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ABSTRACT

Fixture layout design critically impacts the shape deformation of large-scale sheet parts and the
quality of the final product in the assembly process. The existing works focus on developing
Mathematical-Optimization (MO)-based methods to generate the optimal fixture layout via inter-
acting with Finite Element Analysis (FEA)-based simulations or its surrogate models. Their limita-
tions can be summarized as memorylessness and lack of scalability. Memorylessness indicates that
the experience in designing the fixture layout for one part is usually not transferable to others.
Scalability becomes an issue for MO-based methods when the design space of fixtures is large.
Furthermore, the surrogate models might have limited representation capacity when modeling
high-fidelity simulations. To address these limitations, we propose a learning-based framework,
SmartFixture, to design the fixture layout by training a Reinforcement learning agent through dir-
ect interaction with the FEA-based simulations. The advantages of the proposed framework
include: (i) it is generalizable to design fixture layouts for unseen scenarios after offline training;
(i) it is capable of finding the optimal fixture layout over a massive search space. Experiments
demonstrate that the proposed framework consistently generates the best fixture layouts that
receive the smallest shape deformations on the sheet parts with different initial shape variations.
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1. Introduction

With the emerging need for highly customized products, the
flexible design of the manufacturing process has become a
critical research problem for product quality assurance. For
example, fixture layout design in the manufacturing process
directly determines the shape deformation of the final prod-
ucts, especially for those products assembled by large-scale
sheet metal or composite parts. The large-scale sheet parts
usually feature a small ratio between their thickness
and length or width and have been widely used in
manufacturing ship hulls (Du et al., 2021), marine structures
(Parks, 2020), automobiles (Pavlovi¢ et al, 2020), aircraft
(Shroff et al., 2017), etc. However, they are prone to shape
deformations caused by external loading or even gravity.
Fixtures are generally used in the manufacturing process to
locate and support different parts. Thus, appropriately
adjusting the fixture layout for different parts and products
can effectively reduce the shape deformation of sheet metal
or composite parts and further improve the quality of final
products.

In general, fixture layout designs for deformable sheet
parts follow the “N —2 — 17 principle (N > 3) (Cai et al,
1996). The N fixtures are usually placed under the sheet part
to support it and have a significant influence on its shape

deformation. The challenges of fixture layout design mainly
lie in three aspects:

1. Deploying tens of fixtures over thousands of candidate
locations creates a massive design space, which signifi-
cantly raises the computational cost.

2. It can be difficult to formulate the shape deformation
or other quality metrics accurately and adaptively in the
manufacturing process by an explicit expression (e.g.,
physical models).

3. Fixture deployment is repeated from scratch for hetero-
geneous products, which causes duplicated computa-
tional costs.

The problem of fixture layout design is usually formu-
lated as finding the best locations of these N fixtures via the
interaction between a “solver” and an “environment”.
Intuitively speaking, the role of the “solver” is to strategically
generate different layouts of fixtures, and the role of the
“environment” is to take a specific layout to obtain the cor-
responding shape deformation. The development of novel
“solver” and “environment” in existing literature aims to
mitigate or resolve the aforementioned challenges. Various
types of optimization-based methods, such as mathematical
programming, heuristic optimization, etc, have been
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proposed as the “solver” (Huang et al., 2010; Zhong et al,
2023). Although these methods have been specifically tail-
ored to improve computational efficiency, their computa-
tional costs still grow exponentially with the increase of
design space. Furthermore, optimization-based methods are
usually memoryless and lack scalability, which requires them
to repeat the optimization from scratch for each heteroge-
neous product, and thus unable to transfer knowledge into
unseen scenarios.

Learning-based methods have been recently developed to
solve the optimization problem with better generalizability
and the ability to transfer knowledge. It also demonstrated
outstanding performance in dealing with massive search
space. For example, Deep Reinforcement Learning (DRL)
has been developed to master the game of Go (AlphaGo in
2016 and AlphaZero in 2018) and beat the human experts
(Silver et al., 2016; Silver et al, 2018), in which the DRL
learns the principle of the game of Go by interacting with
the “environment”, and can further generalize the know-
ledge into practice. Compared with basic model-based
reinforcement learning, DRL enables high dimensional state
and action spaces, which prepare it for a complex and mas-
sive search space. However, there is limited research work
developing DRL-based methods to optimize the design of
the manufacturing process (i.e., fixture layout for sheet
metal or composite parts). One trial is to apply DRL to
design fixtures for rigid-body products (Low et al., 2020).
However, this work is formulated to place the fixtures over
all the pre-selected candidate locations and then iteratively
eliminate some of them. Furthermore, it assumes the prod-
uct has an ideal shape, and the objective is simply to fix the
product, which may not work well in practice.

Although the manufacturing process shares similar char-
acteristics to the Go game (i.e., massive search space), it is
uniquely governed by physical principles. There is an urgent
need to shed light on how to borrow the idea of AlphaGo
for the design of the manufacturing process. To fill in this
research gap, we propose a physics-guided DRL framework,
SmartFixture, for the automatic fixture layout design in
manufacturing systems. The proposed framework formulates
the fixture layout design as a Markov decision process and
then solves it using the policy improvement algorithm. The
advantages of the proposed SmartFixture can be summarized
into three aspects:

1. SmartFixture provides the first learning-based frame-
work for optimizing fixture layout in manufacturing
systems by directly interacting with finite element ana-
lysis-based simulations.

Table 1. Literature review on fixture layout design.

2. It is highly scalable to process high-dimensional input
data and optimize over a massive search space.

3. It has an outstanding generalization ability to transfer
knowledge into unseen scenarios without further
training.

The remainder of this article is organized as follows.
Section 2 reviews the existing research works on fixture
layout design. Section 3 introduces each building block in
the proposed SmartFixture in detail and summarizes the
training algorithm. Section 4 investigates the performance of
the proposed framework on reducing the shape deformation
of large-scale sheet metal or composite parts with or without
initial shape deformations. Finally, Section 5 concludes this
article. Although in the case study, we mainly focus on sheet
metal or composite parts in a rectangular shape, the pro-
posed approach can also be applicable to other types of
parts.

2. Literature review

The existing literature on fixture layout design can be catego-
rized according to different methods developed as the “solver”
and “environment”, which are summarized in Table 1. It also
clearly distinguishes our proposed method from existing ones,
as it is the first trial to exploit learning-based optimization on
fixture layout design. A detailed literature review is intro-
duced as follows.

Mathematical Optimization (MO)-based have been one
type of widely developed “solvers” for fixture layout design,
and Finite Element Analysis (FEA) is most often used to
build the “environment” to simulate the manufacturing pro-
cess. In this setting, heuristic optimization methods have
been developed because of their strength in solving highly
nonlinear optimization problems. Menassa and DeVries
(1991) proposed the Broyden-Fletcher-Goldfarb-Shanno
optimization algorithm to determine the fixture support loca-
tions and reduce the workpiece deflection caused by assembly
or machining loads. Kulankara et al. (2001) further proposed
to apply a genetic algorithm to simultaneously optimize fix-
ture layout and clamping force for a compliant workpiece.
However, the regularly used heuristic algorithms are easily
trapped in local optima. To tackle this problem, Xing (2017)
proposed to apply global optimization algorithms to generate
the fixture layout for sheet metal assemblies. In addition to
the heuristic optimization algorithms, nonlinear program-
ming methods have also been developed as “solvers”. Cai
et al. (1996) proposed a nonlinear programming method to

Solver\Env. Surrogate Model

System Equation FEA-based Simulation

Heuristic Optimization Kim and Ding (2004)

Yang et al. (2017)

Du et al. (2021) Menassa and DeVries (1991)
Kulankara et al. (2001)

Xing (2017)

Yue and Shi (2018)
Yue et al. (2018)
Du et al. (2019)

Nonlinear Optimization

Mou et al. (2023)
Zhong et al. (2023)

Cai et al. (1996)
Camelio et al. (2004)
Huang et al. (2010)

Learning-based Optimization

SmartFixture (ours)




design the fixture layout through the interaction with FEA
simulation to minimize the part deformation under a given
force. Camelio et al. (2004) further extended the optimization
for a single part into reducing the shape variations for the
final assembled product using nonlinear programming. The
sequential space-filling method is also adapted to generate
the fixture layout over the two-dimensional design space
(Huang et al., 2010). However, this line of research works has
a common issue of high computational cost. The reasons can
be summarized as (i) the computational complexity in opti-
mizing the fixture layout grows exponentially with the
increase of search space; (ii) these methods do not have the
mechanisms to generalize the knowledge into unseen scen-
arios. Thus, whenever a new scenario appears, it usually
repeats from scratch and repetitively requires a massive
amount of simulation from the FEA-based “environment”,
which causes duplicated computational costs.

To tackle this problem, one idea is to improve the compu-
tational efficiency in generating simulations from the FEA-
based “environment”. Surrogate models are proposed to
approximate and replace the FEA methods in serving as the
“environment”. The general idea is to build a high-accuracy
surrogate model to approximate the output from the manu-
facturing process and then use it to replace the FEA method.
For example, a linear state-space variation model was built to
link the fixture layout to the product variation, and an
improved basic exchange algorithm was developed to gener-
ate the fixture layout (Kim and Ding, 2004). Similarly, a
Kriging model was built as a surrogate by training on the
simulations collected from the FEA method, and the cuckoo
search algorithm (a meta-heuristic algorithm) was then
applied to generate the optimal fixture layout by Yang et al.
(2017). Yue and Shi (2018) proposed a grouped Latin
Hypercube Sampling approach to guide the data collection
from the FEA method for training a universal Kriging model
and then developed an optimal feed-forward control algo-
rithm to optimize the control actions to reduce the shape
deviations. Yue et al. (2018) further proposed an Automatic
Optimal Shape Control (AOSC) system for large-scale com-
posite parts by considering different sources of uncertainties
in the assembly process and jointly exploiting FEA simula-
tion, design of experiment (DOE), surrogate modeling, and
multivariable optimization. To improve the optimization
method, Du et al. (2019) extended the framework by incorpo-
rating the idea of sparse learning into the optimization pro-
cess. To improve the performance of the surrogate model,
Yue et al. (2021) first exploited active learning in building the
Gaussian process considering different sources of uncertain-
ties in the assembly process, and Lee et al. (2022) further
extended the Gaussian process by proposing a neural network
Gaussian process considering input uncertainty. Bayesian
optimization is further developed to exploit the established
surrogate model for the shape control of a fuselage (AlBahar
et al, 2024; Wang and Yue, 2024). However, the
“environment” built upon surrogate models still raises con-
cerns about its accuracy, especially for those scenarios that
are not well represented in the training data.
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In addition to the surrogate model, the linearized FEA
system equation is another line of research work that both
improves the computational efficiency and preserves the
accuracy of the FEA-based “environment”. The basic idea is
to directly use the governing system equation to replace the
entire FEA model to serve as the “environment”. For
example, the global stiffness matrix and global load vector
are exported from the FEA model and fed into the direct
stiffness method to efficiently calculate the shape deform-
ation, and a binary integer programming approach is formu-
lated to optimize the fixture layout (Du et al, 2021). Mou
et al. (2023) further utilized the feedback information to
update the shape control model in an online manner to
resolve the mismatch between the digital model and the
physical model. Zhong et al. (2023) integrated the system
equation with the convex relaxation method. Although uti-
lizing the system equation to replace the FEA method
achieves a good trade-off between computational efficiency
and accuracy, its scalability is limited, as it is not intuitive to
export the system equations of the FEA when a more com-
plex simulation is required to better represent the physical
world.

With the development of high-fidelity simulation, the
digital twin concept attracted increasing attention from
researchers, due to its ability to simulate the real manufac-
turing process or even the entire manufacturing system
(Wen et al., 2018; Lutz et al, 2022; Zhong et al, 2022).
Digital twins can serve as the close-to-reality “environment”
to benefit the design and optimization of the manufacturing
process. However, the complexity of a digital twin can make
it challenging to approximate it by surrogate models or sys-
tem equations. Furthermore, the development of the digital
twin also brings a massive search space, which is challenging
for the existing optimization-based methods. Thus, the
digital twin crates interest in improving the “solver” to
make it directly interact with the digital twin and create
scalability and generalizability.

Compared with optimization-based methods, learning-
based methods have good scalability and generalizability to
serve as the “solver”, but are yet to be well investigated in
solving the fixture layout design problem. The major differ-
ence between learning-based methods and optimization-based
methods is that the learning-based methods are designed to
gain experience on existing scenarios and can generalize the
knowledge into unseen scenarios. This property naturally ena-
bles the learning-based methods to be applied in an online
manner after sufficient offline training, which eliminates the
duplicated computational costs on heterogeneous products.
Furthermore, learning-based methods have the ability to effi-
ciently deal with a high-dimensional search space, especially
with the development of deep learning methods (He et al.,
2016). Amongst the learning-based methods developed for
optimization problems, Reinforcement Learning (RL) has
demonstrated an outstanding performance and capability to
interact with complex “environments” to optimize the object-
ive function in a large-scale search space. RL-based methods
have been widely developed to master a large variety of tasks,
including playing games (Silver et al., 2016; Silver et al,
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2018), chip design (Mirhoseini et al., 2021), autonomous
driving (Kiran et al., 2021), and optimizing oil and gas field
development plans (Nasir et al., 2021; He et al., 2022), among
others. Its application in manufacturing systems has started
to attract the interest of researchers, such as the RL for pro-
cess control and defect mitigation (Chung et al., 2022) and
multi-robot fixture planning (Canzini et al, 2024). Both
approaches achieved very promising performance in manu-
facturing systems. However, research gaps still exist in devel-
oping RL-based methods for the design and optimization of
manufacturing processes, due to the complex system
characteristics.

3. SmartFixture: A physics-guided RL methodology

In this section, a physics-guided RL framework, SmartFixture,
is proposed for automatic fixture layout design in a manufac-
turing system. We first give an overview of the proposed
framework wherein we formulate the automatic fixture layout
design as a Markov Decision Process (MDP) that can then be
solved with RL. Then, each module in the proposed frame-
work is introduced in detail.

3.1. SmartFixture framework overview

The objective of the proposed SmartFixture is to provide a
general framework to automatically design the layout of fix-
tures to reduce shape deviation (e.g., the deformation caused
by gravity, the gap between adjacent parts, etc.) in manufac-
turing process. Such a learning-based framework could (i)
transfer knowledge both from the digital twin to the real
manufacturing process and from the manufacturing process
of one product to its similar products and (ii) solve the
large-scale design problem for manufacturing systems. Thus,
the development cycle of a new product can be significantly
reduced.

The process of fixture layout design can be formulated
as an MDP and solved by RL in a setup as visualized in
Figure 1. An FEA simulation inside the ANSYS simulation

software (Madenci and Guven, 2015) is directly used as the
environment to model the physical process accurately. It is
connected to a Deep Neural Network (DNN) that acts as an
RL agent, which learns how to design the fixture layout by
interacting with, and learning from, the environment. In
general, an MDP is a discrete process, and at each time step
t, the environment will generate the observation of current
state s;, and the agent selects the action a; according to the
current policy my(a;|s;), which is a probability distribution
over the action space A conditioned on the observed state
st. The environment evolves to the next state s,.; by taking
the selected action a;, and the reward r, returned by this
action is generated accordingly. Thus, the MDP can be
denoted as a sequence of tuples (s;,a;,7/). An important
assumption in MDP is the Markov property (Howard,
1960), which means the transition to the new state s.; only
depends on its previous state s;.

To formulate the fixture layout design as an MDP, we
initialize the environment with no fixture and add one new
fixture at each time step until the number of fixtures reaches
the control limit. The objective is to automatically design
the fixture layout to minimize the deformation of the large-
scale sheet part. The state is denoted as s; (Section 3.4),
which stores the output from the “environment” (Section
3.2), including the layout of existing fixtures, the current
shape deformation, and the internal stress given the existing
fixtures. The reward is designed to reflect the effect of the
entire set of fixtures (Section 3.3). A larger reward indicates
a smaller final deformation. The action a; denotes the posi-
tion of the newly added fixture (Section 3.5).

3.2. Environment

We employ the Finite Element Method (FEM) (Szab6é and
Babuska, 2021) to build an environment that simulates the
deformation of a large-scale sheet part under different fix-
ture layouts. ANSYS (Madenci and Guven, 2015) is our
chosen simulation platform, as it provides an interface
through which the RL agent can communicate with the
simulation. This is accomplished by utilizing the Mechanical

o . ' ' .

: Initialize (ANSYS GUI): dimension, material, :
1 initial boundary conditions 1

A\
oo

generate

Figure 1. Overview of the entire framework.

[

Environment
(MAPDL Engine)

______________

Mechanical ANSYS Parametric Design
Language (MAPDL) file

input
update




ANSYS Parametric Design Language (MAPDL) (Kaszynski,
2020). Thus, the RL agent can directly receive the output
from the simulation as the current state and generate the
corresponding action to, in turn, update the simulation for
the next time step. We consider two types of sheet parts in
the simulation using different materials. One is a flat sheet
part with the dimension of 2 m x 1 m x 0.002 m (length,
width, thickness) using the structural steel that is commonly
used in ship panel assembly (Du et al., 2021). The other is a
fleet sheet part with the dimension of 2 m X1 m X
0.004 m (length, width, thickness) using a composite material,
which is made of four plies, and the orientations of the four
plies are 90 deg/0 deg/90 deg/0 deg. This specification follows
the setup in Zhang and Shi (2016) and Yue and Shi (2018).
After generating a mesh over the target object, all finite elem-
ent nodes on the bottom surface are candidate locations for
the fixtures. Initial deformations inevitably exist in real-life
sheet metal or composite parts, so our simulation is designed
to generate various initial deformations to mimic this situ-
ation. To do so, our sheet metal or composite parts are fixed
at their center node, and vertical displacements are applied at
the four corners to generate random deformations, as dem-
onstrated in Figure 2. The displacements at each corner are
sampled from [—0.002 m,0.002 m] according to the Latin
Hypercube Design (LHD) (Tang, 1993), thus introducing
warpage to the part. The resulting shapes are then entered as
the starting points (¢ =0) for our fixture location problem.

For more complicated geometries, key measurement
points can be sampled and used to generate initial deforma-
tions. Techniques to morph complex parts into non-nominal
shapes have been proposed in the literature (Luo et al,
2021).

A: Static Structural
Static Structural
Time: 1. s

E Displacement 1

B | Displacement 2 t
[c] Displacement 3 ch
D| Displacement 4

. Fixed Support

0.00 500.00

250.00
Figure 2. Simulation setup to generate initial deformations for the sheet parts.
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3.3. Reward

The objective of fixture layout design is to minimize shape
deformation. Accordingly, the reward is designed in a way
that the objective is achieved by maximizing the cumulative
rewards, which is

0, t<T

= 1
e In . t=T. 1)

In Equation (1), dmax is the maximum magnitude of
deformation over the large-scale sheet part given a specific
fixture layout, and T is the overall number of fixtures. In
manufacturing practice, the objective of fixture layout design
is to ensure that the maximum shape deformation meets the
engineering specification. Thus, the reward of RL is designed
in inverse proportion to the maximum deformation, such
that the maximum deformation can be minimized by maxi-
mizing the reward. In addition, the natural logarithm oper-
ation is applied to downgrade the magnitude of the reward
to facilitate the reward estimation. With the defined reward,
the objective function of the optimization problem can be
formulated as follows:

max E
0, ¢

-t
ZV’TM\& ; (2)
pary

where 0 and ¢ are trainable parameters in the policy and
value functions (introduced in Section 3.6). The discount fac-
tor y € (0,1) reduces the agent’s attention to rewards in the
distant future. In our setup, the objective function indicates
the expected final maximum deformation (after all fixtures
are applied), given the location of the newly applied fixture.

D"] v
' ‘/L‘
1000.00 (mm) 2 A

750.00
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3.4. Graph-based state representation

The state of our problem is built upon the output from the
FEM, given the current fixture layout. With the generated
meshes and nodes on the target sheet part and the corre-
sponding boundary conditions (position of fixtures, gravity,
etc.), the available output from FEM includes the coordinate
of each node (denoted as (x;, y;,z;)), the deformation at each
node compared with the initial shape (denoted as
(0x;, 9yi, 0z;)), and the residual stress at each node (denoted
as (ox;,0y;,0z;)). The state needs to be properly defined to
include the necessary information for the RL agent to select
the next action to achieve the design objective. One unique
challenge in our problem is that the sheet part might have
irregular shapes, which will also change along with different
layouts of fixtures. Thus, to better accommodate various
shapes and different types of meshes, the state in our prob-
lem is represented as a graph built over the nodes, which is
denoted as s = G € RV**M_ The graph is built by finding
the K-Nearest Neighbors (KNN) of each node based on the
pairwise Euclidean distance. Suppose we have N nodes in
all, and each node has a feature with the dimension of M
(M = 3 if the directional deformation (dx;,0y;,dz;) is used
as the feature). In our case, considering that rectangle
meshes are used, the center node in each 3 x 3 block is sur-
rounded by eight neighbor nodes. Thus, the number of
neighbors of each node is set as eight (k = 8) when building
the KNN graph. For better illustration, the process to gener-
ate the state representation from FEM results is demon-
strated in Figure 3.

3.5. Engineering-constrained action space

The action in our problem is to select the location of the
newly added fixture, given the current state. As the fixture
directly contacts and supports the bottom surface of the
large-scale sheet part, the nodes on the bottom surface
determine the candidate locations of fixtures. More specific-
ally, when a node is selected, its coordinate (x;,y;) deter-
mines the location of the fixture, and its coordinate z;
determines the height of the fixture, which is demonstrated

in Figure 4. For example, suppose there are N; (N; < N)
nodes on the bottom surface, and all these nodes are candi-
date locations to place the first fixture.

The action space can be denoted as a matrix A with the
shape of N; x 2 storing all the candidate locations. In most
RL algorithms, the action space remains the same at each
time step, which is inapplicable when designing the fixture
layout because there are two engineering constraints that
need to be considered. First, in an MDP to iteratively add
new fixtures, the locations that already have fixtures are
infeasible to be selected. Second, when designing the layout
of fixtures for a large-scale sheet part, an important rule-
of-thumb experience is to ensure the coverage or exploration
of the target surface using a given number of fixtures. Thus,
placing a fixture close to existing ones is an unfavorable
option. To incorporate these two engineering constraints
into the action space, instead of keeping A unchanged, our
proposed method updates the action space each time after
adding a new fixture, which is denoted as A,. More specific-
ally, we maintain a minimum pairwise distance, 2¢, between
the selected locations for fixtures. Thus, for those existing
fixtures, their neighbor locations within a distance of ¢ will
be set as infeasible, and the candidate locations for the new
fixture will be accordingly reduced to improve the efficiency
(demonstrated in Figure 4). The selection of € is introduced
in the experiment setup (Sections 4.1.1 and 4.2.1).

*
z Node on the
bottom surface Z
Fixture
yrimmm » New fixture

xy)

Feasible locations for new fixture
3 Infeasible locations for new fixture

Figure 4. Action of selecting fixture location.

Output from FEM Pool of node features State
4 N
Coordinate
D€ ]RNX3
N: number of nodes
Each node: [x;,y;,2;] G € RNxkxM

Displacement
AD € RV3
N: number of nodes
Each row: [6x;,8y;, 6z;]

Residual Stress
€ RNX3

N: number of nodes
Each row: [ox;,0y;,07;]

Figure 3. Graph-based state representation from meshes generated by FEM.



3.6. Policy and value functions

The policy function 7mg(a;|s;) and value function V(s;) are
approximated by the DNN, which are demonstrated in
Figure 5. In our setting, we introduce the idea of AlphaGo
Zero (Silver et al., 2017) into the manufacturing and design
field. In AlphaGo Zero, the DNNs for the policy and value
functions have some shared layers. The advantage of this
setting is to reduce the number of parameters (6 and ¢
share some parameters) required in building the model
because some common information used for both the policy
and value functions are captured by the shared module.

The state generated from the environment is represented
as a graph G € RV®M In the shared module, the Graph
Convolutional Layer (GCL) (Wang et al., 2019) is used to
extract features from adjacent nodes. The expression of the
™ GCL is given in Equation (3):

f= > helE -t el o
(i-j)€g

where f! € R% is the feature vector of the I node from
the I'™ GCL; (i,j) represents the edge between node i
and j; ®) and @ are trainable parameters in the ™ GCL;
h(.) is the activation function. The expression of GCL
indicates that it is designed to extract features from a
graph by aggregating and fusing features from adjacent
nodes. By stacking multiple GCLs, the information from
distant nodes can also be aggregated in the feature extrac-
tion. The extracted feature map F e R¥*% from the
shared module is further fed into the policy and value
branches to estimate the probability distribution over the
current action space A; (denoted as mp(asls;)), and the
value of current state s, (denoted as Vy(s;)), respectively.
Both the policy and value branches are modeled by a stack
of Fully Connected (FC) layers.

Policy branch

G € RVXHx3 Shared module

_——— e = ——

: : 1
%% : 1 I
1 1

1 o | o | _ 1

=y ONM O W O

M OCRONO :
; 2 1 1
of i ! 1

F e RNXdL

[

Figure 5. Policy and value functions.

Value branch
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3.7. Proximal policy optimization

The objective of this article is to train the RL agent to gen-
erate the best policy my(als) for the fixture layout design
such that the expected cumulative reward (defined in
Equation (2)) is maximized. The Proximal Policy
Optimization (PPO) is selected to fit the parameters in pol-
icy and value functions (Schulman et al., 2017). The advan-
tages of PPO make it a good fit to solve our problem, which
include: (i) it is an on-policy optimization algorithm, which
is designed to improve the policy at each step to converge
to the best policy; (ii) it restricts the discrepancy between
two adjacent policies, which ensures a stable training pro-
cess. The loss function used in the PPO is introduced as
follows.

The policy and value functions are approximated by the
DNNs and have trainable parameters ) and ¢. In PPO, the
gradient-based method is used to learn these parameters by
optimizing the loss function. For the policy function, the
“clip” function is specifically designed to control the update
between two adjacent policies, which is given in Equations
(4, 5, 6):

/ T\ as|S.
L](St, atyoaoa (,b) = min<9(t|t)GTE0/ (St’ at, ¢)’

Ty (arls)

u <e, Gn“, (s> ar, (]5)) ) , (4)
Tt
Gno, (svand) = ZV’VM - V(/,(st), )
i=0

) (1+eG G>0,
l(aGw““%¢D'_{(1—@G,G<0’ X

o (als)

v : Feasible nodes after action mask
¥: Infeasible nodes afteraction mask

Action
~ (Fixture location)

=

N T wad NI W
A © e
NP 0% o 09,002 WO
B W \4/ \AS NS W 7

ﬁ Action mask

Feasible locations for new fixture
N 3 Infeasible locations for new fixture

1
1
¢l H=RA0)
1
1
1

_———————
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where G is the advantage function describing the difference
between the state value and the cumulative future rewards
given current action, and e € (0,1) defines the limit of
changes.

Equation (4) demonstrates that the ratio of probabilities
for the same action under two adjacent policies is con-
strained within [1—e,1+ ¢]. More specifically, if G >0,
that is, the currently selected action a, can potentially lead
to a better cumulative reward, thus, the probability of select-
ing a; (value of my(a|s;)) should be increased to receive a
better policy. Such an increase is bounded by 1+e.
Similarly, when G < 0, the decrease of my(asls;) will be
bounded by 1 —e.

For the value function, the mean squared error between
the estimated value of the current state and the actual
cumulative reward from the current state is used as the loss
function, which is given in Equation (7). The objective of
this loss function is to train the value function to estimate
the state values accurately

T—t 2
Ly(s1, ) = (qu (st) = Z Virm') (7)
=0

The last term in the PPO loss is the entropy of current
policy 7y(als), which is given in Equation (8). A larger value
of the entropy loss indicates more randomness in the prob-
ability distribution over actions. For example, when the pol-
icy tends to converge to a local optimum (e.g., the
probability of selecting a sub-optimal action is relatively
higher than selecting others), the entropy loss will preserve
the ability of the RL agent to explore other actions to
improve the current policy further:

Ly(ar s, 0) = ~mg(ar]si) log (mo(arls)) " ®)

The PPO loss is the weighted aggregation of L;, L,, and
Ls;, which is given in Equation (9). The objective of model
training is to jointly maximize L; (improve cumulative
reward), minimize L, (accurately estimate the state value),
and maximize L; (preserve the ability in exploration) by
minimizing the PPO loss. Thus, the coefficients 1;, 4,, and
/3 are set as negative, positive, and negative values, respect-
ively

L =E[\L; + JsLy + J5Ls] ©9)

Algorithm 1 Pseudo-code of training the proposed
Smartfixture.

1: Initialize:

0,¢ > initial parameters in policy and value
functions.
7o, Vi > policy and value functions approxi-
mated by DNNG.
env > FEA-based environment
2: Training:
3: for e=1 to E do > E denote the number
of epochs.
4: D.={} > an empty set of sequences in
this epoch.

5 for p=1 to P do > P denote the number of

sequences collected in
each epoch.

6 D, =] > an empty list of tuples

in this sequence

7: fort=1to T do > T is the number of fix-

tures in each sequence.

8: Query state s; from env.

9: a; = Sample from my(as,s;). > 0' are parame-
ters from pre-
vious epoch.

10: Iterate env by feeding 4, and receive reward r;.

11: Store tuple (s, ar, 1) in D,.

12: end for

13: Store D, in D,.

14: end for

15: Evaluate the state values using V and extend each
tuple into (ss a1,V e (s))). > ¢ are parameters
from previous epoch.

16: Calculate the cumulative future rewards and extend
each tuple into (s, ay, 1+, vV, (s)s S0 yress).

17:  Update the parameters 0, ¢ by minimizing the PPO
loss with gradient-based  optimizer. 0,9 —
argmin, 4L = argmin, , Ep, [M1Ly + ALy + A3L5]

18: end for

In summary, the process of training the proposed
SmartFixture using PPO is summarized in Algorithm 1. The
step-wise demonstration to collect the trajectory of a single
episode is shown in Figure 6. In the context of our problem,
it indicates generating the sequence of tuples (s, ay,7¢),t =
L,..., T, by placing fixtures sequentially.

4, Case study

In this section, we will introduce the details of the experi-
ment setup and compare the performances between the pro-
posed method and benchmark methods. Section 4.1
introduces the experiment results on the sheet metal and
composite part without initial shape deformation, which is
used as a proof-of-concept to demonstrate the capability of
the RL-based method. Section 4.2 demonstrates the experi-
ment results on sheet metal and composite parts with differ-
ent initial deformations, which is designed to show the
generalizability of the proposed SmartFixture.

4.1. Case-1: Fixture layout design for ideal parts

4.1.1. Experiment setup

The first experiment is used as a proof-of-concept to dem-
onstrate the effectiveness of the proposed method in gener-
ating the optimal fixture layout to minimize shape
deformations for sheet parts made of metal or composite.
Sheet metal or composite parts are widely used in the manu-
facturing process of many products, such as ship hulls, mar-
ine structures, automobiles, aircraft, etc. The shape control
of sheet parts has a large impact on the quality of final
products. In this case, only the deformation caused by
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Figure 6. Step-wise demonstration of collecting a sequence of tuples.

gravity is considered, and the sheet part, either metal or
composite, is assumed to have negligible initial deforma-
tions. The detailed simulation setup can be referred to in
Section 3.2. The two types of sheet parts share the same
length and width (2 m x 1 m). It indicates these two types
of parts have the same surface size to which fixtures can be
applied. Different RL agents are trained under the same set-
ting to design fixture layouts for the sheet part made of dif-
ferent materials. The state s, here is defined to include the
coordinate of each node and the deformation at each node.
Every time the location of the newly added fixture is
selected by the RL agent, FEA will update the state by simu-
lating deformations over all nodes, given the current fixture
layout. It is worth noting that shape deformation is not
available when the number of fixtures is less than three (at
least three points are needed to determine a plane). Thus,
the shape deformation included in s; is assumed to be uni-
formly zero when t < 3.

There are over a thousand candidate locations for the lay-
out of eight fixtures in our problem. The minimum pairwise
distance € (introduced in Section 3.5) determines the design
space. It is worth noting that the design space with a larger
€ is the subset of the design space with a smaller one, which
is a trade-off between shrinking the design space with engin-
eering insights for better efficiency and enabling the explor-
ation of different layouts. Considering the target surface to
place eight fixtures has the shape of 2 m x 1 m, thus, if
they are placed evenly in two rows along the 2 m edge, the
average pairwise distance among them can be roughly esti-
mated as 0.5 m. In other words, the minimum pairwise dis-
tance is “roughly” at most 0.5 m for the deployment of eight
fixtures over the target surface. To allow a larger design
space, we search the value of e within the range [0.4, 0.45]
m under the same training time and receive the best results
with € = 0.45 m.

To demonstrate the advantage of the proposed method,
we select two types of symmetric layouts (denoted as “Sym

1”7 and “Sym 2” when demonstrating the results) and the
layout generated from the latest heuristic optimization
method (Du et al., 2021) as benchmarks. In practice, the key
rule of thumb for designing the fixture layout is to spread
the programmable fixtures over the target surface evenly.
Thus, the two symmetric layouts are designed according to
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the shape of the target surface of sheet parts (kept the same
for both metal and composite parts). Both symmetric layouts
placed four fixtures at the four corners of the sheet part.
One layout placed the remaining four fixtures in the shape
of a smaller rectangle. The other layout placed one fixture at
the center of the sheet part and placed the remaining three
in the shape of an equilateral triangle. The heuristic opti-
mization method is built upon simulated annealing (denoted
as “SA” or “baseline” when demonstrating the results) fol-
lowing the parameters used in Du et al. (2021), which might
converge to different results when repeated multiple times.
Thus, for each type of sheet part (in metal or composite),
we repeat the SA method five times and report the average
and variance of its performance. To fully demonstrate the
performance of the SA method, each time it is repeated, it
will be terminated after searching 1500 different layouts. In
other words, given the SA method is repeated five times for
each type of sheet part, there will be a total of 1500 x 5 dif-
ferent layouts explored by this method for each type of sheet
part, which requires far more simulations than the proposed
RL method.

4.1.2. Experiment results

The results for the fixture layout optimization of the sheet
metal or composite parts are demonstrated in Figure 7. For
the SA method, we select the best layout (with the smallest
maximum magnitude of deformation) received from five
replications for the experiment. The maximum magnitude of
deformation is calculated to compare the performance of
different layouts. From the results, we can observe: (i) the
fixture layout generated by the proposed method also
includes positions close to corners (i.e., fixtures #3, 5, 7, 8
for sheet metal part and fixtures #1, 2, 3, 4 for sheet com-
posite part), which reveals that the proposed method suc-
cessfully learned some experience consistent to our
intuition; (ii) our proposed method also shows “novelty” in
fixture layout design to receive a smaller overall deformation
by partially sacrificing the symmetric rule that a human
designer commonly follows; (iii) compared with the heuris-
tic-based optimization, the learning-based method captured
some useful rules when designing the fixture layout (ie.,
spread the fixture over target surface).
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Figure 7. Fixture layouts for ideal parts.
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Figure 8. Distribution of the magnitude of deformation (without initial deformations). Note: Five trials represent five replications of the SA method.

To better quantitatively evaluate the performance of our
proposed method, we also demonstrate the magnitude of
deformation over the target surface in boxplot (in Figure 8),
from which we can conclude that for sheet parts made of
steel or composite: (i) the interquartile range of the magni-
tude of deformation (deformations of half of the nodes)
achieved by the proposed method is less than 0.001 m for
the sheet part, which is much better than the benchmark
methods; (ii) the variation of deformations are also
improved by the proposed method; (iii) when repeating the
SA method for five times (highlighted in blue dashed box),
the performance has a relatively large variance over different
trials. For the sheet metal part, the maximum shape defor-
mations over five trials of the SA method receive an average
of 0.00324 m and a standard deviation of 0.0005 m. For the
sheet composite part, the maximum shape deformations
over five trials of the SA method receive an average of
0.00289 m and a standard deviation of 0.0001 m.

In summary, the results demonstrate that our proposed
method successfully learns general principles in fixture

layout design (i.e., placing fixtures close to corners to
improve space-filling) and shows novelty in the overall fix-
ture layout. It consistently outperforms the benchmark
methods on both ideal sheet metal and composite parts and
receives the smallest shape deformation after applying the
designed fixtures.

4.2. Case-2: Fixture layout design for parts with initial
deformations

4.2.1. Experiment setup

In the manufacturing process involving sheet metal and
composite parts, every single part inevitably has some initial
deformations, which will be another factor influencing the
quality of the final product. The initial deformations might
vary among different sheet parts, which require customized
designs of fixture layouts to accommodate different scen-
arios. In our experiment setting, different initial deforma-
tions can be treated as different initial conditions for the
environment. The challenge is that the same action (location



of the fixture) from the RL agent can lead to different
rewards under different scenarios. The heterogeneity of the
environment requires the proposed RL algorithm to under-
stand the general principles of fixture design that can be
generalized to customize the fixture layout design for sheet
parts with different initial deformations.

The FEA simulation shown in Figure 2 can generate sheet
parts made of metal or composite with different initial defor-
mations by specifying the displacements caused by each force.
To better represent all possible initial deformations, an opti-
mal space-filling design (Joseph, 2016) is conducted to deter-
mine the set of combinations of displacements for these four
forces. For each type of sheet part, a total of 25 different ini-
tial deformations are generated. Of these, 20 are randomly
selected to train the proposed SmartFixture, and the remain-
ing five are used to test the model performance. Similarly, the
FEA simulation needs locations of at least three fixtures to
generate the deformation caused by gravity. Thus, only the
initial deformation at each node is available when selecting
the positions of the first three fixtures. The value of ¢ is also
searched within [0.4, 0.45] m, and the best results are received
when € = 0.42 m. Similarly, different RL agents are trained
for sheet parts with different materials on their corresponding
training dataset. During the training, for a specific initial
deformation, it will interact with the environment to collect
the tuples of action, state, and reward as the training sample,
which will be repeated by resetting the environment to its
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initial condition until enough training samples are generated.
We expose the proposed method with 20 different initial
deformations in the training phase and set aside five unseen
scenarios to test the generalizability of learned principles.
Here, we also select the same symmetric fixture layouts and
the SA method as benchmarks. For each testing scenario, the
SA method also repeats five times, and each repetition will be
terminated after 1500 different layouts are generated.

4.2.2. Experiment results

The experiment is designed to train the proposed SmartFixture
to generate fixture layouts for the sheet metal and composite
parts with different initial deformations, respectively. The
results of five unseen scenarios for sheet metal and composite
parts are visualized in Figure 9 and Figure 10, respectively. In
both figures, the first row shows the sheet parts with different
initial deformations, and the rest of the rows show the corre-
sponding fixture layouts generated by different methods. The
results of the SA method are also the best ones over five trials
on each scenario. We found that both the SA method and our
proposed SmartFixture outperformed the symmetric fixture lay-
out in all test scenarios. In addition, SmartFixture is better than,
or comparable to, the SA method in most scenarios, with the
exception of the design point (dp) #14 (“dpl4”) for the sheet
metal part and “dpl7” for the sheet composite part. The reason
can be summarized as (i) the SmartFixture has no exposure to
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Figure 9. Fixture layouts for sheet metal parts with initial deformations.
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Figure 10. Fixture layouts for sheet composite parts with initial deformations.

Table 2. Maximum magnitude of deformation over different test scen-

arios (m).

Metal Composite
Method Mean  Range Std. Mean  Range Std.
Sym1 0.00543 0.00130 0.00045 0.00566 0.00143 0.00058
Sym2 0.00443 0.00077 0.00029 0.00521 0.00083 0.00032
SA (Du et al., 2021) 0.00306 0.00105 0.00039 0.00312 0.00099 0.00036
SmartFixture 0.00264 0.00025 0.00011 0.00295 0.00083 0.00027

these five testing scenarios in training and does not repeat the
optimization process in the testing phase, whereas the SA
method repeats the heuristic optimization process on each scen-
ario and selects the best result; (ii) when applying in the testing
phase, the SmartFixture can efficiently generate the fixture lay-
out at once whereas the result of SA method is selected from
1500 x 5 layouts in our setting.

The summary of the maximum magnitude of deforma-
tions over all the test scenarios is given in Table 2. From the
results, we can conclude that our proposed method receives
consistently outstanding performance with the smallest
mean and variation over different unseen scenarios, which
indicates an outstanding generalization ability.

The deformations over the entire target surface on unseen
scenarios are also demonstrated in the boxplot (Figure 11), in
which the left column demonstrates the five unseen scenarios
for the sheet metal part, and the right column demonstrates
the five unseen scenarios for the sheet composite part. For the
SA method, we demonstrate the deformation distribution

dmax = 0.00290

dimax = 0.00339 dinax = 0.00256

from all five trials, which are shown in blue dashed boxes.
When comparing the results among different trials of the SA
method, we can clearly see a large variation. To better com-
pare the results from our proposed SmartFixture and SA
method, we marked the upper bound and median of the box-
plot in green and red dashed lines, respectively. For sheet
parts made of both types of materials, we can conclude that
the SmartFixture consistently receives the smallest maximum
and median deformations when compared with all benchmark
methods in most cases. In addition, all the median lines in
five test scenarios are below the 0.001 m, which means half of
the measurement points on the target surface have deform-
ation less than 0.001 m.

4.2.3. Step-wise demonstration on learned principles

We further use the sheet metal part as an example to dem-
onstrate the step-wise process of fixture layout generation in
Figure 12 to show the principles of selecting fixture posi-
tions learned by our proposed method. New fixtures are
continuously placed until the total number of fixtures
reaches the limit. The magnitude of deformation jointly
caused by initial deformation and gravity is visualized. We
can observe that:

1. Although the initial deformations are different when the
number of fixtures is small (i.e.,, n < 4), the difference
among test scenarios is not significant because the
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Figure 11. Distribution of the magnitude of deformation (with initial deformations).

effects of gravity dominate the deformations. Thus, the fixtures. For example, when n = 4, the different deform-
locations of the first four fixtures are the same for dif- ation distributions in the highlighted regions lead to differ-
ferent test cases. ent locations of the fifth fixture. Similar observations also
2. Starting from n = 4, the magnitudes of deformations start existed when determining the locations of the remaining
to show different distributions over the sheet metal part three fixtures. The step-wise demonstration reveals that our
(highlighted in white dashed boxes), and such different dis- proposed method learned general principles in determining

tributions lead to different locations of newly added the fixture locations, which can be transferred to unknown
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Figure 12. Step-wise demonstration when generating fixtures for parts with initial deformations.

scenarios. Such findings also indicate that the RL agent
started to master the “game” of fixture layout design via the
interaction with the FEA-based “environment”, just like
how it masters the Go game, which also has the scalability
to handle more complex design problems in the manufac-
turing process.

4.2.4. Discussion on computational complexity

In the training process, the bottleneck of computational cost is
the interaction with the FEA simulation. In the current setup of
simulation, it takes approximately 1second to run the simula-
tion once. Running the simulation once is defined as feeding
the generated action (layout of fixtures) into FEA and calculat-
ing the state and reward (deformation of sheet part). As the RL
algorithm is designed to place a total of eight fixtures sequen-
tially, six runs of simulation are needed to collect one full trajec-
tory of action, state, and reward (the simulation starts to run
after at least three fixtures are placed). Therefore, in the training
phase, if we need to collect trajectories of 1000 different fixture
layouts, there will be 6000 simulations to run, which takes
approximately 100 minutes. When we consider different initial
deformations, we need to further increase the number of differ-
ent layouts explored in the training phase to learn the general
principle that accommodates different scenarios. The real train-
ing of the RL agent (updating model parameters and policy
after collecting the trajectories) is actually very efficient when
deployed the PPO algorithm on the GPU. We usually are not
worried about the time cost of running simulations as there are
multiple solutions to mitigate or resolve this issue. For example,
multiple simulations can run in parallel to simultaneously

collect trajectories for different layouts, which will significantly
improve the efficiency. In addition, the idea of multi-fidelity
simulation is popular. It can efficiently generate simulation
results by hybridly using high-fidelity FEA or low-fidelity surro-
gate models. It is also worth noting that, after training, the RL
algorithm demonstrated outstanding generalizability to be dir-
ectly applied to unseen scenarios without further training,
which has been shown in the results. However, the classic opti-
mization method does not have this capability, which means
that the optimization has to be repeated from scratch whenever
a new scenario arises. It is insufficient in current manufacturing
practice.

In summary, when the initial deformations of sheet parts
vary, the MO-based methods need to repeat the optimiza-
tion process from scratch, whereas our proposed method
demonstrates the generalizability of transferring learned
knowledge and experience to unseen scenarios. The results
indicate that after training, the proposed method can effi-
ciently customize the fixture layout design for sheet parts
according to their initial deformations to achieve promising
performance in reducing shape deformation.

5. Conclusion

Manufacturing process design is an emerging topic that
ensures product quality in advanced manufacturing. In this
article, we propose a learning-based optimization frame-
work, SmartFixture, to directly interact with the RL agent
with FEA-based simulation to optimize the fixture layout
design for large-scale sheet parts. More specifically, the FEA-
based simulation is built to generate deformations of the sheet



metal and composite parts given a specific fixture layout.
The RL agent will iteratively read outputs from FEA and
generate the location of the newly added fixture to update
the boundary conditions in FEA. The case studies demon-
strate that (i) the proposed SmartFixture consistently out-
performs the benchmark methods in designing the fixture
layout to receive a smaller shape deformation; (ii) it also
has a good generalization ability to design fixture layouts
for sheet parts with different initial deformations. The
methodology contributions of the proposed method
include: (i) it builds a highly scalable framework to enable
the interaction directly between learning-based optimiza-
tion and FEA-based simulation, which can be extended to
optimize various types of manufacturing processes; (ii) the
learning-based optimization demonstrated outstanding gen-
eralizability to transfer the learned knowledge to unseen
scenarios. It provided innovative solutions and received
much better performance compared with the traditional
symmetric design of fixture layout, which opened a new
direction in the manufacturing design; (iii) it significantly
extended the scale and complexity of the design space that
can be explored and optimized compared with the heuristic
and nonlinear optimization techniques, which aligns the
practical needs in the design of manufacturing processes.

For future work in this study, we plan to investigate
two directions. First, we plan to extend the simulation
from three aspects: (i) include diversified sheet parts with
arbitrary shapes that are commonly used in the industry,
(ii) consider the multi-stage assembly process, and (iii)
generalize the controllable variables to consider the impact
of both locations and forces of fixture or actuators
on the product shape deviation. Second, we plan to
further improve the developed learning-based optimization
method to (i) consider the cascade dependency among
multi-stage assembly processes to reduce the propagation
and accumulation of shape deviations, (ii) improve the
sample efficiency and reduce the number of required simu-
lations for the assembly process, and (iii) systematically
quantify the uncertainties in the manufacturing process
and evaluate how it will impact the performance of the
proposed method.
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