2024 1EEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) | 979-8-3315-0691-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISMAR-Adjunct64951.2024.00189

2024 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)

An XR GUI for Visualizing Messages in ECS Architectures

Ben Yang* Xichen Hef

Jace Lit

Carmine Elvezio® Steven K. Feinerl

Department of Computer Science
Columbia University

Ll ITTE

‘..,:',’:‘ ‘T:i!i‘a EE

Figure 1: A VR scene in our XR GUI. (a) Thin dashed white lines link entities (e.g., VR controllers, traffic controller boxes, and traffic
lights), illustrating their relationships in the Mercury network built on top of Unity. (b) Additional information is presented: entities
are outlined in different colors based on their level of message propagation (yellow for the right VR controller, purple for the traffic
controller box on the right, orange for one set of lights and the controller box back toward the left, and bluish green for the next set
of lights) and linked by red arrowheads. Messages are shown as animated blue arrowheads traveling along links.

ABSTRACT

Entity—Component—System (ECS) architectures are fundamental to
many systems for developing extended reality (XR) applications.
These applications often contain complex scenes and require in-
tricately connected application logic to connect components to-
gether, making debugging and analysis difficult. Graph-based tools
have been created to show actions in ECS-based scene hierarchies,
but few address interactions that go beyond traditional hierarchical
communication. To address this, we present an XR GUI for Mer-
cury (a toolkit to handle cross-component ECS communication)
that allows developers to view and edit relationships and interac-
tions between scene entities in Mercury.

Index Terms: Visualization—Visualization systems and
tools—Visualization toolkits; Human—computer interaction (HCI)-
Interaction paradigms—Virtual reality.

1 INTRODUCTION

Game engines such as Unity and Unreal are commonly used to
build extended reality (XR) applications with hierarchically ar-
ranged entities and components. Unity has experimented with 2D
graph views to facilitate analysis and understanding of entities and
relationships in these applications [16]. There are several open-
source projects that help with code analysis (e.g., [10, 15]), but fo-
cus specifically on understanding event calls or animation flow, and
not visualizing the scene content and its hierarchy directly.

With modern Entity—Component—System (ECS) architectures
[2, 9], it is easy for events to be propagated vertically up and down
the scene hierarchy by transmitting events through the same parent—
child relationships defined by the scene hierarchy. However, it re-
quires more work to configure horizontal communication between

*e-mail: by2297 @columbia.edu
Te-mail: xh2623 @columbia.edu
fe-mail: yl4862@columbia.edu
Se-mail: ce2236@columbia.edu
Je-mail: feiner@cs.columbia.edu

2771-1110/24/$31.00 ©2024 IEEE
DOI 10.1109/ISMAR-Adjunct64951.2024.00189

640

components (e.g., a message to one or more entities that doesn’t
come from a descendant or ancestor), which is common in XR
scenes that have many modular UI components. Communication
of this sort also requires more mental effort to visualize abstractly.
To address these concerns, we are creating an XR GUI that allows
developers to visualize these connections and see messages being
sent between components in real time, both in XR and in a com-
panion 2D editor view.

2 RELATED WORK

As much development of real-time interactive systems occurs in
ECS-enabled environments, the hierarchical relationships between
entities are clearly represented in the scene graph. However, alter-
native visualization methods [3] have been developed to facilitate
understanding of the complex relationships that can form between
components attached to entities, which are often non-hierarchical.

Message communication paradigms are well explored in the
software engineering literature (e.g., [S]) and there has been much
recent work in the visualization of inter-component communica-
tion as game engines have become more popular (e.g., [13]). While
data-flow visualization has long been of interest to the software-
engineering community [1], these visualizations often focus on
highlighting how a particular variable or function is invoked across
entities and components. However, this can be difficult when the re-
lationships between entities and components become more complex
and extend beyond a small set of variables and function invocations.

Shahin et al. [14] examine a variety of techniques for visualizing
software architecture and find that graph-based tools are the most
popular. But 3D applications often have their own considerations
that make traditional 2D graph-based visualization approaches in-
sufficient. For example, Merino et al. [12] visualize software in an
XR headset as 3D urban scenes and found through a user study that
doing so increases codebase comprehension. CodeHouse [8] repre-
sents the source code of a project as a house in an XR headset, with
individual rooms depicting modules of the underlying code. The
Reality Editor [7] is a graph-based XR app that allows end users to
connect Internet-of-Things devices together without writing code
and see the connections.

With the emergence of more complex communication paradigms
for ECS-based systems [4], there is a need for new mechanisms to

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 31,2024 at 20:51:10 UTC from IEEE Xplore. Restrictions apply.

visualize the more abstract relationships between entities and com-
ponents, specifically in the way messages pass between abstract
relay constructs. In particular, XR real-time systems often have
complex scenes whose relationships include ones that are indepen-
dent of a traditional scene hierarchy, leaving developers to visualize
much of the communication network offline. Consider a city scene
in which a user can control traffic lights on a street, as shown in
Figure 1: The relative positions of the user and the lights in the
scene hierarchy are not relevant to controlling the lights. In that
case, how should we display these connections to the developer?
Building on related work, our demo addresses this by using a sepa-
rate node-based visualization of entities and their relationships, and
the messages passed between entities.

3 IMPLEMENTATION

We developed our system in Unity using Mercury [4, 11], a bidirec-
tional messaging framework that standardizes horizontal communi-
cation between components that are not related as an ancestor and
descendant. Our demo runs on a Meta Quest 3 headset using Meta
Quest Link, driven by a computer with an Intel® Core™ i9-11900K
and Nvidia GeForce RTX 4090. Our implementation includes a 3D
XR visualization that shows messages propagating in an interactive
scene and a 2D editor built with the NewGraph [6] package.

3.1

Running a scene in Unity play mode that includes our 2D editor
window will automatically invoke our system, allowing developers
to see connections between Mercury entities in the scene. For ex-
ample, Figure 1(a) visualizes the connections as thin dashed white
lines. Additional information can also be shown. For example, Fig-
ure 1(b) shows red arrowheads on the spatial paths between entities
with Mercury network connections and those entities are outlined
in different colors based on their level of message propagation.

Further, developers can see messages being sent in real-time be-
tween Mercury entities, shown by animated blue arrowheads that
move along the Mercury network paths in Figure 1(b). Mercury
allows developers to filter these messages, potentially causing the
messages to skip relay nodes with specific tags. Remembering the
types of tags assigned to Mercury entities can be challenging. With
our XR GUI, developers can better comprehend Mercury tag filtra-
tion of messages.

Changes to the Mercury network while in Unity play mode are
saved to a log file. After the developer leaves Unity play mode,
they can press an editor button to apply the changes made to the
Mercury network in play mode, allowing the developer to debug
these changes in real-time before considering whether or not to ap-
ply them afterward.

XR Message Visualization

3.2 2D Graph-Based Editor Window

The 2D graph-based editor window visualizes the network of Mer-
cury message relay nodes in a scene as a graph. In Mercury, com-
munication between nodes is achieved by using a routing table of
input or output nodes. We treat this table as an adjacency list to
visualize relationships between entities. Each relay node is repre-
sented as a vertex in the graph, and its immediate connections to
other Mercury entities are represented as edges. The output of a
node is always connected to the input port of another node. The
representation of a node is highly customizable, since any serializ-
able variable can be shown in a Mercury graph node.

Updates to the routing table in the inspector can be displayed
in the GUI upon rebuilding the editor graph, resulting in the ap-
propriate connections being drawn. This is triggered automatically
by listening to the built-in events of the Unity editor, which are
fired when the scene hierarchy is changed or any code assemblies
are recompiled. Advanced developers can improve performance by
disabling the automatic rebuild feature, using the “Refresh” button

641

to do so manually only when necessary, or customizing this func-
tionality by calling RenderGraph () themselves in other scripts.

4 CONCLUSIONS AND FUTURE WORK

We presented an XR UI for visualizing and editing bidirectional
networks separate from the scene hierarchy. Moving forward, we
will expand our system to allow for more comprehensive editing of
relay networks in XR, which will eventually support full scene and
message composition. We intend to release it as an open-source
package.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grants IIS-1514429 and CMMI-2037101.

REFERENCES

[1] G. Abram and L. Treinish. An extended data-flow architecture for
data analysis and visualization. ACM SIGGRAPH Computer Graph-
ics, 29(2):17-21, 1995. doi: 10.1145/204362.204366 1

S. Bilas. A Data-Driven Game Object System. https://www.
gamedevs.org/uploads/data-driven-game-object-system.
pdf, 2002. [Accessed 05-08-2024]. 1

E. Chu and L. Zaman. Exploring alternatives with Unreal engine’s
blueprints visual scripting system. Entertainment Comp., 36:100388,
2021. doi: 10.1016/j.entcom.2020.100388 1

C. Elvezio, M. Sukan, and S. Feiner. Mercury: A messaging frame-
work for modular UI components. In Proc. CHI 2018, pp. 1-12. ACM,
New York, NY, USA, 2018. doi: doi.org/10.1145/3173574.3174162
1,2

E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, Reading, Mass, 1st ed., Nov. 1994. 1
Gentlymad Studios. NewGraph. https://github.com/
Gentlymad-Studios/NewGraph. [Accessed 30-07-2024]. 2

V. Heun, S. Kasahara, and P. Maes. Smarter objects: Using AR tech-
nology to program physical objects and their interactions. In Proc.
CHI ’13 Ext. Abstracts, p. 961-966. ACM, New York, NY, USA,
2013. doi: 10.1145/2468356.2468528 1

A. Hori, M. Kawakami, and M. Ichii. CodeHouse: VR code visualiza-
tion tool. In 2019 Working Conf. on Sfw. Vis (VISSOFT)., pp. 83-87,
2019. doi: 10.1109/VISSOFT.2019.00018 1

A. Martin. Entity Systems are the future of MMOG devel-
opment. https://new.t-machine.org/index.php/category/
entity-systems/, 2007. [Accessed 05-08-2024]. 1

L. Mefisto. UnityEventVisualizer. https://github.com/
MephestoKhaan/UnityEventVisualizer. [Accessed 24-07-
2024]. 1

MercuryMessaging. https://github.com/ColumbiaCGUI/
MercuryMessaging. [Accessed 26-08-2024]. 2

L. Merino, A. Bergel, and O. Nierstrasz. Overcoming issues of 3D
software visualization through immersive AR. In 2018 IEEE Work-
ing Conf. on Sfw. Vis. (VISSOFT), pp. 54-64, 2018. doi: 10.1109/
VISSOFT.2018.00014 1

B. Sewell. Blueprints visual scripting for Unreal engine. Packt Pub-
lishing Ltd, 2015. doi: 10.1007/978-1-4842-6396-9 1

M. Shahin, P. Liang, and M. A. Babar. A systematic review of software
architecture visualization techniques. J. of Sys. and Sfw., 94:161-185,
Aug. 2014. doi: 10.1016/j.jss.2014.03.071 1

SolarianZ. UnityPlayableGraphMonitorTool. https://github.
com/SolarianZ/UnityPlayableGraphMonitorTool. [Accessed
24-07-2024]. 1

Unity. Graph View Reference. https://docs.unity3d.com/
ScriptReference/Experimental .GraphView.GraphView.
html. [Accessed 24-07-2024]. 1

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 31,2024 at 20:51:10 UTC from IEEE Xplore. Restrictions apply.

