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Figure 1: Virtual reality for asynchronous high-level robot teleoperation. The user specifies goal poses for virtual replicas of objects
to be manipulated at a remote site. (a) Aggregated View. (b) Timeline View.

ABSTRACT

We present a prototype virtual reality user interface for robot teleop-
eration that supports high-level specification of 3D object positions
and orientations in remote assembly tasks. Users interact with vir-
tual replicas of task objects. They asynchronously assign multiple
goals in the form of 6DoF destination poses without needing to be
familiar with specific robots and their capabilities, and manage and
monitor the execution of these goals. The user interface employs
two different spatiotemporal visualizations for assigned goals: one
represents all goals within the user’s workspace (Aggregated View),
while the other depicts each goal within a separate world in miniature
(Timeline View). We conducted a user study of the interface without
the robot system to compare how these visualizations affect user
efficiency and task load. The results show that while the Aggregated
View helped the participants finish the task faster, the participants
preferred the Timeline View.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Interaction design—Interaction design pro-
cess and methods—User interface design; Computer systems
organization—Embedded and cyber-physical systems Robotics—
External interfaces for robotics

1 INTRODUCTION

Robots can perform household chores, participate in factory assem-
bly lines, and conduct mechanical inspections, handling tasks that
are repetitive, dangerous, or beyond human ability. However, inde-
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pendently accomplishing novel, complex, and dynamically chang-
ing tasks in real-world environments is challenging for robots. In
addition, creative tasks without predefined goals, such as custom
furniture creation, also require human involvement. Moreover, a
human user can provide corrective suggestions when robots have
made errors. Consequently, the role of human-in-the-loop interfaces
for robot teleoperation remains critical for these applications [20].

Many robot teleoperation systems rely on low-level control,
whether direct [10, 12,29, 40] or indirect [25], often accomplished
through synchronous communication [10,12,40]. These systems pre-
suppose the involvement of domain experts who are knowledgeable
about the specific robots they manage and able to correct or prevent
real-time errors—a requirement that may be difficult to meet [41].

On the other hand, in high-level robot teleoperation systems,
users indicate high-level actions for robots to perform [28,43] or
define target goals (e.g., object positions or orientations) for them to
achieve [23,33,52]. Users of these systems do not need to understand
the capabilities of the robots or how to operate them. Studies [23,33]
have shown that high-level teleoperation systems can be more ef-
ficient than low-level ones. Further, high-level robot teleoperation
systems often use Virtual Reality (VR), as VR can achieve lower
workload and higher usability compared with desktop-based teleop-
eration [51].

In many high-level teleoperation systems, a user sends a sin-
gle set of instructions to a robot, and then waits for them to be
executed. [23, 52]. Other systems allow instructions to be as-
signed asynchronously, without waiting for previous ones to be
completed [28,43]. While such asynchronous systems can help
users be more efficient, prior work primarily focuses on teleoper-
ation methods and does not compare and evaluate different user
interfaces and visualizations.

To address this, we are developing a VR system for teleoperation
that is (1) based on high-level object-pose goals and (2) designed
to support asynchronous control. In our system, the user manipu-
lates virtual replicas of objects to assign high-level six—degrees-of-
freedom (6DoF) goal poses to these objects. We designed and com-
pared two visualizations for the goals. The Aggregated View presents
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all assigned goals simultaneously within the user’s workspace, as
shown in Figure 1(a) and schematically in Figure 2(a). The Timeline
View presents each goal in a separate world in miniature within a
timeline, as shown in Figure 1(b) and schematically in Figure 2(b).
We also compared two variants of the Aggregated View, which differ
as to how much information is shown. In addition, for the Aggre-
gated and Timeline Views, we compared different ways of using line
style to distinguish steps in the task flow. We performed a user study
of the VR interface without the robot system. Our study showed
that the Aggregated View improves efficiency, while participants
subjectively prefer the Timeline View.
Overall, we make the following contributions:

e Design and implementation of two visualizations for asyn-
chronously assigning, monitoring, and managing assembly
goals in high-level teleoperation: Aggregated View and Time-
line View.

¢ A VR user study showing that both variants of the Aggregated
View increase user efficiency, while users prefer the Timeline
View.

¢ An evaluation of line styles used with the Aggregated View
and the Timeline View to help users distinguish steps in the
task flow, showing that line style has a significant impact on
error rate, but not on task completion time.

2 RELATED WORK

Beer et al. [3] proposed a taxonomy of ten levels of robot autonomy
for human-robot interaction systems, ranging from manual to full
autonomy. Many teleoperation systems employ direct control [5, 10,
12,29,35,40,42,51], resulting in lower levels of autonomy. In these
systems, performance largely relies on the user’s understanding of
the system’s physical constraints including range of motion, current
joint configuration, and the size and velocity of joints. On the
other hand, fully autonomous systems [13, 15,19,36] also possess
inherent limitations, particularly in executing novel, complex, and
dynamic tasks in unstructured real-world environments, a challenge
underscored in the existing literature [20].

We focus on the level between manual and full autonomy: teleop-
eration interfaces in which the user decides on and assigns high-level
goals, while the robot system performs low-level planning and exe-
cution. This is classified in Beer’s taxonomy as “Executive control.”

2.1 Interfaces for High-level Goal-based Teleoperation

Previous work has explored teleoperation interfaces for assigning
a high-level goal to a robot [2,23,28,33,38,52,54]. Li et al. [23]
present a system in which users can specify a high-level goal 6DoF
pose for an object to be manipulated by a remote robot arm. Meng
et al. [33] allow users to specify high-level goals by manipulating
the scene in VR. Yigitbas et al. [52] also present a VR interface to
assign high-level goals with transparency and controllability. These
systems demonstrate the efficiency of high-level control compared
with direct control methods. They also highlight that this control
method enables effective robot manipulation without requiring users
to understand the specific capabilities of individual robots [28,52].
However, these systems support only synchronous control, allowing
users to assign a single batch of high-level goals. In contrast, we
explore interfaces for teleoperation systems with high-level asyn-
chronous control.

2.2 Interfaces for Asynchronous High-Level Goal-based
Teleoperation

Several teleoperation systems enable users to assign multiple high-
level goals asynchronously [9,28,43,50]. While the robot is exe-
cuting the assigned goals, users can assign further goals in advance
while also monitoring the execution. For example, Walker et al. [50]
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Figure 2: (a) Aggregation of all spatiotemporal data in a single scene.

(b) Snapshots of different moments in time.

introduced an augmented reality (AR) system for drone manipu-
lation through the assignment of multiple waypoints linked with
high-level goals, and Senft et al. [43] developed a 2D AR system
to author instructions for a robot arm. Liu et al. [28] developed an
interface to assign household goals by sketching on a bird’s-eye view
of an environment, supporting multiple assignments by providing
multiple layers to sketch. However, prior work has predominantly
concentrated on control methods, and not the comparison of different
interfaces and visualizations for asynchronous high-level goal-based
teleoperation.

The visualization strategies employed in these studies primarily
aggregate all assigned goals within a single view, leading to po-
tential visual clutter as more goals are added. Walker et al. [50]
displayed waypoints within a 3D environment and Senft et al. [43]
incorporated an overlay of all tasks in a 2D view. Since increasing
the number of assigned goals amplifies scene information, thereby
complicating the user’s visual experience, there is a need for user
interfaces for teleoperation systems that clearly distinguish between
multiple assigned goals and their current statuses. While Liu et
al. [28] provide a feature for toggling the visibility of representations
of tasks, its primary application is the scheduling of housework over
a relatively long period of time and cannot be directly applied to the
assignment and monitoring of assembly goals.

2.3 Spatiotemporal History Visualizations

There are two distinct approaches to visualizing spatiotemporal
history: (1) aggregating all moments into a single scene (Figure 2a)
and (2) presenting different moments as a timeline of individual
snapshots (Figure 2b).

Among interfaces that aggregate multiple moments of time into a
single scene, Biischel et al. [6] and Lilija et al. [24] overlay object
movement paths on 3D worlds to visualize spatial recordings. Su
et al. [46] show graphical editor history by overlaying graphical
annotations on a scene. Moreover, Zhang et al. [55] layer “space-
time cubes” to present spatiotemporal data, aggregating moments in
one scene and allowing users to view specific snapshots.

In contrast, interfaces that use a timeline include work by Kur-
lander and Feiner [21] that visualizes graphical editor history as a
timeline of snapshots at user-controlled levels of temporal granular-
ity. Denning et al. [8] similarly summarize the edit history of 3D
meshes in a timeline. In VR, Worlds in Miniature (WIMs) [45] have
been used to depict snapshots at specific points in time. For example,
Mahadevan et al. [30] present a WIM-based interface allowing users
to query spatiotemporal recordings, and Zhang et al. [53] offer a
version control interface for 3D scenes, displaying commit history
as a graph of WIMs.

Drawing inspiration from this prior work, our research explores
spatiotemporal visualizations for presenting user-assigned goals for
high-level teleoperation.

3 OUR SYSTEM

3.1 Manipulating Virtual Replicas in VR

In the virtual environment depicted in Figure 1 (a-b), the user ob-
serves virtual replicas of objects at a remote site. They can manip-
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Figure 3: Status of goals. Please see Section 3.2 for an explanation
of each phase.

ulate these virtual objects using their controllers to specify 6DoF
goal poses. Since the environment is virtual, the user can manipulate
objects unbound by physical constraints.

3.2 Assigning High-level Goals

As shown in Figure 3, the user initiates the execution of a high-level
goal by assigning a 6DoF goal pose to a virtual object. They can
manipulate an object to try out possible poses, before finalizing their
decision by selecting the object and clicking the Send button, which
triggers the path-planning system. This system assesses the scene
and the destination object pose, determining the feasibility of the
user-specified goal. If a valid path is found, the system proceeds
to execution by the robot; otherwise, the user is alerted and may
input an alternative goal. Once the assigned goal has been executed,
the simulation communicates the new poses for the objects, which
are subsequently updated in the VR user interface. The user then
visually checks the results to determine if they are acceptable and
can request to retry the execution if they are not. Otherwise, the user
clicks the Confirm button.

3.3 Asynchronous Control

While a goal is being validated or executed by the system, the user
is free to assign additional goals. Figure 4 shows the hypothetical
timeline of a user of our system. The user can send multiple goals
and confirm execution results while the planner finds valid paths and
the robot executes the assigned goals. Although our current testbed
contains a single remote robot (an articulated arm with a parallel
gripper), we believe that such asynchronous control systems can
generalize to multiple robots with an appropriate planner.

3.4 Implementation

We developed our user interface in Unity 2022.2.1f1 [48]. The user
wears a Meta Quest 2 [34] VR headset connected to a computer
running Windows 10 powered by an Intel® CoreT i19-9900K proces-
sor and an Nvidia GeForce RTX 3090 graphics card. A hand-held
Meta Quest 2 controller is used to assign high-level goal-based in-
structions. Our path-planning system is based on a remote robot
simulation in PyBullet 3.21 [7]. The simulation environment in-
cludes a URS robot arm [49] with a parallel gripper (Figure 5). It
uses the Rapidly-exploring Random Trees (RRT) algorithm [22] to
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Figure 4: Gantt chart representing asynchronous control in our system.
Goals are assigned and sent by the user, validated by the planner,
executed by the robot, and confirmed by the user. Assignment and
confirmation of goals are done by the user, while validation and exe-
cution are done by the planner and the robot. Since times for sending
goals and confirming results are independent of the robot, waiting
times (gray phases) are of varying lengths.
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Figure 5: Path Planning System built with PyBullet [7]. The red line
shows the planned path.

try to find a feasible path from the initial state to the goal state. Com-
munication between the VR user interface and the path-planning
system occurs through designated directory files. The user interface
generates a JSON file for each validation request, transmitting data
to the path-planning system. After validation, the path-planning
system dispatches the results in a text file, which the user interface
reads.

4 VISUALIZATION CONDITIONS
4.1 Design Requirements

To allow the user to complete the workflow described in Section 3,
we defined the following design requirements.

* Authoring New Goals: The user should be able to set new
goals by directly manipulating virtual objects in the VR envi-
ronment.

* Monitoring Statuses of Goals: The user should be able to
monitor the status of a goal they have assigned. This should
be possible even in complex scenarios with multiple goals.

* Confirming Execution Results: Once a goal has been ex-
ecuted, the user should be able to see the result, confirm
whether the robot has executed the goal correctly, and ask
for re-execution if it has not.
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Figure 6: Views. (a) In the Static Aggregated View, the user sees
previous and goal poses for all objects with goals. (b) When the user
touches an object with a goal, they also see a placard presenting its
current status. (c) In the Adaptive Aggregated View, the user also
sees previous and goal poses for all objects with goals by default. (d)
When the user touches an object with a goal, they see the snapshot of
the moment of time when that goal was assigned. (e) In the Timeline
View, the user sees the scene with the current object by default. (f)
The user can click a WIM in the timeline to see the snapshot of the
moment when that goal was assigned.

Given these requirements, a significant challenge arises: users
need to interact with the current scene, while also monitoring and
interacting with goals assigned in the past. This leads to a research
question: How can we best present the assigned goals from multiple
points in time?

Our definition of a “best” design will be based on several metrics.
Efficiency is one; the interface should streamline the process of
assigning and monitoring goals, reducing the time spent on each
operation. The task load on the user should also be minimized to
ensure that they can use the system for extended periods without
fatigue or errors. Furthermore, the user should be able to assign
new goals and confirm executed goals simultaneously, allowing for
continuous workflow and maximizing the robot’s operational time.

4.2 Views of the Objects and the Goals
4.2.1 Aggregated Views

Aggregated views aim to present a comprehensive scene by aggregat-
ing all the goals within a single scene. This design was inspired by
prior work on spatiotemporal history visualizations that aggregates
all moments into a single scene (Section 2.3), as well as some of

the prior systems for high-level goal-based teleoperation [43, 50]
(Section 2.2).

The goal pose of an object is presented in its actual color, while
the previous pose is presented as semi-transparent. We use placards
and halos around objects with goals, where the color of a placard or
halo indicates goal status (Figure 7). Halos are always visible, while
a placard is shown only when the user hovers over its object.

We have two variants of aggregated view: Static Aggregated View
and Adaptive Aggregated View.

Static Aggregated View (SA): The SA view (Figure 6a-b) is an
aggregated view in which the user sees each object in its goal pose
and previous pose.

Adaptive Aggregated View (AA): The AA view (Figure 6¢c—
d) adds adaptive filtering features to the SA view. In its default
state, with the user not touching any object, the interface displays
each object in its goal pose and previous pose, just like the SA
view (Figure 6¢). However, when the user touches a goal pose or a
previous pose, non-essential information is filtered out (Figure 6d),
displaying only the following: First, for the object of touched pose,
its original pose and the previous poses assigned before the touched
pose will be shown. This helps users understand the sequence of
goals leading up to the touched one. Second, for every other object
in the scene, the goal pose that was last assigned before the touched
goal will be shown. This provides the context of the scene when the
touched goal was assigned.

When the user touches the goal pose, this filtering effect continues
as the user grabs and manipulates it to assign a new goal. This
feature helps the user focus on the current scene, enabling precise
specification of the new goal. We tested both SA and AA to explore
whether showing all info in the aggregated view will be helpful.

4.2.2 Timeline View

Timeline View (T): The T view (Figure 6e—f) presents a timeline of
WIMs [45], where each WIM represents a specific goal (Figure 8).
This design was inspired by prior work on spatiotemporal history
visualization that presents individual snapshots of different moments
(Section 2.3).

The index and status of goals are displayed on a placard below
each WIM. WIMs are arranged in a curved layout, inspired by the
design space suggested by Fouché et al. [11]. To clearly indicate
which object was manipulated in each WIM, these scenes zoom in
on the manipulated object, which is highlighted, inspired by work
on editable graphical histories [21].

By default, the user sees the scene with the goal poses of every
object, and they can assign new goals by grabbing and manipulating
them. (Figure 6e) The user can point their controller to a WIM
and click on it to see a snapshot of the scene corresponding to the
selected WIM’s goal. (Figure 6f) In the snapshot, the following will
be displayed: First, for the object of the selected WIM’s goal, its
original pose and the sequence of previous poses. Second, for all
other objects in the scene, the snapshot will display the previous
pose that was assigned before the selected WIM’s goal was assigned.
This snapshot will help the user observe the assigned goal pose
with the context of the scene at the point of time the goal was
assigned, understand the status of the goal, and perform actions
such as confirmation of execution when needed. The user cannot
manipulate objects and assign new goals in this snapshot scene.
Clicking the WIM again will return the user to the default scene, so
they can again assign new goals.

This view can avoid the clutter of the main scene by presenting
information about each goal and its status in a separate snapshot.
The user can refer to the timeline to check the status of each goal.
However, this approach requires the user to look at two different
places, unlike the aggregated views. Furthermore, a WIM provides
limited information about the scene surrounding each goal, and the
user has to select on each WIM to see the goal within the context of
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the surrounding scene. When the user wishes to review past goals
or confirm execution results by viewing the surrounding scene, this
introduces an additional step.

4.3 Representation of the Direction of Lines

Users can assign multiple goals to a single object. These goals are
displayed together in the scene and connected by lines. It is crucial
to clearly represent the direction of lines to ensure users understand
the order of assigned goals.

Perin et al. [39] identified gradients as effective tools to represent
the direction and flow of time in lines. Therefore, we used gradients
transitioning from dark gray to light gray in two distinct styles:
segmented and continuous.

4.3.1 Segmented Gradient (SG)

The segmented gradient (Figure 9a) represents the direction of lines
between poses. Each gradient starts from one object and ends at
another. This segmented approach offers a more granular view of
the order of directions, allowing users to understand which of the
two connected poses is the earlier goal.

4.3.2 Continuous Gradient (CG)

Inspired by the line design in Liu et al. [26], this approach (Figure 9b)
visualizes the order of sequence of poses by a continuous gradient.
The gradient begins at the initial pose, traverses through all the
previous poses, and ends at the goal pose. This continuous gradient
enables them to understand the sequence of tasks and their relative
orders.

In essence, while the continuous gradient offers a macroscopic
view of the object’s entire timeline, the segmented gradient provides
a microscopic perspective, highlighting the order of individual goals.
The choice between these visualizations would be contingent on the
user’s need for either a comprehensive overview or detailed insights
into the orders of specific goals.

5 USER STuDY

We conducted a formal user study of the user interface, without the
planner and robot, to explore how user performance is affected by
the visualizations. We also conducted pilot studies before the formal
user study to refine the visualizations and determine the appropriate
length of our user study. The review board at our institution approved
these studies.

5.1 Pilot Studies

In our first pilot study with four participants, we compared the
transparency of instruction objects in the Aggregated Visualization.
We determined that a 20% alpha value minimized user task load.
Since every participant completed the study faster than the maximum
experiment duration, we decided to increase the number of tasks
from 15 to 24 to collect more data and add practice trials to the
formal study.

Our second pilot study involved five participants and tested vari-
ous view and line conditions. Based on user feedback, we improved
the adaptive behavior of AA upon user interaction with current ob-
jects. The revised approach displays a scene exclusively containing
current objects, with previous goals omitted.

5.2 Hypotheses

Based on our design requirements, we formulated the following
hypotheses:

H1. The SA and the AA conditions will allow participants to finish
tasks in a shorter time than with the T condition. We hypothesize
this because we anticipate that SA and AA provide the user with a
better overview of the tasks that have been proposed, as they appear
in the same workspace. In addition, participants will require fewer
interactions in the SA and AA conditions since they do not have to
select which snapshots to view.

H2. The CG condition will allow participants to finish tasks in a
shorter time than the SG condition. We hypothesized this because the
CG condition provides the participant with a more comprehensive
view of the order of the tasks already assigned, so they can better
focus on the current task.
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Figure 10: (a) The seven pieces from a Soma cube. (b—c) Examples
of assembled shapes.

(a)

H3. Participants will prefer the T condition to the SA and AA
conditions. We believe that the T condition presents the least amount
of information in the focused scene, so participants do not need to
differentiate between the main object and the preceding ones. As a
result, participants would prefer it to SA and AA, which are harder
to parse.

5.3 Methods
5.3.1 Participants

We recruited 19 participants by email to our department email lists
and posted flyers. Of the 19 participants, two did not complete
the study: one failed to follow the instructions given by the study
coordinator, and the other did not complete the study due to time
constraints. For the remaining 17 participants (four female, age
18-33, average 23.6) who completed the user study, seven had no
prior experience with AR/VR, seven had used AR/VR several times,
one owned a VR headset for gaming, and two used VR for long-term
jobs or research. Each participant received a 15 USD gift card as
compensation. No participant in our formal study participated in the
pilot studies in Section 5.1.

5.3.2 Study Design

We used a within-subject design for our study. The study had two
variables: (SA, AA, T) x (CG, SG), resulting in six conditions. The
order in which the blocks appeared was counterbalanced based on the
condition to which each block belonged, ensuring each participant
experienced a different order of conditions. Since we found in our
pilot studies that participants were much slower in the first two trials,
we added three practice trials at the beginning of the study.

In our study, participants were asked to complete 24 tasks in total,
each requiring them to send goals for the assembly of a specified
target shape and subsequently confirm its execution.

To ensure a consistent workload across tasks while maintaining
comprehensibility, we employed seven pieces from a Soma cube.
This design mirrors many real-world assembly tasks where specific
assembly orders, diverse parts, and target shapes are prevalent. Each
virtual piece was distinctly colored using the Color Universal Design
palette [37], facilitating clear differentiation between parts.

Two types of tasks were given to the user:

e Assembly Task (A): Participants began with individual Soma
pieces laid out on a table (Figure 10a) and were tasked with
assembling a target shape (Figure 10b).

Disassemble-then-assemble Task (DA): Participants started
with a pre-assembled shape and were required to dismantle and
lay out those objects and then assemble them to achieve the
target shape (Figure 10b). This adds the need for an additional
step for each object.

Ul Style: B / Line Style: 1

W,/ \

Figure 11: Environment for the user study. The front panel shows the
current task number, conditions, timer, and a guide to build the goal
shape. Users click the “Done” button upon completion of each task.

Participants worked in the environment shown in Figure 11. For
both task types, A and DA, a three-step guide image was provided
on a front panel to assist participants in reaching the final shape. The
guide was structured as follows: the first step showed the placement
of the lowest two pieces, the second showed the next three, and the
final step showed the last two.

For each of the six conditions, a participant ran two assembly task
trials and two disassemble-then-assemble task trials. The participant
was told to click Done once they complete assigning all goals and
handle every confirmation request. Task completion time is defined
as the duration from the start of the task to when the Done button is
pressed.

To maintain consistency and stability across study participants
and trials, we implemented a simplified simulation of execution
rather than using our actual URS robot and path planner. We did not
use the real robot system because its noisy sensor inputs could cause
confounds. We suppressed path planning because RRT and many
other path planners use randomization, so the same goal might yield
different paths each time, resulting in additional confounds. Each
instruction was executed sequentially with a fixed duration of 20
seconds, and participants were always provided with a correct exe-
cution result for confirmation. Since the decision to accept the error
or request a retry on execution involves subjective discrepancies, we
consistently presented accurate simulations, eliminating the need for
users to request retries.

5.3.3 Procedure

We used the equipment mentioned in Section 3.4. Before each
session, the headset was sanitized using 70% isopropanol. Each
participant was first welcomed by the study coordinator and pre-
sented with an information sheet. After giving informed consent,
the participant was then introduced to the study flow and given the
Stereo Optical Co. Inc. Stereo Fly Test (SFT) [44], which contains
nine questions, to screen for stereo vision, the Ishihara Pseudo-
Isochromatic Plate (PIP) test [17] to screen for color deficiencies,
to screen for spatial ability. Two participants answered five of the
SFT questions correctly, one answered six correctly, two answered
seven correctly, one answered eight correctly, and the rest answered
all correctly. For the PIP test, all participants answered all questions
correctly. While the SFT and PIP results were not used to determine
eligibility for the study, we use them to help explain the performance
differences between participants in Section 6.1.

The study coordinator next explained the concept of high-level
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Table 1: Number of outlier trials in each condition. Each task type
under a condition has 34 trials in total.

SA AA T
SG | CG | SG | CG | SG | CG
A 3 1 2 2 2 4
DA | 0 1 0 1 3 0

instructions, followed by a demonstration of the task and three
types of views. Next, the study coordinator put the headset on the
participant and was handed one Quest 2 controller for their dominant
hand. The study coordinator then started the study program. After
starting the program, the study coordinator first calibrated the target
positions to the height of the table. The participant then entered a
“practice mode,” in which the study coordinator explained the study
mechanism and how to move objects, send instructions, and confirm
executions. The participant completed three tasks, each in different
view conditions, and proceeded to the formal study with 24 tasks.
We computed the time the participant finished the tasks and will use
it as the dependent variable in Section 6.1.

Throughout the study, the headset and controller tracking data
and the interactions (Grab, Send, Confirm) were recorded. Over the
session, the study coordinator monitored the participant’s interaction
through a separate display.

After finishing all tasks, the participant was asked to fill out a
questionnaire that included questions on their demographics, an
unweighted NASA TLX [14], and a request to rank the techniques
based on their effectiveness. The TLX survey was modified to use
a 1-7 scale [32], with 1 as best, rather than the original 0-20 scale.
The use of a seven-point scale for workload estimate is justified by
Ames and George [1]. Each participant rated the view conditions and
line conditions for each TLX metric. Images of each visualization
were displayed during the rating process to remind participants of the
visualizations used. We gave only a single questionnaire at the end of
the study. This helped reduce the length of the study, and avoided the
issue that the participant’s criteria for answering the questionnaire
might shift over time. We use the TLX and the preference rankings
results as the dependent variables in Section 6.2. The whole process
took about 60 to 90 minutes for a typical participant to complete.

6 RESULTS
6.1 Task Completion Time

The purpose of our study was to investigate the effectiveness of each
visualization, as measured by trial completion time in Section 5.3.2.
Once the study was concluded, we processed the completion-time
results generated automatically by our system before analyzing them.
To identify outliers, we applied Tukey’s outlier filter [47], computing
the outside fence individually for each condition and user. Trials
that exceeded the value of the third quartile plus 1.5 times the in-
terquartile range were considered outliers. We anticipated that the
task type would have a significant impact on completion time, and
we observed variations in performance among different users, so we
computed the outside fence for each task type for each participant.
Table 1 shows the number of outlier trials in each condition.

The average trial completion time after outlier removal under each
condition is shown in Figure 12. Note that the trial completion time
does not follow a normal distribution, as it was affected by the task
difficulty and individual user performance. Therefore, rather than
directly calculating the standard error of all trials, we used linear
mixed-effects models to calculate the contribution of each factor.
(See the linear mixed-effects model results in the supplementary
material for the standard error.)

All hypotheses were evaluated with a significance level of o =
.05. We employed the MATLAB Statistics and Machine Learning
Toolbox [31] to fit a linear mixed-effects model to our dataset. The
trial completion time served as the observation, while the fixed-effect
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Figure 12: Formal study step-completion time. (a) A tasks. (b) DA
tasks. We do not draw the error bars as the data do not follow a
normal distribution.

variables included the line type, the view, and the task type (assemble
vs disassemble). Additionally, the random-effect variables consisted
of task (defined as the initial and the final shapes assembled with
the Soma pieces) and user ID. There is no interaction term between
random-effect variables. We chose these variables after comparing
the current model to alternative ones using a likelihood ratio test.
Specifically, we compared two models, one with interaction terms
between the fixed-effect variables and one without. The results of the
likelihood ratio test showed that both models fit the data equally well,
indicating a weak interaction between the fixed-effect variables. As
such, we selected the model without interaction terms between the
fixed-effect variables. By comparing different linear mixed-effects
models, we found that neither gender, AR/VR experience, color
vision, nor stereo vision are significant factors. This may be because
the user ID random-effect term could absorb the impacts of gender,
AR/VR experience, stereo vision, and even factors affecting user
performance that were not measured in our study.

That the interaction between the fixed-effect variables is weak
indicates that while the disassembly task took the participants longer
to finish, it did not cause a specific method to perform better or
worse.

To test H1, we analyzed the p-values of the fixed-effect terms for
visualization in our linear mixed-effects model. The p-values for
the SA and the T visualizations are .6198 and .0002, respectively,
indicating that participants completed the steps faster with AA com-
pared to T. To evaluate whether the participants performed faster
with SA than with T, we computed the contrast between the two.
The resulting p-value is .0010, showing the participants performed
faster with SA than with T. Therefore, our results support H1.

To evaluate H2, we analyzed the p-values of the fixed-effect terms
for Line Type in our linear mixed-effects model. The p-value for the
individual condition is .5892, indicating that the individual line type
does not significantly improve the performance. Therefore, H2 is
not supported.

The p-values for the visualization and the task type fixed-effect
terms are < .0001, providing strong evidence for their significant
effects. The model summary can be found in the supplementary
material. The model also yielded effect sizes of n* = 0.3229 (large)
and Cohen’s d = 0.5592 (medium) [4].

6.2 User Feedback

The participants were asked to rank different visualization styles
based on their preferences (Figure 13). The results show that T
was the most preferred style, followed by AA, and finally SA. We
ran a Friedman test on the preference data, which shows that the
differences in preference are significant (p < .0001). We further
analyzed the data using Wilcoxon signed-rank tests to evaluate the
difference in user preference between pairs. The results indicate that
the user preference for T and AA was significantly higher than for

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 31,2024 at 20:52:10 UTC from IEEE Xplore. Restrictions apply.



. =
~ I 7
N &7/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Vote

W1 (Mostliked) =2 3 (Least liked)

Figure 13: Preferences for visualization styles.

Table 2: Number of additional commits made in each condition across
all participants.

SA AA T
SG | CG | SG | CG | SG | CG
A 21 17 | 25 | 24 | 38 11
DA | 20 | 18 | 23 | 21 24 15

SA, with p-values of .0049 and .0253, respectively. Therefore, H3.
is supported. The user preference for AA is higher than SA, with a
p-value of .0068.

To avoid type-I errors, we used the Holm—Bonferroni method [16].
We checked a total of four p-values for the validated hypotheses
(two for H1, two for H3). They are .0002, .0010, .0049, and .0253.
With this order, the p-values are smaller than .05/4, .05/3, .05/2,
and .05/1, respectively, meaning they survive their corresponding
Holm-Bonferroni-corrected c.

The unweighted NASA TLX results for our study are displayed
in Figure 14, along with the p-values for each metric calculated
using Friedman tests. The results indicate that the differences in
physical demand, temporal demand, and effort are statistically signif-
icant. However, there is no significant difference in mental demand,
performance, and frustration ratings between the visualizations.

To further examine the TLX results, we ran Wilcoxon signed-
rank tests on the user ratings on the visualizations. The results
show that T is more physically demanding than SA (p = .0317)
and AA (p = .0088), and T is less temporally demanding than SA
(p = .0469). All other pairs are insignificant. It is worth noting
while the participants found T least temporally demanding than SA
and AA, they spent more time on T than on SA and AA, as shown
in Figure 12.

With regard to user preferences about the line styles, six partici-
pants preferred SG to CG, while the remaining 11 preferred CG to
SG. A Friedman test showed that the difference in preference is not
significant.

For the NASA TLX results, many participants gave the same
rating for the two line styles. Friedman tests show no significant
difference in the TLX metrics for the line styles. The summary of
the TLX results for the line styles can be found in the supplementary
materials.

6.3 Error Analysis

We analyzed the number of times that participants moved the Soma
pieces to the wrong places, committed the goals, and needed to fix
the goals and recommit them. We did this to gain insight into the
errors made by participants in the study. Table 2 shows the number
of additional commits caused by errors the participants made in each
condition.

We compared the number of additional commits made in different
groups of conditions. We first compared it by visualization. SA, AA,
and T have 76, 93, and 88 errors, respectively. A Chi-square test
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Figure 14: Unweighted NASA TLX results for the visualizations.

showed that AA had more errors than SA (p = .033), but the effect
size is small (¢ = 0.18). The differences between (AA, T) and (SA,
T) are not significant.

We then moved to compare the errors by line styles. The SG and
the CG styles had 151 and 106 errors, respectively. A Chi-square test
showed the difference is significant (p < .0001) and the effect size
of the Chi-square test is medium (¢ = 0.32). While our hypothesis
that CG would make participants perform faster than with SG (H2)
was not supported, here the data show that the benefits might lie in a
lower error rate.

7 DISCUSSION

7.1 Comparison between the Aggregated Views and the
Timeline View

The completion time results of our study support H1. Participants
performed better in our tasks with visualizations aggregating the
goals rather than showing them in different WIMs. Previous research
has explored ways to visualize time-series data through aggregation
[18] or through separate views [21]. We investigate the case of
showing spatiotemporal history in VR. One possible explanation for
the completion time results is that while separating the views can
avoid visual clutters, it makes it harder for the users to follow the
flow. Meanwhile, the subjective preference data support H3. The
participants prefer T to SA and AA. One possible explanation is that
the Aggregated Views made it easy to follow the flow, but it was
more cluttered, and the participants needed to spend effort parsing
them, which caused lower preference than T.

7.2 Comparison between the Static and Adaptive Aggre-
gated Views

For the two Aggregated Views, the results in Sections 6.1 to 6.3
show that there is no significant difference in the completion time,
the error rate is slightly higher in AA than in SA, and the study
participants prefer AA to SA. One possible reason causing the two
aggregated to have similar performance might be because, in our
study, each Soma piece was moved only once or twice. If each piece
is required to be moved more times, it is possible that the scene will
become more cluttered, and the user will need to rely on the adaptive
view mechanism to filter out unnecessary information. Future work
can include examining the performance of the two views with more
complicated tasks.

7.3 Comparison between Line Styles

Our completion time data does not support H2. Still, the error
data in Section 6.3 shows that the line styles have an impact on the
performance. With CG, the participants made fewer errors than with
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Figure 15: UR5 robot accomplishing assigned goals at a remote site
in the same setting used in the user study with Soma cubes.

SG. This may be because while the work by Liu et al. [26] provides
a strategy of helping users to distinguish visualizations by using
size, brightness, and transparency, the time limitation in our task is
slightly different from theirs. In our task, the user did not need to
work on the task objects linked by the lines very fast. They only
need to understand them and can work on another different object.
In our task, the benefit lies in a lower error rate rather than in the
completion time data.

7.4 Lessons Learned

From our user study, we found the two Aggregated Views help the
user perform faster than the Timeline View. On the other hand, the
users prefer the Timeline View to the two Aggregated Views. Based
on these findings, we suggest that when creating visualizations for
showing multiple steps for different time points, one should consider
properly aggregating the visualizations in a single view. However,
for a specific application, one might need to conduct a small-scale
study to make sure the level of aggregation is acceptable to the users.

In addition, that SG caused more errors than CG suggests it is
helpful to show the overall task flow using lines. This is similar to
what was suggested in Liu et al. [26], though the task domains are
different. When showing sequential information, one might consider
using the same approach of using different sizes and colors to help
users distinguish successive visualizations.

8 PRroTOTYPE WITH UR5 ROBOT

To demonstrate that our system works with a real robot, we in-
tegrated our system with a physical UR5 robot arm equipped
with a parallel gripper. We made physical Soma pieces with
5.08cmx5.08cmx5.08cm wooden blocks (Figure 15). We ran the
VR user interface with the URS to manipulate the physical Soma
pieces, as demonstrated in the supplementary video.

9 LIMITATIONS AND FUTURE WORK
9.1

The participants in our study were recruited from our institution, and
all were relatively young (Section 5.3.1). Thus it is important to note
that further research is required to establish whether our findings
are applicable to older people. In addition, the proportion of male
participants is relatively high. However, the results in Section 6.1
do not indicate a relationship between gender and performance.
Furthermore, our study employed a single-session design and thus
did not measure the performance of trained users, for whom it is
possible that the results will be different. We would like to address
these limitations in the future.

Subject Population

458

9.2 User Studies with Real Robot

Our VR user study does not use a real robot. We will be conducting
user studies that incorporate the path planner and the robot shown
in Section 8. To achieve this, we will integrate real-time sensor
feedback from the remote site so that the user can judge the results
to decide whether a goal needs to be re-executed.

9.3 Working with Multiple Robots at Multiple Sites

Asynchronous control, where users specify future steps, also allows
human-robot collaboration systems to work with multiple robots at
multiple sites, such as the scenario considered in the testbed by Liu et
al. [27]. In such a case, multiple steps will be executed concurrently,
while the user can work on and specify only one or two steps at a
time. Managing and monitoring multiple robots at multiple sites is
multitasking and is challenging. Future work can include designing
user interfaces to help the user seamlessly transition from assigning
tasks at one site to assigning tasks to another site.

9.4

Our user interface focuses on handling multiple assembly goals.
Some systems, such as the one developed by Senft et al. [43], allow
the user to assign simple actions such as tightening a screw. Such
actions cannot be visualized simply with the task objects’ final
pose. In this case, additional investigation might be needed for
designing interfaces to visualize these actions. As visualizations for
showing actions can be more complicated for the user to understand,
aggregating visualizations could create a more cluttered scene.

Interfaces for Multiple Actions

10 CONCLUSIONS

We explored two approaches for asynchronously assigning, monitor-
ing, and managing assembly goals in VR for high-level robot teleop-
eration. The Aggregated Views aggregate the visualizations, while
the Timeline View shows each step in a separate WIM. Through a
user study, we showed that participants performed better with the
Aggregated Views than with the Timeline View but preferred the
Timeline View. We did not find differences in the impact of differ-
ent line styles on task completion time or participants’ preferences.
However, the error analysis showed that participants made signifi-
cantly more errors with the SG style than with the CG style. The
findings can be applied to future designs for multi-step goal-based
teleoperation.
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