% 174 | 61.70% “ o N o <

1.0 282 205 | 72.70% 162 | 5745% I A I § Sl £ F

15 282 155 | 54.96% 127 | 45.04% & & |7 i $ § o
Duration| 357 | 50T 20 100 20 20 200
Cost 2 13 0.8 8 08 | 08 8

TTo address rate limit error, 2-6 seconds of delay was added using
exponential backoff retry mechanism, so the duration may vary based on
usage tier.

APPENDIX D. A BREAKDOWN OF PERFORMANCE
OVERHEAD

For a one-to-one comparison, we reported the average
overhead across different models in Table D3. We collected
this data during our experiment of measuring the effect of the
models on iConPAL’s efficacy (§ V-C2). While we utilized
OpenAI’'s web API endpoints for GPT-4 and GPT-3.5, we
rented GPU servers from a third-party GPU cloud provider to
deploy the open-source LLMs (e.g., Llama2, Mistral, Mixtral,
Yi-34B).

GPT-4 required 50 minutes to translate 266 policies using
the optimal prompt configuration, averaging 11 seconds per
translation and resulting in a cost of 13 USD ($0.05 per
translation). In comparison, GPT-3.5 completed the same task
in 35 minutes (8 seconds per translation) at a cost of 2 USD
($0.008 per translation). Llama2-13B finished this task in 20
minutes (4.5 seconds per translation), costing 0.80 USD (
$0.003 per translation). Llama2-70B (Quantized) took 100
minutes (22.5 seconds per translation), costing 8 USD ($0.03
per translation). Mistral and Mixtral incurred the same cost
and time, 20 minutes and 0.8 USD per model ($0.003 per
translation). Since each experiment with a model was repeated
thrice, it required a total cost of 100.20 USD and a cumulative
time of 22 hours and 15 minutes.

The exploration of the optimal prompt configuration during
our ablation study with GPT-3.5 incurred a cost of 27 USD
and took 11 hours. Across all experiments, 13,964 translated
policies were syntactically valid. We performed automated se-
mantic validation for all syntactically valid translated policies
with GPT-3.5. We used 10 parallel connections to OpenAl’s
API endpoint to speed up the validation process. It took about
6 hours and 12 minutes (1.6 seconds per validation), costing
11.51 USD ($0.00082 per validation). We also performed



automated semantic validation for the transations produced by
the optimal prompt configuration using GPT 4. GPT 4 took
about 35 minutes (2.8 seconds per validation) to validate 748
translations, costing 30.34 USD ($0.04056 per validation).
Grand total. All the experiments we conducted for iConPAL
required 40 hours and incurred a cost of 169.05 USD.

APPENDIX E. COMPARISON OF MANUAL EFFORTS IN
TRANSLATION VS. SEMANTIC-VALIDATION

Manual translation of policy-texts requires meticulous atten-
tion to three sub-tasks: designing the policy structure, writing
the policy, and checking semantic correctness. This process
is time-consuming and burdensome. In contrast, our semantic
validation focuses solely on checking the semantic correctness
of translated policies, which are already syntactically correct,
making it a significantly faster process.

While we lack precise data on the time needed for manual
translation of 290 policies, we measured that 26 person-hours
were spent on both collecting and manually translating these
policies. Note that the collection task, which involves copying
policy texts from 16 IoT papers, is significantly simpler
compared to the manual translation task. Assuming equal time
allocation for both collection and translation tasks (a rough
conservative estimate), manual translation costs approximately
2.69 minutes per policy (= 13 person-hours / 290 policies). In
contrast, semantic validation of 13,843 policies consumed 83
person-hours, costing approximately 0.36 minutes per policy.

APPENDIX F. LLM GATEWAY SERVER AND CLIENT

Our LLM gateway server supports three backend engines:
Ilama.cpp, pytorch-based transformers, and OpenAl endpoints.
We used the models for inference only. By default, if the
model is supported by llama.cpp, the server uses this engine;
otherwise, it falls back to pytorch-based transformers. For
ChatGPT (GPT-3.5 and GPT-4 models), the server uses a
lightweight wrapper to communicate with the OpenAlI’s pro-
prietary endpoints. Furthermore, the server was designed to ef-
fectively address the disparity among these three backends and
different models, providing a unified stateless HTTP interface
to the client. As LLMs differ in their prompt templates and
documentations, we resolved ill-documented prompt templates
by exploring the code base of some LLMs to figure out the
correct format.

We used Python 3.10 to implement the server (1907
LoC) and the client (780 LoC). We also utilized some
popular python packages, such as, fire, sentencepiece,
gguf, transformers, openai, fastapi, torch,
1llama-cpp-python, and protobuf.

While interacting with OpenAl, we noticed that the trans-
lation time differs from one policy to another. If a smaller re-
quest timeout is used, the OpenAl client retries too frequently,
thereby incurring more cost. We addressed this by calibrating
the timeout and retry settings to reduce the incurred cost.
Furthermore, OpenAl has a rate limit on tokens per minute
(e.g., 80,000 tokens per minute for Tier-2). To handle rate
limit errors, we calibrated the retry settings.

TABLE G4: Semantic validation confusion matrix for
AutoSemVal (our automated approach to semantically validate
the translated policy). TP: True Positive, FP: False Positive, TN:
True Negative, FN: False Negative.

Predicted by AutoSemVal

Valid=Yes Valid=No Total

Manually checked | Valid=Yes TP=9,664 FN=1,372 11,036
(Ground truth) Valid=No FP=1,690 TN=1,238 2,928
Total 11,354 2,610 13,964

TABLE G5: Effectiveness of AutoSemVal with respect to
GPT 3.5 and GPT 4 in terms of Precision, Recall, Accuracy,
Specificity, and F; Score. Sample size: 748.

Model Precision | Recall | Accuracy | Specificity| F; Score
GPT 3.5 96% 88% 85% 36% 92%
GPT 4 95% 91% 87% 19% 93%

APPENDIX G. AUTOMATED SEMANTIC VALIDATION

Misclassification by AutoSemVal vs. Policy Categories. We
assessed the translated policies misclassified by AutoSemVal
(see Table G4) and examined any correlation with their
categories. Appendix H details the categories of our dataset.
Policies from G2 had the highest misclassification rate, with
an average of 4 out of 6 policies misclassified, followed by
G5 (6 out of 13) and G8 (8 out of 21). Policies from these
categories often involve the phrase “only if” (or its variants,
such as except) with the deny keyword (for G2), temporal
operators like lastly (for G5), and the allow keyword (for
G8). We found that LLM struggles to interpret the meaning
of only if when combined with other logic. Misclassification
rates for other categories were relatively low, below 10%.
GPT-3.5 vs. GPT-4. To measure the effect of the LLM
on AutoSemVal, we ran the experiment of assessing
AutoSemVal’s efficacy twice: once using GPT-4 and next
using GPT-3.5. Since GPT-4 is more expensive than GPT-3.5,
we utilized a smaller sample size for a one-to-one comparison.
We used a small sample set (748) of translated policies instead
of 13,964 policies. This sample set was the collection of
successfully translated policies over 3 runs of the experiment
conducted in Section V-A (see Table II). We found that the
efficacy of AutoSemVal stays almost identical for GPT-3.5
and GPT-4 (see Table G5), indicating a little to no effect of
the LLM on AutoSemVal.

APPENDIX H. DATASET CATEGORIZATION

We manually classified the policy texts in our dataset into
eight categories. This categorization was based on the structure
of their English descriptions. Table H6 shows the categories
along with some examples. It also includes the number of
policies that belong to each category.

APPENDIX I. MORE ON VALIDITY AND CONSISTENCY

In this section, we present additional results on translation
validity and consistency observed during our experiment for
RQ1 in Section V-A.



TABLE H6: Dataset Categorization

Category Description

Count

Gl Examples:

- In any situation, front doors must remain locked.

Assert a state that must be true with/without any triggering event/condition.

- In any situation, surveillance cameras must remain on.

11

a2 Examples:
- Deny all HTTP requests.

Indicate blocking an action when a condition has been met.

- Deny turning on the coffee machine only if the user is not at home.

G3 Examples:

- If the door is open then the light should be on.

Indicate a straightforward correlation between the states of two devices.

- If fire is detected in the home then fire sprinkler should be on.

57

G4 Examples:

Indicate a correlation between the states of two devices with a time constraint.

- If the door is open for more than 5 minutes then the light should be on.
- If the temperature is above 30 degrees for more than 10 minutes then the air conditioner should be on.

23

Examples:

was off.

Indicate a correlation between current state and past state of one or more devices

G5 - Allow light to be turned off only if lastly it was on.
- Allow hallway light to be turned on only if the hallway motion sensor has tripped since the hallway light

17

Examples:

room.

Indicate a comparison between device state and other factors.

G6 - The heater should be turned on if the temperature is below 40. 57
- The window should be open when the room temperature is above the threshold and there are people in the

G7 Examples:

Indicate a correlation among more than two device states.

- If user is away, on vacation, or sleeping then door should be locked.
- When sink water leakage is detected and motion sensor is inactive, a text message should be sent.

91

G8 Examples:

Indicate allowing an action when a condition has been met.

- Allow the light to be turned on only if the user is at home.
- Allow the heater to be turned on only if the temperature is below 40.

25

Total

[ 290 ]

Translation failure vs. Policy Categories. In our experiment,
we observed that iConPAL failed to translate on average 17
out of 266 policies. Further inspection revealed that policies
from category G6 posed the greatest challenge for LLM.
Appendix H details the categories of our dataset. For example,
a G6 policy states: “When the temperature is above
60° and no one is present, the heater should not
be turned on.” We found that LLM struggled with policies
involving device-state-specific constraints and comparisons
with abstract or predefined values. The translation failure rate
for G6 was about 22% on average, while failure rates for
other categories remained below 5%.

Semantic Validity vs. Policy Categories. We assessed the
translated policies that were syntactically correct but seman-
tically invalid based on our manual analysis (see Table G4)
and examined any correlation with their categories. Translated
policies from G2 had the highest rate of semantic invalidity
(33%), with an average of 2 out of 6 policies being semanti-
cally invalid. Policies from G2 often involve the phrase “only
if” (or its variants, such as except) with the deny keyword.
We found that LLM struggles to interpret the meaning of only
if when combined with other logic. The rates of semantically
invalid translated policies for other categories were relatively
low, below 10%.

LLM’s Consistency. We assessed GPT-4’s consistency in

generating valid or invalid policies. In each run of this ex-
periment, we randomly selected 24 policies from the dataset
as our knowledge base and used the remaining ones as our test
dataset. While the size of the test dataset remained constant,
its composition varied across runs. We found 229 policies
common to all 3 runs. Among these, 215 policies (93.88%) had
consistent results, either consistently successful or consistently
failed in translation across all three runs. Additionally, 192 out
of 229 policies (83.84%) were semantically consistent across
all three runs.

APPENDIX J. A JOURNEY OF A POLICY TEXT
TRANSLATION

We outline the journey of translating a policy text by demon-
strating an actual LLM prompt constructed by iConPAL for the
policy text, the received LLM response, and further refinement
iConPAL applied as needed. We present case studies with two
policy texts as follows.

e Studyl (translation required no refinement): If smoke
15 detected, then gas stove should be turned
off.

e Study2 (translation required refinement): In any
situation, room temperature should never be
over 100.



Each LLM prompt consists of several key components:
Role, Tutorial, Example Translations, and Instruction. The
role outlines the expectations for the LLM. Both the tutorial
and example translations comprise the context of the learning
prompt, as the tutorial serves as a guide for translating
natural language text into policy language and the example
translations demonstrate this process in action. The instruction
points out the translation task for the LLM.

For the LLM prompts generated to query the policy texts of
our case studies, we will show the common parts below and
the policy text specific parts in their respective subsections
(Appendix J-A and Appendix J-B).

Role. iConPAL includes the role component in each LLM
prompt as follows:

Role:

You are a plain text to formal policy translator .
I will teach you how to translate a plain text to
formal policy with a tutorial and some examples.

Tutorial. The inclusion of the tutorial in each prompt depends
on the specific prompt configuration. The tutorial remains fixed
for our selected policy language and grammar (G) and does
not vary with the policy texts being tested. An excerpt of the
tutorial is provided below due to space constraints:

Tutorial :

In IoT defenses, natural language can be structured into
a format that is easily parseable. This tutorial
explores how to convert English statements into a policy
language using logical expressions and variables .

Logical Expressions and Variable
Consider the statement: ‘‘If Fire Sprinkler is on, then
Water Valve is on.” This can be expressed as following.

ccc

If FireSprinkler . status ==‘ON’ Then WaterValve.status=="ON’

LEX)

However, for improved readability , we can assign the
logical expression into a variable and use the variable
in policy statement. The above policy statement can be
re—written as follows.

13

If FireSprinklerOn Then WaterValveOn

FireSprinklerOn = ( FireSprinkler . status == ‘ON’)
WaterValveOn = (WaterValve. status == ‘ON’)

299

Device attributes

In the above example, we used ‘ status ’ attribute of
¢ FireSprinkler * and ‘WaterValve’ devices. You can
use other device attributes as well.

Functions

Besides device attibutes , function calls can be employed
in logical expressions. For example, we can use

‘timer ( logical_expression )’ function. We assume that the
‘timer’ function returns the elapsed time since the logical
expression became true.

Text:
If water leak sensor sensed wet within 1 minute, then
turn off water sprinkler .

Policy :

GGG

If (timer (WaterLeakSensorWet) > 0 and

timer (WaterLeakSensorWet) < 60) Then WaterSprinklerOn
WaterLeakSensorWet = (WaterLeakSensor.status == “Wet’)
WaterSprinklerOn = ( WaterSprinkler . status == ‘On’)

299

This example demonstrates the use of the timer function to
determine if a condition occurred within a specified time
frame.

———— Snipped ————

A. Case Study 1: Translation required no refinement

For this study, our policy text under test was “If smoke is
detected, then gas stove should be turned off.”.
Example Transitions. Depending on the prompt configura-
tion, iConPAL includes some examples in the prompt. For this
case study, we used a configuration that made iConPAL select
3 similar example translations from our dataset as follows:

Text:
If the door is open, then the light should be on.

Policy :

If DoorOpen Then LightOn

DoorOpen = (Door.status == “‘Open”)

LightOn = (Light. status == “‘On”)

Text:

If fire is detected in the home, then fire sprinkler
should be on.

Policy :

If FireDetected Then FireSprinklerOn

FireDetected = (FireSensor. status == ‘‘Detected”)
FireSprinklerOn = ( FireSprinkler . status == ‘“‘On”)
Text:

If heater is on, then air conditioner should be off.

Policy :

If HeaterOn Then AirConditionerOff

HeaterOn = (Heater. status == ‘“‘On”)
AirConditionerOff= ( AirConditioner . status == ‘‘Off”)

Instruction. This component of the prompt expresses what
policy text the LLM is expected to translate given the context.
The instruction is shown below:

Instruction :

Translate the following natural text to formal policy .
Only provide the translated policy itself without any
explanations or extra words.

““If smoke is detected, then gas stove should be
turned off ”

LLM Response. The received response from the translation
LLM is shown below:



If SmokeDetected Then GasStoveOff
SmokeDetected = (SmokeSensor.status == ‘‘Detected”)
GasStoveOff = (GasStove. status == “‘Off”)

Since the translated policy was syntactically correct, iCon-
PAL did not apply any refinement. iConPAL provided the
translated policy as an output.

B. Case Study 2: Translation required refinement

For this study, our policy text under test was “In any

situation, room temperature should never be over
100.7.
Example Transitions. Depending on the prompt configura-
tion, iConPAL includes some examples in the prompt. For this
case study, we used a configuration that made iConPAL select
3 similar example translations from our dataset as follows:

Text:

In any situation , surveillance camera must remain on.

Policy :
If true Then SurveillanceCamera. status == ‘‘On”

Text:
In any situation , front door must remain locked.

Policy :

If true Then FrontDoor. status == ‘‘Locked”

Text:
In any situation , TV speaker volume should never be
more than 90.

Policy :
If true Then not(TVSpeakerVolumeOver90)
TVSpeakerVolumeOver90 = TVSpeaker.volume > 90

Instruction. This component of the prompt expresses what
policy text the LLM is expected to translate given the context.
The instruction is shown below:

Translate the following natural text to formal policy .
Only provide the translated policy itself without any
explanations or extra words.

“In any situation , room temperature should never

be over 100.”

LLM Response. The received response from the translation
LLM is shown below:

If true Then not(RoomTemperatureOver100)
RoomTemperatureOver100 = RoomTemperature > 100

Since the translated policy was not syntactically correct,
iConPAL refined the prompt and appended the following
instruction for the LLM:

Refinement Instruction :

Your translation is invalid due to following reason.
Reason: ‘RoomTemperature’ variable used but not defined .
Please try again.

LLM’s Refined Response. The received response from the
translation LLM is shown below:

If true Then not(RoomTemperatureOver100)
RoomTemperatureOver1l00 = (RoomTemperature.status > 100)

This translated policy was syntactically correct, as this
version used a device’s attribute which does not require a
definition unlike a variable, and therefore iConPAL displayed
this translation as the output.



