High-Accuracy Multicommodity Flows via lterative
Refinement

Li Chen =
Carnegie Mellon University, Pittsburgh, PA, USA

Mingquan Ye &
University of Illinois at Chicago, 1L, USA

—— Abstract

The multicommodity flow problem is a classic problem in network flow and combinatorial optimiza-
tion, with applications in transportation, communication, logistics, and supply chain management,
etc. Existing algorithms often focus on low-accuracy approximate solutions, while high-accuracy
algorithms typically rely on general linear program solvers. In this paper, we present efficient
high-accuracy algorithms for a broad family of multicommodity flow problems on undirected graphs,
demonstrating improved running times compared to general linear program solvers. Our main result
shows that we can solve the ¢4, ,-norm multicommodity flow problem to a (1 + ¢) approximation in
time Oy, (M °Mk?log(1/e)), where k is the number of commodities, and Og,(-) hides constants
depending only on g or p. As g and p approach to 1 and oo respectively, ¢, ,-norm flow tends to
maximum concurrent flow.

We introduce the first iterative refinement framework for ¢, ,-norm minimization problems,
which reduces the problem to solving a series of decomposable residual problems. In the case
of k-commodity flow, each residual problem can be decomposed into k single commodity convex
flow problems, each of which can be solved in almost-linear time. As many classical variants
of multicommodity flows were shown to be complete for linear programs in the high-accuracy
regime [Ding-Kyng-Zhang, ICALP’22], our result provides new directions for studying more efficient
high-accuracy multicommodity flow algorithms.

2012 ACM Subject Classification Theory of computation — Continuous optimization

Keywords and phrases High-accuracy multicommodity flow, Iterative refinement framework, Convex
flow solver

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.45
Category Track A: Algorithms, Complexity and Games
Related Version Full Version: https://arxiv.org/pdf/2304.11252

Funding Li Chen: Supported by NSF grants CCF-2106444 and CCF-2330255.
Mingquan Ye: Supported by NSF grant CCF-2240024.

Acknowledgements We thank Richard Peng and Xiaorui Sun for helpful discussions.

1 Introduction

The multicommodity flow problem is a classic challenge in network flow and combinatorial
optimization, where the goal is to optimally route multiple commodities through a network
from their respective sources to their respective sinks, subject to flow conservation constraints.
This problem has significant applications in various fields such as transportation, commu-
nication, logistics, and supply chain management [43, 6, 57, 9, 71]. Currently, the fastest
algorithms for computing high-accuracy solutions involve formulating these problems as
linear programs and employing generic linear program solvers [44, 39, 62, 22]. Notably, linear
programs can be reduced to multicommodity flow problems with near-linear overhead [35, 26].

© Li Chen and Mingquan Ye;
37 licensed under Creative Commons License CC-BY 4.0
51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).

Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson,;
Article No. 45; pp.45:1-45:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:lichenntu@gmail.com
mailto:mye9@uic.edu
https://doi.org/10.4230/LIPIcs.ICALP.2024.45
https://arxiv.org/pdf/2304.11252
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2

High-Accuracy Multicommodity Flows via lterative Refinement

Existing research predominantly focuses on obtaining (1 + €)-approximate solutions for
maximum concurrent k-commodity flows [49, 48, 73, 27, 37, 30, 56, 51], as summarized in
Table 1. However, these low-accuracy algorithms feature running times that are polynomial
in 1/e for computing (1 + ¢)-approximate solutions. In contrast, high-accuracy algorithms
exhibit running times that are polynomial in log(1/¢). Importantly, [26] demonstrated that
any enhancement in the high-accuracy algorithm for the 2-commodity flow problem would
result in a faster general linear program solver.

In this paper, we investigate multicommodity flow problems on undirected graphs,
which possess more structure than their directed counterparts. Prior work has shown
that maximum concurrent 2-commodity flow on undirected graphs can be reduced to two
instances of maximum flow problems, both solvable in almost-linear time [63, 15]. More

2k=1 maximum flows!.

generally, maximum concurrent k-commodity flows can be reduced to
Additionally, researchers have discovered that (1 + €)-approximate algorithms for undirected
graphs are considerably faster than those for directed graphs [42, 41, 66]. Nevertheless, the
fastest high-accuracy algorithms still rely on general linear program solvers. Given these

advancements, we pose the following natural question:

Is it possible to solve multicommodity flow problems on undirected graphs to high
accuracy more efficiently than with general linear program solvers?

This paper gives an affirmative answer and presents high-accuracy algorithms for a large
family of multicommodity flow problems that run in time m!'*°Mpoly(k,log(1/¢)). Our
main result is an algorithm that, for any 1 < ¢ < 2 < p with p = O(1)? and qfll = 0(1),
given edge weights w € R¥ and k vertex demands D = [dy,---,d;] € RV**, solves the
following optimization problem to a (1 + ¢)-approximation with high probability® in time

Oq,p(m”"(l)k2 log(1/¢)):

p

WEF[7%, =) wbt Z\Fegl

min
k-commodity flow F with residue D
ecE

The problem generalizes the maximum concurrent flow problem by setting the edge
weights w,. as the reciprocal of edge capacities and letting ¢ — 1,p — oo. Therefore,
¢, p-norm flows are natural relaxations of the combinatorial maximum concurrent flows.
However, unlike the typical relaxations using the exponential function (exp(congestion)) in
previously efficient approximation schemes, we show that ¢, ,-norm problems themselves
admit high-accuracy solutions. Thus, we provide a large family of multicommodity flows
that admit high-accuracy solutions in almost linear time.

From a technical standpoint, our exploration of multicommodity flows reflects the research
trajectory of ¢,-norm single commodity flows in recent years [46, 1]. This line of study has
led to the development of several novel algorithmic components, some of which have proven
beneficial for classical single-commodity flow as well [40, 7]. More significantly, examining
{,-norm flows, particularly their weighted variants, has directed attention towards the core
challenges of flow problems. We posit that further investigation of ¢, ,-norm flows is likely
to yield similar insights, potentially for variants of multicommodity flows not known to be
hard, such as unit-capacity maximum concurrent flows on undirected graphs.

! To see this, the edge capacity constraint Zj |Fej|< we is equivalent to |Z] € Fej|< ue for any € € {£1}*.

2 We use 5(f(n)) to hide poly log f(n) factors.

3 We use “with high probability” (w.h.p.) throughout to say that an event happens with probability at
least 1 —n~ for any constant C' > 0.

L. Chen and M. Ye 45:3

To summarize, this paper introduces the first iterative refinement framework for solving
¢4 p,-norm minimization problems. The proposed framework reduces the problem to approx-
imately resolving O, ,(klog(1/¢)) instances of decomposable residual problems. For the
k-commodity flow case, each residual problem can be divided into k single commodity flow
problems and solved in km!'*°(!)-time using the almost-linear time convex flow solver [15].
We are the first to combine the iterative refinement framework [2, 3] with the convex flow
solver [15], and give a non-trivial application to £, ,-norm multicommodity flow problem.
As many classical variants of multicommodity flows were shown to be complete for linear
programs in the high-accuracy regime [26], our result provides new directions for studying
more efficient high-accuracy multicommodity flow algorithms.

1.1 Main Result

Given an undirected graph G = (V, E) and parameters ¢ and p, the ¢, ,,-norm multicommodity
flow problem asks for a multicommodity flow F = [f;, -, f;] € RE** that routes the given
demands while minimizing the following objective:

& p

|WF|P? = ra Fjl7] . 1
Gmin _[WFg;, =D wkt | Y| Fy] (1)

e€E j=1

Here, we have

1. B € RF*V | the edge-vertex incidence matrix of G;

2. D=[dy, - -,d;] € RV** representing the set of k vertex demands, where (d;,1y) =0
for each j € [k];

3. w € R¥, the vector of edge weights, and W = diag(w).

This problem can be seen as a generalization of the classical maximum concurrent flow
problem, which aims to find a feasible flow F' that minimizes edge congestion:

i e 2 F1= 107 @)

Here, c € Rf denotes the vector of edge capacities and C = diag(c). Our generalization
allows for fractional vertex demands, meaning that for each commodity j, the demand d; is
not restricted to source-sink pairs.

The main technical result of this paper is presented below.

» Theorem 1. Given any 1 < q < 2 < p with p = O(1) and qfll = O(1) and an error
parameter ¢ > exp(—O(1)), let OPT be the optimal value to Problem (1). There is a
randomized algorithm that computes a feasible flow F to Problem (1) such that

Pq
IWF|,5, < (1+¢)OPT +e.

The algorithm runs in time

1 \7T 1
O <p2 . () m1+0(1) . k2 . IOg)
qg—1 €

with high probability.

ICALP 2024

45:4

High-Accuracy Multicommodity Flows via lterative Refinement

Table 1 A summary of algorithms for the max concurrent k-commodity flow problem.

Year | References | Time Directed?
1990 [64] O(nm" /) Directed
1991 [49] O(mnk/<®) Directed
1996 [34] O(mnk /&) Directed
1996 [61] O(mnk/<?) Directed
2009 [56] O(k*m?/e) Directed
2010 [51] 5((m +k)n/e?) Directed
2012 [42] O(m*®poly(k, 1)) | Undirected
2014 [41] mitog2 /g2 Undirected
2017 [66] O(mk/e) Undirected
2019 [21] (mk)*+°W Jog 1 Directed

1.2 Related Works

In this section, we discuss some work related to the problem and the techniques we use.

Multicommodity Flow

The multicommodity flow problem is a classic problem in network flow and combinatorial
optimization. Multicommodity flow has a wide range of applications in various fields which
are addressed in numerous surveys [43, 6, 57, 9, 71]. These problems can be formulated as
linear programs and solved using generic linear program solvers which remain the fastest
algorithms for computing high-accuracy solutions [44, 39, 62, 22]. On the other hand, linear
programs can be reduced to 2-commodity flow efficiently [35, 26]. Specifically, any linear
program can be reduced to a maximum throughput 2-commodity flow on sparse graphs with
a near-linear overhead [26]. Recently, Brand and Zhang [13] proposed a faster algorithm for
2-commodity flow on non-sparse graphs with running time 5(\/%7#”1/ 2) that outperforms
the existing time complexities O(m®) [22] and O(/mn?2) [36]. For the general k-commodity
flow, they proposed an algorithm with time complexity 5(/€2'5\/77m“*1/).

Much of the existing works focus on finding (1 4 ¢)-approximate solutions. [64] gave the
first FPTAS to the maximum concurrent flow problem with unit capacity (Problem (2)).
Subsequently, a series of work [49, 48, 32, 33, 45, 38, 60, 34, 61, 67] based on Lagrangian
relaxation and linear program decomposition gave algorithms with improved running times
for various versions of the problem with arbitrary edge capacity. These algorithms iteratively
update the current flow and make progress by computing a series of either shortest paths [64,
45, 60, 67], or single commodity minimum cost flows [49, 48, 32, 33, 38, 34, 61]. In particular,
[61] and [34] showed that finding (1 + £)-approximate solutions can be reduced to O(k/e2)
min-cost flow computations which take 6(kmn /e%)-time in total using the fastest min-cost
flow algorithm at the time. Combining with the almost-linear time min-cost flow algorithm
yields a randomized m'*+°Mk/e2-time max concurrent flow algorithm.

Later, a series of works based on multiplicative weight updates (MWU) gave conceptually
simpler and faster algorithms at their time [73, 27, 37, 30, 51]. These methods build the
solution from scratch without re-routing the current flow. At each step, they augment the
current flow via a shortest path computation that favors relatively uncongested paths. [51]
used dynamic APSP data structure to speed up these computations and resulted in an

L. Chen and M. Ye

O((m+ k)n/e?)-time max concurrent flow algorithm. At the time, the fastest max concurrent
flow runs in O(m*5k/22)-time due to the O(m!"®)-time min-cost flow algorithm by [24]. The
result of [51] was a significant improvement in the case when k is large.

Another line of work focused on improving the 1/¢? term. [11] found an FPTAS that
only has O(m) dependence. Later, [56] gave an FPTAS with only O(1/¢) dependence.

In particular, the algorithm by Nesterov runs in O(k2m?2 /e)-time.

Similar to the situation of single commodity flows, researchers have discovered approx-
imate algorithms with m!'®~©(1) dependence on undirected graphs. [42] gave the first
O(m*/3poly(k,1/¢)) algorithm for max concurrent flow. The algorithm implements the
method of [49, 48] using electrical capacity-constrained flows instead of min-cost flows. Each
electrical capacity-constrained flow can be reduced to, using width-reduction MWU [17],
O(m*3poly(k,1/¢)) graph Laplacian systems. In the breakthrough result of [41], they
improved the running time to m!*°M k2 /e2 based on non-Euclidean gradient descent and
fast oblivious routing. Specifically, the algorithm computes an oblivious routing of congestion
m®M) and uses it to reduce the number of gradient descent iterations to m°(") . k/e2. Later,
[66] introduced the idea of area converity and improved the iteration count to O(1/e). This
resulted in the first O(mk/e)-time max concurrent flow algorithm.

£,-Norm Regression

The ¢,-norm regression problem seeks to find a vector x that minimizes ||[Ax — b||,, where
A € R and b € R?. Varying in p interpolates between linear regression (p = 2) and linear
program (p € {1,00}). £p-norm regression has gained significant attention in the past decade
due to its wide range of applications and its implications for other convex optimization
problems [54, 72]. Many works have focused on low-accuracy algorithms for overconstrained
matrices, i.e., d > n [25, 54, 72, 19, 20, 18]. These results show various ways to find another
matrix A with fewer rows such that | Ax|,~ ||Ax|, for any x. Then, approximate £,-norm
regression can be reduced to A and solved in time O(nnz(A) + poly(d,1/¢)) when p is a
constant.

High-accuracy solutions can be found using interior point methods (IPM) in O(y/n) or
O(V/d) iterations [47]. [14] showed a homotopy method that finds high accuarcy solution in
5(n|1/ 2=1/pl) jterations of linear system solvers. Based on the idea of iterative refinement
and width reduction, a series of works [2, 4, 5, 3] obtained improved iteration complexities
of 6p(n(p*2)/(3p*2)) for p > 2. Motivated by the success of sparse linear system solver [59]
and linear program in matrix multiplication time [22], [31] gave a high-accuracy algorithm
that runs in time 6p(n9) for some 0 < w — Q(1), where w is the matrix multiplication time
exponent.

£,-Norm Flows

The ¢, ,-norm formulation can be viewed as a multicommodity extension of the £,-norm flows,
which seeks to find a flow f € RF that routes the given demand and minimizes ||diag(w)f||,
where w € Rf. Varying in p interpolates between the transshipment (p = 1), the electrical
flow (p = 2), and the maximum flow problem (p = 00). Combining the result on £,-norm
regressions and Laplacian solvers, [2] gave an O, (m!*P=2l/(2+1p=2D)_time ¢,-norm flow
algorithm. Opening up the black box of the Spielman-Teng Laplacian solver [68], [46] gave
the first 6p(m1+0(1/ vP))-time high-accuracy £,-norm flow algorithm for unweighted graphs,
i.e., w = 1. The runtime is almost linear for p = w(1) and this was the first almost-linear
time high-accuracy algorithm for a large family of single commodity flow problems. In the
weighted case, [1] gave a p(m!T°() 4 p?/3+°(1))_time high-accuracy £,-norm flow algorithm

45:5

ICALP 2024

45:6

High-Accuracy Multicommodity Flows via lterative Refinement

by combining [46] with the idea of sparsification. The study of the £,-norm flow algorithms
has been proved useful for single commodity flow problems such as unit-capacity maximum
flows, bipartite matchings, and min-cost flows [40, 7].

Continuous Optimization on Graphs

From a technical point of view, our ¢, ,-norm multicommodity flow algorithm is inspired by
the recent trend of applying continuous optimization techniques to solve graph problems.
As one of the earlier results in this direction, [24] combined interior point methods with
fast graph Laplacian system solver [68] and gave an 6(m3/ 2)-time min-cost flow algorithm.
Later, the idea culminated in a decade of works improving max flow and min-cost flow
algorithms [17, 52, 65, 41, 53, 58, 23, 7, 12, 40, 70, 8, 10, 15, 29, 69].

Beyond classical flow problems, the idea of combining continuous and combinatorial
techniques gives improved algorithms for approximate shortest paths in parallel /distributed
setting [50, 74], faster network flow algorithms in distributed setting [28], flow diffusion [16],
£p-norm flows [46, 1], and more.

1.3 Our Approach

For the clarity of the presentation, we focus on the unweighted version of Problem (1), i.e.,
w, = 1 for each edge e, which is shown as follows:

b p

i IF1 = 3 (S0im e

ecE \j=1

The algorithm follows an overall iterative refinement framework. That is, given the current
flow F, we want to find an update direction A so that ||[F + A[[74 is smaller than [|F|[74,.
However, finding the optimal A is equivalent to the original problem. The idea of iterative
refinement is to find a proxy residual function R(A;F) that approximates the Bregman

divergence of [|F|h4,, i.e.,

R(A;F) = |[F + A[[75—[[F[[55,— (G, A),

where G = %HFH{]’?pe RE*F is the gradient. Then we can compute the direction A by
solving the residual problem:

min (G, A)+R(AG) ~ [F+ Al [Flz,
If R(A;F) is a good approximation to the Bregman divergence, i.e., has a “condition number”
of k, we would obtain a (1 4 €)-approximate solution in O(klog(1/e)) iterations. On the
other hand, R(A;F) should be computationally easier to minimize so that we can implement
each iteration efficiently.

For any p > 1, [2] shows that |« 4 d[P can be locally approximated by a linear term plus
an error term 7y, (d; |z|), which behaves quadratically in § when |6|< |z| and as |§|? otherwise.
Our key lemma (Lemma 8) extends the observation to approximating [|F + A|[[24, and gives

a,p a,p

IF + A[P9—[[F[[29,— (G, A) & Oy 4 (k) S EZP ™ 74 (Acjs Fej)
e,j

(3)
+ Op,q(kp)Z\Aejlpq-
e

L. Chen and M. Ye

Intuitively, the Bregman divergence can be approximated by a decomposable function on each
coordinate (e, 7). The contribution of each coordinate (e, j) behaves differently depending
on the absolute value of A.j. When |A.;|< |Fe], it behaves quadratically in |A.;|?; when
|Acj|> |Fej| but smaller than ||f¢[|Z, the summation of & flow values to the power of ¢ on
edge e € F, it is dominated by the term |A.;[P?. The factors k and kP in Equation (3) come
from that given any k-dimensional vector x € R¥, we have

Il < lIx[7 < &2~ [x]p -

Surprisingly, this approximation has a conditioner number of O, ,,(k) and is decomposable
for each commodity j € [k]. To obtain a (1 + ¢)-approximate solution, we only need to solve
Oy p(klog(1/¢)) iterations of residual problems of the form

BgnAm:O (G,A) + O0p4(k) Z ”fellg(pil) Va(Aejs Fej) + Op,q(KP) Z|Aej|pq'
€,j

e.J

The decomposability allows us to use the convex flow solver from [15] and solve the residual
problem to high accuracy for each commodity in almost-linear time. Thus, each iteration
takes km!'*T°(1)_time and the final running time is O, ,(k?m!+°M) log(1/¢)).

1.4 Paper Organization

In Section 2, we introduce some preliminaries before presenting the technical parts, including
the convex flow solver [15] that is the core tool for solving the residual problem and the
iterative refinement framework shown in [2, 3]. We formally present the proposed ¢, ,-norm
k-commodity flow algorithm in Section 3, and then solve the residual problem in Section 4.

2 Preliminaries

2.1 General Notations

We denote vectors (resp. matrices) by boldface lowercase (reps. uppercase) letters. For a
vector x € R™, the scalar x;, i € [n] represents the i-th entry of x. For two vectors x and y,
the vector x -y represents the entrywise product, i.e., (x - y); = z;y;. Besides, for a vector x,
let |x| and x? denote the entrywise absolute value and entrywise power of x respectively,
that is, |x|;= |z;| and (xP); = (z;)P. We use (x,y) to denote the inner product of x,y, i.e.,
(x,y) = x"y. For a vector x, let diag(x) represent a diagonal matrix whose i-th entry is
equal to x;.

Graphs

In this paper, we consider multi-graph G, with edge set F(G) and vertex set V(G). When
the graph is clear from context, we use the short-hand F for E(G) and V for V(G) with
|E|=m and |V|=n. Assume that each edge e € E has an implicit direction, used to define
its edge-vertex incidence matrix B € RF*V. Abusing notation slightly, we often write
e = (u,v) € E, where v and v are the tail and head of e respectively (note that technically
multi-graph does not allow for edges to be specified by their endpoints). We say a flow
f € RF routes a demand d € RY if BTf = d. Given a k-commodity flow F € RF** let
f¢ € R* denote F’s e-th row vector, a vector of k flow values through edge e € E, and
f; € RE denote F’s j-th column vector, the flow vector of commodity j € [k]; let F; ; denote
the entry at the i-th row and j-th column of F.

45:7

ICALP 2024

45:8

High-Accuracy Multicommodity Flows via lterative Refinement

Model of Computation

In this paper, for problem instances encoded with z bits, all algorithms work in fixed-point
arithmetic where words have O(logo(l) z) bits, i.e., we prove that all numbers stored are in
the interval [exp(— logo(l) 2), exp(logo(l) z)].

2.2 Convex Flow Solver

In this paper, we utilize the almost-linear time convex flow algorithm from [15]. Given a set
of computationally efficient convex cost functions on edges {c.(-)}e, the algorithm finds a
single commodity flow f that routes the given demand d and minimizes) _c.(f.) up to a
small exp(—1og®™M m) additive error.

» Assumption 1 (Definition 10.1 and Assumption 10.2, [15]). Let K = O(1) be a parameter

fized throughout. Given a convex cost function ¢ : R — R U {+o0}, ¢ is computationally
def

efficient if there is a barrier function ¥.(f,y) defined on the domain D. = {(f,y)| c(f) < y}
such that

1. The cost is quasi-polynomially bounded, i.e., |c(f)|= O(m® + |f|¥) for all f € R.

2. 1. is a v-self-concordant barrier for some v = O(1), that is, the following holds

Ye(x) = 00, as x approaches the boundary of D,

‘ngc(x) [v, Vv, V” <2 (ngc(x)[v, V])3/2
(Vipe(x),v)? < v - V3o (x)[v, V].

2
,Vx € D.,v € R,

3. The Hessian is quasi-polynomially bounded as long as the function value is 6(1) bounded,
i.e., for all points |f], |y|< m® with ¥.(f,y) < O(1), V2%e(fy) = exp(log®® m)IL.
4. Both Vi, and V%), can be computed and accessed in O(1)-time.

» Theorem 2 (Theorem 10.13, [15]). Let G be a graph, and d € RV be a demand vector.
Given a collection of computationally efficient cost functions on edges {ce(-)}e and their

1+4o(

barriers {1 (-)}e (Assumption 1), there is an algorithm that runs in m'+°M) time and outputs

a flow £ € RE that routes d and for any fized constant C > 0,

f) < mi £ —log®
c(f) < _min c(f") + exp(=log™ m),

f

where ¢(f) = Y ecr Celfe)-

2.3 lterative Refinement

At a high level, the iterative refinement framework introduced by [2] approximates the
Bregman Divergence of the function |z|? with something simpler.

» Definition 3 (Bregman divergence). Given a differentiable conver function g(-) and any
two points X,y in its domain, we define its Bregman divergence as

Dy(y, %) ™ g(y) — g(x) — (Vg(x), A) = / / (A, V2g(x + uld) A)dudt,

where A d:efy—x.

For any p > 1, [2] shows that the Bregman Divergence of |z + §|P can be locally
approximated by an error term ~,(J; |z|), which behaves quadratically in § when [§|< |z| and
as |0|P otherwise.

L. Chen and M. Ye

» Definition 4 ([14]). For z € R, f >0, and p > 1, we define

aer | 57202 [ol= /.
Yoz, f) = {|x|p_ (1=2) /7 |a|> f.

For 1 < ¢ < 2, [3] approximates the Bregman divergence of |z|? using the 7, function we
just defined.

» Lemma 5 (Lemma 2.14, [3]). For q € (1,2] and f,x € R, it holds that

Lol) S 1+ i fr=al 1722 < 205y, |1,

For p > 2, the Bregman divergence of |z|P can be approximated by an z? and an |z|P
term.

» Lemma 6 (Lemma 2.5, [3]). Forp > 2 and f,x € R, it holds that

1
20+

S22 b o o<+ 2l |1 -pl P e < 22 %0 o Pl

Here we present some facts about 7, functions that are helpful.

» Lemma 7 (Lemma 3.3, [2]). For ¢ € (1,2], f,z € R, and t > 1, it holds that

- ’Yq(l'v ‘f|) < ’Yq(txa |f|) < t? "Yq('ra |f|)

3 lterative Refinement Algorithm

In this section, we present the ¢, ,-norm k-commodity flow algorithm based on iterative
refinement and prove Theorem 1.

» Theorem 1. Given any 1 < q < 2 < p with p = O(1) and qul = O(1) and an error

parameter € > exp(—é(l)), let OPT be the optimal value to Problem (1). There is a
randomized algorithm that computes a feasible flow F to Problem (1) such that

Pa
IWF|,5, <(1+¢)OPT +e.

The algorithm runs in time

1 \7* 1
o|p*- <> miteM k2 log -
qg—1 €

with high probability.

In the rest of the paper, we use £(F) to denote the objective of Problem (1), that is,
E(F) = W1,

Our iterative refinement algorithm is based on an approximation to the Bregman diver-
gence of the objective |[WF||P%. Since the objective can be decomposed into a summation of
m seperate terms, i.e.,) . wb?||f¢||29, we approximate the Bregman divergence for each
edge separately. Consequently, we present the following lemma that approximates [|f¢ +x°||P¢
for each edge e. This is the key technical lemma of this paper and its proof can be found in
the full version.

45:9

ICALP 2024

45:10

High-Accuracy Multicommodity Flows via lterative Refinement

» Lemma 8. [(, ,-Norm Iterative Refinement] Given 1 < q <2 <p, and any f,x € R*, we

have
16 -+ x50 I —pal 1301028, 5) > PO D= 5)
e e 1 0
£ -+ 5717 —pal 137~ F17>.8,) < T3~ (Gkp, I
+ 2O s, 6

where we write Y4(X,y) S Zj vq(xj,y;j) for vectors x,y € RE.

Using Lemma 8, we can define the residual function R(x;f) that upper bounds the
difference in the objective, i.e., R(x;f) > [|f + x|[57—||f||?9.

» Definition 9 (Residual Problem). Given two vectors £,x € R, we define R(x;f) as

3(6pk)P

ef — — 7 —
R(x; £) = pall 1157 ([£]7726,x) + 2 [£170 v (6kpx, [£]) + =

(o2

RE’xk

In the setting of Problem 1, given a feasible flow F € , we define the residual problem

w.r.t. F as follows

: . def Pq e. pe
o R(X;F) = Zwe R(x¢;) (6)
ecEl
st. BTX =0.

Note that in the residual problem, the objective is decomposable for each coordinate (e, j).
The decomposability allows us to use the almost-linear time convex flow solver (Theorem 2) to
solve the residual problem to high accuracy. The following lemma summarizes the algorithm
and the proof is deferred to Section 4.

» Lemma 10. Given any feasible flow F € RE*F to Problem (1), there is a randomized
algorithm that runs in time km'*°M) and outputs, for any C > 0, a k-commodity circulation
X such that

R(X;F) < min R(X*;F) + exp (f log® m) .

BTX*=0

Now, we are ready to prove Theorem 1 with the following Algorithm 1. The algorithm
starts with some initial flow and runs in 7T iterations. Each iteration, the algorithm updates
the flow Ft+D « F() 4+ X® with a near-optimal solution to the residual problem. In other
words, given a current flow F, the algorithm updates the flow by solving a simpler residual
problem which is an upper bound to the change in objective value.

To analyze Algorithm 1 and prove Theorem 1, we first relate the value of R(X;F) to the
change in objective value when updating F with X.

» Lemma 11. For any F,X € REX* | we have

E(F+X)—-E(F) <R(X;F) and (7)

E(F +AX) — £(F) > AR(X; F), where A% 0 (k:p <;10_321> ") . (8)

L. Chen and M. Ye 45:11

Algorithm 1 High-Accuracy {¢4,,-norm Multicommodity Flow.

1 procedure LQPNORMFLOW(G,w, D, q,p)

2 Initialize the flow F(®©) € RF** such that BT F(®) = D via Lemma 13.

3 T < O(pAlog(m/e)), where A comes from Lemma 11

4 fort=0toT —1do

5 Solve the residual problem (6) w.r.t. F(*) via Lemma 10 and obtain the
solution X (),

6 FG+) p®) 1 X®)
7 end
8 return F(T)

Proof. By the definition of R(x) and Lemma 8, the Inequality (7) holds trivially. We now
focus on proving Inequality (8). In particular, we show that for any vector f,x € R*, the
following

I+ Ax[lg" = [IFll" = AR(E; x). 9)

Inequality (9) implies Inequality (8) by taking the summation over all edges.
Lemma 8 gives

1+ Ax|g7 =[£G

_ _ plg—1) - g—1 1
> pallf[|PDY(E172F, Ax) + Tllfllé” Dy, (O, |f]) + g 12007 [Ax|[7d.

In addition, we have

3\(6pk)Pa

_ _ A _
NR(x) = Apal £~ DHE112-8,) +]P0, Gk, [F]) + 20—

Iz
In order to prove (9), it suffices to ensure that

plg—1) - P _
P) =0, O, [£]) > T2 905, 6k,),
g—1 1 3A(6pk)Pe

rq
pq—1 a2 IAxlpg = ===

22,

We can consider each entry separately and (9) follows if for any f,x € R, we have

plg—1 A
L) 1) 2 T2 yy(Ghp, 1), (10)
_1 1 pq
q Az |P? > M z|P9q. 1
1 2pq+2
pq—

Inequality (10) follows from Lemma 7

plg—1) plg—1) [A * 7\
. >8t (2) > 7.
G YoMz, [f]) > T otp Yq(6kpz, | f]) > ? Yq(6kpz, | f]),
if we set
x> kp <40321) "> Gk (12)
P

ICALP 2024

45:12

High-Accuracy Multicommodity Flows via lterative Refinement

For Inequality (11) to hold, we need to set

CANFT g
A > 1728k (pqq -) PR (13)

Observe that

pq—l)Pq11 1 1\t 1 a1
= (pg — 1)pa—1 (<e| —— , and
q-—1 q-—1 q—1

pq

pra-1 :p1+pq+1 < p1+p%1 < 2p.

Combining the observation along with (12) and (13), Inequality (9) follows if we set

AzO(kp(m)q)
q—1

This completes the proof. |

Using Lemma 11, we now show that each iteration decreases the objective exponentially.
This is summarized by the following lemma

» Lemma 12 (Convergence Rate). Let F* be the optimal solution to Problem (1). At any
iteration t of Algorithm 1, we have

EFIHDY _g(F*) < (1 — i) (5(F<t>) - S(F*)) + exp(—1log® m).
Proof. Recall that F(+1) = F®) 4+ X(® and X® is a high-accuracy solution to the residual
problem w.r.t. F®®). Lemma 11 and the optimality of X yields
EFUY) — £(FY) < R(XU;FO)
<R ()_1 (F* — F(t)) ;F(t)> + exp(—log® m) (14)
< % (S(F*) — E(F(t))) + exp(—log® m).
We can conclude the lemma as follows:
EFHD) — g(F*) = EFHD) — g(FW) 4+ £FD) — £(F*)
(S(F*) - 5(F<t>)) + exp(—log€ m) + E(FD) — £(F*)

5
= (1 - i\) (S(F(t)) - 5(F*)) + exp(—log® m). <

Then, we show how to find an initial solution efficiently.

» Lemma 13 (Initial Flow). Given an instance of Problem (1), there is an algorithm that
runs in O(pmk) time and finds a feasible flow F(O) € REXF such that E(F©)) < 4mPH1E(F*),
where F* is the optimal solution.

Proof. Let flow F(®) be a (1 + 1/pg)-approximate maximum concurrent flow on (G, w) that
routes the demand D. That is, F(*) is a (1 + 1/pq)-approximate solution to the following
problem

k
min maxweg |Fejl-
BTF=D ec€kE —

j:

L. Chen and M. Ye

Moreover, F(®) can be computed in 5(pmk) time using the algorithm from [66]. Set F = F(©)
and let G = F* be the optimal solution to Problem (1). We can view G as a collection of k
single commodity flows and the approximation guarantee of F yields

1
el < 11+ — e |lglll; - 15
ma w | ||1< +pq> max w, g, (15)

We now analyze the approximation ratio of F. Recall the fact that for any vector x € R¥,
we have ||x||, < m!~1/4 [[x]|, . Combining the observation with Inequality (15), we have

E(G) S EF) =) wh |t

eckl

pq
< g wka ||IE)7T <m (rnauxw6 ||fe||1>
eceE

ecE

1 pq pq
<ml1+ = .
<m (14 20) (e e,)
< 4m Z wg? ngHIfq < AmltPa-p Z wP? ||ge||5q
ecE e
< 4mPTIE(G). .

We use Lemma 12 to analyze the correctness of the algorithm and prove Theorem 1.

Proof of Theorem 1. After T'= O(pAlog(m/e)) iterations, we use Lemma 12 to bound the
objective of the final low F(T) output by Algorithm 1 as follows:

EFM) — g(F*) < <1 - i)T (5(F<0>) - E(F*)) + exp(—log® m) - Tf (1 - i)t
t=0

< exp (—f) (5(F(0)) — E(F*)) + X - exp(—1log® m)
<e€(F*)+e,

where the last inequality comes from £(F(©)) —&(F*) < 4mP+1&(F*) and the sufficiently small
constant C' in Lemma 10. Rearrangement yields that £(F(7)) is at most (1 + ¢)E(F*) + .

We now analyze the runtime. Initialization of F(9) takes 5(pmk) time by Lemma 13.

Each iteration takes km!*°() time due to Lemma 10 and there are T = O(pAlog(1/e))
iterations. Then the runtime bound follows. |

4 Solving the Residual Problem

In this section, we prove Lemma 10.

» Lemma 10. Given any feasible flow F € RE*k to Problem (1), there is a randomized
algorithm that runs in time km*+t°M) and outputs, for any C > 0, a k-commodity circulation
X such that

F) < mi * —logm) .
R(X;F) < BTHIXIPZOR(X i F) +exp (log m)

At a high level, we will show that solving the residual problem is equivalent to solving k
instances of single commodity convex flow problems. Each of them can be solved in m!+o(t)
time via Theorem 2. In particular, we need to construct computationally efficient barriers

for the edge cost functions.

45:13

ICALP 2024

45:14

High-Accuracy Multicommodity Flows via lterative Refinement

Proof of Lemma 10. Recall the residual problem
min R(X;F)
XERE Xk (16)
st. BTX =0.

From Definition 9, we know

k
e — — 7 e —
RIX;F) = > wh- (pQIIf 4P Fey)0 FeXej + 2 IIE 4P~y (6kpX ey, [Fej)
ecFE j=1
3(6pk)P?

)
For each commodity j € [k], we write x; and f; to be the j-th column of X and F respectively,

i.e., the flow that routes the commodity j. The constraint BT X = 0 is equivalent to BTx; = 0
for each j. Thus, (16) is equivalent to solving, for each commodity j, the following single

+

commodity flow problem:

_ e _ T 3(6pk)P

it 3 w2 (sl VLI oo+ LI, Ok, g + 2)
ecE

st. B'x = 0.

(17)

To use Theorem 2 to solve (17), we need to show that the objective is a sum of convex
edge costs with efficient barriers. For each edge e and commodity j, we define the cost ce;(z)
to be

Cej(x) = Aejx + Bejyy(6kpr, |Fej|) + Cej|z|P?, where
Acj = wlt - pa|l)40~V Foj |2 Fey,
€ 7 e —
By gt T g,
3(6pk)?

pg 2N
k
Clearly c.j(z) is a convex function and the objective of (17) is exactly Y . ce;(xe).
We now present computationally efficient barriers for each c.j(x) and show that c.;(x)
satisfies Assumption 1. For clarity, we ignore both subscripts e and j and use f to denote

|F¢j]. That is, we will show that the following function satisfies Assumption 1 for any positive
A B,C f>0,

c(x) =A- x4+ B -, (6kpz; f) + C - |z|P%.

Item 1 holds because p = O(1).

We now show Item 2 using Theorem 9.1.1 from [55]. It says that the function ¢.(z,y) =
—In(y — ¢(z)) is a 1-self-concordance barrier for the epigraph D, = {(x,y)|c(x) < y} if there
is some 8 > 0 such that |’ (z)|< 36|c”(x) /x| holds for all z € R. The derivatives of ¢(z)
have different forms depending on the value of x due to the ~, function.

If |6kpz|< f, we know ~,4(6kpz; f) = 4 f972(6kp)?2? and

d(z) = A+ Bqf??(6kp)*z + Cpq|z|"~ 'sgn(z),
"(x) = Bqfi7?(6kp)* + Cpq(pq — 1)|x|P4~2,
""(z) = Cpq(pq — 1)(pq — 2)|z|P? >sgn(x).

L. Chen and M. Ye

In this case, we have

Bqg i 2(6kp)? 1
_ Bal" O | g — 1)t — o)
|| pg—2

It suffices to set 5 > (pg —2)/3.
Otherwise, |6kpxz|> f. We know ~,(6kpx; f) = |6kpz|?—(1 — £)f9, and

C/l (1,)

d(z) = A+ B(6kp)iq|z|" 'sgn(z) + Cpglz [P 'sgn(x),
"(z) = B(6kp)?q(q — 1)|z|**+Cpq(pg — 1)|z|7~2,
"'(x) = B(6kp)?q(q — 1)(q — 2)|z|* *sgn(z) + Cpq(pq — 1)(pg — 2)|z[** *sgn(z).

In this case, notice that ¢ — 2 < 0 and we have

C”(l‘)
¢ ()] = | B(6kp)alq — 1)(q — 2)[2]*~*+Cpa(pg — 1) (pg — 2)a]"*°|
< B(6kp)?q(q — 1)(2 — q)|z|* *+Cpq(pq — 1)(pg — 2)|z[P4~3.

= B(6kp)?q(q — 1)|z|9*+Cpq(pq — 1)|z|P?~*, and

Setting 8 > max{2 — ¢, pq — 2}/3 yields that

38 dle) > B(6kp)?q(q — 1)(2 —)|=|*"*+Cpq(pq — 1)(pq — 2)|z[P*>> | (z)|.

We conclude Item 2 with the barrier function ¢.(y,z) = —In(y —c(z)). Item 3 follows directly
from Item 1, and Item 4 follows using the explicit formula for ¢(z), (), and ¢ (z).
Now we can apply Theorem 2 to compute, for each j, a flow x; in time m**t°M) such that

c(x;) < min e(x*) 4+ exp(—log® m).
(x;) < min c(x) +exp(~log™ m)

Let X = [x1,X2,---,X}], then we have BTX = 0 and X is optimal to (16) up to a
k exp(— log® m)-additive error, i.e.,

R(X;F) < min R(X*;F) + kexp(—log® m).
BTX*=0

The total runtime is & - m**°() since we compute x; for each j € [k]. <

—— References

1 Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. Almost-linear-time
weighted £,-norm solvers in slightly dense graphs via sparsification. arXiv preprint, 2021.
arXiv:2102.06977.

2 Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement
for £,-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1405-1424, 2019.

3 Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for
{,-regression. arXiv preprint, 2022. arXiv:2211.03963.

4 Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent IRLS algorithm
for p-norm linear regression. Advances in Neural Information Processing Systems (NeurIPS),
32, 2019.

45:15

ICALP 2024

https://arxiv.org/abs/2102.06977
https://arxiv.org/abs/2211.03963

45:16

High-Accuracy Multicommodity Flows via lterative Refinement

10

11

12

13

14

15

16

17

18

19

20

21

22

Deeksha Adil and Sushant Sachdeva. Faster p-norm minimizing flows, via smoothed g-norm
problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 892-910, 2020.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: theory,
algorithms, and applications. Prentice-Hall, Inc., USA, 1993.

Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation control for faster minimum
cost flow in unit-capacity graphs. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 93-104, 2020.

Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Faster sparse minimum cost flow
by electrical flow localization. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 528-539, 2022.

Cynthia Barnhart, Niranjan Krishnan, and Pamela H Vance. Multicommodity flow problems.
Encyclopedia of Optimization, 14:2354-2362, 2009.

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental SSSP and approximate min-cost flow in almost-linear time. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 1000-1008, 2022.
Daniel Bienstock and Garud Iyengar. Solving fractional packing problems in O(1 /€) iterations.
In Proceedings of the thirty-sizth annual ACM symposium on Theory of computing (STOC),
pages 146-155, 2004.

Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In 2020 IEEFE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 919-930, 2020.

Jan van den Brand and Daniel Zhang. Faster high accuracy multi-commodity flow from
single-commodity techniques. arXiv preprint, 2023. arXiv:2304.12992.

Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for Ip
regression provably beyond self-concordance and in input-sparsity time. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1130-1137,
2018.

Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEFE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612—623,
2022.

Li Chen, Richard Peng, and Di Wang. 2-norm flow diffusion in near-linear time. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 540-549, 2022.
Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs. In Proceedings of the forty-third annual ACM symposium on Theory of
computing (STOC), pages 273-282, 2011.

Kenneth Clarkson, Ruosong Wang, and David Woodruff. Dimensionality reduction for tukey
regression. In International Conference on Machine Learning (ICML), pages 1262-1271, 2019.
Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, Xiangrui
Meng, and David P Woodruff. The fast cauchy transform and faster robust linear regression.
SIAM Journal on Computing, 45(3):763-810, 2016.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input
sparsity time. Journal of the ACM (JACM), 63(6):1-45, 2017.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 938-942, 2019.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1-39, 2021.

https://arxiv.org/abs/2304.12992

L. Chen and M. Ye

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in 5(m10/ "logw) time. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
752771, 2017.

Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the fortieth annual ACM symposium on Theory of
computing (STOC), pages 451-460, 2008.

Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney.
Sampling algorithms and coresets for £, regression. SIAM Journal on Computing, 38(5):2060—
2078, 2009.

Ming Ding, Rasmus Kyng, and Peng Zhang. Two-commodity flow is equivalent to linear
programming under nearly-linear time reductions. In 49th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 54:1-54:19, 2022.

Lisa K Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM Journal on Discrete Mathematics, 13(4):505-520, 2000.

Sebastian Forster, Gramoz Goranci, Yang P Liu, Richard Peng, Xiaorui Sun, and Mingquan
Ye. Minor sparsifiers and the distributed laplacian paradigm. In 2021 IEEFE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 989-999, 2022.

Yu Gao, Yang P Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow
faster than goldberg-rao. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 516-527, 2022.

Naveen Garg and Jochen Kénemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. SIAM Journal on Computing, 37(2):630-652, 2007.
Mehrdad Ghadiri, Richard Peng, and Santosh S Vempala. Faster p-norm regression using
sparsity. arXiv preprint arXiv:2109.11537, 2021.

Andrew V Goldberg. A natural randomization strategy for multicommodity flow and related
algorithms. Information Processing Letters, 42(5):249-256, 1992.

Michael D Grigoriadis and Leonid G Khachiyan. Fast approximation schemes for convex
programs with many blocks and coupling constraints. SIAM Journal on Optimization, 4(1):86—
107, 1994.

Michael D Grigoriadis and Leonid G Khachiyan. Approximate minimum-cost multicommodity
flows in 5(572knm) time. Mathematical Programming, 75(3):477-482, 1996.

Alon Itai. Two-commodity flow. Journal of the ACM (JACM), 25(4):596-611, 1978.

Sanjiv Kapoor and Pravin M Vaidya. Speeding up karmarkar’s algorithm for multicommodity
flows. Mathematical programming, 73:111-127, 1996.

George Karakostas. Faster approximation schemes for fractional multicommodity flow problems.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 166-173, 2002.

David Karger and Serge Plotkin. Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing (STOC), pages 18-25, 1995.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the sizteenth annual ACM symposium on Theory of computing (STOC), pages 302-311,
1984.

Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost O(m?*/?)
time. In 2020 IEEFE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 119-130, 2020.

Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms (SODA), pages 217226, 2014.

45:17

ICALP 2024

45:18

High-Accuracy Multicommodity Flows via lterative Refinement

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Jonathan A Kelner, Gary L Miller, and Richard Peng. Faster approximate multicommodity flow
using quadratically coupled flows. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing (STOC), pages 1-18, 2012.

Jeff L Kennington. A survey of linear cost multicommodity network flows. Operations Research,
26(2):209-236, 1978.

Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53-72, 1980.

Philip Klein, Serge Plotkin, Clifford Stein, and Eva Tardos. Faster approximation algorithms
for the unit capacity concurrent flow problem with applications to routing and finding sparse
cuts. STAM Journal on Computing, 23(3):466-487, 1994.

Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. Flows in almost linear time
via adaptive preconditioning. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 902-913, 2019.

Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt (rank) linear system solves.
arXiv preprint, 2019. arXiv:1910.08033.

T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas. Fast approximation
algorithms for multicommodity flow problems. Journal of Computer and System Sciences,
50(2):228-243, 1995.

Tom Leighton, Clifford Stein, Fillia Makedon, Eva Tardos, Serge Plotkin, and Spyros Tragoudas.
Fast approximation algorithms for multicommodity flow problems. In Proceedings of the twenty-
third annual ACM symposium on Theory of Computing (STOC), pages 101-111, 1991.

Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 308-321, 2020.
Aleksander Madry. Faster approximation schemes for fractional multicommodity flow problems
via dynamic graph algorithms. In Proceedings of the forty-second ACM symposium on Theory
of computing (STOC), pages 121-130, 2010.

Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and
back. In 2018 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS),
pages 253-262, 2013.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEFE
5Tth Annual Symposium on Foundations of Computer Science (FOCS), pages 593-602, 2016.
Xiangrui Meng and Michael Mahoney. Robust regression on mapreduce. In International
Conference on Machine Learning (ICML), pages 888-896, 2013.

Arkadi Nemirovski. Interior point polynomial time methods in convex programming. Lecture
notes, 42(16):3215-3224, 2004.

Yurii Nesterov. Fast gradient methods for network flow problems. In Proceeding of the 20th
International Symposium of Mathematical Programming (ISMP), 2009.

Adamou Ouorou, Philippe Mahey, and J-Ph Vial. A survey of algorithms for convex mul-
ticommodity flow problems. Management science, 46(1):126-147, 2000.

Richard Peng. Approximate undirected maximum flows in O(mpoly log(n)) time. In Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA), pages
1862-1867, 2016.

Richard Peng and Santosh Vempala. Solving sparse linear systems faster than matrix multi-
plication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 504-521, 2021.

Serge A Plotkin, David B Shmoys, and Eva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Mathematics of Operations Research, 20(2):257-301,
1995.

Tomasz Radzik. Fast deterministic approximation for the multicommodity flow problem.
Mathematical Programming, 78:43-58, 1996.

James Renegar. A polynomial-time algorithm, based on newton’s method, for linear program-
ming. Mathematical programming, 40(1-3):59-93, 1988.

https://arxiv.org/abs/1910.08033

L. Chen and M. Ye

63

64

65

66

67

68

69

70

71

72

73

74

Bruce Rothschild and Andrew Whinston. Feasibility of two commodity network flows. Opera-
tions Research, 14(6):1121-1129, 1966.

Farhad Shahrokhi and David W Matula. The maximum concurrent flow problem. Journal of
the ACM (JACM), 37(2):318-334, 1990.

Jonah Sherman. Nearly maximum flows in nearly linear time. In 20138 IEEFE 5jth Annual
Symposium on Foundations of Computer Science (FOCS), pages 263269, 2013.

Jonah Sherman. Area-convexity, ¢~ regularization, and undirected multicommodity flow. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 452-460, 2017.

David B Shmoys. Cut problems and their application to divide-and-conquer. Approximation
algorithms for NP-hard problems, pages 192235, 1997.

D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems. SIAM Journal on Matriz Analysis and
Applications, 35(3):835-885, 2014. Available at http://arxiv.org/abs/cs/0607105.

Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P Liu, Richard Peng,
and Aaron Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 543-556, 2022.

Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, MDPs, and ¢;-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 859-869, 2021.

I-Lin Wang. Multicommodity network flows: A survey, part i: Applications and formulations.
International Journal of Operations Research, 15(4):145-153, 2018.

David Woodruff and Qin Zhang. Subspace embeddings and /,-regression using exponential
random variables. In Conference on Learning Theory (COLT), pages 546567, 2013.

Neal E. Young. Randomized rounding without solving the linear program. In Proceedings of
the Sizth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 170-178,
1995.

Goran Zuzic, Gramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun. Universally-
optimal distributed shortest paths and transshipment via graph-based ¢;-oblivious routing.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2549-2579, 2022.

45:19

ICALP 2024

	1 Introduction
	1.1 Main Result
	1.2 Related Works
	1.3 Our Approach
	1.4 Paper Organization

	2 Preliminaries
	2.1 General Notations
	2.2 Convex Flow Solver
	2.3 Iterative Refinement

	3 Iterative Refinement Algorithm
	4 Solving the Residual Problem

