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ARTICLE INFO ABSTRACT

Keywords: Timely and accurate assessment of hurricane-induced building damage is crucial for effective
Bayesian network post-hurricane response and recovery efforts. Recently, remote sensing technologies provide
Causal inference large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data im-

Remote sensing

. . . mediately after a disastrous event, which can be readily used to conduct rapid building
Hurricane-induced building damage

damage assessment. Compared to optical satellite imageries, the Synthetic Aperture Radar can
penetrate cloud cover and provide more complete spatial coverage of damaged zone in various
weather conditions. However, these InSAR imageries often contain highly noisy and mixed
signals induced by co-occurring or co-located building damage, flood, flood/wind-induced
vegetation changes, as well as anthropogenic activities, making it challenging to extract accurate
building damage information. In this paper, we introduced a causality-informed Bayesian network
inference approach for rapid post-hurricane building damage detection from InSAR imagery.
This approach encoded complex causal dependencies among wind, flood, building damage,
and InSAR imagery using a holistic causal Bayesian network. Based on the causal Bayesian
network, we further jointly inferred the large-scale unobserved building damage by fusing
the information from InSAR imagery with prior physical models of flood and wind, without
the need for ground truth labels. Furthermore, we validated our estimation results in a real-
world devastating hurricane—the 2022 Hurricane Ian. We gathered and annotated building
damage ground truth data in Lee County, Florida, and compared the introduced method’s
estimation results with the ground truth and also benchmarked it against state-of-the-art models
to assess the effectiveness of our proposed method. The results show that our method advances
building damage assessment after hurricanes by accurately reflecting the complex dynamics
between wind and flood impacts. Notably, it achieves this without the need for a ground
truth label, which is a substantial step forward from traditional methods. Our model registers
a 22.6% increase in the Area Under the Curve (AUC) and a 46.29% enhancement in the
True Positive Rate (TPR). Moreover, it expedites the detection of building damage, cutting
down processing times by up to 83.8%. These improvements mark a considerable leap in
efficiency, demonstrating our method’s ability to streamline the assessment process markedly
over conventional methods.
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1. Introduction

Climate change is perpetually intensifying the frequency and severity of extreme weather events, particularly the destructive
force of hurricanes, resulting in large-scale infrastructure damage and substantial financial costs. For example, Hurricane Ian in
2022 caused the evacuation of more than 2.5 million people with a loss estimate of 113 billion USD in the United States [1].
In post-hurricane scenarios, immediate information about building damage on a regional scale is critical for effective and timely
hurricane response, enabling prioritization of emergency response efforts, saving lives, and providing timely aid, while also informing
decisions on allocating funds for reconstruction, revitalizing communities, and enhancing resilience.

Cutting-edge methods for assessing regional building damage after disasters, particularly hurricanes, predominantly rely on
sensor-aided inspections (e.g., street-view imagery) and remote sensing using optical imagery. [2-4]. The manual or sensor-aided
inspections involve physically surveying affected areas, allowing for detailed observations but often proving time-consuming and
resource/labor-intensive for data collection and annotation, limiting its scalability [5-7]. Remote sensing techniques, utilizing
aerial or satellite optical imagery [8,9], provide a broad overview of damage on a larger scale, allowing for timely assessments.
However, optical imagery quality is highly limited by bad weather conditions (e.g., clouds during hurricanes) and vegetation cover.
Furthermore, the majority of present-day optical imagery-based models are plagued by significant negative transfer issues [10]. This
term refers to the diminished learning performance observed when a model, initially trained on one context, is applied to a drastically
different one. Consequently, these models necessitate comprehensive label annotations from domain experts for fine-tuning when
applied to new hurricane events. The process can be inefficient and laborious, particularly when expert input is required to adapt
pre-trained models for each new occurrence. The difficulty in acquiring extensive labels makes such approaches difficult to be
immediately adopted for near-real-time hurricane responses.

Recently, researchers explore to use the Interferometric Synthetic Aperture Radar (InSAR) imagery, an emerging and powerful
technique for measuring surface ground changes caused by natural hazards, for building damage estimation [11,12]. InSAR can
penetrate clouds and thus is more robust to bad weather conditions than optical satellite imagery [13,14]. However, InSAR signals
are often highly noisy, containing mixed information of surface ground changes jointly induced by multiple hazards, building
damage, land cover changes, and anthropogenic activities. For example, building damage may co-occur or co-locate with hurricane-
induced hazards (e.g., storm surge and inland flooding), making it challenging to directly attribute changes in InSAR signals to
building damage for further building damage assessment. Such co-locating or co-occurring patterns are dominated by underlying
highly complex physical causal mechanisms among multiple hazards and building damage. Previous InSAR-based methods mainly
built black-box building damage models learned from historical data, but overlooked the mixed signal patterns as well as underlying
causal dependencies among multiple hurricane-associated hazards and building damage, thus having limited accuracy.

To address the challenges, we introduce a novel framework, anchored in Bayesian Network principles, to provide rapid and high-
resolution estimates of regional building damage by fusing noisy InSAR imagery with physics-based models of hurricane-induced
flood and wind, informed by underlying causal dependencies among them. We encode the causal chain of how a hurricane triggers
wind and flood, and consequentially jointly causes building damage in a holistic causal graphical model. We further refine this
causal graph into a multi-layer hybrid causal Bayesian network for joint inference of unobserved building damage, flood, and
wind as well as causal coefficients among them. The major challenges associated with such inference are intractable posteriors
of unobserved variables due to their complex multi-layer network structure, unknown causal dependency coefficients, as well as
high computational costs for inference over large-scale hurricane zone. In this work, we design a novel inference algorithm based on
stochastic variational inference by deriving a tight variational lower bound, composed of unobserved variables posteriors and causal
coefficients, to approximate the likelihood of the observed InSAR imagery. With the derived lower bound, we transform the network
inference problem into an optimization problem to best approximate the true posteriors and causal dependencies for maximizing
the likelihood. With its nature of unsupervised generative learning, this causal Bayesian network can be seamlessly applied across
various hurricanes without the need for any ground truth labels.

To validate our framework, we conducted a case study on the 2022 Hurricane Ian, specifically in Lee County, Florida, which
was severely damaged during Hurricane Ian. We gathered most of the ground truth data from the street-view imageries collected
by Structural Extreme Events Reconnaissance (StEER) Hurricane Ian Response [4]. For regions that were not covered by StEER
street-view imagery database, we dispatched four people for a field investigation to conduct surveys of building damage situations
for two days. In total, the exterior views of 2472 buildings were collected and their damage levels were labeled. We finally validated
the accuracy and timeliness of our framework and compared it with a variety of state-of-the-art methods that use optical satellite
imageries and traditional fragility curve-based methods.

In summary, this paper has made multiple significant contributions to the field of rapid post-hazard assessment, advancing the
understanding and capabilities in this area through the following contributions:

1. We introduced a novel deep learning model based on the causal Bayesian network, showcasing superior performance in rapid
post-disaster assessment, surpassing traditional approaches.

2. Our model uniquely integrates diverse data sources, including environmental factors and remote sensing observations,
underpinned by a deep understanding of hurricane damage processes. This integration enhances the model’s accuracy and
applicability.

3. The model’s design, which bypasses the need for ground truth labels, allows for prompt deployment in disaster scenarios. Its
ability to handle data noises and uncertainties significantly improves the accuracy of damage assessments.
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2. Related work

Accurate and timely post-disaster damage assessment is critical to achieve effective emergency response following a hurricane.
Recent advancements in machine learning and imagery technologies have sparked innovation in improving these assessments.
Broadly, these approaches can be classified into three categories: methods relying on optical imagery, methods using synthetic
aperture radar (SAR) imagery, and conventional fragility models for loss estimation.

Optical Satellite Imagery-based Approaches: In recent years, the utilization of machine learning methods to assess structural
damage from optical images has become prevalent, due to the fact that such images are readily available and easy for individuals
to comprehend. Various models [3,9,15-23] are presented to analyze images from sources such as satellites, street-view imagery,
or aerial vehicles to identify property damage caused by disasters like earthquakes and hurricanes. Khajwal et al. [15] presented a
Multi-view Convolution Neural Network (CNN) architecture to evaluate building damage from multiple views using both ground-
based images and aerial images. In [3], a coupled disaster damage assessment workflow was proposed, which was based on two CNNs
(U-Net [24] and ResNet [25]) for building delineation and multi-degree damage classification. In a study by Calton et al. [9], the
transfer learning was applied on ResNet [25], MobileNet [26], and EfficientNet [27] for damage classification and damaged object
detection using the optical images from the internet search. Similarly, a key study from Cheng et al. [22], employed a stacked
CNNs architecture and trained on the presented in-house visual dataset by adopting the square of earth mover’s distance loss over
the traditional cross-entropy classification loss function. In another innovative study [23], Cao et al. leveraged CNNs to identify
hurricane-damaged buildings. They developed a model that combined the image encoder for processing imagery, fully connected
layers for encoding geolocation features, fusion layers for integrating this information, and a class prediction layer for locating
damaged structures.

However, the optical image data also poses several challenges, such as sensitivity to atmospheric and weather conditions,
difficulty in obtaining high-resolution images, and potential delays in capturing images from satellites. Collecting ground truth
data can also be time-consuming and labor-intensive [28]. Additionally, when using optical images for damage assessment, it is
necessary to compare pre and post-disaster images [29,30], a process called change detection. This process can be complex due
to differences in lighting, angle, and other factors between the pre and post-disaster images. The Siamese neural networks with
encoder-decoder architecture were introduced in [29], where two encoders (like ResNet18 [25]) were used to extract the features
of pre and post-images separately and one decoder (like U-net [24]) was used to decode those features to do classification.

InSAR Satellite Imagery-based Approaches: InSAR imagery-based methods provide reliable data for damage assessment that
is unaffected by visibility constraints, offering a unique perspective in a wide range of applications [31-34]. To be more detailed,
Tiampo et al. [35] used Sentinel-1A/B C-band SAR satellite imagery in conjunction with an amplitude thresholding algorithm and
DeepLabv3+ (a convolutional neural network) to detect flood extents during Hurricane Harvey. The approach proved particularly
effective in identifying floods when applied to SAR GRD data. Similarly, Lin et al. [36] used SAR imagery to detect floods, using
a Bayesian probability function to generate a flood probability map. This method revealed an improved performance, especially
in urban and vegetated areas. Despite their successes, these methods often struggle to detect cascading secondary hazards and the
series of consequential impacts typical of disasters [37]. As such, there is a clear need for further research to develop innovative
methods for accurately and efficiently assessing both primary and secondary disaster impacts—an area our study aims to address.

Fragility curves: Conventional methods such as fragility models also contribute to hurricane damage assessment [38-40]. A
study by Masoomi et al. [5] proposed a method to predict multi-hazard damage in buildings resulting from hurricanes. They
considered multiple effects, including storm surge, waves, and wind, and evaluated the performance of both elevated and non-
elevated buildings during Hurricane Ike. While providing detailed estimations, these methods heavily rely on complex, large-scale
simulations (which may take weeks or even months to obtain reliable results) and predefined building types (which may not be
readily available to the modelers). Therefore, they are more suitable for post-disaster analyses rather than immediate response.

Bayesian Network: Recent advancements in Bayesian Networks (BNs) and probabilistic models have predominantly focused on
social sustainability, industrial safety and urban infrastructure [41-43], yet there remains a significant gap in their application
to natural disaster scenarios, particularly hurricanes [44]. Amin et al. [45] demonstrated the utility of BNs in dynamic risk
assessment within chemical engineering, emphasizing fault detection and risk dynamics. Daley et al. [46] extended BNs’ application
to process safety analysis in industrial settings, highlighting the importance of integrating diverse data types for more accurate safety
predictions. In the realm of urban flooding, Dong et al. [47] explored cascading failure risks and their impacts on infrastructure
using BNs, while Joo et al. [48] combined hydrological data with probabilistic modeling in their flood risk assessment using BNs. Xin
et al. [49] introduce an approach for integrating hazard scenarios into the Bayesian network model, facilitating the identification
of hazards in real time. Wu et al. [50] merge the Bayesian Network model with a geographic information system to evaluate
flood disaster risk. Chen et al. [51] present a combined methodology that merges cloud modeling with Bayesian networks to
predict earthquake-induced building damages under uncertain conditions. However, the specific challenges of hurricane-induced
building damage have not been adequately addressed in these studies. Our research bridges this gap by developing a BN-based
framework specifically tailored for post-hurricane building damage estimation. This framework leverages the proven strengths of
BNs in capturing complex dependencies, aiming to enhance disaster management strategies and provide tailored responses to the
heightened severity of hurricanes in the era of climate change.

3. Method

In this section, we unveil our introduced Bayesian Network-based framework for post-hurricane multi-hazard estimation. We will
illustrate how this probabilistic graphical model enhances hazard prediction accuracy by capturing inter-dependencies between risk
factors. We will explore the workflow, delve into the methodology, and discuss the strategies we implemented to boost efficiency.
This approach aims to revolutionize hazard estimation post-hurricane, aiding effective disaster management.
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Fig. 1. Causal Bayesian network that depicts causal dependencies among hurricane-induced wind and flood, building damage, Damage proxy maps (DPMs), and
environmental noises. L refers to the number of locations/pixels within the target area. The posterior probability of, and at each location are the objectives that
our system estimates. Green boxes refer to the variables that have data constraints. Blue circles refer to nodes that are not observed or unknown. Blue diamonds
are the causal coefficients, which are unknown, that quantify the causal effects of parent nodes on hurricane-induced flood, hurricane-induced wind, building
damage, and DPMs. Solid lines indicate quantified relationships in the Bayesian network and dashed lines indicate unquantified relationships between the input
and nodes. For each pixel or location, we construct a Bayesian network. We optimize the variational lower bound, as derived in Eq. (12), to approximate the true
posteriors of the unobserved variables. Meanwhile, we optimize the parameters/coefficients that quantify the causal relationships among known and unknown
variables. The detailed descriptions and equations related to these procedures are provided in Section 3.

3.1. Causal Bayesian network formulation for Hurricane damage chain

A hurricane can potentially trigger a multitude of cascading hazards, and it becomes crucial to understand which of these hazards
significantly impact the integrity of buildings. To accurately infer building damage state from noisy InSAR imagery products like
the foundation of this process, which centers around the DPMs, begins with Synthetic Aperture Radar (SAR), a technology that
employs radar signals to image the Earth’s surface [52] Subsequently, Interferometric Synthetic Aperture Radar (InSAR) comes into
play, building upon SAR’s capabilities by comparing images to detect subtle surface variations, particularly in elevation and ground
deformation [52]. These technologies are crucial in developing DPMs, which quantify the impact of disasters by analyzing shifts in
radar signal properties [53], indicative of alterations in infrastructure and the environment. The role and methodology of DPMs in
mapping the effects of Hurricane Ian are elaborated in Section 4.3.

As shown in Fig. 1. our network delineates the causal interdependencies among key variables such as hurricanes, floods, wind,
building damage, and DPMs, alongside environmental noises and biases, with each type of node and edge meticulously representing
distinct aspects of the system. Green rectangle nodes embody known variables, such as physics-based wind/flood estimates, building
footprints, and DPMs, serving as the foundational elements, which are detailed in Section 3.1.1. Notably, Geospatial Features and
Hurricane Features here encompass critical parameters for physics-based wind and flood estimation methods, including wind speed,
wave heights, and sea level. Moreover, the network is designed to leverage these known nodes and the causal relationships to infer
the damage of unknown variables, denoted by the Blue circle, particularly flooding, wind, and building damage.

Furthermore, it endeavors to quantify the causal coefficients that define the interaction strength and direction between these
elements. Solid lines between nodes indicate direct, known causal relationships based on prior knowledge, while dashed lines
represent inferred causal relationships, deduced through analysis and modeling. Each edge within this graphical representation
is not just a conduit for data flow but a crucial indicator of causality, illustrating how variables like hurricane intensity can directly
influence subsequent phenomena such as flood levels or structural integrity, thus providing a comprehensive framework for inferring
the interdependencies among these nodes. Besides, our stochastic variational inference method enables us to approximate the causal
coefficients and posteriors of unobserved variables—such as flooding, wind, and building damage—across each location or pixel,
denoted by ‘L’. Consequently, the graph is designed to provide probabilities for intermediate hazards and impacts at the granular
level of high-resolution grid cells, through the strategic integration of physical models and DPMs.

Building on this objective, two key aspects of our approach are to accurately model the node presented in Fig. 1 and transform
the conceptual graph into a probabilistic graphical model. We began by defining the attributes of nodes within our causal graph,
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grounding these definitions in empirical knowledge. For the nodes representing wind and flood, we estimate wind speeds using
time-series data from monitoring stations [54] and maximum flood depths through a combination of flood sensing data and coastal-
wave modeling [55], a method supported by prior research [56,57]. However, the simplified physical models and sparse sensing
data, might not capture the complex evolving conditions of a hurricane and thus may result in highly biased spatio-temporal wind
speed and flood depth estimates, which is a common challenge in existing practice [58,59]. Thus, in this study, we integrate the
post-hurricane large-scale observations from InSAR imagery with the inaccurate wind/flood estimates to enhance damage assessment
accuracy. The InSAR data provides high-resolution imagery that records pre- and post-hurricane changes in building damage and
landscape, alongside environmental noise. We employ a causal graph model that utilizes the causal dependencies among wind,
flood, building damage, environmental noises, and InSAR observations, for accurate damage evaluation.

Subsequently, we progress to converting the conceptual causal graph into a probabilistic graphical model. These parameters are
translated into conditional probability distributions, fine-tuned with data from wind and flood measurements we defined previously.
Such distributions capture the variable nature of these elements, helping us build Bayesian networks based on them. Our model also
integrates InSAR-derived DPM data with the binary variable for the location height change. Then, Within this framework, we define
the conditional dependencies that dictate the relationships and interactions between physical phenomena like wind and flood and
their consequent effects on building damage, streamlining the complex interdependencies into an analyzable model. Afterward,
we utilize a stochastic coordinate descent method to fine-tune the coefficients depicting causal links among predictors, aiming to
maximize the marginal likelihood of observed DPMs based on prior physical models. This ensures an optimal representation of causal
coefficients and unobserved variables’ posteriors. Built on this causal graphical framework, our system calculates the probabilities
of various hazards and their impacts at high-resolution grid cells, using empirical models and DPM data.

This integration of remote sensing data with the physical parameters of hazards enables the Bayesian network to precisely
delineate the relationships between nodes and calculate the probabilities of building damage. In post-disaster scenarios, access to
detailed building characteristics (such as types, structures, first-story heights, repair records, materials, and land use plans) is severely
limited due to a lack of data inventory, vast number of buildings, and urgent needs of rapid assessments [60-63]. Therefore, our
study assumes that we have no access to detailed building characteristics data. Instead, InSAR imagery products directly capture the
building deformation information from satellites, although highly noisy, making it possible to assess building damage even without
detailed structural characteristics. To extract accurate building damage state from noisy InSAR data, we utilize causal relationships to
combine building deformation information (InSAR data) with the impacts of hurricane-induced wind and flooding (Physical model).
This enables accurate building damage assessments, bypassing the need for detailed structural characteristics.

3.1.1. Node variables modeling

We identify our feature vertices, also known as unobserved variables, which include Flood and Wind, denoted as x and xy,
respectively. As per the findings of previous research [5,64], these variables are considered continuous and assumed to follow a
lognormal distribution.

We also define Building Damage as xpp, assuming it is a binary variable where 1 represents severe damage or complete
destruction, and 0 signifies no damage or minor damage. Each unobserved variable in X is denoted as x;, with i being an element
of the set {W, F, BD}. For every x;, the set P(i) contains its parent nodes. As illustrated in Fig. 1, the set of parent nodes is pre-
determined based on our understanding of the physical causal chain. Furthermore, we incorporate wind and flood estimates, denoted
as ay, for wind and a for flooding, derived from physics-based models that utilize geospatial and hurricane features.

The parent nodes of any sensed observations X are represented by P(x). A leak node, denoted as x,; = 1, is included that remains
consistently active, thus ensuring the possibility of child node activity even when other parent nodes are inactive.

The Disaster Proxy Map(DPM) directly represents the impact of multi-hazard events. The Interferometric Synthetic Aperture
Radar (InSAR) on the satellite can capture detailed height changes for a specific location, denoted as y > 0 in the DPMs. Furthermore,
we assume there exist environmental noises for each unobserved hazard and building damage, namely ¢, and ¢;,i € {W, F, BD},
following a standard normal distribution.

3.1.2. Causal dependency modeling

After establishing variable representation, it becomes crucial to parameterize their dependencies (i.e., edges between nodes). We
denote w;; (j € P(i)) as the weight of each parent node’s impacts on the child node. Take the node of Flood as an example, the set
of weights for Flood w, denoted as blue diamonds in Fig. 1, contains all weights that parameterize the causality from its parents,
including from the prior model to flood (w, F), from noises to flood (wé,F ), from bias to flood (w, F). Based on these considerations,
we have articulated the causal dependencies as follows::

Given the DPM y, we assume that the causal dependencies from parents P(y) to y is lognormal (LN):

logy = Z Wiey Xy + W, €, + W, )
kEP()
As illustrated in Fig. 1, the parent nodes of InSAR observation include flood, building damage, environmental noises, as well as
the leaky node, i.e. P(y) = {xp,Xpp, €, Xo}-
For unobserved variables such as wind and flood, i.e., i € {W, F}, their parent nodes include physics-based wind/flood model
estimates (g;), environmental noises ¢; and leaky node x. Similarly, given our assumption that the continuous variables x and x;,
follow a lognormal distribution, we formulate the causal dependencies from the parent nodes P(i) to its child nodes x; as

logx; = Z WXy + W, € + Wy 2)
keP(i)
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For building damage i = BD, P(BD) = {xp,xy, }, as depicted in Fig. 1. As we defined in Section 3.1.1, x ), i.e. building damage,
is a binary variable. Consequently, we formulate the causal dependencies from the parent nodes P(BD) to the child node xg;, as

p(x; = 11PG), &)

log —1— 2
ST, = 11P(), &)

Z Wy i X + We, € + Wo;. 3)
kEP(i)

It can be seen that all unquantified causal dependencies represented by dashed arrows in Fig. 1 are all formulated into
mathematical equations, together with the unobserved variables represented by blue circles. It is thus challenging to infer this
multi-layer Bayesian network with a mixture of unknown continuous variables, unknown discrete variables, as well as unknown
dependency parameters.

3.2. Stochastic variational inference

Once the Bayesian network is established, the next step is to jointly infer the posterior of unobserved building damage and
secondary hazards. However, this presents a unique challenge as both the causal dependency parameters and the distributions
of secondary hazards and building damage remain unknown. Further complicating the situation, the target affected area may be
expansive, making it computationally burdensome to conduct joint inference over large-scale high-resolution maps (e.g., InSAR
imagery for Hurricane Ian contains 2000*3000 pixels).

To address this issue, we employ variational inference, which allows us to first factorize the Bayesian network and then
approximate the posterior distributions of the unobserved variables by maximizing the log-likelihood of the observed variables.
Importantly, to ensure the scalability of our method, the variational inference is implemented on a small, randomly sampled batch of
locations during each iteration. This approach facilitates a balance between computational efficiency and the comprehensive analysis
of large areas. Incorporating the concept of variational inference, the central notion is to derive and maximize a tight lower bound
on the log-likelihood of sensing observations. This lower bound is frequently expressed as a function of the posteriors of unobserved
variables (denoted as ¢) and weights, symbolizing the causal dependencies (w). This approach plays a vital role in transforming our
understanding of the inter-dependencies within the network and presents a structured, efficient way of approximating the posterior
distributions. Therefore, the derivation of variational lower bound is :

log p(Y) = ) log / O, X! ehd(x!, e

IEN
p X! e
> g(X! ey log B2 yxt el
,;V/ q(X',€") “)

= Y Byt llog p', X', €)= By o1 llog (X', €]}
leN

(11 [2]
where g is the posteriors of all unknown variables.
To further obtain the explicit form of the final variational bound, we expand the item[1] as:
E,oxt o llog p', X', )] = Ellog p(y|P(y), €)1+ Y Ellog p(x;le,, P()] + Y, Ellog p(e,)] + Ellog ple,)]
—_——— i

J

6]

[3]
[4] C

Since y|P(y) ~ LN(Zkep(y) Wiy Xy + Wy, wz ), where P(y) = { F, BD}. So we can calculate item [3]:
y

(log y)? + wéy — 2w, logy

Ellog p(y|P(y), €,)] = —log y —log |w, | = 2002
y

(6)
.\ Yiere) wﬁy]E(xi) + 2(wg, —10g ¥) Yiep(y) Wiy BX)

2
2w€y

where k = F: E(x;) = exp(uy + 02 /2) and E(x2) = (exp(6?) — 1) exp(2uy, + 6%) + exp(0” + 2. ; For k = BD, E(x;) = g;, E(x?) = g;. For
the item [4], It should be derived separately because the i € {W, F} and i € {.SD, RD} are different situations here, so the equation
could be expanded first into: Y, E[log p(x;|¢;, P(i))] = Z,E{WVF) Ellog p(x;|e;, P(i)]+ Z,E{RDYBD) E[log p(x;|€;, P(i))] Then based on this
equation, we could divide the equation into 2 different scenarios. When the unobserved variable is continuous, we will derive the
E[log p(x;|e;, P(i))] for i € {W, F}. Since x,|¢; follows a lognormal distribution, then log x;|¢; follows a normal distribution. Then we
could get the item[4] for i € {W, F}:

E[log p(x;|e;, PU)] = —(w,,a; + wy;) — log |w,, | )

When an unobserved variable i is discrete, for example, a binary distribution, the crux of this computation involves leveraging the
activation function to derive the final outcome. It is essential to acknowledge that the computation of log expectation for binary
distributions often demands an upper bound for numerical stability. Direct computation may confront precision issues or even
become undefined, especially when probabilities approach infinitesimally small or zero values. The introduction of a tight upper
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bound assists in circumventing these issues while preserving the model’s expressiveness. Guided by this principle, we can determine
the result of E(log p(x; = m;|P(i),¢;)) for i € { BD}. The computation of item[4] for i € {BD} is :

Edog p(x;|P(i), €)) = ¢;E(—log[1 + exp(—w,,€; — wy; — Z wi; X))
keP()
(8)
+ (1 — g)E(-log[1 + exp(w,,€; + wp; + Z wy;x;)D).
keP(i)
However, the distribution of —log[l + exp(w,,¢; + Wy; + Xrep) WiiXi)] is intractable as it is a log-sum-exp of mixing a series of
discrete variables and continuous variables. Therefore, we need to get a tight lower bound of its expectation. Here without the loss
of generality, we start from the case where i has a single active parent.

With multivariable Taylor’s expansion, we can apply the standard quadratic bound for log(1l + exp) [65]:

log(l +¢%) < g()(z> —y?) + % +log(l +¢”)

where y € (0, ), g(y) = ;—y[ﬁ - %]. Moreover, with multivariable Taylor’s expansion, we will finally obtain the lower bound for
i=BD as
w?
€i _
E(log p(x;|P(i), €;)) > — Z log{1 + exp[(—1)" - (wp; + Z I(j,a,-)wj,-) + 7]} H (qll{)Vk(l — qi)l Vi | ©)
ViV €(0,1} JEP() keli.j}
JEP®)
where
1—(=1)% R
_ if j is unobserved
1G.ay={" 2 !
@ if j=a;,
. 2 2 E(z) -y, i
Eog p(x;|P(i), €)) > (1 — g)E(z;) — {g(r)(E(z;) —v;) + — + log(1 + e”1)}
where
E(z) = Z wi E(xy) + wy;
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It is noted that for k € {W, F}, as they are leaf nodes with all parent nodes known, and we postulate that x; follows a lognormal
posterior with parameters of , and o}, there is E(x;) = exp(y; + 62/2) and E(x2) = (exp(c?) — 1) exp(2uy, + 6%) + exp(c? + 2. After
we finish the all the calculation form the item[1], we further move to derive the expansion of the item[2] as:
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where C, is a fixed constant.
After we all get all the result from the expansion for each items, we could get the final variational lower bound:
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it is to be noted that detailed derivation is listed in the supplementary file.
With items derived, we finally obtain a tight variational lower bound for the given causal Bayesian network for hurricane-induced
hazards and damage estimation. We further proceed to maximize this lower bound to find the optimal combinations of posteriors of



C. Wang et al. International Journal of Disaster Risk Reduction 104 (2024) 104371

unobserved variables as well as causal coefficients (weights). Given that both the posteriors and weights are unknown, we employ
an Expectation-Maximization (EM) approach to achieve this. In the expectation step, we extract closed-form update equations for
the posteriors of W, F, and BD by maximizing the lower bound and setting the gradients of the lower bound to 0.
For k = BD, we derive closed-form update equations for the local posteriors by maximizing the lower bound and setting the
gradients of the lower bound to 0. So we could get the equation:
wiy + 2(wy, — log y)wy,,

= -1 13
4 = exp( 20 ) (13)
y

During the maximization step, we apply Stochastic Gradient Descent (SGD) updates to estimate the optimal weights, using a
mini-batch of data randomly sampled from various locations. We have tailored Stochastic Variational Inference to expedite the
computational process across a large-scale, high-resolution map. Consequently, the edge weights at iteration t + 1 are updated as:

Wii1) = Wy + pAVL(W) a4

Here, p modulates the learning rate, while A serves as a preconditioner. In our case, A is set up as the identity matrix to spur
convergence to high likelihood models. At each iteration, we begin by randomly sampling a mini-batch of locations from the given
map. Subsequently, we implement the expectation and maximization steps to update the posterior estimations and the global weight
parameters. As the model converges, we can estimate the optimal posteriors of wind, flooding, and building damage from the
hurricane.

Local pruning strategy for computational efficiency: Given the large map, we further design a local pruning strategy to
remove unnecessary nodes in a local causal graph and accelerate the computation. This strategy is motivated by the observation
that real-world causal graphs are typically sparse: only a small subset of nodes stay active in a specific location. One example is
that a location without any building footprints will not have damaged buildings, i.e., building damage nodes should be inactive.
Therefore, we can prune these inactive nodes while keeping the active ones crucial for parameter updates.

4. A case study of Hurricane Ian

The 2022 Hurricane Ian [66] is chosen as the case study. This section introduces the background of Hurricane Ian, and provides
a detailed description of street-view imagery data collection, data pre-processing and damage level annotation.

4.1. Background of Hurricane Ian and study site

Hurricane Ian made landfall in Lee County, FL, on September 28, 2022. Lee County, FL, is located in southwest Florida. The
population estimate is 822,453 as of 2022. Its county seat is Fort Myers and the largest city is Cape Coral. According to Hurricane
Ian Progress Report provided by the government of Lee County,? this hurricane strongly affected all 47 miles of beach shoreline and
around 35 miles of which were categorized as major erosion. All county beaches and parks were stroked by this storm and more
than 130,000 residents were forced to seek housing assistance. The mandatory evacuation order was first issued in Lee County for
Evacuation Zone A and B at 09:00 a.m. on September 27, 2022, and then the evacuation orders were extended to Evacuation Zone
C in the following hours. The track for Hurricane Ian, the spatial distribution of evacuation zones, and the study site are presented
in Fig. 2(a).

4.2. Building damage ground truth collection

We collected street-view imagery data of buildings that were impacted by Hurricane Ian from both the Structural Extreme Events
Reconnaissance (StEER) Hurricane Ian Response® and our field investigation. The data collection process yields an imagery dataset
of 2472 buildings impacted by the hurricane. More details can be found in Appendix.

Damage Level Annotation: We labeled the damage level for each building by following StEER’s Field Assessment Structural
Team (FAST) handbook [67]. We should note that the damage level annotation is purely based on the exterior (i.e., outside portions
of a structure) of each building. The damage level was classified into the following five categories: 0 - No damage or very minor
damage, 1 - Minor damage, 2 - Moderate damage, 3 - Severe damage, and 4 - Destroyed. Two annotators were trained and deployed
to code the label for each building. A small dataset containing 100 images was randomly sampled from the whole dataset for an
inter-coder reliability test. Each annotator coded the damage level independently. We used Krippendorff’s alpha [68] and correlation
coefficient to measure the reliability of the damage level code identified by two annotators. The Krippendorff’s alpha was finally
calculated as 0.86 and the correlation coefficient of two annotators’ damage level annotations was 0.97 and statistically significant
at 0.001 level, indicating a highly consistent damage level recognition. After reaching an agreement on all conflicting labels, the
remaining images were then split by two annotators. The final dataset includes 1785 buildings coded as level 0 (no damage), 292
as level 1 (minor damage), 244 as level 2 (moderate damage), 119 as level 3 (major damage), and 32 as level 4 (destroyed). An
example of the damage level-labeled parcels in a selected community is shown in Fig. 2(b). Most of the buildings are below moderate
damage, and only 151 (6.1%) buildings have major damage or are completely destroyed. In total, 72.2% of the sampled parcels have
no obvious exterior damage while the remaining 27.8% of which is damaged. More details about the distribution of the damage
level across evacuation zones are presented in Table 4 in Appendix.

2 https://ianprogress.leegov.com/
3 https://www.steer.network/hurricane-ian


https://ianprogress.leegov.com/
https://www.steer.network/hurricane-ian

C. Wang et al. International Journal of Disaster Risk Reduction 104 (2024) 104371

o5
5o
B
= donre
SORNS -
2 6008000 A
S DES00 00
%DQ‘QQOD
Legend ~  Legend FOcCeses
Eva. Zone £ Damage level code \ = ggg(\)::g
M- 0o comee BOOI0
[ 1 - minor damage Aga
[0 2 - moderate damage A 4 P OToh z
(B 3 - major dama ] <
it == Selected
. communi
(a) Hurricane Ian Track and Lee County Evacuation Zones (b) An example of damage level-labeled parcels in a selected com-

munity

Fig. 2. Figures of Hurricane Ian Track and damage level-labeled parcels.

Fig. 3. Overview of the DPM, Flood Map and Wind Map in Lee County, FL (from left to right).

4.3. Datasets used in causal Bayesian networks

As shown in Fig. 1, our framework takes wind map, flood map, and damage proxy map(derived from InSAR imagery) as input
for inference.

Wind Map and Flood Map: The National Institute of Standards and Technology (NIST), in collaboration with Applied Research
Associates, Inc. (ARA),* has embarked on a significant project to develop a comprehensive surface-level wind field model for
Hurricane Ian in Florida. Utilizing advanced simulation techniques, the team has collated peak and sustained wind data as shown
in Fig. 3. This dataset provides unprecedented insight into the hurricane’s progression and intensity.

The Flood map is based on the simulation of a coupled storm surge-wave modeling system CH3D-SWAN [69] using boundary-
fitted grids with a minimum grid size of 20 meters for the Charlotte, Lee, and Collier Counties of Florida. The model was forced by
a hurricane wind model for Ian [70] with offshore water level simulated by a large-scale surge and tide model. More details can be
found in Appendix.

Damage Proxy Map: The Damage Proxy Map (DPM), shown as Fig. 3, a multi-temporal coherence-based representation of
damage, has been created by the Advanced Rapid Imaging and Analysis (ARIA) team at NASA’s Jet Propulsion Laboratory and
California Institute of Technology. The map illustrates areas in Florida, USA, that were likely affected by Hurricane Ian in September
2022. The DPM was derived from synthetic aperture radar (SAR) images obtained by the Copernicus Sentinel-1 satellites, operated
by the European Space Agency (ESA), from April 5, 2022, to October 2, 2022 [71].

The map encapsulates an area of about 85 by 76 km (53 by 47 miles), centered on Fort Myers, Florida. A large red polygon
delineates the boundary of the source data, with each pixel representing an approximately 10-meter square in the primary image. One
salient advantage of the DPM, especially when compared to optical images, is its construction via InSAR (Interferometric Synthetic
Aperture Radar). InSAR, a technique for mapping ground deformation, utilizes radar images of the Earth’s surface collected from
orbiting satellites [72]. In contrast to visible or infrared light, radar waves can penetrate most weather clouds and function equally
well in darkness, making it possible to track ground deformation even under adverse weather conditions and during nighttime —
an invaluable advantage during a hurricane crisis.

4 https://www.nhc.noaa.gov/archive/2022/IAN_graphics.php
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Fig. 4. An example of the remote sensing image patch.

In our research context, the DPM is foundational not just because it provides direct visualization of the impacts of multi-hazard
events, but also because it supplies the grid system for our rasterization work involving other data sets, such as building footprints,
among others.

4.4. Evaluation metrics

In our study, we employ the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) as the primary
evaluative metrics. The ROC curve is a graph that plots the True Positive Rate (TPR) against the False Positive Rate (FPR). Here,
the TPR, representing the likelihood of our model accurately identifying a damage event when the damage has indeed occurred, is
plotted on the y-axis. Conversely, the FPR, indicating the probability of the model predicting the occurrence of damage when no
damage has happened, is plotted on the x-axis. A model demonstrating superior performance would have an AUC value approaching
1, signifying the model’s strong separability or, in other words, its robust ability to accurately distinguish between positive (damage
exists) and negative (no damage) instances.

It is noteworthy that both our model and the benchmark methods output probability estimates of hazards or impacts. For the
purpose of this paper, we apply a threshold to our probability estimates to classify them into “damage exists” and “no damage”
categories. The application of the threshold facilitates a more tangible and practical comparison of our model’s performance.
Moreover, the ROC curve is instrumental in visualizing how the performance of our model fluctuates under varying thresholds,
ranging between 0 and 1. This provides a more comprehensive and unbiased evaluation, accommodating the potential for different
threshold values in different real-world scenarios.

4.5. Benchmarks

We consider three types of benchmark methods—optical imagery-based models that are commonly utilized to estimate building
damage from optical satellite imagery, fragility curve-based models that leverage empirical experiments to learn structural fragility
functions and are commonly utilized in civil engineering, as well as pure DPM-based model that directly estimate building damage
from InSAR imagery, especially Damage Proxy Maps. These three types of baselines help thoroughly compare the performance of
our framework compared to traditional post-hurricane building damage detection methods.

4.5.1. Optical imagery-based baselines

We utilize high-resolution optical satellite imagery and associated state-of-the-art models as baselines. The dataset is described
in Appendix. We select two models from top-5 winning solutions of the xView2 Computer Vision for Building Damage Assessment
Challenge® as our benchmark. The first model (FCS-Net [29]) introduces a Siamese architecture including two encoders and one
decoder. We evaluate our data by selecting the ResNet34 [25] as the encoder and the U-Net [24] as the decoder. The second model
(Dual-HRNet®) presents a network architecture, which includes two HRNet [73,74] and several fusion blocks. To better evaluate
the performance of benchmark models, we first test the pre-trained models using both our training and test datasets, without any
fine-tuning. Subsequently, we finetune the pre-trained models using our training set, and gauge the performance of the finetuned
model by testing it on our test set. The results of the benchmark models with and without finetuning are shown in Table 1.

5 https://www.xview2.org/
6 https://github.com/DIUx-xView/xView?2 fifth_place/blob/master/figures/xView2 White_Paper SI_Analytics.pdf
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Table 1

Comparison of TPR, TNR, and AUC of our model and baselines. Note that (1) our probabilistic model that fuses
DPMs and physics-based flood and wind model does not require any labels in training stage, (2) FCS-Net and
Dual-HRNet are computer vision models using optical satellite imagery and pretrained in historical events. “w/o
finetuning” means the model is directly adopted to estimate building damage, which is equivalent to our model
setup, “finetuned” means the model is finetuned using labeled building damage datasets for Hurricane Ian. The
results show that our model that does not require any labeled data achieves comparable performance as the
model finetuned on labeled data. NA means Not Available, meaning AUC is not calculated for deterministic
model like FCS-Net and Dual-HRNet.

Model TPR TNR AUC
Our model (w/o label training) 0.8293 0.6221 0.7553
FCS-Net (w/o finetuning) 0.2713 0.8941 NA
FCS-Net (w/ finetuning) 0.2098 0.9386 NA
Dual-HRNet (w/o finetuning) 0.0912 0.9795 NA
Dual-HRNet (w/ finetuning) 0.8217 0.6251 NA
DPM-based Model (w/o label training) 0.6498 0.6249 0.6739
Fragility Curve (w/o label training) 0.5669 0.6246 0.5695

4.5.2. Fragility curves

In our analysis, we have utilized a fragility curve developed by Andres Paleo-Torres and his team [64], focused on Florida’s
residential structures and their vulnerability to hurricane-induced coastal flooding. The team’s methodology transformed tsunami
fragility functions into coastal flood fragility functions. They defined six damage states for commonly found 1 to 3-story reinforced
concrete and timber residential buildings in Florida. This method, still under FEMA/USACE, sought to adapt a comprehensive set of
tsunami-related building fragility functions. This approach draws significantly from the work of the FEMA/USACE. The result is an
engineering model that generates building vulnerability functions, estimating the average building damage ratio relative to hazard
intensity, specifically inundation height relative to ground level for coastal floods. Essentially, the building damage ratio represents
the cost of repairing a damaged building versus its replacement value. It is crucial to note that the study’s focus on Florida and
its prevalent residential structures makes the resulting fragility curve a fitting benchmark for us. This tool allows for an accurate
assessment of the vulnerability of similar structures in Florida to hurricane-induced coastal flooding, providing a robust basis for
our further analysis and insights.

4.6. Results

In this section, we present the results derived from our model and draw comparisons with conventional methodologies,
including the flood-map-based model, DPM-based model, and optical imagery-based models. This comparative analysis offers a clear
understanding of our model’s performance, highlighting its advantages and potential improvements over traditional techniques.

4.6.1. Result analysis

Our results conclusively demonstrate that our model, trained without the necessity for labels, exhibits a competitive edge when
compared to models trained through traditional means. Regarding the True Positive Rate (TPR), our model achieved a score of
0.8293, outpacing all other models in the comparison. For the True Negative Rate (TNR), it posted a score of 0.6221. Despite this
score not being the highest TNR, it remains a commendable result in comparison to the other models. Our model also led the pack
with the highest Area Under the Curve (AUC) score at 0.7553 amongst all models boasting a valid AUC score.

Our model’s performance was on par with the Dual-HRNet model with fine-tuning, a model that necessitates labels for training.
The fine-tuned Dual-HRNet model’s TPR and TNR scores of 0.8217 and 0.6251, respectively, are slightly lower and marginally
higher than our model’s, underscoring its competitive performance despite foregoing the use of labels.

Furthermore, the Pure DPM-based Estimation yielded a TPR of 0.6498 and a TNR of 0.6249. Likewise, the Fragility Curve-based
Estimation model returned a TPR of 0.6969 and a TNR of 0.5552, with both scores trailing ours. It is notable that our pure dpm-based
method is built without the flood or wind map, which shows the importance of the flood and wind map used in our model. Moreover,
our model’s independence from ground truth labels, is often a significant impediment due to the time and resources required to
label data accurately. By discarding this requirement, our model simplifies the training process and economizes resources.

In conclusion, the evidence supports the potential of our model. It not only eliminates the need for labels, paving the way for more
efficient model training, but it also holds its own against models trained via traditional, label-dependent methods. Consequently,
our model emerges as a promising contender in situations where procuring ground truth labels proves challenging or impracticable.

4.6.2. Ablation study

To further understand the contributions of various components and parameters in our model, we conducted an ablation study,
focusing specifically on batch size and the incorporation of Variational Inference (VI) and Pruning strategies.

Initially, we examined the influence of batch size on our model’s computational time and performance, with performance
measured by the Area Under the Curve (AUC). As shown in Table 2, a distinct pattern emerges: an increase in batch size leads
to a reduction in computational time. To be specific, a batch size of 128 resulted in the longest computational time of 5812 s, while
a four-fold increase to a batch size of 1024 reduced the computation time significantly to 941 s.
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Table 2
The computational time for different batch sizes.
Batch size m 128 256 512 1024
AUC 0.7553 0.7553 0.7329 0.7311
Time used (s) 5812 2729 1267 941
Table 3

Evaluation of the effectiveness of Variational Inference and
Pruning strategy in our framework. We present AUC values and
variational lower bound (VLB).

Method AUC VLB

VI Full 0.7825 1.1442
VI Local 0.7553 1.1249
MCMC Full 0.7271 0.7797
MCMC Local 0.7117 0.7140

Nevertheless, this decrease in computational time appeared to incur a marginal decline in performance. For batch sizes of 128 and
256, the model’s AUC remained steady at 0.7553, but dropped to 0.7329 and 0.7311 for batch sizes of 512 and 1024 respectively.
This indicates a trade-off between computational efficiency and model performance, suggesting that the optimal batch size would
depend on the specific balance between computational constraints and performance requirements in any given scenario.

In the second phase of our ablation study, we assessed the impact of Variational Inference and Pruning strategies. As seen in
Table 3, we compared the performance (as gauged by AUC) and Variational Lower Bound (VLB) of four approaches: VI Full, VI
Local, MCMC Full, and MCMC Local. In terms of VI Local, it refers to Local Graph Pruning, a technique — we introduced local
graph pruning in Section 3. On the other hand, VI Full signifies the inference of posteriors using the complete graph. Both MCMC
Local and MCMC Full refer to the same concept, namely the application of Markov Chain Monte Carlo (MCMC) with either a
Local Pruned Graph or a Full Graph. The VI Full method recorded an AUC of 0.7825 and a VLB of 1.1442. In contrast, the MCMC
Local method yielded the least favorable results, with an AUC of 0.7117 and a VLB of 0.7140. This comparison clearly highlights
the superior performance of Variational Inference methods (both Full and Local) over MCMC methods in terms of AUC and VLB,
thereby confirming their value within our framework. Additionally, a comparison within both VI and MCMC methods reveals that
although the Local Pruned Graph leads to a slight decrease in AUC compared to the Full graph, the VLB is lower. This finding
suggests that the Local Pruned Graph can deliver a tighter lower bound at the minor expense of AUC.

In summary, this ablation study provides critical insights into how varying components and parameters within our model
influence its performance and efficiency. It underscores the impact of batch size on computational time, substantiates the superior
performance of Variational Inference methods, and establishes the value of our Local Pruned Graph within our framework.

5. Discussion and conclusion

This paper proposed a novel deep learning model based on the causal Bayesian network to rapidly assess post-hurricane building
damage from InSAR imagery data. By using Hurricane Ian as a case study, our model can significantly outperform the state-of-the-art
benchmarks trained on the optical imagery data as well as the traditional fragility curve-based estimation. Particularly, our model
does not require any ground truth labels of the impacted buildings for training or prediction, which can be readily deployed within
days of the landfall.

The main reason for the superior performance of our model lies in the nature of the causal graph to best approximate the real
physical processes of a hurricane triggering multiple secondary hazards and finally jointly resulting in building damage. Compared
to previous models that focus on learning mapping relationships from highly noisy remote sensing observations to building damage,
the causal Bayesian network considers various causes of building damage (flood, wind) as well as causes of signal changes in remote
sensing observations (flood and building damage). Moreover, this approach enables effective integration of physics-based flood and
wind estimates with remote sensing observations, which finally yields more accurate and timely estimation.

Moreover, the poor performance of the optical imagery benchmarks (FCS-Net and Dual-HRNet) is mainly due to the lack of model
generalizability for new events (i.e., the negative transfer issues [10]) and the limitations of the data. Ideally, these benchmarks
trained on a large sample from many different historical events were expected to perform well for the Hurricane Ian case study,
but the results showed quite the opposite: Without finetuning, FCS-Net and Dual-HRNet had extremely low TPR (Table 1), which
reflected these models’ limited capabilities to make good predictions for new events. Additionally, with finetuning, FCS-Net still
performed poorly while Dual-HRNet had a significant improvement in terms of TPR. However, finetuning these models is not a
trivial task, which requires pre- and post-event imageries from the same region and the ground truth labels of the impacted buildings.
Particularly, collecting and annotating the ground truth is time-consuming and requires domain expertise.

Admittedly, our model only considers identifying the binary damage level (i.e., damaged vs. no damage) for each building, since
distinguishing different damages (e.g., a small crack of wall vs. structural damage) from satellite images (where we can usually
only see roofs), and even from field investigations, is challenging. Future works may consider using more detailed damage-level
identifications to better facilitate the hurricane emergency responses and community recovery process.
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In conclusion, our research presents a novel causal Bayesian network model that significantly improves post-hurricane building
damage assessment, as evidenced in our Hurricane Ian case study. This work, for the first time, shows that the causal dependency
informed by physical understandings of hurricane-damaging processes makes it possible to connect and integrate multi-modal multi-
sourced data representing different elements in these processes, in a physically interpretable way. Therefore, integrating causal
dependencies modeling is beneficial to help mitigate the impacts of noises and uncertainties of the data on damage assessment
accuracy. The study highlights the shortcomings of relying solely on optical imagery for assessing the impact of Hurricane Ian. It
emphasizes the need for models that can adapt to new and varying situations, and points out the difficulties in depending solely on
optical imagery can be significantly influenced by environmental conditions.

While our model marks a substantial step forward, we acknowledge its limitations in areas with steep slopes and water bodies
affecting SAR backscatter. This insight directs our future work towards multi-modal multi-sourced data fusion, including InSAR data,
optical imagery data, social media posts, news, and hurricane characteristics approximated by physical models, to further refine the
model’s accuracy and applicability across diverse disaster-related information [75,76]. The advancements and lessons gleaned from
this research pave the way for more robust, efficient, and versatile tools in the field of disaster management and recovery.
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Appendix

Optical Imagery Dataset Preparation: We create two datasets, including both the pre-hurricane (01/21/2022) and post-
hurricane (09/30/2022) remote sensing images of most regions of Lee County, FL, to align with the requirements of the selected
baseline models. The remote sensing images (GeoTIFF file) were downloaded from Maxar [77]. We partitioned the whole GeoTIFF
file into small patches (1024 pixels x 1024 pixels) and identified the geo-location of each damage level-labeled parcel within each
patch. This process finally yields 62 patches. An example of the remote sensing image patch (part of the left-bottom area shown in
Fig. 2(b)) from both pre-hurricane and post-hurricane is shown in Fig. 4. We split 50 patches for fine-tuning the baseline models
and used 12 patches for testing purposes. In total, 905 (36.6%) parcels are covered by both pre-hurricane and post-hurricane remote
sensing images. For the training dataset, 636 buildings were included, in which the numbers of no-damage, minor-damage (note that
we combine both minor and moderate damage into one category here to keep consistency with the baseline model), major-damage,
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Fig. 5. Trajectory of StEER vehicles [4] and field investigation places.

Table 4
Damage level annotation across evacuation zones.
Evacuation zone Damage level
0 1 2 3 4 In
No damage Minor damage Moderate damage Major damage Destroyed total
A 1049 167 165 79 30 1490
B 227 23 15 2 0 299
C 204 33 22 1 0 267
D 178 61 36 24 0 260
E 17 1 3 4 0 25
Non-evacuation 110 7 3 9 2 131
In total 1785 292 244 119 32 2472
No damage: 1785 (72.2%) Damaged: 687 (27.8%)

and destroyed buildings are 576, 34, 21, and 5 separately. For the test dataset, 269 buildings were included, in which the numbers
of no-damage, minor-damage, major-damage, and destroyed buildings are 195, 32, 30, and 12, respectively.

Ground truth data collection details: Specifically, StEER sent several vehicles equipped with panoramic cameras to collect
near real-time street views of buildings, streets and other infrastructures in order to get a rapid response to Hurricane Ian
damage assessment [66,78]. We can access all static street-view images at any available location provided by StEER. We took
the following steps to gather data from StEER. First, we retrieved parcel footprint data from Lee County GIS Open Data Portal
(https://maps.leegov.com/pages/data). We further collected the trajectory of StEER’s panoramic vehicles, as shown in Fig. 5. We
created a 10-meter buffer for all trajectories and spatially intersected it with parcel footprints to identify all potentially viewable
buildings. Three groups of annotators (group size equals to two) were deployed to manually screenshot images of buildings from
Hurricane Ian Street View Comparison interactive website [4], focusing on the viewable buildings. Each building’s exact address
and a couple of characteristics (e.g., building type and value) were also recorded. Three representative regions in Evacuation Zone
A that were highly impacted by the storm, i.e., Sanibel, Fort Myers beach and inland coastal areas, were assigned to three groups,
respectively.

We note that most of the images collected by StEER are within Evacuation Zone A. Therefore, to prepare a more comprehensive
dataset for training the models, additional field investigation data for the damaged structures that do not have adequate street-view
images or are missing from the existing StEER database (e.g., from other evacuation zones) are required. We deployed four people
to manually gather additional imagery data in Lee County, FL. This field investigation group used smartphones for recording street
views. Building images from the collected videos were manually screenshotted afterward. Places of field investigation data collection
are shown in Fig. 5.

Wind Map and Flood Map Acquisition: To optimize the use of the wind data, we initially construct a dot wind map, then
employ interpolation methods to convert the discrete data points into a comprehensive, continuous wind map, as shown in Fig. 3.
This map is carefully aligned with the grid and resolution of the Damage Proxy Map (DPM) for seamless integration. Ultimately,
these refined datasets will be incorporated into our predictive model. In doing so, we aim to enhance our understanding of these
severe weather events, enabling us to predict their paths and potential impacts more accurately. This will, in turn, better equip us
to manage and mitigate the effects of such events on our environment and communities.

The Flood map is based on the simulation of a coupled storm surge-wave modeling system CH3D-SWAN [69] using boundary-
fitted grids with a minimum grid size of 20 meters for the Charlotte, Lee, and Collier Counties of Florida. The model was forced
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Table 5
Damage States and Extent of Failure From Field assessment structural team (FAST) Handbook [67].
Damage Short description Roof or wall Window or door Roof or wall Roof struct. Wall struct.
state cover substr.
0 No visible damage or very minor 0% No No No No
damage
1 Minor damage Damage confined >2% and 1 No No No
to envelope <15%
2 Moderate damage Load path >15% and >1 and <the larger 1 to 3 panels No No
preserved, but significant repairs <50% of 3 and 20%
required
3 Severe Damage Major impacts to >50% >the larger of 3 and >3 and <15% No
structural load path 20% and <50% <25%
4 Destroyed Total loss. Structural >50% >50% >25% >15% Yes
load path compromised beyond
repair.
Table 6

Comparison of True Positive Rate Results with
different damaged classification settings.

Our model True Positive Rate
0 vs 1,2,3,4 0.69589
0,1 vs 2,3,4 0.78595
0,1,2 vs 3,4 0.82418
0,1,2,3 vs 4 0.80556

by a hurricane wind model for Ian [70] with offshore water level simulated by a large-scale surge and tide model. Simulated water
levels agree well with observed surge level and High Water Marks (HWMs) at nearly 100 locations.

The Flood Map can be conceptualized similarly to the Damage Proxy Map, as shown in Fig. 3. In this case, it portrays the surge’s
flood elevation as a composition of small blocks, each representing a particular value under the grid system. This approach allows
the Flood map to precisely depict post-hurricane flood elevation patterns, trends, and distributions.

To integrate the Flood map into our analysis, we align it with the fine grid system used in the Damage Proxy Map. This re-
projection process is straightforward and facilitates a seamless integration of the Flood map into both the fragility calculator and
our model computations.

Damage Level Setting: In our investigation, we initially utilized damage classifications from the FAST Handbook [67] by
the StEER Network for the field investigation, as detailed in Table 5, to establish a consistent framework from field assessments.
Recognizing that the original classification was complex for the scope of our current work, we simplified the approach to classify
the building damage level. The result of different damage level settings was documented in Table 6, where we evaluated various
damage class configurations against TPR outcomes. We iteratively adjusted our classification schema, starting from a “0 vs 1,2,3,4”
comparison and evolving to a “0,1 vs 2,3,4” scenario, to understand the TPR dynamics better. Our analysis led us to adopt a “0,1,2 vs
3,4” configuration as the optimal setting for TPR, which streamlined the categorization into a binary state of 'No damage’ for levels
0 to 2 and ‘Damaged’ for levels 3 and 4. This standard not only corresponds to the realities of fieldwork—where visually discerning
minor damage levels can be challenging—but also accounts for the constraints of satellite imagery, which cannot detect finer details
such as wall cracks from space. Moreover, it establishes an objective for future research aimed at enhancing the precision of building
damage detection.
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