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Abstract—Safety and security concerns surrounding Internet-
of-Things (IoT) platforms for smart homes have spurred the
development of defense mechanisms to safeguard against un-
expected behaviors in accordance with safety and security
policies. However, the need to manually craft policies in tool-
specific languages increases the burden on humans. Previous
attempts to address this issue have fallen short, either lacking
portability or requiring human intervention in other forms.
Therefore, in this paper, we propose iConPAL, an automated
policy authoring assistant for IoT environments. iConPAL accepts
a policy description in natural language (English) and translates
it into a specific formal policy language. iConPAL leverages the
capabilities of modern large language models (LLMs), employs
prompt engineering to automatically generate few-shot learning
prompts for the LLM, and post-processes the LLM’s response
to ensure the validity of the translated policy. We implemented a
prototype of iConPAL and evaluated it on our curated dataset of
290 policies. We observed that iConPAL successfully translated
93.61% policies, of which 93.57% were semantically correct.
iConPAL’s high accuracy makes it suitable for assisting ordinary
users in drafting policies for smart homes.

Index Terms—IoT Security, Policy Authoring and Enforcement

I. INTRODUCTION

The rapid expansion of programmable Internet-of-Things

(IoT) platforms has enabled affordable automation solutions

for smart homes, utilizing a myriad of low-cost IoT devices

[1–3]. Concurrently, safety and security concerns surrounding

smart homes have taken center stage, prompting the develop-

ment of defense mechanisms mitigating unexpected/insecure

behaviors on these platforms [4–21]. Defenses vary in terms

of their core mechanisms—static analysis, dynamic analysis,

and runtime monitoring—yet their primary focus remains on

safeguarding against unexpected behaviors in accordance with

safety and security policies, each defining expected IoT system

behavior for installed devices. However, the requirement to

manually craft policies in tool-specific languages increases the

burden on humans, diminishing the appeal and adoption of

these defense tools. Therefore, it is crucial to automate this

policy authoring process.

Prior work [9, 11, 13, 16, 17, 22–24] attempts to reduce

the human burden by employing automated policy synthesis

mechanisms. However, these approaches fall short for several

reasons. Firstly, they require either a collection of execution

traces (such as event logs or user activities) from the smart

home, labeled with acceptable and unacceptable outcomes

(i.e., positive and negative examples) [9], or access to the

source code of installed automation apps [13, 16, 17]. These

requirements impose significant human effort, which may be

outright impossible in some cases due to inaccessible source

code or a lack of traces. Secondly, the synthesized policies are

often limited in scope, as they can only express invariants—

a subset of policies [11, 13]. Finally, the policy synthesizers

are tightly coupled with their respective defense tools, and the

synthesized policies are specific to the current smart home,

lacking portability altogether.

On the other hand, prior work [25] explores the concept

of training non-tech-savvy users to formulate their desired

policies using a formal policy language through an online user

study. Participants underwent gradual training through various

tutorials and were evaluated on their ability to draft policies

in the trained language. The overwhelmingly low success

rate suggests that these policy languages are too complex

for ordinary users to grasp and utilize effectively for policy

composition.

In this paper, we propose iConPAL, an automated policy

authoring assistant. iConPAL takes a natural language de-

scription of a policy from a user as input and produces the

policy translated into an expressive formal policy language

tailored for various IoT defense mechanisms. Unlike prior

work, iConPAL does not have the same limitations: (a) It does

not necessitate execution traces (e.g., event logs) or source

code of automation apps; (b) It uses a policy language that is

not tied to any specific defense tools but is expressive enough

to capture policies beyond invariants (e.g., linear temporal

logic); (c) It is highly portable and not dependent on any

particular defense tools or smart home setup; and (d) It does

not require users to learn the policy language. These features

make iConPAL a user-friendly tool for policy creation in IoT

environments.

At its core, iConPAL relies on a pre-trained large language

model (LLM) like ChatGPT and Llama2. These modern

LLMs demonstrate a nuanced ability to understand natural

languages and perform various tasks, including translation.

While iConPAL utilizes an LLM’s capabilities, merely tasking

it with translating a policy description into a specific formal

policy language proves futile, as no LLMs are trained for

our target policy language. Furthermore, re-training or fine-

tuning an LLM presents challenges due to the substantial

computational resources required and the need for a vast

dataset containing pairs of 〈α, β〉, where α represents the

natural language description of a policy and β represents the

translated policy expressed in the policy language.

Instead of re-training or fine-tuning, iConPAL utilizes the



prompt-based in-context learning capability of LLMs. iCon-

PAL employs prompt engineering to automatically generate

few-shot learning prompts for the LLM by incorporating

numerous types of contexts, such as samples of policy trans-

lation, the grammar of the policy language, and a tutorial to

teach the language. Given a few-shot learning prompt, the

LLM responds with the translated policy. While a context

plays an important role in the translation, not all contexts are

equally effective for the translation task, as we observed cer-

tain combinations yield better accuracy than others. iConPAL

utilizes a subset of these contexts to form a few-shot learning

prompt for translating each new policy description. Note that

these contexts are pre-computed and remained unchanged over

time. Samples of translations are derived from our small

dataset (290 translations) curated through exploration and

consultation of prior work in the IoT security landscape.

Rather than creating a new policy language, we have extended

an expressive policy language from [9].

To increase the success rate of the translation, iConPAL

employs various methods, such as syntax validation and

prompt refinement. Syntax validation enables iConPAL to

identify syntax errors in the LLM’s response, while prompt

refinement allows it to adjust the prompt based on identified

errors and query the LLM again to avoid repetition of the

error. iConPAL iteratively refines the prompt until it receives

a syntactically valid translation or reaches a query threshold.

Consequently, iConPAL either produces a translated policy,

which is syntactically valid, or fails to do so.

While syntactic validation of a translated policy is crucial,

semantic validation is equally, if not more, important. Al-

though a policy translated by iConPAL is syntactically valid,

it might lack semantic validity. Manual semantic validation

is possible but burdensome. To address this, we devised an

automated approach using an LLM. Therefore, in evaluating

iConPAL’s effectiveness, we conducted both manual and au-

tomated semantic validation of the translated policies.

We developed a fully functional prototype of iConPAL using

Python 3.10. For the syntax validator, we utilized ANTLR

4.13.1. Our prototype is not tied to any specific LLM like

ChatGPT. Instead, we integrated a generic prompt template

within iConPAL and equipped it with an LLM client. This

client relays each prompt request to our offshore LLM gateway

server, which is capable of interfacing with multiple LLM

backends, such as ChatGPT, Llama2, and Mixtral. Notably,

any change in the LLM backend will not disrupt the operation

of iConPAL. When interfacing with an open-source, locally-

deployable LLM like Llama2 and Mixtral, the gateway will

operate on a GPU-backed server. However, for a cloud-

based LLM like ChatGPT, our gateway simply implements

a lightweight wrapper to communicate with the respective

vendor’s web API, which does not require any local GPUs.

We evaluated iConPAL on 290 policy descriptions from

our dataset. Firstly, we assessed iConPAL’s efficacy in trans-

lating a given policy description, measuring its success rate.

iConPAL successfully translated policies at a rate of 93.61%.

Among these successfully translated policies, 93.57% were

semantically valid. Secondly, we conducted an ablation study

to identify the contribution of iConPAL’s components to its

effectiveness, allowing us to determine the optimal configura-

tion. Thirdly, we evaluated how iConPAL’s performance varied

with different LLMs. We found that OpenAI’s GPT-4 produces

the highest success rate of 93.61%, whereas Llama2 with

13B parameters had the lowest success rate 13.53%. Finally,

while we manually analyzed the reported semantic validation

rate in the aforementioned experiments, we also assessed the

effectiveness of our automated semantic validation approach.

We observed that the automated approach is 78% accurate

and has the potential to serve as a first-stage filter for manual

semantic validation, thus reducing the burdens on humans

while incurring minimal financial cost. iConPAL is available as

open-source at https://github.com/syne-lab/iconpal.

Contributions. This paper makes the following contributions:

• We proposed iConPAL, an automated policy authoring as-

sistant designed to translate natural language policy descrip-

tions into a specific formal policy language. iConPAL relies

on the power of LLMs and employs several components to

automate the translation process.

• We curated a small dataset comprising 290 policy translation

examples and a tutorial for the policy language.

• We implemented a fully functional prototype of iConPAL

and evaluated its effectiveness using policies from our

dataset. iConPAL generated 93.61% syntactically valid poli-

cies, of which 93.57% were also semantically valid.

• To the best of our knowledge, iConPAL is the first auto-

mated policy authoring assistant for IoT defense solutions.

II. PRELIMINARIES

IoT Devices and Platforms. Smart homes are composed of a

myriad of IoT devices. A device can have one or more sensors

or actuators or both. For example, a surveillance camera has

motion sensors and actuators to turn on/off the camera for

recording video and audio. A device with actuation capabilities

can be operated through instructions (aka, commands) sent

from a remote entity (e.g., a mobile app, a cloud provider,

an IoT platform). Similarly, a device with sensing capabilities

senses a change in its surrounding environment (e.g., a mo-

tion). Each device maintains the current status of its capability

as an internal state and notifies the remote entity of any change

in its internal state. These notifications are also referred to as

events that the remote entity or the automation application can

act upon.

Programmable IoT platforms (e.g., SmartThings, Open-

HAB, IFTTT) have paved the way for regular users to turn

their traditional homes into full-fledged smart homes. While

IoT devices are essentially part of the physical world, it is

the platform that not only hosts the customized automation

of the user’s choice but also connects the IoT devices with

the cyber world. Therefore, a platform plays the major role

in orchestrating the automation and monitoring of IoT devices

installed in a smart home.

Automation Apps. Customized automation are primarily en-

coded as short applications/programs (in short, apps). Plat-



forms like SmartThings, OpenHAB, and HomeAssistant al-

low users to install and edit directly the source code of

the apps. On the other hand, platforms like IFTTT and

Zapier allow users to configure apps using their graphi-

cal web interface. By and large, an app follows a trigger-

action paradigm. Consider an automation app for an outdoor

camera to be “if motion_detected, turn on recording

video and notify the user’s phone app”. Upon sens-

ing a motion, the sensor notifies the platform about this

motion_detected event, which in turn will trigger the

platform’s app engine to execute this camera app to take

actions. The execution of this app will result in sending

a recording.turn_on() command to the camera and a

notification to the user (i.e., notify_user()). While these

platforms and apps work together to facilitate customized

automations for smart homes, they have also introduced a new

attack surface to smart homes [26–28]. For instance, remote

adversaries can exploit flaws in these apps [4, 18, 26] or third-

party services [9, 13] to create security or safety issues.

Policies and Defense Mechanisms. Several defense mech-

anisms have been proposed to address the threats from apps

and mitigate the safety and security issues of smart homes [4–

11, 13, 16, 18]. These defenses often revolve around enforcing

countermeasures based on policies, where a policy expresses

a certain behavioral condition of a smart home that must

be satisfied at all times (e.g., a safety property [29]). While

static analysis based defenses [4, 18] proactively identify any

app that could potentially violate a given policy, runtime

monitoring based approaches [6, 7, 10, 11, 13] dynamically

prevent any app’s contemplated actions that would violate a

given policy at runtime.

Consider “the outdoor camera must not be turned

off when the user is in vacation” be a policy. At first

glance, this policy may appear to follow the trigger-action

paradigm of apps. However, policies are different from apps,

because policies express conditional relationships among the

behavior of smart home devices, unlike apps that dictate

actions when a triggering condition is satisfied. This pol-

icy can also be interpreted as a logical implication like

“UserAway =⇒ Camera_is_ON”, which will be evaluated as

false in a smart home execution scenario when UserAway

becomes true but Camera_is_ON turns false. Now if an

app issues a command to turn off the camera when the user is

away, a defense must recognize that this command will violate

the stated policy and therefore take appropriate measures –

either notifying of such potential violations [10] or blocking

the actions in question [6, 7].

Policy Languages. Unlike apps, writing policies has been

daunting and complicated for regular smart home users (who

are mostly non-tech-savvy). Apps are relatively straightfor-

ward to program because of their simplified structures, which

align with how humans think, and the support of visual

programming editors offered by platforms. On the contrary,

policies are complex as they are conditioned on the current

state or the execution history (traces) of a smart home. Prior

work attempted to address the trade-off between usability

and functionality, thereby resulting in many types of domain-

and tool-specific policy languages, inspired by propositional

logic, quantifier-free first-order logic, temporal logic, and so

on. While some languages can only express system invariants

(i.e., policies conditioned on the current state of the home),

others can express variants of temporal logic (i.e., policies

conditioned on the execution history). In any case, writing

a policy demands users to deal with the idiosyncrasies of the

tool’s policy language and to possess a nuanced understanding

of the IoT system’s corner cases, which is almost impossible

for non-tech-savvy users.

Large Language Models (LLMs). The recent success of pre-

trained large language models (LLMs), such as ChatGPT, has

demonstrated LLMs’ ability to comprehend natural language

instructions and carry out domain-specific tasks across diverse

topics, without re-training the entire model. LLMs have been

used for many common tasks, including, text translation. Given

an instruction, also known as prompt, to translate a text

from one language (e.g., English) to another (e.g., French),

LLM can respond with the translated text. For example, with

a prompt like “Translate the following text into

French: "LLMs are powerful"”, ChatGPT responds “Les

LLM sont puissants”. Such translations are possible be-

cause LLMs like ChatGPT were trained on a substantially

large dataset of both languages and therefore LLMs learned

the general rules and dependencies within each language.

However, translating a policy from its natural description

in English to a policy language is challenging because LLMs

are not trained on the target policy language. To overcome

this challenge, re-training or fine-tuning the model is a huge

undertaking as it requires a large labeled dataset and significant

computing resources. Instead, LLMs can be taught a domain-

specific task by including a few labeled examples of the task in

the prompt, also known as a few-shot prompting technique. By

carefully crafting and employing such examples in prompts,

LLMs can be successfully adapted to carry out this domain-

specific task.

III. OUR APPROACH: ICONPAL

We present our problem definition and a high-level work-

flow of iConPAL, along with its critical components.

A. Problem Definition

Let Σ be a set of policy descriptions written in English

(a natural language) and α be a policy description such that

α ∈ Σ. Consider L, a domain-specific policy language and

G, a grammar to produce each β ∈ L. In other words, β is a

policy written in the policy language L. T represents a tutorial

written for humans teaching how to write policies in L. E

denotes a set of sample pairs of manually translated policies,

i.e., E = {〈α, β〉|α ∈ Σ and β ∈ L}. Existing information

pertaining to the policy language and the translation comprise

our knowledge base, KB = {G,T,E}. Now, we can define

the policy translation operation as T ⊆ Σ× 2KB×L. In other

words, 〈αi, C, βj〉 ∈ T means that βj is the translated policy of

αi with respect to a configuration of the knowledge base, C ∈



Input: When the smoke is detected, the alarm must sound
Output:
If SmokeDetected Then AlarmSound
SmokeDetected = (SmokeSensor.status == "Detected")
AlarmSound = (Alarm.status == "Sound")

Fig. 1: An example of a policy translation using iConPAL

2KB. Implementing a T is undecidable as the completeness

and soundness cannot be achieved simultaneously.

Instead, iConPAL is designed to realize TiConPAL, a subset

of T , while striving to achieve soundness. To formulate

TiConPAL, we need to first define two functions. Let SynValid

be a function to check syntactic validity and defined as

SynValid : S × G 7→ {true, false}, where S is a set of

all possible strings (i.e., L ⊂ S). Given a string s ∈ S and a

grammar G, SynValid can determine if s is syntactically valid

with respect to G. Similarly, let SemValid be a function to

check semantic validity and defined as SemValid : Σ × L 7→
{true, false}, where Σ and L are defined as above. If α

is a policy text and β is a translated policy, SemValid can

determine if β is semantically valid with respect to α.

Definition. Given a policy text α ∈ Σ and a configuration

of the knowledge base C ∈ 2KB, TiConPAL can be defined

as TiConPAL = {〈α, C, β〉|SynValid(β,G) = true}, where

β ∈ L. iConPAL develops TiConPAL ∪ {〈α, C,⊥〉}. This

means when iConPAL succeeds in translating α, it outputs

β, but when iConPAL fails to translate, it outputs ⊥ (i.e., a

message like "translation failed"). A syntactically valid

policy (e.g., β) is not necessarily semantically valid. To ensure

semantic validity, iConPAL utilizes SemValid to check if β is

semantically valid, i.e., SemValid(α, β) = true.

B. Overview of iConPAL’s Design

Given a policy description α, iConPAL translates it to a

format (β) written in the desired policy language. Instead

of designing a new policy language, iConPAL leverages an

existing policy language [9], which is expressive and generic

enough to capture different policies common for IoT systems.

We have extended the grammar (G) of this language (L) with

some operators (see Appendix A).

Example. iConPAL takes the description of a policy in English

as an input and outputs the corresponding translated policy

written in L, as shown in Figure 1. A user wants to ensure

that the fire alarm must sound whenever the smoke sensor

detects smoke. The user can utilize iConPAL to obtain the

translated policy, where SmokeDetected and AlarmSound are

predicates and defined as conditions on the state of the device.

iConPAL’s Workflow. Figure 2 presents the architecture of

iConPAL. Internally, iConPAL consists of multiple individual

modular components that work in concert to translate a given

policy description. The user writes a description of the in-

tended policy, referred to as a policy text α, in the iConPAL’s

interface (➊). iConPAL forwards α to its prompt generator

(➋). The prompt generator utilizes a knowledge base (KB)

consisting of a collection of example translations (E), the

grammar (G) of the desired policy language L, and a tutorial

(T) for humans to write policies using G. While iConPAL

allows the user to select any preferred combination C ∈ 2KB

as a prompt config, the default configuration of iConPAL uses

the combination that yielded the best result in our evaluation

(see § V). Given a prompt configuration, the prompt generator

constructs an intermediate few-shot prompt (ρ) composed of

α and information from KB according to C (➌). Note that ρ

follows a generic template, not tied to any particular LLM.

Our LLM client takes in ρ, converts it into a full-fledged

prompt (γ), and sends γ to our off-shore LLM server that

interfaces with several LLMs (e.g., ChatGPT, Llama2) (➍).

Note that γ follows a customized prompt template (shown in

Figure 3) that is devised for our LLM client and server and is

expressive enough to encode information required for actual

prompts to query all 7 LLMs we used in our evaluation. Upon

the receiving the query, the LLM backend generates a response

(λ) containing the translated policy (➎). Often, λ is surrounded

by explanations or comments for the user, and therefore, our

response extractor extracts the policy formula (ϕ) from λ (➏).

iConPAL employs a syntax validator (i.e., a parser for G)

to check if ϕ is syntactically valid. If so, iConPAL outputs

the valid translated policy β (➐). If not valid, iConPAL is

equipped with a refinement feature to guide the LLM by using

the validator generated error message (R). If this option is

enabled, the prompt refiner creates a refined prompt (Ψ) by en-

capsulating the last γ, the last received λ, and R and forwards

Ψ to the LLM client (➑) to initiate the next round of query.

This refinement loop continues until ϕ becomes valid or the

iteration reaches a user-provided threshold. Upon reaching the

threshold, iConPAL outputs ⊥ (i.e., translation failed).

What iConPAL outputs (i.e., β) is only syntactically valid.

However, semantic validity of β is not part of this pipeline

and is conducted separately, as shown in Figure 4. For se-

mantic validation of the translated policy (β), we introduce an

automated approach, AutoSemVal, by harnessing the power

of an existing LLM and differential checking. Let β be the

translated policy of the text α. AutoSemVal queries the LLM

for a natural language description of β, which we refer to as

α′. Next, AutoSemVal constructs another prompt to ask the

LLM to assess if both α and α′ are equivalent. In other words,

AutoSemVal checks if two descriptions of the policy (β) have

the same semantic meaning. The response of the LLM dictates

whether β is semantically valid or not. Furthermore, for the

assessment of iConPAL’s efficacy, we performed a manual

semantic validation of β in parallel (as shown in Figure 4).

C. Knowledge Base

iConPAL utilizes a knowledge base to construct an ef-

fective learning prompt for guiding the LLM to translate

the given policy description. Currently, iConPAL incorporates

three types of the policy-translation related information into

the knowledge base: a grammar of the policy language, a

tutorial to use the grammar for translation, and a collection of

sample policy translations. While more types of information

can be added to the knowledge base, we observed these three



Fig. 2: iConPAL’s architecture and workflow

Role: You are a natural text to policy translator.

Contexts:
{Grammar information}
{Tutorial information}
{Example_1: translation of text to policy}
...
{Example_n: translation of text to policy}

Task:
Translate the following natural text to policy language.
"When the smoke is detected, the alarm should sound."

Fig. 3: The structure of a full prompt (γ). Texts in braces {...}
are placeholders

Fig. 4: Semantic Validation of iConPAL’s translations

types are readily available and enough to translate policies

with high accuracy.

Grammar (G). iConPAL uses the grammar G of Maverick’s

policy language [9]. We have encapsulated G using the syntax

of Extended Backus-Naur Form (EBNF) [30]. Based on the

prompt configuration, some of our generated learning prompts

include G to help the LLM learn the underlying policy

grammar. We decide to include G in the learning prompts

because G is a context-free grammar and modern LLMs

understand context-free grammars.

Tutorial (T). We developed a full tutorial to help humans

learn the nuances of the grammar G and write a policy

in this language. We decide to include this tutorial in the

learning prompts so that the tutorial can help LLM learn how

to construct a policy in this language. However, we quickly

realized the length of the full tutorial was becoming a limiting

factor as each LLM has a maximum allowed length for a

prompt in terms of tokens (words) and the closed-source LLMs

charge financially (USD) based on the prompt size. If a prompt

crosses this limit, the LLM will raise an error, hindering the

translation process. To address this issue, we devised two more

variations of the tutorial: simplified and summarized. While the

simplified tutorial has less information than the full tutorial,

the summarized tutorial is essentially a short gist. Both the

simplified and the summarized tutorials were generated with

the help of ChatGPT (using GPT-3.5).

Example translations (E). Pre-trained LLMs perform demon-

strably well if a prompt includes some task-specific examples

for the LLM to learn [31], eliminating the need for re-training

or fine-tuning LLM’s parameters. To harness this power of

LLMs fueled by few-shot prompts, we need a collection of

policy translation examples, from their English description to

the policy language format. Unfortunately, no such publicly

available dataset exists. Therefore, we manually curated a

small dataset of policy translations. We collected a set of

policy descriptions from the recent IoT literature and manually

converted each description into a policy using G.

We varied the number of examples in the prompt to identify

the minimum number of examples required to achieve the best

accuracy. Our evaluation reveals that 3 examples are enough

(§V-B2). Furthermore, not all the examples are relevant for

the policy text in question. To identify relevant examples, we

devise a categorical approach to classify each policy text.

We systematically classified the policy texts of our dataset

into eight categories. While doing so, we also formulated

a pattern-based definition for each category. Although our

dataset includes the manual categorization of each policy text,

iConPAL employs an automated approach to classify a policy

text into one of these 8 categories by using an LLM. iConPAL

encapsulates these categorical definitions in the prompt, asking

the LLM to classify the policy text in question. Additional

details on the dataset will be discussed in section V.



Algorithm 1: Prompt Generator

Input : The prompt configuration C, policy text α,

category list L, policy to category map M,

and knowledge base KB

Output: The prompt

1 tutorial ← retrieveTutorial (KB, C)

2 grammar ← retrieveGrammar (KB, C)

3 if C.categorizer = “manual” then

4 category ← getPolicyCategory (α, M)

5 else if C.categorizer = “llm” then

6 category ← askLLMToCategorize (α, L)

7 else

8 category ← random (L)

9 cnt ← getExampleCount (C) // cnt: Example Count

10 examples ← retrieveSimilarExamples (KB,

category, cnt)

11 prompt ← concat (tutorial, grammar, examples,

α)

12 return prompt

D. Prompt Generator

The prompt generator in iConPAL is a pivotal component,

which we will describe here. While space restricts detail

on other components, understanding it offers insights into

iConPAL’s inner workings.

Algorithm 1 outlines how the prompt generator operates. It

takes in a prompt configuration C, the knowledge base KB, the

list of category definitions L, the policy-to-category map M,

and a policy text α as input. It retrieves the desired tutorial and

the grammar from KB as dictated by C. However, depending

on the configuration C, tutorial and grammar can also be

∅ (empty).

Now, the policy text α will be categorized based on the

selection strategy (i.e., C.categorizer) specified in C. It supports

three variations: manual, llm, and random. In the manual

approach, it utilizes the map M to categorize α. In the llm

approach, it queries the LLM to categorize α according to the

definitions in L. In the random approach, it randomly selects

a category for α.

Next, the prompt generator focuses on the learning ex-

amples. It determines the number of examples (i.e., cnt)

mentioned in C and extracts cnt examples from the same

category as α. Again, if cnt is 0, then examples will be ∅.

Finally, it concatenates tutorial, grammar, examples, and

α to construct the prompt, which will be returned as its output.

Appendix J presents the actual LLM prompts and responses

while translating two policy texts as case studies.

IV. IMPLEMENTATION

We now discuss the implementation of some components of

iConPAL and how we addressed some technical challenges.

Prompt Generator. We implemented the prompt generator

in Python 3.10 (118 LoC). Based on a prompt configuration

written in JSON and the input policy text, the prompt generator

creates a learning prompt in a customized format that will

include a combination of one of the tutorials, the grammar,

and some example translations from our knowledge base.

Syntax Validator. We implemented a policy language parser

for the syntax validator using Python 3.10 and ANTLR 4.13.1.

We used ANTLR to define the grammar (G) of the policy

language L and generate the parser. The grammar is 50 lines.

The custom code added to the ANTLR generated parser is

only 56 LoC. This parser can validate the syntax of a policy

with respect to G.

Response Extractor. Despite requesting only the translated

policy, responses from some LLMs include additional com-

ments and explanations. To extract the policy from the re-

sponse, we implemented a response extractor in Python 3.10

(32 LoC). Technically, we leveraged our policy parser to

validate the syntax of each line of the response, one at a time,

and reconstructed the translated policy by combining the valid

lines only.

LLM Gateway Server and Client. iConPAL uses an LLM

solely for inference, with each LLM having its own interface.

Instead of direct interfacing, we connect iConPAL to an LLM

gateway via a client-server approach. The client, integrated

into iConPAL, remains LLM-independent, while the gateway

server interfaces with each LLM. To handle model variations,

the server provides a unified HTTP interface, operating off-

shore. For details, see Appendix F.

V. EVALUATION

In this section, we present a comprehensive evaluation of

iConPAL. Our assessment covers both the effectiveness of its

end-to-end operation and the performance of its individual

components.

Dataset and Categorization. To prepare few-shot learning

prompts for LLMs, we need to embed a few examples of

policy translations along with the policy description in ques-

tion. We manually curated a dataset of policy translations. We

collected 290 natural language (English) descriptions of IoT

policies that describe how IoT systems should behave. These

policies are sourced from 16 recent IoT security literature [4–

9, 13, 16, 18, 21–23, 32–35] spanning 2015–2023. Most of

these sources proposed IoT defense systems and used a set

of policies for their evaluation. We manually converted each

description into a policy using the language grammar (G).

Recall that our prompt generator relies on policy categoriza-

tion to decide which examples to be embedded into a prompt.

We manually classified the policy texts in our dataset into

eight categories. This categorization was based on the structure

of their English descriptions. For instance, policies like “In

any situation, surveillance cameras must remain on.” and “In

any situation, front doors must remain locked.” are grouped

together in category G1, as they assert a state that must be

true with/without any triggering event/condition. Appendix H

presents the rest of the categories along with their policy count.

While these 8 categories may be influenced by our dataset’s

policies, drawn from recent IoT literature, we consider them



to offer a broad representation. Additionally, new policy types

can be seamlessly integrated into iConPAL’s configuration

without requiring modifications to its implementation.

Dataset creation (policy collection and translation) took 26

person-hours and the categorization task took 7 person-hours.

One author curated and translated policies while two others

verified translations independently to ensure accuracy.

In evaluation, our policy dataset served as both the knowl-

edge base and the test set. For each experiment, we maintained

a disjoint knowledge base and test set, with the latter also

functioning as a holdout dataset.

Experimental Setup. We employed both closed- and open-

source LLMs, 7 models in total. For closed-source models, we

used OpenAI’s GPT-3.5 [36] and GPT-4 [37]. For open-source

models, we used Llama2-13B [38], Llama2-70B (Quantized)

[39], Mistral [40], Mixtral [41], and Yi-34B [42]. We used our

in-house developed LLM gateway server and client to interact

with these models. We deployed the Llama2-70B model in its

quantized version on a server with 2 NVIDIA A100 GPUs

and 250 GB RAM, while other open-source models ran on a

server with 1 NVIDIA A100 GPU and 125 GB RAM. GPT-

3.5 and GPT-4 were utilized through OpenAI’s API endpoints

for inference.

We primarily used GPT-3.5 to evaluate iConPAL’s efficacy,

unless stated otherwise. Each inference was conducted on an

LLM with no chat history to prevent bias. Results represent the

average of 3 runs due to financial constraints from GPU server

rentals and API usage. Initially, we tried free-shared GPU

servers, but encountered delays due to resource availability.

Research Questions. We seek to answer the following re-

search questions:

• RQ1. How effective is iConPAL in translating policies from

natural description (text)? (§ V-A)

• RQ2. How do different components contribute to iConPAL’s

effectiveness? (§ V-B)

• RQ3. How do different LLMs contribute to iConPAL’s

effectiveness? (§ V-C)

• RQ4. How effective is our LLM-powered automated seman-

tic validation? (§ V-D)

• RQ5. What is the incurred overhead of iConPAL in terms

of cost and time? (§ V-E)

A. RQ1: Effectiveness of iConPAL

We evaluated the effectiveness of iConPAL in translating

policies from their descriptions in natural language (we refer

to them as policy texts).

For this assessment, we used the optimal prompt config-

uration identified in our ablation study (§V-B). The optimal

configuration utilizes GPT-4 as the translation LLM, a model

temperature of 0.5, the full tutorial, and three similar examples.

If the LLM produces a syntactically invalid policy, we refined

the learning prompt by embedding the syntax error as addi-

tional context, repeating this process up to twice. Even after

refining the prompt twice, if the LLM produces a syntactically

invalid policy, iConPAL outputs ⊥ (i.e., “translation failed”).

TABLE I: Reference of Notations

Symbol Description

Succ. Successful
Sem. Semantic
CT Total policy texts of the test data set
Ctr Count of Successful translation
Csm Count of Semantically valid policies
Rtr Rate of successful translation w.r.t. CT

Rsm Rate of semantically valid policies w.r.t. CT

Rsmtr Rate of semantically valid policies w.r.t. Ctr

CEx Count of policy examples in a learning prompt
SelEx The example selection strategy used for a prompt

TABLE II: Effectiveness of iConPAL (using the optimal

prompt configuration). Notations are explained in Table I.

Total (CT )
Successful Translation Semantic Validation

Ctr Rtr Csm Rsm Rsmtr

266 249 93.61% 233 87.59% 93.57%

Out of 290 policy descriptions in our dataset, we manually

translated 24 policy texts, 3 from each of the eight categories,

and used them as our knowledge base. The remaining 266

policy texts are used as our test data set (a holdout data set)

to assess iConPAL’s effectiveness. For each test policy text,

our prompt generator selected 3 similar examples using the

manual selection strategy from our knowledge base.

To ensure reliability, we conducted the experiment three

times with different example sets. Table II shows the average

of the three runs. We observed that iConPAL successfully

translated 93.61% policies (249 out of 266). Among these,

93.57% (233 policies) are semantically valid (i.e., the trans-

lated policy matches its natural description). Policies that lack

semantic validity fail to capture the nuances of the natural

text. Appendix B shows such an example. Appendix I provides

additional insights on translation validity and consistency.

B. RQ2: Ablation Study

We performed an ablation study on iConPAL to assess

the impact of its components on effectiveness. The study

comprised three segments: (i) the effect of three knowledge

base components, (ii) component-specific variations, and (iii)

prompt refinement effects. Using GPT-3.5 as the model and a

temperature of 0.5, we conducted each experiment three times

with different example sets to account for variance.

1) Effect of three knowledge base components: Our knowl-

edge base comprises three components: examples (E), tutorial

(T), and grammar (G). We evaluated the individual and

combined effects of these components on iConPAL’s efficacy,

as reported in Table III.

For experiments involving examples in the prompt, we

manually translated 8 policy texts (1 from each of the eight

categories) out of 290 to serve as our knowledge base, leaving

282 for testing. For each test policy text, our prompt generator

selected 1 similar example using the manual selection strategy

from the knowledge base. In other experiments, where exam-

ples were not included in the prompts, we used all 290 texts

as the test dataset.



TABLE III: Effect of three components of the knowledge base

(examples (E), the tutorial (T), the grammar (G)). ✓: present,

✗: not present. Notations are explained in Table I

Components
Total(CT )

Succ. Translation Sem. Validation

E. T. G. Ctr Rtr Csm Rsm

✓ ✓ ✓ 282 229 81.21% 179 63.48%
✓ ✓ ✗ 282 228 80.85% 180 63.83%
✓ ✗ ✓ 282 127 45.04% 104 36.88%
✓ ✗ ✗ 282 141 50.00% 114 40.43%
✗ ✓ ✓ 290 211 72.76% 150 51.72%
✗ ✓ ✗ 290 227 78.28% 155 53.45%
✗ ✗ ✓ 290 0 0.00% 0 0.00%
✗ ✗ ✗ 290 0 0.00% 0 0.00%

Without examples, tutorial, or grammar in the prompt, the

translation rate (Rtr) was 0.0%. Even after adding grammar

alone, Rtr remained at 0.0%, indicating the LLM’s struggle

with complex grammar and syntax errors in policy creation.

Adding just one example increased Rtr to 50.0%, while using

only the full tutorial resulted in Rtr of 78.28%. Combining

both tutorial and examples proved most effective, yielding an

Rtr of 80.85% and a semantic validity rate (Rsm) of 63.83%.

Combining G with T and E slightly increases Rtr, but

decreases Rsm, demonstrating a negative impact. Our EBNF-

format grammar, though concise (25 lines, 524 tokens), over-

whelms the LLM, hindering its ability to generate syntactically

correct translations. This aligns with findings from [43], where

increasing grammar complexity led to LLM unreliability. Nat-

ural language descriptions of grammar yielded better results,

as observed with our tutorial. Thus, T and E together represent

the most effective combination for iConPAL’s performance.
2) Effect of component-specific variations: We studied the

impact of various example selection strategies, prompt sizes,

and tutorial types.

• (a) Impact of example selection. We assessed how dif-

ferent example selection strategies in learning prompts affect

policy generation quality. Recall that we had three selection

strategies: manual, LLM, and random. 8 policy examples, one

for each of 8 categories, were chosen as the knowledge base

from 290 policies, leaving 282 for testing.

For the manual strategy, we utilized the manually assigned

category of each test policy text and included the corre-

sponding category’s example. For the LLM strategy, GPT-3.5

categorized the policy text, and we included the correspond-

ing example. Finally, the random strategy involved randomly

selecting one of the eight examples to include in the prompt.

Table IV displays iConPAL’s average rates for each example

selection strategy. The manual strategy had the highest trans-

lation rate (Rtr) at 78.01%, followed by the LLM strategy at

77.30%. The LLM strategy also achieved the highest semantic

validity rate (Rsm). Given its comparable performance to

manual selection but without additional human effort, the

LLM-powered strategy is recommended as iConPAL’s default.

• (b) Impact of the number of examples. We evaluated

the impact of varying the number of examples in the prompt

(CEx) on iConPAL’s efficacy, ranging from 0 to 3 examples.

Table V illustrates the corresponding rates.

We selected policy examples (pairs of policy text α and

TABLE IV: Impact of example selection strategies. Notations

are explained in Table I

Strategy
Total(CT )

Succ. Translation Sem. Validation

(SelEx) Ctr Rtr Csm Rsm

Random 282 215 76.24% 143 50.71%
Manual 282 220 78.01% 171 60.64%
LLM 282 218 77.30% 174 61.70%

TABLE V: Impact of the number of examples in a prompt.

Notations are explained in Table I

Count
Total(CT )

Succ. Translation Sem. Validation

(CEx) Ctr Rtr Csm Rsm

0 290 204 70.34% 138 47.59%
1 282 220 78.01% 171 60.64%
2 274 221 80.66% 171 62.41%
3 266 221 83.08% 180 67.67%

translated policy β) for each category from our dataset to

comprise our knowledge base. The remaining policy texts

served as the test dataset. For instance, to prepare prompts

with 3 examples, we utilized 24 translated examples (3 for

each category) out of 290. iConPAL was then tested with the

remaining 266 policy texts. Prompts with 3 examples showed

superior performance, with a translation rate of 83.08% and

semantic validity of 67.67%.

While theoretically possible to increase the number of ex-

amples, we limited our experimentation to a maximum of three

due to constraints on prompt length and cost. Furthermore, we

found that employing two rounds of refinement on a prompt

with three examples yielded only marginal performance im-

provement compared to the first refinement (more in § V-B3).

• (c) Impact of the tutorial type. We assessed how

different variants of the same tutorial affect iConPAL’s ef-

ficacy. Recall that we had three variations: full, simplified,

and summarized. The full tutorial offers detailed step-by-step

instructions and examples. The simplified version, generated

by GPT-3.5 using the full tutorial, has simplified instructions

and examples. The summarized version, also generated by

GPT-3.5, includes simplified instructions without examples.

Token counts, as per OpenAI’s Tokenizer, are: full (1212

tokens), simplified (888 tokens), and summarized (296 tokens).

We chose 8 policy examples, one for each category, from

290 policies to comprise the knowledge base, leaving 282 for

testing. For each test policy text, our prompt generator utilized

the manual selection strategy to select 1 similar example. Table

VI shows the achieved rates for each tutorial type. Prompts

generated with the full tutorial had the highest translation rate

(80.85%) and semantic validity (63.83%).

The success of prompts with the full tutorial is due to its

detailed instructions with examples. However, this option is

the most costly due to its longer token length. Conversely, the

simplified tutorial can be a more economical choice, albeit

with a slight reduction in iConPAL’s efficacy.

3) Effect of Prompt Refinement: We assessed how prompt

refinement affects iConPAL’s efficacy. Recall that when iCon-

PAL’s translation LLM generates a syntactically invalid policy,

we refine the learning prompt using the syntax error and ask



TABLE VI: Impact of the tutorial type. Notations are ex-

plained in Table I

Tutorial Total(CT )
Succ. Translation Sem. Validation

Ctr Rtr Csm Rsm

Full 282 228 80.85% 180 63.83%
Simplified 282 220 78.01% 171 60.64%
Summarized 282 148 52.48% 119 42.20%

TABLE VII: Effect of prompt refinement. Notations are ex-

plained in Table I

Refinement
Total(CT )

Succ. Translation Sem. Validation

Limit Ctr Rtr Csm Rsm

0 266 230 86.47% 192 72.18%
1 266 238 89.47% 197 74.06%
2 266 241 90.60% 198 74.44%

LLM to regenerate the policy. In this experiment, we varied

the number of prompt refinements from 0 to 2.

Out of 290 policies, we chose 24 policy examples, 3 from

each category, to form our knowledge base, leaving 266 for

testing. For each test policy text, our prompt generator used

the manual selection strategy to select 3 similar examples from

the knowledge base.

Table VII displays the achieved rates, notably, both rates

consistently improved with each refinement. Following the

2nd refinement, iConPAL’s average translation and semantic

validity rates reached 90.60% and 74.44% respectively. We

anticipate further refinements would enhance policy quality,

albeit at increased translation costs. However, prompt length

limitations in LLMs constrain indefinite refinement.

C. RQ3: Variation in LLMs

We evaluated the effect of the model (LLM) and its tem-

perature on iConPAL’s efficacy.

1) Effect of the model temperature: The model temperature

influences the randomness of a LLM’s responses. We assessed

how adjusting the model temperature parameter influences

iConPAL’s efficacy by varying the temperature (0.0, 0.5, 1.0,

and 1.5) of GPT-3.5. We conducted the experiment three times

with different example sets to account for variance.

As before, we selected 8 policy examples, 1 from each

category, as our knowledge base, leaving 282 for testing.

For each test policy, our prompt generator chose 1 similar

example using the manual selection strategy. Table C1 displays

the achieved rates. Notably, a temperature of 0.5 yielded the

highest translation and semantic validity rates at 78.37% and

61.70% respectively. Higher temperatures increase random-

ness, resulting in more diverse but potentially invalid policies.

2) Effect of the model (LLM): We evaluated the impact

of seven different language models (LLMs) on iConPAL’s

efficacy: GPT-3.5, GPT-4, Llama2-13B, Llama2-70B (Quan-

tized), Mistral, Mixtral, and Yi-34B. Our study utilized a

consistent learning prompt configuration (full tutorial with 3

examples), allowed prompt refinement twice, and maintained

a temperature of 0.5 across all LLMs.

Out of 290 policies, we selected 24 policy examples, 3

from each category, as our knowledge base, leaving 266 for

testing. For each test policy text, our prompt generator selected

3 similar examples using the manual selection strategy.

Table C2 presents the performance rates for each LLM.

GPT-4 notably outperformed other models, achieving trans-

lation (Rtr) and semantic validity (Rsm) rates of 93.61% and

87.59% respectively. GPT-3.5 closely followed with rates of

90.60% for Rtr and 74.44% for Rsm. Among the remaining

models, Llama2-70B (Quantized) surpassed all, while Llama2-

13B exhibited the lowest performance.

The varied performance of different LLMs in the same task

is influenced by factors like size, architecture, and training

datasets [44]. These underlying details are often undisclosed.

The impact of LLM selection on iConPAL’s performance is

evident in Table C2. GPT-4’s superior performance aligns with

its market dominance. Larger models like Llama2-70B tend

to outperform smaller ones like Llama2-13B, highlighting the

significance of model size.

D. RQ4: Automated Semantic Validation

Recall that not all policies translated by iConPAL are

semantically valid, and the rates (Rsm) we reported so far

were manually assessed. Three authors spent a total of 83

person-hours validating 13,964 translated policies, averaging

0.36 minutes per policy.

To streamline the semantic validation of a translated policy,

iConPAL developed AutoSemVal, an LLM-powered auto-

mated approach (see Figure 4). AutoSemVal was supplied

with the full tutorial and 3 similar example translations for

each policy. By using GPT-3.5 as the translation LLM, it

achieved 85% precision, 88% recall, 78% accuracy, and 86%

F1 score, effectively identifying semantically valid policies

while minimizing false positives and negatives (see Table G4).

However, it struggled to identify semantically invalid poli-

cies, recognizing only 42% of them. We also observed that

AutoSemVal’s efficacy remained almost identical for both

GPT-3.5 and GPT-4. Appendix G presents this comparison,

along with insights on AutoSemVal’s misclassified policies.

E. RQ5: Performance Overhead

Having addressed the efficacy of iConPAL in previous

research questions, we now discuss its performance overhead

in terms of time and financial cost. Due to space constraints,

we provide only the total overhead here: 40 hours of time

and a total cost of 169.05 USD for all conducted experiments.

Further breakdown is available in Appendix D.

VI. DISCUSSION

Automated Semantic Validation. iConPAL’s automated se-

mantic validation currently achieves a 78% accuracy rate.

Nonetheless, as LLMs improve, it holds the potential to serve

as an initial filter, further reducing the already minimal human

effort required for manual semantic validation in comparison

to manual policy translation (see Appendix E).

Grammar Dependent. The current prototype of iConPAL

is specific to the policy language (L) and the grammar (G)

proposed by [9]. We picked a language that is powerful enough



to express many types of policies. Yet, it is possible that the

translated policies in G may not be directly utilized for some

specific language (say, L′) based on a different grammar (say,

G
′). For example, IoT defense solutions like [5, 8, 45] use

a different policy language other than Maverick’s [9]. We

can address this concern in two different approaches: (a) we

can replace G with G
′ and update the collection of policy

translation examples for this new G
′; and (b) we can employ a

source-to-source parser-based translator to convert iConPAL’s

output β written in G to β′ written in G
′. The latter approach

is relatively easier and less cumbersome as these grammars are

straightforward and unambiguous, unlike natural languages,

and writing parser-based translators is not challenging.

Implications for Practice and Research. Our prototype of

iConPAL can translate policies for Maverick [9], a recent

IoT defense solution, out-of-the-box. Additionally, iConPAL

is adaptable to other IoT defense solutions like IoTGuard

[5] and IOTSAFE [8], as previously noted. This adaptability

will streamline the comparative evaluation of IoT defense

solutions using testing platforms like VetIoT [46] against

IoT policy benchmarks. Despite promising results, iConPAL’s

semantic validation accuracy is currently 87.59%, indicating

room for improvement. While this accuracy warrants caution

in real-world deployment of the translated policies, iConPAL

substantially advances automated policy authoring for IoT

defense solutions. We believe it will spur further research in

the IoT field, ultimately leading to enhanced accuracy.

Threats to Validity. The main threat is the generalizability of

our findings, addressed by using a diverse set of IoT policies

from existing literature. We conducted experiments 3 times to

address result variance and used multiple independent authors

for manual validation to minimize validation risks.

VII. RELATED WORK

Security and safety concerns in smart homes have led to

numerous policy-enforcing mechanisms [4–21] to protect users

from misconfigurations and vulnerabilities. However, these

mechanisms often require users to write complex policies in

specific formats. iConPAL addresses this issue by automating

policy authoring from natural language descriptions.

In an attempt to reduce the burden on end-users, prior work

adopted several approaches: (a) template-based policy forms

for the users to fill out [8, 14, 15], (b) temporal property

synthesis based on static analysis of IoT apps and the users’

interactions with the apps [16, 17, 24], (c) invariant synthesis

based on supplied positively and negatively labeled execution

traces [9], and (d) feedback-based systems that block all

sensitive scenarios and ask users to resolve at runtime [10, 47].

Unfortunately, they fall short in reducing human burden. Both

template-based and property-synthesis still require users to

have a decent knowledge of IoT apps and temporal logic.

The invariant synthesizer imposes the additional requirement

of various execution traces. Finally, feedback-based systems

can render users vulnerable to fatigue attacks, consequently

leading to security failures. On the contrary, iConPAL re-

quests the policy description from end-users in English and

then automatically translates the policy into a domain-specific

policy language, thereby eliminating the steep learning curve

associated with writing correct IoT policies.

Natural language processing and speech recognition have

been employed in prior work. Goffinet et al. [48] proposed a

speech assistant that poses questions to users and recognizes

their intentions, which are then used to generate policies.

Hǫlion [22] developed a statistical smart home model based on

user-supplied smart home descriptions. This model is utilized

to generate realistic test events rather than policies directly. In

practice, policy creation involves human intervention. While

these methods necessitate multiple interactions with users,

iConPAL offers an automated policy generation process that

requires no user involvement during translation.

Prior work [49–53] have utilized LLMs to translate nat-

ural language sentences into Linear Temporal Logic (LTL)

formulas. However, these systems typically handle only sim-

ple descriptions, often limited to coarse-grained commands.

Efficient-Eng-2-LTL [51] and Lang2LTL [52] generate

LTL expressions from structured commands to guide robot

actions. nl2spec [53] is a human-in-the-loop translator that

utilizes LLMs for translating sub-formulas of the given natural

description. NL2LTL [50] fills in existing templates, and NL2TL

[49] processes specialized command structures but cannot

handle simple free-form texts like “If A, then not B.” While

NL2LTL can identify devices involved in a policy description,

it fails to recognize each device’s status, crucial for IoT poli-

cies. In contrast, iConPAL comprehends fine-grained, device-

specific information within free-form policy descriptions and

encodes necessary details in the translated policy.

Additionally, recent work has also demonstrated the use of

LLMs for various translation-related tasks: extracting invari-

ants (in natural language) from hardware design specifications

[54], identifying contradictions in natural-language statements

[55], and generating code from specifications [56]. Similarly,

iConPAL uses LLMs for natural language processing but

focuses on translating IoT system policies, which require

handling intricate device-specific details and fine-grained con-

ditions unique to IoT systems. This necessitates a specialized

in-prompt learning campaign with IoT-specific examples, a

tailored policy-language tutorial and refinement.

VIII. CONCLUSION

We introduced iConPAL, an automated assistant for crafting

safety and security policies in smart homes. By translating

natural language descriptions into a formal policy language

without human intervention, iConPAL addresses a key chal-

lenge in traditional IoT defenses. Leveraging modern LLMs,

iConPAL achieved a 93.61% successful translation rate, with

93.57% of these being semantically valid, highlighting its

potential to advance research in the field.
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APPENDIX A. ABSTRACT GRAMMAR

According to the policy language of [9], a policy is Ω ::=∧
j Ij , where an invariant Ij can be written in using the



Input:
Fire sprinkler should only be on when there’s fire
detected in the home.
Output:
If FireDetected Then FireSprinklerOn
FireDetected = (FireDetector.status == "Detected")
FireSprinklerOn = (FireSprinkler.status == "On")

Fig. B1: Semantically invalid policy generated by iConPAL

TABLE C1: Effect of the model temperature. Notations are

explained in Table I

Temperature Total(CT )
Succ. Translation Sem. Validation

Ctr Rtr Csm Rsm

0.0 282 219 77.66% 173 61.35%
0.5 282 221 78.37% 174 61.70%
1.0 282 205 72.70% 162 57.45%
1.5 282 155 54.96% 127 45.04%

following grammar:

I ::= If Φ Then Ψ

Φ ::= p | Φ1 and Φ2 | Φ1 or Φ2 | not Φ | true

Ψ ::= Φ | Ψ1 since Ψ2 | yesterday Ψ

p ::= t1⊕ t2 | p1 and p2 | p1 or p2 | not p | true

t ::= x ǫ V | 〈const.〉 | func.(t1, . . . , tn)

The policy invariant I follows the pattern: “If Φ Then Ψ”

where Φ and Ψ are logical expressions. Φ can be a predicate p,

the constant true, or logical combinations of them. Ψ includes

standard past temporal operators like since and yesterday,

along with the logical expression Φ. This flexibility lets us

express more complex invariants by considering past events.

The predicate p can be a relational operator ⊕ (such as ≤,

6=) applied to a pair of terms or logical combinations of

multiple predicates. A term t can be a variable x from the

set of variables V , a constant 〈const.〉 (“ON”, “OFF”, 5), or a

function func. applied to one or more terms (e.g., timer(x)).

APPENDIX B. AN EXAMPLE OF A SEMANTICALLY

INVALID POLICY

Figure B1 shows an example. The correct policy should

be “If FireSprinklerOn Then FireDetected”, capable

of flagging a violation of the policy when FireSprinkler

in ON even if there is no fire. But the generated policy

is semantically incorrect because iConPAL’s LLM failed to

recognize that the given text essentially expresses an ‘only

if’ relationship. We observed that for some different texts,

the LLM accurately translated when ‘only if’ was used in

the description.

APPENDIX C. RESULTS OF RQ3

The impact of the model selection on iConPAL’s perfor-

mance is shown in Table C2, and the impact of the model

temperature on GPT-3.5 is presented in Table C1.

TABLE C2: Effect of the model (LLM). Notations are ex-

plained in Table I

Model Total(CT )
Succ. Translation Sem. Validation

Ctr Rtr Csm Rsm

GPT-4 266 249 93.61% 233 87.59%
GPT-3.5 266 241 90.60% 198 74.44%

Llama2-70B 266 231 86.84% 181 68.05%
Mixtral 266 202 75.94% 176 66.17%
Mistral 266 187 70.30% 131 49.25%
Yi-34B 266 93 34.96% 72 27.07%

Llama2-13B 266 36 13.53% 24 9.02%

TABLE D3: Policy translation cost and duration for different

models (Duration in minutes and Cost in USD)
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Duration 351 501 20 100 20 20 200
Cost 2 13 0.8 8 0.8 0.8 8

1To address rate limit error, 2-6 seconds of delay was added using
exponential backoff retry mechanism, so the duration may vary based on

usage tier.

APPENDIX D. A BREAKDOWN OF PERFORMANCE

OVERHEAD

For a one-to-one comparison, we reported the average

overhead across different models in Table D3. We collected

this data during our experiment of measuring the effect of the

models on iConPAL’s efficacy (§ V-C2). While we utilized

OpenAI’s web API endpoints for GPT-4 and GPT-3.5, we

rented GPU servers from a third-party GPU cloud provider to

deploy the open-source LLMs (e.g., Llama2, Mistral, Mixtral,

Yi-34B).

GPT-4 required 50 minutes to translate 266 policies using

the optimal prompt configuration, averaging 11 seconds per

translation and resulting in a cost of 13 USD ($0.05 per

translation). In comparison, GPT-3.5 completed the same task

in 35 minutes (8 seconds per translation) at a cost of 2 USD

($0.008 per translation). Llama2-13B finished this task in 20

minutes (4.5 seconds per translation), costing 0.80 USD (

$0.003 per translation). Llama2-70B (Quantized) took 100

minutes (22.5 seconds per translation), costing 8 USD ($0.03

per translation). Mistral and Mixtral incurred the same cost

and time, 20 minutes and 0.8 USD per model ($0.003 per

translation). Since each experiment with a model was repeated

thrice, it required a total cost of 100.20 USD and a cumulative

time of 22 hours and 15 minutes.

The exploration of the optimal prompt configuration during

our ablation study with GPT-3.5 incurred a cost of 27 USD

and took 11 hours. Across all experiments, 13,964 translated

policies were syntactically valid. We performed automated se-

mantic validation for all syntactically valid translated policies

with GPT-3.5. We used 10 parallel connections to OpenAI’s

API endpoint to speed up the validation process. It took about

6 hours and 12 minutes (1.6 seconds per validation), costing

11.51 USD ($0.00082 per validation). We also performed



automated semantic validation for the transations produced by

the optimal prompt configuration using GPT 4. GPT 4 took

about 35 minutes (2.8 seconds per validation) to validate 748

translations, costing 30.34 USD ($0.04056 per validation).

Grand total. All the experiments we conducted for iConPAL

required 40 hours and incurred a cost of 169.05 USD.

APPENDIX E. COMPARISON OF MANUAL EFFORTS IN

TRANSLATION VS. SEMANTIC-VALIDATION

Manual translation of policy-texts requires meticulous atten-

tion to three sub-tasks: designing the policy structure, writing

the policy, and checking semantic correctness. This process

is time-consuming and burdensome. In contrast, our semantic

validation focuses solely on checking the semantic correctness

of translated policies, which are already syntactically correct,

making it a significantly faster process.

While we lack precise data on the time needed for manual

translation of 290 policies, we measured that 26 person-hours

were spent on both collecting and manually translating these

policies. Note that the collection task, which involves copying

policy texts from 16 IoT papers, is significantly simpler

compared to the manual translation task. Assuming equal time

allocation for both collection and translation tasks (a rough

conservative estimate), manual translation costs approximately

2.69 minutes per policy (= 13 person-hours / 290 policies). In

contrast, semantic validation of 13,843 policies consumed 83

person-hours, costing approximately 0.36 minutes per policy.

APPENDIX F. LLM GATEWAY SERVER AND CLIENT

Our LLM gateway server supports three backend engines:

llama.cpp, pytorch-based transformers, and OpenAI endpoints.

We used the models for inference only. By default, if the

model is supported by llama.cpp, the server uses this engine;

otherwise, it falls back to pytorch-based transformers. For

ChatGPT (GPT-3.5 and GPT-4 models), the server uses a

lightweight wrapper to communicate with the OpenAI’s pro-

prietary endpoints. Furthermore, the server was designed to ef-

fectively address the disparity among these three backends and

different models, providing a unified stateless HTTP interface

to the client. As LLMs differ in their prompt templates and

documentations, we resolved ill-documented prompt templates

by exploring the code base of some LLMs to figure out the

correct format.

We used Python 3.10 to implement the server (1907

LoC) and the client (780 LoC). We also utilized some

popular python packages, such as, fire, sentencepiece,

gguf, transformers, openai, fastapi, torch,

llama-cpp-python, and protobuf.

While interacting with OpenAI, we noticed that the trans-

lation time differs from one policy to another. If a smaller re-

quest timeout is used, the OpenAI client retries too frequently,

thereby incurring more cost. We addressed this by calibrating

the timeout and retry settings to reduce the incurred cost.

Furthermore, OpenAI has a rate limit on tokens per minute

(e.g., 80,000 tokens per minute for Tier-2). To handle rate

limit errors, we calibrated the retry settings.

TABLE G4: Semantic validation confusion matrix for

AutoSemVal (our automated approach to semantically validate

the translated policy). TP: True Positive, FP: False Positive, TN:

True Negative, FN: False Negative.

Predicted by AutoSemVal
Valid=Yes Valid=No Total

Manually checked Valid=Yes TP=9,664 FN=1,372 11,036
(Ground truth) Valid=No FP=1,690 TN=1,238 2,928

Total 11,354 2,610 13,964

TABLE G5: Effectiveness of AutoSemVal with respect to

GPT 3.5 and GPT 4 in terms of Precision, Recall, Accuracy,

Specificity, and F1 Score. Sample size: 748.

Model Precision Recall Accuracy Specificity F1 Score

GPT 3.5 96% 88% 85% 36% 92%
GPT 4 95% 91% 87% 19% 93%

APPENDIX G. AUTOMATED SEMANTIC VALIDATION

Misclassification by AutoSemVal vs. Policy Categories. We

assessed the translated policies misclassified by AutoSemVal

(see Table G4) and examined any correlation with their

categories. Appendix H details the categories of our dataset.

Policies from G2 had the highest misclassification rate, with

an average of 4 out of 6 policies misclassified, followed by

G5 (6 out of 13) and G8 (8 out of 21). Policies from these

categories often involve the phrase “only if” (or its variants,

such as except) with the deny keyword (for G2), temporal

operators like lastly (for G5), and the allow keyword (for

G8). We found that LLM struggles to interpret the meaning

of only if when combined with other logic. Misclassification

rates for other categories were relatively low, below 10%.

GPT-3.5 vs. GPT-4. To measure the effect of the LLM

on AutoSemVal, we ran the experiment of assessing

AutoSemVal’s efficacy twice: once using GPT-4 and next

using GPT-3.5. Since GPT-4 is more expensive than GPT-3.5,

we utilized a smaller sample size for a one-to-one comparison.

We used a small sample set (748) of translated policies instead

of 13,964 policies. This sample set was the collection of

successfully translated policies over 3 runs of the experiment

conducted in Section V-A (see Table II). We found that the

efficacy of AutoSemVal stays almost identical for GPT-3.5

and GPT-4 (see Table G5), indicating a little to no effect of

the LLM on AutoSemVal.

APPENDIX H. DATASET CATEGORIZATION

We manually classified the policy texts in our dataset into

eight categories. This categorization was based on the structure

of their English descriptions. Table H6 shows the categories

along with some examples. It also includes the number of

policies that belong to each category.

APPENDIX I. MORE ON VALIDITY AND CONSISTENCY

In this section, we present additional results on translation

validity and consistency observed during our experiment for

RQ1 in Section V-A.



TABLE H6: Dataset Categorization

Category Description Count

G1

Assert a state that must be true with/without any triggering event/condition.
Examples:
- In any situation, surveillance cameras must remain on.
- In any situation, front doors must remain locked.

11

G2

Indicate blocking an action when a condition has been met.
Examples:
- Deny all HTTP requests.
- Deny turning on the coffee machine only if the user is not at home.

9

G3

Indicate a straightforward correlation between the states of two devices.
Examples:
- If fire is detected in the home then fire sprinkler should be on.
- If the door is open then the light should be on.

57

G4

Indicate a correlation between the states of two devices with a time constraint.
Examples:
- If the door is open for more than 5 minutes then the light should be on.
- If the temperature is above 30 degrees for more than 10 minutes then the air conditioner should be on.

23

G5

Indicate a correlation between current state and past state of one or more devices
Examples:
- Allow light to be turned off only if lastly it was on.
- Allow hallway light to be turned on only if the hallway motion sensor has tripped since the hallway light
was off.

17

G6

Indicate a comparison between device state and other factors.
Examples:
- The heater should be turned on if the temperature is below 40.
- The window should be open when the room temperature is above the threshold and there are people in the
room.

57

G7

Indicate a correlation among more than two device states.
Examples:
- If user is away, on vacation, or sleeping then door should be locked.
- When sink water leakage is detected and motion sensor is inactive, a text message should be sent.

91

G8

Indicate allowing an action when a condition has been met.
Examples:
- Allow the light to be turned on only if the user is at home.
- Allow the heater to be turned on only if the temperature is below 40.

25

Total 290

Translation failure vs. Policy Categories. In our experiment,

we observed that iConPAL failed to translate on average 17

out of 266 policies. Further inspection revealed that policies

from category G6 posed the greatest challenge for LLM.

Appendix H details the categories of our dataset. For example,

a G6 policy states: “When the temperature is above

60◦ and no one is present, the heater should not

be turned on.” We found that LLM struggled with policies

involving device-state-specific constraints and comparisons

with abstract or predefined values. The translation failure rate

for G6 was about 22% on average, while failure rates for

other categories remained below 5%.

Semantic Validity vs. Policy Categories. We assessed the

translated policies that were syntactically correct but seman-

tically invalid based on our manual analysis (see Table G4)

and examined any correlation with their categories. Translated

policies from G2 had the highest rate of semantic invalidity

(33%), with an average of 2 out of 6 policies being semanti-

cally invalid. Policies from G2 often involve the phrase “only

if” (or its variants, such as except) with the deny keyword.

We found that LLM struggles to interpret the meaning of only

if when combined with other logic. The rates of semantically

invalid translated policies for other categories were relatively

low, below 10%.

LLM’s Consistency. We assessed GPT-4’s consistency in

generating valid or invalid policies. In each run of this ex-

periment, we randomly selected 24 policies from the dataset

as our knowledge base and used the remaining ones as our test

dataset. While the size of the test dataset remained constant,

its composition varied across runs. We found 229 policies

common to all 3 runs. Among these, 215 policies (93.88%) had

consistent results, either consistently successful or consistently

failed in translation across all three runs. Additionally, 192 out

of 229 policies (83.84%) were semantically consistent across

all three runs.

APPENDIX J. A JOURNEY OF A POLICY TEXT

TRANSLATION

We outline the journey of translating a policy text by demon-

strating an actual LLM prompt constructed by iConPAL for the

policy text, the received LLM response, and further refinement

iConPAL applied as needed. We present case studies with two

policy texts as follows.

• Study1 (translation required no refinement): If smoke

is detected, then gas stove should be turned

off.

• Study2 (translation required refinement): In any

situation, room temperature should never be

over 100.



Each LLM prompt consists of several key components:

Role, Tutorial, Example Translations, and Instruction. The

role outlines the expectations for the LLM. Both the tutorial

and example translations comprise the context of the learning

prompt, as the tutorial serves as a guide for translating

natural language text into policy language and the example

translations demonstrate this process in action. The instruction

points out the translation task for the LLM.

For the LLM prompts generated to query the policy texts of

our case studies, we will show the common parts below and

the policy text specific parts in their respective subsections

(Appendix J-A and Appendix J-B).

Role. iConPAL includes the role component in each LLM

prompt as follows:

Role:
You are a plain text to formal policy translator .
I will teach you how to translate a plain text to
formal policy with a tutorial and some examples.

Tutorial. The inclusion of the tutorial in each prompt depends

on the specific prompt configuration. The tutorial remains fixed

for our selected policy language and grammar (G) and does

not vary with the policy texts being tested. An excerpt of the

tutorial is provided below due to space constraints:

Tutorial :
In IoT defenses , natural language can be structured into
a format that is easily parseable . This tutorial
explores how to convert English statements into a policy
language using logical expressions and variables .

Logical Expressions and Variable
Consider the statement : ‘‘ If Fire Sprinkler is on, then
Water Valve is on.” This can be expressed as following .

‘‘‘
If FireSprinkler . status ==‘ON’ Then WaterValve.status==‘ON’
’’’

However, for improved readability , we can assign the
logical expression into a variable and use the variable
in policy statement . The above policy statement can be
re−written as follows .

‘‘‘
If FireSprinklerOn Then WaterValveOn

FireSprinklerOn = ( FireSprinkler . status == ‘ON’)
WaterValveOn = (WaterValve. status == ‘ON’)
’’’

Device attributes
In the above example, we used ‘ status ’ attribute of
‘ FireSprinkler ’ and ‘WaterValve’ devices . You can
use other device attributes as well .

Functions
Besides device attibutes , function calls can be employed
in logical expressions . For example, we can use
‘ timer ( logical expression ) ’ function . We assume that the
‘ timer ’ function returns the elapsed time since the logical
expression became true.

Text :
If water leak sensor sensed wet within 1 minute, then
turn off water sprinkler .

Policy :
‘‘‘
If ( timer (WaterLeakSensorWet) > 0 and

timer (WaterLeakSensorWet) < 60) Then WaterSprinklerOn
WaterLeakSensorWet = (WaterLeakSensor.status == ‘Wet’)
WaterSprinklerOn = ( WaterSprinkler . status == ‘On’)
’’’

This example demonstrates the use of the timer function to
determine if a condition occurred within a specified time
frame.
−−−− Snipped −−−−

A. Case Study 1: Translation required no refinement

For this study, our policy text under test was “If smoke is

detected, then gas stove should be turned off.”.

Example Transitions. Depending on the prompt configura-

tion, iConPAL includes some examples in the prompt. For this

case study, we used a configuration that made iConPAL select

3 similar example translations from our dataset as follows:

Text :
If the door is open, then the light should be on.

Policy :
If DoorOpen Then LightOn
DoorOpen = (Door.status == ‘‘Open”)
LightOn = (Light . status == ‘‘On”)

Text :
If fire is detected in the home, then fire sprinkler
should be on.

Policy :
If FireDetected Then FireSprinklerOn
FireDetected = ( FireSensor . status == ‘‘Detected”)
FireSprinklerOn = ( FireSprinkler . status == ‘‘On”)

Text :
If heater is on, then air conditioner should be off .

Policy :
If HeaterOn Then AirConditionerOff
HeaterOn = (Heater. status == ‘‘On”)
AirConditionerOff= ( AirConditioner . status == ‘‘Off”)

Instruction. This component of the prompt expresses what

policy text the LLM is expected to translate given the context.

The instruction is shown below:

Instruction :
Translate the following natural text to formal policy .
Only provide the translated policy itself without any
explanations or extra words.
‘‘ If smoke is detected , then gas stove should be
turned off .”

LLM Response. The received response from the translation

LLM is shown below:



If SmokeDetected Then GasStoveOff
SmokeDetected = (SmokeSensor.status == ‘‘Detected”)
GasStoveOff = (GasStove. status == ‘‘Off”)

Since the translated policy was syntactically correct, iCon-

PAL did not apply any refinement. iConPAL provided the

translated policy as an output.

B. Case Study 2: Translation required refinement

For this study, our policy text under test was “In any

situation, room temperature should never be over

100.”.

Example Transitions. Depending on the prompt configura-

tion, iConPAL includes some examples in the prompt. For this

case study, we used a configuration that made iConPAL select

3 similar example translations from our dataset as follows:

Text :
In any situation , surveillance camera must remain on.

Policy :
If true Then SurveillanceCamera. status == ‘‘On”

Text :
In any situation , front door must remain locked .

Policy :
If true Then FrontDoor. status == ‘‘Locked”

Text :
In any situation , TV speaker volume should never be
more than 90.

Policy :
If true Then not(TVSpeakerVolumeOver90)
TVSpeakerVolumeOver90 = TVSpeaker.volume > 90

Instruction. This component of the prompt expresses what

policy text the LLM is expected to translate given the context.

The instruction is shown below:

Translate the following natural text to formal policy .
Only provide the translated policy itself without any
explanations or extra words.
‘‘ In any situation , room temperature should never
be over 100.”

LLM Response. The received response from the translation

LLM is shown below:

If true Then not(RoomTemperatureOver100)
RoomTemperatureOver100 = RoomTemperature > 100

Since the translated policy was not syntactically correct,

iConPAL refined the prompt and appended the following

instruction for the LLM:

Refinement Instruction :
Your translation is invalid due to following reason .
Reason: ‘RoomTemperature’ variable used but not defined .
Please try again .

LLM’s Refined Response. The received response from the

translation LLM is shown below:

If true Then not(RoomTemperatureOver100)
RoomTemperatureOver100 = (RoomTemperature.status > 100)

This translated policy was syntactically correct, as this

version used a device’s attribute which does not require a

definition unlike a variable, and therefore iConPAL displayed

this translation as the output.


