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ABSTRACT 
Fixture layout design critically impacts the shape deformation of large-scale sheet parts and the 
quality of the final product in the assembly process. The existing works focus on developing 
Mathematical-Optimization (MO)-based methods to generate the optimal fixture layout via inter
acting with Finite Element Analysis (FEA)-based simulations or its surrogate models. Their limita
tions can be summarized as memorylessness and lack of scalability. Memorylessness indicates that 
the experience in designing the fixture layout for one part is usually not transferable to others. 
Scalability becomes an issue for MO-based methods when the design space of fixtures is large. 
Furthermore, the surrogate models might have limited representation capacity when modeling 
high-fidelity simulations. To address these limitations, we propose a learning-based framework, 
SmartFixture, to design the fixture layout by training a Reinforcement learning agent through dir
ect interaction with the FEA-based simulations. The advantages of the proposed framework 
include: (i) it is generalizable to design fixture layouts for unseen scenarios after offline training; 
(ii) it is capable of finding the optimal fixture layout over a massive search space. Experiments 
demonstrate that the proposed framework consistently generates the best fixture layouts that 
receive the smallest shape deformations on the sheet parts with different initial shape variations.
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1. Introduction

With the emerging need for highly customized products, the 
flexible design of the manufacturing process has become a 
critical research problem for product quality assurance. For 
example, fixture layout design in the manufacturing process 
directly determines the shape deformation of the final prod
ucts, especially for those products assembled by large-scale 
sheet metal or composite parts. The large-scale sheet parts 
usually feature a small ratio between their thickness 
and length or width and have been widely used in 
manufacturing ship hulls (Du et al., 2021), marine structures 
(Parks, 2020), automobiles (Pavlovi�c et al., 2020), aircraft 
(Shroff et al., 2017), etc. However, they are prone to shape 
deformations caused by external loading or even gravity. 
Fixtures are generally used in the manufacturing process to 
locate and support different parts. Thus, appropriately 
adjusting the fixture layout for different parts and products 
can effectively reduce the shape deformation of sheet metal 
or composite parts and further improve the quality of final 
products.

In general, fixture layout designs for deformable sheet 
parts follow the “N − 2 − 1” principle (N � 3) (Cai et al., 
1996). The N fixtures are usually placed under the sheet part 
to support it and have a significant influence on its shape 

deformation. The challenges of fixture layout design mainly 
lie in three aspects:

1. Deploying tens of fixtures over thousands of candidate 
locations creates a massive design space, which signifi
cantly raises the computational cost.

2. It can be difficult to formulate the shape deformation 
or other quality metrics accurately and adaptively in the 
manufacturing process by an explicit expression (e.g., 
physical models).

3. Fixture deployment is repeated from scratch for hetero
geneous products, which causes duplicated computa
tional costs.

The problem of fixture layout design is usually formu
lated as finding the best locations of these N fixtures via the 
interaction between a “solver” and an “environment”. 
Intuitively speaking, the role of the “solver” is to strategically 
generate different layouts of fixtures, and the role of the 
“environment” is to take a specific layout to obtain the cor
responding shape deformation. The development of novel 
“solver” and “environment” in existing literature aims to 
mitigate or resolve the aforementioned challenges. Various 
types of optimization-based methods, such as mathematical 
programming, heuristic optimization, etc., have been 
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proposed as the “solver” (Huang et al., 2010; Zhong et al., 
2023). Although these methods have been specifically tail
ored to improve computational efficiency, their computa
tional costs still grow exponentially with the increase of 
design space. Furthermore, optimization-based methods are 
usually memoryless and lack scalability, which requires them 
to repeat the optimization from scratch for each heteroge
neous product, and thus unable to transfer knowledge into 
unseen scenarios.

Learning-based methods have been recently developed to 
solve the optimization problem with better generalizability 
and the ability to transfer knowledge. It also demonstrated 
outstanding performance in dealing with massive search 
space. For example, Deep Reinforcement Learning (DRL) 
has been developed to master the game of Go (AlphaGo in 
2016 and AlphaZero in 2018) and beat the human experts 
(Silver et al., 2016; Silver et al., 2018), in which the DRL 
learns the principle of the game of Go by interacting with 
the “environment”, and can further generalize the know
ledge into practice. Compared with basic model-based 
reinforcement learning, DRL enables high dimensional state 
and action spaces, which prepare it for a complex and mas
sive search space. However, there is limited research work 
developing DRL-based methods to optimize the design of 
the manufacturing process (i.e., fixture layout for sheet 
metal or composite parts). One trial is to apply DRL to 
design fixtures for rigid-body products (Low et al., 2020). 
However, this work is formulated to place the fixtures over 
all the pre-selected candidate locations and then iteratively 
eliminate some of them. Furthermore, it assumes the prod
uct has an ideal shape, and the objective is simply to fix the 
product, which may not work well in practice.

Although the manufacturing process shares similar char
acteristics to the Go game (i.e., massive search space), it is 
uniquely governed by physical principles. There is an urgent 
need to shed light on how to borrow the idea of AlphaGo 
for the design of the manufacturing process. To fill in this 
research gap, we propose a physics-guided DRL framework, 
SmartFixture, for the automatic fixture layout design in 
manufacturing systems. The proposed framework formulates 
the fixture layout design as a Markov decision process and 
then solves it using the policy improvement algorithm. The 
advantages of the proposed SmartFixture can be summarized 
into three aspects:

1. SmartFixture provides the first learning-based frame
work for optimizing fixture layout in manufacturing 
systems by directly interacting with finite element ana
lysis-based simulations.

2. It is highly scalable to process high-dimensional input 
data and optimize over a massive search space.

3. It has an outstanding generalization ability to transfer 
knowledge into unseen scenarios without further 
training.

The remainder of this article is organized as follows. 
Section 2 reviews the existing research works on fixture 
layout design. Section 3 introduces each building block in 
the proposed SmartFixture in detail and summarizes the 
training algorithm. Section 4 investigates the performance of 
the proposed framework on reducing the shape deformation 
of large-scale sheet metal or composite parts with or without 
initial shape deformations. Finally, Section 5 concludes this 
article. Although in the case study, we mainly focus on sheet 
metal or composite parts in a rectangular shape, the pro
posed approach can also be applicable to other types of 
parts.

2. Literature review

The existing literature on fixture layout design can be catego
rized according to different methods developed as the “solver” 
and “environment”, which are summarized in Table 1. It also 
clearly distinguishes our proposed method from existing ones, 
as it is the first trial to exploit learning-based optimization on 
fixture layout design. A detailed literature review is intro
duced as follows.

Mathematical Optimization (MO)-based have been one 
type of widely developed “solvers” for fixture layout design, 
and Finite Element Analysis (FEA) is most often used to 
build the “environment” to simulate the manufacturing pro
cess. In this setting, heuristic optimization methods have 
been developed because of their strength in solving highly 
nonlinear optimization problems. Menassa and DeVries 
(1991) proposed the Broyden–Fletcher–Goldfarb–Shanno 
optimization algorithm to determine the fixture support loca
tions and reduce the workpiece deflection caused by assembly 
or machining loads. Kulankara et al. (2001) further proposed 
to apply a genetic algorithm to simultaneously optimize fix
ture layout and clamping force for a compliant workpiece. 
However, the regularly used heuristic algorithms are easily 
trapped in local optima. To tackle this problem, Xing (2017) 
proposed to apply global optimization algorithms to generate 
the fixture layout for sheet metal assemblies. In addition to 
the heuristic optimization algorithms, nonlinear program
ming methods have also been developed as “solvers”. Cai 
et al. (1996) proposed a nonlinear programming method to 

Table 1. Literature review on fixture layout design.

SolvernEnv. Surrogate Model System Equation FEA-based Simulation

Heuristic Optimization Kim and Ding (2004) 
Yang et al. (2017)

Du et al. (2021) Menassa and DeVries (1991) 
Kulankara et al. (2001) 
Xing (2017)

Nonlinear Optimization Yue and Shi (2018) 
Yue et al. (2018) 
Du et al. (2019)

Mou et al. (2023) 
Zhong et al. (2023)

Cai et al. (1996) 
Camelio et al. (2004) 
Huang et al. (2010)

Learning-based Optimization SmartFixture (ours)
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design the fixture layout through the interaction with FEA 
simulation to minimize the part deformation under a given 
force. Camelio et al. (2004) further extended the optimization 
for a single part into reducing the shape variations for the 
final assembled product using nonlinear programming. The 
sequential space-filling method is also adapted to generate 
the fixture layout over the two-dimensional design space 
(Huang et al., 2010). However, this line of research works has 
a common issue of high computational cost. The reasons can 
be summarized as (i) the computational complexity in opti
mizing the fixture layout grows exponentially with the 
increase of search space; (ii) these methods do not have the 
mechanisms to generalize the knowledge into unseen scen
arios. Thus, whenever a new scenario appears, it usually 
repeats from scratch and repetitively requires a massive 
amount of simulation from the FEA-based “environment”, 
which causes duplicated computational costs.

To tackle this problem, one idea is to improve the compu
tational efficiency in generating simulations from the FEA- 
based “environment”. Surrogate models are proposed to 
approximate and replace the FEA methods in serving as the 
“environment”. The general idea is to build a high-accuracy 
surrogate model to approximate the output from the manu
facturing process and then use it to replace the FEA method. 
For example, a linear state-space variation model was built to 
link the fixture layout to the product variation, and an 
improved basic exchange algorithm was developed to gener
ate the fixture layout (Kim and Ding, 2004). Similarly, a 
Kriging model was built as a surrogate by training on the 
simulations collected from the FEA method, and the cuckoo 
search algorithm (a meta-heuristic algorithm) was then 
applied to generate the optimal fixture layout by Yang et al. 
(2017). Yue and Shi (2018) proposed a grouped Latin 
Hypercube Sampling approach to guide the data collection 
from the FEA method for training a universal Kriging model 
and then developed an optimal feed-forward control algo
rithm to optimize the control actions to reduce the shape 
deviations. Yue et al. (2018) further proposed an Automatic 
Optimal Shape Control (AOSC) system for large-scale com
posite parts by considering different sources of uncertainties 
in the assembly process and jointly exploiting FEA simula
tion, design of experiment (DOE), surrogate modeling, and 
multivariable optimization. To improve the optimization 
method, Du et al. (2019) extended the framework by incorpo
rating the idea of sparse learning into the optimization pro
cess. To improve the performance of the surrogate model, 
Yue et al. (2021) first exploited active learning in building the 
Gaussian process considering different sources of uncertain
ties in the assembly process, and Lee et al. (2022) further 
extended the Gaussian process by proposing a neural network 
Gaussian process considering input uncertainty. Bayesian 
optimization is further developed to exploit the established 
surrogate model for the shape control of a fuselage (AlBahar 
et al., 2024; Wang and Yue, 2024). However, the 
“environment” built upon surrogate models still raises con
cerns about its accuracy, especially for those scenarios that 
are not well represented in the training data.

In addition to the surrogate model, the linearized FEA 
system equation is another line of research work that both 
improves the computational efficiency and preserves the 
accuracy of the FEA-based “environment”. The basic idea is 
to directly use the governing system equation to replace the 
entire FEA model to serve as the “environment”. For 
example, the global stiffness matrix and global load vector 
are exported from the FEA model and fed into the direct 
stiffness method to efficiently calculate the shape deform
ation, and a binary integer programming approach is formu
lated to optimize the fixture layout (Du et al., 2021). Mou 
et al. (2023) further utilized the feedback information to 
update the shape control model in an online manner to 
resolve the mismatch between the digital model and the 
physical model. Zhong et al. (2023) integrated the system 
equation with the convex relaxation method. Although uti
lizing the system equation to replace the FEA method 
achieves a good trade-off between computational efficiency 
and accuracy, its scalability is limited, as it is not intuitive to 
export the system equations of the FEA when a more com
plex simulation is required to better represent the physical 
world.

With the development of high-fidelity simulation, the 
digital twin concept attracted increasing attention from 
researchers, due to its ability to simulate the real manufac
turing process or even the entire manufacturing system 
(Wen et al., 2018; Lutz et al., 2022; Zhong et al., 2022). 
Digital twins can serve as the close-to-reality “environment” 
to benefit the design and optimization of the manufacturing 
process. However, the complexity of a digital twin can make 
it challenging to approximate it by surrogate models or sys
tem equations. Furthermore, the development of the digital 
twin also brings a massive search space, which is challenging 
for the existing optimization-based methods. Thus, the 
digital twin crates interest in improving the “solver” to 
make it directly interact with the digital twin and create 
scalability and generalizability.

Compared with optimization-based methods, learning- 
based methods have good scalability and generalizability to 
serve as the “solver”, but are yet to be well investigated in 
solving the fixture layout design problem. The major differ
ence between learning-based methods and optimization-based 
methods is that the learning-based methods are designed to 
gain experience on existing scenarios and can generalize the 
knowledge into unseen scenarios. This property naturally ena
bles the learning-based methods to be applied in an online 
manner after sufficient offline training, which eliminates the 
duplicated computational costs on heterogeneous products. 
Furthermore, learning-based methods have the ability to effi
ciently deal with a high-dimensional search space, especially 
with the development of deep learning methods (He et al., 
2016). Amongst the learning-based methods developed for 
optimization problems, Reinforcement Learning (RL) has 
demonstrated an outstanding performance and capability to 
interact with complex “environments” to optimize the object
ive function in a large-scale search space. RL-based methods 
have been widely developed to master a large variety of tasks, 
including playing games (Silver et al., 2016; Silver et al., 
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2018), chip design (Mirhoseini et al., 2021), autonomous 
driving (Kiran et al., 2021), and optimizing oil and gas field 
development plans (Nasir et al., 2021; He et al., 2022), among 
others. Its application in manufacturing systems has started 
to attract the interest of researchers, such as the RL for pro
cess control and defect mitigation (Chung et al., 2022) and 
multi-robot fixture planning (Canzini et al., 2024). Both 
approaches achieved very promising performance in manu
facturing systems. However, research gaps still exist in devel
oping RL-based methods for the design and optimization of 
manufacturing processes, due to the complex system 
characteristics.

3. SmartFixture: A physics-guided RL methodology

In this section, a physics-guided RL framework, SmartFixture, 
is proposed for automatic fixture layout design in a manufac
turing system. We first give an overview of the proposed 
framework wherein we formulate the automatic fixture layout 
design as a Markov Decision Process (MDP) that can then be 
solved with RL. Then, each module in the proposed frame
work is introduced in detail.

3.1. SmartFixture framework overview

The objective of the proposed SmartFixture is to provide a 
general framework to automatically design the layout of fix
tures to reduce shape deviation (e.g., the deformation caused 
by gravity, the gap between adjacent parts, etc.) in manufac
turing process. Such a learning-based framework could (i) 
transfer knowledge both from the digital twin to the real 
manufacturing process and from the manufacturing process 
of one product to its similar products and (ii) solve the 
large-scale design problem for manufacturing systems. Thus, 
the development cycle of a new product can be significantly 
reduced.

The process of fixture layout design can be formulated 
as an MDP and solved by RL in a setup as visualized in 
Figure 1. An FEA simulation inside the ANSYS simulation 

software (Madenci and Guven, 2015) is directly used as the 
environment to model the physical process accurately. It is 
connected to a Deep Neural Network (DNN) that acts as an 
RL agent, which learns how to design the fixture layout by 
interacting with, and learning from, the environment. In 
general, an MDP is a discrete process, and at each time step 
t, the environment will generate the observation of current 
state st , and the agent selects the action at according to the 
current policy phðatjstÞ, which is a probability distribution 
over the action space A conditioned on the observed state 
st: The environment evolves to the next state stþ1 by taking 
the selected action at , and the reward rt returned by this 
action is generated accordingly. Thus, the MDP can be 
denoted as a sequence of tuples ðst , at , rtÞ: An important 
assumption in MDP is the Markov property (Howard, 
1960), which means the transition to the new state stþ1 only 
depends on its previous state st:

To formulate the fixture layout design as an MDP, we 
initialize the environment with no fixture and add one new 
fixture at each time step until the number of fixtures reaches 
the control limit. The objective is to automatically design 
the fixture layout to minimize the deformation of the large- 
scale sheet part. The state is denoted as st (Section 3.4), 
which stores the output from the “environment” (Section 
3.2), including the layout of existing fixtures, the current 
shape deformation, and the internal stress given the existing 
fixtures. The reward is designed to reflect the effect of the 
entire set of fixtures (Section 3.3). A larger reward indicates 
a smaller final deformation. The action at denotes the posi
tion of the newly added fixture (Section 3.5).

3.2. Environment

We employ the Finite Element Method (FEM) (Szab�o and 
Babu�ska, 2021) to build an environment that simulates the 
deformation of a large-scale sheet part under different fix
ture layouts. ANSYS (Madenci and Guven, 2015) is our 
chosen simulation platform, as it provides an interface 
through which the RL agent can communicate with the 
simulation. This is accomplished by utilizing the Mechanical 

Figure 1. Overview of the entire framework.
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ANSYS Parametric Design Language (MAPDL) (Kaszynski, 
2020). Thus, the RL agent can directly receive the output 
from the simulation as the current state and generate the 
corresponding action to, in turn, update the simulation for 
the next time step. We consider two types of sheet parts in 
the simulation using different materials. One is a flat sheet 
part with the dimension of 2 m� 1 m � 0:002 m (length, 
width, thickness) using the structural steel that is commonly 
used in ship panel assembly (Du et al., 2021). The other is a 
fleet sheet part with the dimension of 2 m � 1 m�
0:004 m (length, width, thickness) using a composite material, 
which is made of four plies, and the orientations of the four 
plies are 90 deg/0 deg/90 deg/0 deg. This specification follows 
the setup in Zhang and Shi (2016) and Yue and Shi (2018). 
After generating a mesh over the target object, all finite elem
ent nodes on the bottom surface are candidate locations for 
the fixtures. Initial deformations inevitably exist in real-life 
sheet metal or composite parts, so our simulation is designed 
to generate various initial deformations to mimic this situ
ation. To do so, our sheet metal or composite parts are fixed 
at their center node, and vertical displacements are applied at 
the four corners to generate random deformations, as dem
onstrated in Figure 2. The displacements at each corner are 
sampled from ½−0:002 m, 0:002 m� according to the Latin 
Hypercube Design (LHD) (Tang, 1993), thus introducing 
warpage to the part. The resulting shapes are then entered as 
the starting points (t¼ 0) for our fixture location problem.

For more complicated geometries, key measurement 
points can be sampled and used to generate initial deforma
tions. Techniques to morph complex parts into non-nominal 
shapes have been proposed in the literature (Luo et al., 
2021).

3.3. Reward

The objective of fixture layout design is to minimize shape 
deformation. Accordingly, the reward is designed in a way 
that the objective is achieved by maximizing the cumulative 
rewards, which is 

rt ¼

0, t < T

ln
1

dmax
, t ¼ T:

8
<

:
(1) 

In Equation (1), dmax is the maximum magnitude of 
deformation over the large-scale sheet part given a specific 
fixture layout, and T is the overall number of fixtures. In 
manufacturing practice, the objective of fixture layout design 
is to ensure that the maximum shape deformation meets the 
engineering specification. Thus, the reward of RL is designed 
in inverse proportion to the maximum deformation, such 
that the maximum deformation can be minimized by maxi
mizing the reward. In addition, the natural logarithm oper
ation is applied to downgrade the magnitude of the reward 
to facilitate the reward estimation. With the defined reward, 
the objective function of the optimization problem can be 
formulated as follows:

max
h, /
E
XT−t

i¼0
cirtþijst

" #

, (2) 

where h and / are trainable parameters in the policy and 
value functions (introduced in Section 3.6). The discount fac
tor c 2 ð0, 1Þ reduces the agent’s attention to rewards in the 
distant future. In our setup, the objective function indicates 
the expected final maximum deformation (after all fixtures 
are applied), given the location of the newly applied fixture.

Figure 2. Simulation setup to generate initial deformations for the sheet parts.

IISE TRANSACTIONS 5



3.4. Graph-based state representation

The state of our problem is built upon the output from the 
FEM, given the current fixture layout. With the generated 
meshes and nodes on the target sheet part and the corre
sponding boundary conditions (position of fixtures, gravity, 
etc.), the available output from FEM includes the coordinate 
of each node (denoted as ðxi, yi, ziÞ), the deformation at each 
node compared with the initial shape (denoted as 
ðdxi, dyi, dziÞ), and the residual stress at each node (denoted 
as ðrxi, ryi, rziÞ). The state needs to be properly defined to 
include the necessary information for the RL agent to select 
the next action to achieve the design objective. One unique 
challenge in our problem is that the sheet part might have 
irregular shapes, which will also change along with different 
layouts of fixtures. Thus, to better accommodate various 
shapes and different types of meshes, the state in our prob
lem is represented as a graph built over the nodes, which is 
denoted as s ¼ G 2 RN�k�M: The graph is built by finding 
the K-Nearest Neighbors (KNN) of each node based on the 
pairwise Euclidean distance. Suppose we have N nodes in 
all, and each node has a feature with the dimension of M 
(M ¼ 3 if the directional deformation ðdxi, dyi, dziÞ is used 
as the feature). In our case, considering that rectangle 
meshes are used, the center node in each 3� 3 block is sur
rounded by eight neighbor nodes. Thus, the number of 
neighbors of each node is set as eight (k ¼ 8) when building 
the KNN graph. For better illustration, the process to gener
ate the state representation from FEM results is demon
strated in Figure 3.

3.5. Engineering-constrained action space

The action in our problem is to select the location of the 
newly added fixture, given the current state. As the fixture 
directly contacts and supports the bottom surface of the 
large-scale sheet part, the nodes on the bottom surface 
determine the candidate locations of fixtures. More specific
ally, when a node is selected, its coordinate (xi, yi) deter
mines the location of the fixture, and its coordinate zi 
determines the height of the fixture, which is demonstrated 

in Figure 4. For example, suppose there are N1 (N1 < N) 
nodes on the bottom surface, and all these nodes are candi
date locations to place the first fixture.

The action space can be denoted as a matrix A with the 
shape of N1 � 2 storing all the candidate locations. In most 
RL algorithms, the action space remains the same at each 
time step, which is inapplicable when designing the fixture 
layout because there are two engineering constraints that 
need to be considered. First, in an MDP to iteratively add 
new fixtures, the locations that already have fixtures are 
infeasible to be selected. Second, when designing the layout 
of fixtures for a large-scale sheet part, an important rule- 
of-thumb experience is to ensure the coverage or exploration 
of the target surface using a given number of fixtures. Thus, 
placing a fixture close to existing ones is an unfavorable 
option. To incorporate these two engineering constraints 
into the action space, instead of keeping A unchanged, our 
proposed method updates the action space each time after 
adding a new fixture, which is denoted as At: More specific
ally, we maintain a minimum pairwise distance, 2�, between 
the selected locations for fixtures. Thus, for those existing 
fixtures, their neighbor locations within a distance of � will 
be set as infeasible, and the candidate locations for the new 
fixture will be accordingly reduced to improve the efficiency 
(demonstrated in Figure 4). The selection of � is introduced 
in the experiment setup (Sections 4.1.1 and 4.2.1).

Figure 3. Graph-based state representation from meshes generated by FEM.

Figure 4. Action of selecting fixture location.
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3.6. Policy and value functions

The policy function phðatjstÞ and value function V/ðstÞ are 
approximated by the DNN, which are demonstrated in 
Figure 5. In our setting, we introduce the idea of AlphaGo 
Zero (Silver et al., 2017) into the manufacturing and design 
field. In AlphaGo Zero, the DNNs for the policy and value 
functions have some shared layers. The advantage of this 
setting is to reduce the number of parameters (h and / 

share some parameters) required in building the model 
because some common information used for both the policy 
and value functions are captured by the shared module.

The state generated from the environment is represented 
as a graph G 2 RN�k�M: In the shared module, the Graph 
Convolutional Layer (GCL) (Wang et al., 2019) is used to 
extract features from adjacent nodes. The expression of the 
lth GCL is given in Equation (3):

f l
i ¼

X

ði, jÞ2G

hðHl
1ðf

l−1
j − f l−1

i Þ þHl
2f l−1

i Þ, (3) 

where f l
i 2 R

dl is the feature vector of the lth node from 
the lth GCL; ði, jÞ represents the edge between node i 
and j; Hl

1 and Hl
2 are trainable parameters in the lth GCL; 

hð:Þ is the activation function. The expression of GCL 
indicates that it is designed to extract features from a 
graph by aggregating and fusing features from adjacent 
nodes. By stacking multiple GCLs, the information from 
distant nodes can also be aggregated in the feature extrac
tion. The extracted feature map F 2 RN�dL from the 
shared module is further fed into the policy and value 
branches to estimate the probability distribution over the 
current action space At (denoted as phðatjstÞ), and the 
value of current state st (denoted as V/ðstÞ), respectively. 
Both the policy and value branches are modeled by a stack 
of Fully Connected (FC) layers.

3.7. Proximal policy optimization

The objective of this article is to train the RL agent to gen
erate the best policy phðajsÞ for the fixture layout design 
such that the expected cumulative reward (defined in 
Equation (2)) is maximized. The Proximal Policy 
Optimization (PPO) is selected to fit the parameters in pol
icy and value functions (Schulman et al., 2017). The advan
tages of PPO make it a good fit to solve our problem, which 
include: (i) it is an on-policy optimization algorithm, which 
is designed to improve the policy at each step to converge 
to the best policy; (ii) it restricts the discrepancy between 
two adjacent policies, which ensures a stable training pro
cess. The loss function used in the PPO is introduced as 
follows.

The policy and value functions are approximated by the 
DNNs and have trainable parameters h and /: In PPO, the 
gradient-based method is used to learn these parameters by 
optimizing the loss function. For the policy function, the 
“clip” function is specifically designed to control the update 
between two adjacent policies, which is given in Equations 
(4, 5, 6):

L1ðst , at , h
0

, h, /Þ ¼ min

 
phðatjstÞ

p
h
0 ðatjstÞ

Gp
h
0 ðst , at , /Þ,    

u e, Gp
h
0 ðst , at , /Þ

� �
!

, (4) 

Gp
h
0 ðst , at , /Þ ¼

XT−t

i¼0
cirtþi − V/ðstÞ, (5) 

u e, Gp
h
0 ðst , at , /Þ

� �
¼

ð1þ eÞG, G � 0,
ð1 − eÞG, G < 0,

(

(6) 

Figure 5. Policy and value functions.
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where G is the advantage function describing the difference 
between the state value and the cumulative future rewards 
given current action, and e 2 ð0, 1Þ defines the limit of 
changes.

Equation (4) demonstrates that the ratio of probabilities 
for the same action under two adjacent policies is con
strained within ½1 − e, 1þ e�: More specifically, if G � 0, 
that is, the currently selected action at can potentially lead 
to a better cumulative reward, thus, the probability of select
ing at (value of phðatjstÞ) should be increased to receive a 
better policy. Such an increase is bounded by 1þ e:

Similarly, when G < 0, the decrease of phðatjstÞ will be 
bounded by 1 − e:

For the value function, the mean squared error between 
the estimated value of the current state and the actual 
cumulative reward from the current state is used as the loss 
function, which is given in Equation (7). The objective of 
this loss function is to train the value function to estimate 
the state values accurately

L2ðst , /Þ ¼ V/ðstÞ −
XT−t

i¼0
cirtþi

 !2

(7) 

The last term in the PPO loss is the entropy of current 
policy phðajsÞ, which is given in Equation (8). A larger value 
of the entropy loss indicates more randomness in the prob
ability distribution over actions. For example, when the pol
icy tends to converge to a local optimum (e.g., the 
probability of selecting a sub-optimal action is relatively 
higher than selecting others), the entropy loss will preserve 
the ability of the RL agent to explore other actions to 
improve the current policy further:

L3ðat , st , hÞ ¼ −phðatjstÞ log phðatjstÞð Þ
> (8) 

The PPO loss is the weighted aggregation of L1, L2, and 
L3, which is given in Equation (9). The objective of model 
training is to jointly maximize L1 (improve cumulative 
reward), minimize L2 (accurately estimate the state value), 
and maximize L3 (preserve the ability in exploration) by 
minimizing the PPO loss. Thus, the coefficients k1, k2, and 
k3 are set as negative, positive, and negative values, respect
ively

L ¼ E k1L1 þ k2L2 þ k3L3½ � (9) 

Algorithm 1 Pseudo-code of training the proposed 
Smartfixture.

1: Initialize:
h, /     . initial parameters in policy and value 

functions.
ph, V/    . policy and value functions approxi

mated by DNNs.
env          . FEA-based environment

2: Training:
3: for e ¼ 1 to E do      . E denote the number 

of epochs.
4:  De ¼ fg . an empty set of sequences in 

this epoch.

5:  for p ¼ 1 to P do  . P denote the number of 
sequences collected in 
each epoch.

6:   Dp ¼ ½� . an empty list of tuples 
in this sequence

7:   for t ¼ 1 to T do   . T is the number of fix
tures in each sequence.

8:    Query state st from env.
9:    at ¼ Sample from p

h
0 ðat , stÞ: . h

0

are parame
ters from pre
vious epoch.

10:    Iterate env by feeding at and receive reward rt:

11:   Store tuple ðst , at , rtÞ in Dp:

12:    end for
13:   Store Dp in De:

14:   end for
15:   Evaluate the state values using V

/
0 and extend each 

tuple into ðst , at , rt , V
/
0 ðstÞÞ: . /

0

are parameters 
from previous epoch.

16: Calculate the cumulative future rewards and extend 
each tuple into ðst , at , rt , V

/
0 ðstÞ,

PT−t
i¼0 cirtþiÞ:

17: Update the parameters h, / by minimizing the PPO 
loss with gradient-based optimizer. h

0

, /
0

 

argminh, /L ¼ argminh, / EDe k1L1 þ k2L2þ½ k3L3�

18: end for

In summary, the process of training the proposed 
SmartFixture using PPO is summarized in Algorithm 1. The 
step-wise demonstration to collect the trajectory of a single 
episode is shown in Figure 6. In the context of our problem, 
it indicates generating the sequence of tuples ðst , at , rtÞ, t ¼
1, :::, T, by placing fixtures sequentially.

4. Case study

In this section, we will introduce the details of the experi
ment setup and compare the performances between the pro
posed method and benchmark methods. Section 4.1
introduces the experiment results on the sheet metal and 
composite part without initial shape deformation, which is 
used as a proof-of-concept to demonstrate the capability of 
the RL-based method. Section 4.2 demonstrates the experi
ment results on sheet metal and composite parts with differ
ent initial deformations, which is designed to show the 
generalizability of the proposed SmartFixture.

4.1. Case-1: Fixture layout design for ideal parts

4.1.1. Experiment setup
The first experiment is used as a proof-of-concept to dem
onstrate the effectiveness of the proposed method in gener
ating the optimal fixture layout to minimize shape 
deformations for sheet parts made of metal or composite. 
Sheet metal or composite parts are widely used in the manu
facturing process of many products, such as ship hulls, mar
ine structures, automobiles, aircraft, etc. The shape control 
of sheet parts has a large impact on the quality of final 
products. In this case, only the deformation caused by 
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gravity is considered, and the sheet part, either metal or 
composite, is assumed to have negligible initial deforma
tions. The detailed simulation setup can be referred to in 
Section 3.2. The two types of sheet parts share the same 
length and width (2 m� 1 m). It indicates these two types 
of parts have the same surface size to which fixtures can be 
applied. Different RL agents are trained under the same set
ting to design fixture layouts for the sheet part made of dif
ferent materials. The state st here is defined to include the 
coordinate of each node and the deformation at each node. 
Every time the location of the newly added fixture is 
selected by the RL agent, FEA will update the state by simu
lating deformations over all nodes, given the current fixture 
layout. It is worth noting that shape deformation is not 
available when the number of fixtures is less than three (at 
least three points are needed to determine a plane). Thus, 
the shape deformation included in st is assumed to be uni
formly zero when t < 3:

There are over a thousand candidate locations for the lay
out of eight fixtures in our problem. The minimum pairwise 
distance � (introduced in Section 3.5) determines the design 
space. It is worth noting that the design space with a larger 
� is the subset of the design space with a smaller one, which 
is a trade-off between shrinking the design space with engin
eering insights for better efficiency and enabling the explor
ation of different layouts. Considering the target surface to 
place eight fixtures has the shape of 2 m� 1 m, thus, if 
they are placed evenly in two rows along the 2 m edge, the 
average pairwise distance among them can be roughly esti
mated as 0.5 m. In other words, the minimum pairwise dis
tance is “roughly” at most 0.5 m for the deployment of eight 
fixtures over the target surface. To allow a larger design 
space, we search the value of � within the range [0.4, 0.45] 
m under the same training time and receive the best results 
with � ¼ 0:45 m:

To demonstrate the advantage of the proposed method, 
we select two types of symmetric layouts (denoted as “Sym 
1” and “Sym 2” when demonstrating the results) and the 
layout generated from the latest heuristic optimization 
method (Du et al., 2021) as benchmarks. In practice, the key 
rule of thumb for designing the fixture layout is to spread 
the programmable fixtures over the target surface evenly. 
Thus, the two symmetric layouts are designed according to 

the shape of the target surface of sheet parts (kept the same 
for both metal and composite parts). Both symmetric layouts 
placed four fixtures at the four corners of the sheet part. 
One layout placed the remaining four fixtures in the shape 
of a smaller rectangle. The other layout placed one fixture at 
the center of the sheet part and placed the remaining three 
in the shape of an equilateral triangle. The heuristic opti
mization method is built upon simulated annealing (denoted 
as “SA” or “baseline” when demonstrating the results) fol
lowing the parameters used in Du et al. (2021), which might 
converge to different results when repeated multiple times. 
Thus, for each type of sheet part (in metal or composite), 
we repeat the SA method five times and report the average 
and variance of its performance. To fully demonstrate the 
performance of the SA method, each time it is repeated, it 
will be terminated after searching 1500 different layouts. In 
other words, given the SA method is repeated five times for 
each type of sheet part, there will be a total of 1500� 5 dif
ferent layouts explored by this method for each type of sheet 
part, which requires far more simulations than the proposed 
RL method.

4.1.2. Experiment results
The results for the fixture layout optimization of the sheet 
metal or composite parts are demonstrated in Figure 7. For 
the SA method, we select the best layout (with the smallest 
maximum magnitude of deformation) received from five 
replications for the experiment. The maximum magnitude of 
deformation is calculated to compare the performance of 
different layouts. From the results, we can observe: (i) the 
fixture layout generated by the proposed method also 
includes positions close to corners (i.e., fixtures #3, 5, 7, 8 
for sheet metal part and fixtures #1, 2, 3, 4 for sheet com
posite part), which reveals that the proposed method suc
cessfully learned some experience consistent to our 
intuition; (ii) our proposed method also shows “novelty” in 
fixture layout design to receive a smaller overall deformation 
by partially sacrificing the symmetric rule that a human 
designer commonly follows; (iii) compared with the heuris
tic-based optimization, the learning-based method captured 
some useful rules when designing the fixture layout (i.e., 
spread the fixture over target surface).

Figure 6. Step-wise demonstration of collecting a sequence of tuples.
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To better quantitatively evaluate the performance of our 
proposed method, we also demonstrate the magnitude of 
deformation over the target surface in boxplot (in Figure 8), 
from which we can conclude that for sheet parts made of 
steel or composite: (i) the interquartile range of the magni
tude of deformation (deformations of half of the nodes) 
achieved by the proposed method is less than 0.001 m for 
the sheet part, which is much better than the benchmark 
methods; (ii) the variation of deformations are also 
improved by the proposed method; (iii) when repeating the 
SA method for five times (highlighted in blue dashed box), 
the performance has a relatively large variance over different 
trials. For the sheet metal part, the maximum shape defor
mations over five trials of the SA method receive an average 
of 0.00324 m and a standard deviation of 0.0005 m. For the 
sheet composite part, the maximum shape deformations 
over five trials of the SA method receive an average of 
0.00289 m and a standard deviation of 0.0001 m.

In summary, the results demonstrate that our proposed 
method successfully learns general principles in fixture 

layout design (i.e., placing fixtures close to corners to 
improve space-filling) and shows novelty in the overall fix
ture layout. It consistently outperforms the benchmark 
methods on both ideal sheet metal and composite parts and 
receives the smallest shape deformation after applying the 
designed fixtures.

4.2. Case-2: Fixture layout design for parts with initial 
deformations

4.2.1. Experiment setup
In the manufacturing process involving sheet metal and 
composite parts, every single part inevitably has some initial 
deformations, which will be another factor influencing the 
quality of the final product. The initial deformations might 
vary among different sheet parts, which require customized 
designs of fixture layouts to accommodate different scen
arios. In our experiment setting, different initial deforma
tions can be treated as different initial conditions for the 
environment. The challenge is that the same action (location 

Figure 7. Fixture layouts for ideal parts.

Figure 8. Distribution of the magnitude of deformation (without initial deformations). Note: Five trials represent five replications of the SA method.
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of the fixture) from the RL agent can lead to different 
rewards under different scenarios. The heterogeneity of the 
environment requires the proposed RL algorithm to under
stand the general principles of fixture design that can be 
generalized to customize the fixture layout design for sheet 
parts with different initial deformations.

The FEA simulation shown in Figure 2 can generate sheet 
parts made of metal or composite with different initial defor
mations by specifying the displacements caused by each force. 
To better represent all possible initial deformations, an opti
mal space-filling design (Joseph, 2016) is conducted to deter
mine the set of combinations of displacements for these four 
forces. For each type of sheet part, a total of 25 different ini
tial deformations are generated. Of these, 20 are randomly 
selected to train the proposed SmartFixture, and the remain
ing five are used to test the model performance. Similarly, the 
FEA simulation needs locations of at least three fixtures to 
generate the deformation caused by gravity. Thus, only the 
initial deformation at each node is available when selecting 
the positions of the first three fixtures. The value of � is also 
searched within [0.4, 0.45] m, and the best results are received 
when � ¼ 0:42 m: Similarly, different RL agents are trained 
for sheet parts with different materials on their corresponding 
training dataset. During the training, for a specific initial 
deformation, it will interact with the environment to collect 
the tuples of action, state, and reward as the training sample, 
which will be repeated by resetting the environment to its 

initial condition until enough training samples are generated. 
We expose the proposed method with 20 different initial 
deformations in the training phase and set aside five unseen 
scenarios to test the generalizability of learned principles. 
Here, we also select the same symmetric fixture layouts and 
the SA method as benchmarks. For each testing scenario, the 
SA method also repeats five times, and each repetition will be 
terminated after 1500 different layouts are generated.

4.2.2. Experiment results
The experiment is designed to train the proposed SmartFixture 
to generate fixture layouts for the sheet metal and composite 
parts with different initial deformations, respectively. The 
results of five unseen scenarios for sheet metal and composite 
parts are visualized in Figure 9 and Figure 10, respectively. In 
both figures, the first row shows the sheet parts with different 
initial deformations, and the rest of the rows show the corre
sponding fixture layouts generated by different methods. The 
results of the SA method are also the best ones over five trials 
on each scenario. We found that both the SA method and our 
proposed SmartFixture outperformed the symmetric fixture lay
out in all test scenarios. In addition, SmartFixture is better than, 
or comparable to, the SA method in most scenarios, with the 
exception of the design point (dp) #14 (“dp14”) for the sheet 
metal part and “dp17” for the sheet composite part. The reason 
can be summarized as (i) the SmartFixture has no exposure to 

Figure 9. Fixture layouts for sheet metal parts with initial deformations.
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these five testing scenarios in training and does not repeat the 
optimization process in the testing phase, whereas the SA 
method repeats the heuristic optimization process on each scen
ario and selects the best result; (ii) when applying in the testing 
phase, the SmartFixture can efficiently generate the fixture lay
out at once whereas the result of SA method is selected from 
1500� 5 layouts in our setting.

The summary of the maximum magnitude of deforma
tions over all the test scenarios is given in Table 2. From the 
results, we can conclude that our proposed method receives 
consistently outstanding performance with the smallest 
mean and variation over different unseen scenarios, which 
indicates an outstanding generalization ability.

The deformations over the entire target surface on unseen 
scenarios are also demonstrated in the boxplot (Figure 11), in 
which the left column demonstrates the five unseen scenarios 
for the sheet metal part, and the right column demonstrates 
the five unseen scenarios for the sheet composite part. For the 
SA method, we demonstrate the deformation distribution 

from all five trials, which are shown in blue dashed boxes. 
When comparing the results among different trials of the SA 
method, we can clearly see a large variation. To better com
pare the results from our proposed SmartFixture and SA 
method, we marked the upper bound and median of the box
plot in green and red dashed lines, respectively. For sheet 
parts made of both types of materials, we can conclude that 
the SmartFixture consistently receives the smallest maximum 
and median deformations when compared with all benchmark 
methods in most cases. In addition, all the median lines in 
five test scenarios are below the 0.001 m, which means half of 
the measurement points on the target surface have deform
ation less than 0.001 m.

4.2.3. Step-wise demonstration on learned principles
We further use the sheet metal part as an example to dem
onstrate the step-wise process of fixture layout generation in 
Figure 12 to show the principles of selecting fixture posi
tions learned by our proposed method. New fixtures are 
continuously placed until the total number of fixtures 
reaches the limit. The magnitude of deformation jointly 
caused by initial deformation and gravity is visualized. We 
can observe that:

1. Although the initial deformations are different when the 
number of fixtures is small (i.e., n � 4), the difference 
among test scenarios is not significant because the 

Figure 10. Fixture layouts for sheet composite parts with initial deformations.

Table 2. Maximum magnitude of deformation over different test scen
arios (m).

Method

Metal Composite

Mean Range Std. Mean Range Std.

Sym1 0.00543 0.00130 0.00045 0.00566 0.00143 0.00058
Sym2 0.00443 0.00077 0.00029 0.00521 0.00083 0.00032
SA (Du et al., 2021) 0.00306 0.00105 0.00039 0.00312 0.00099 0.00036
SmartFixture 0.00264 0.00025 0.00011 0.00295 0.00083 0.00027
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effects of gravity dominate the deformations. Thus, the 
locations of the first four fixtures are the same for dif
ferent test cases.

2. Starting from n ¼ 4, the magnitudes of deformations start 
to show different distributions over the sheet metal part 
(highlighted in white dashed boxes), and such different dis
tributions lead to different locations of newly added 

fixtures. For example, when n ¼ 4, the different deform
ation distributions in the highlighted regions lead to differ
ent locations of the fifth fixture. Similar observations also 
existed when determining the locations of the remaining 
three fixtures. The step-wise demonstration reveals that our 
proposed method learned general principles in determining 
the fixture locations, which can be transferred to unknown 

Figure 11. Distribution of the magnitude of deformation (with initial deformations).
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scenarios. Such findings also indicate that the RL agent 
started to master the “game” of fixture layout design via the 
interaction with the FEA-based “environment”, just like 
how it masters the Go game, which also has the scalability 
to handle more complex design problems in the manufac
turing process.

4.2.4. Discussion on computational complexity
In the training process, the bottleneck of computational cost is 
the interaction with the FEA simulation. In the current setup of 
simulation, it takes approximately 1 second to run the simula
tion once. Running the simulation once is defined as feeding 
the generated action (layout of fixtures) into FEA and calculat
ing the state and reward (deformation of sheet part). As the RL 
algorithm is designed to place a total of eight fixtures sequen
tially, six runs of simulation are needed to collect one full trajec
tory of action, state, and reward (the simulation starts to run 
after at least three fixtures are placed). Therefore, in the training 
phase, if we need to collect trajectories of 1000 different fixture 
layouts, there will be 6000 simulations to run, which takes 
approximately 100 minutes. When we consider different initial 
deformations, we need to further increase the number of differ
ent layouts explored in the training phase to learn the general 
principle that accommodates different scenarios. The real train
ing of the RL agent (updating model parameters and policy 
after collecting the trajectories) is actually very efficient when 
deployed the PPO algorithm on the GPU. We usually are not 
worried about the time cost of running simulations as there are 
multiple solutions to mitigate or resolve this issue. For example, 
multiple simulations can run in parallel to simultaneously 

collect trajectories for different layouts, which will significantly 
improve the efficiency. In addition, the idea of multi-fidelity 
simulation is popular. It can efficiently generate simulation 
results by hybridly using high-fidelity FEA or low-fidelity surro
gate models. It is also worth noting that, after training, the RL 
algorithm demonstrated outstanding generalizability to be dir
ectly applied to unseen scenarios without further training, 
which has been shown in the results. However, the classic opti
mization method does not have this capability, which means 
that the optimization has to be repeated from scratch whenever 
a new scenario arises. It is insufficient in current manufacturing 
practice.

In summary, when the initial deformations of sheet parts 
vary, the MO-based methods need to repeat the optimiza
tion process from scratch, whereas our proposed method 
demonstrates the generalizability of transferring learned 
knowledge and experience to unseen scenarios. The results 
indicate that after training, the proposed method can effi
ciently customize the fixture layout design for sheet parts 
according to their initial deformations to achieve promising 
performance in reducing shape deformation.

5. Conclusion

Manufacturing process design is an emerging topic that 
ensures product quality in advanced manufacturing. In this 
article, we propose a learning-based optimization frame
work, SmartFixture, to directly interact with the RL agent 
with FEA-based simulation to optimize the fixture layout 
design for large-scale sheet parts. More specifically, the FEA- 
based simulation is built to generate deformations of the sheet 

Figure 12. Step-wise demonstration when generating fixtures for parts with initial deformations.
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metal and composite parts given a specific fixture layout. 
The RL agent will iteratively read outputs from FEA and 
generate the location of the newly added fixture to update 
the boundary conditions in FEA. The case studies demon
strate that (i) the proposed SmartFixture consistently out
performs the benchmark methods in designing the fixture 
layout to receive a smaller shape deformation; (ii) it also 
has a good generalization ability to design fixture layouts 
for sheet parts with different initial deformations. The 
methodology contributions of the proposed method 
include: (i) it builds a highly scalable framework to enable 
the interaction directly between learning-based optimiza
tion and FEA-based simulation, which can be extended to 
optimize various types of manufacturing processes; (ii) the 
learning-based optimization demonstrated outstanding gen
eralizability to transfer the learned knowledge to unseen 
scenarios. It provided innovative solutions and received 
much better performance compared with the traditional 
symmetric design of fixture layout, which opened a new 
direction in the manufacturing design; (iii) it significantly 
extended the scale and complexity of the design space that 
can be explored and optimized compared with the heuristic 
and nonlinear optimization techniques, which aligns the 
practical needs in the design of manufacturing processes.

For future work in this study, we plan to investigate 
two directions. First, we plan to extend the simulation 
from three aspects: (i) include diversified sheet parts with 
arbitrary shapes that are commonly used in the industry, 
(ii) consider the multi-stage assembly process, and (iii) 
generalize the controllable variables to consider the impact 
of both locations and forces of fixture or actuators 
on the product shape deviation. Second, we plan to 
further improve the developed learning-based optimization 
method to (i) consider the cascade dependency among 
multi-stage assembly processes to reduce the propagation 
and accumulation of shape deviations, (ii) improve the 
sample efficiency and reduce the number of required simu
lations for the assembly process, and (iii) systematically 
quantify the uncertainties in the manufacturing process 
and evaluate how it will impact the performance of the 
proposed method.
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