
IISE Transactions

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uiie21

Reinforcement learning for fuselage shape control
during aircraft assembly

Tim Lutz, Yinan Wang, Xiaowei Yue & Jaime Camelio

To cite this article: Tim Lutz, Yinan Wang, Xiaowei Yue & Jaime Camelio (19 Nov 2024):
Reinforcement learning for fuselage shape control during aircraft assembly, IISE Transactions,
DOI: 10.1080/24725854.2024.2413136

To link to this article:  https://doi.org/10.1080/24725854.2024.2413136

View supplementary material 

Published online: 19 Nov 2024.

Submit your article to this journal 

Article views: 123

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

https://www.tandfonline.com/journals/uiie21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2024.2413136
https://doi.org/10.1080/24725854.2024.2413136
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2024.2413136
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2024.2413136
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2024.2413136?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2024.2413136?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2024.2413136&domain=pdf&date_stamp=19%20Nov%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2024.2413136&domain=pdf&date_stamp=19%20Nov%202024
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21


Reinforcement learning for fuselage shape control during aircraft assembly

Tim Lutza, Yinan Wangb , Xiaowei Yuec , and Jaime Cameliod 

aDepartment of Management Science, Darla Moore School of Business, University of South Carolina, Columbia, SC, USA; bDepartment of 
Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; cDepartment of Industrial Engineering, Tsinghua 
University, China; dThe College of Engineering, The University of Georgia, Athens, GA, USA 

ABSTRACT 
Critical safety requirements necessitate ultra-high precision quality control during the assembly of 
large aerospace components to reduce the mismatch between parts to be joined. Traditional 
methods use heuristic shape adjustment or surrogate model-based control. These methods are 
limited by reliance on accurate model learning and inadequate robustness to varying initial assem
bly conditions. To address these limitations, this article proposes a model-free reinforcement learn
ing approach for adaptive fuselage shape control during aircraft assembly. The trained 
reinforcement learning agent directly adjusts the aircraft components in response to their part var
iations and enables an autonomous system (like AlphaGo) to learn the optimal shape control pol
icy. Specifically, the reinforcement learning environment is built on the finite element simulator. A 
reward function is developed to capture the optimization objective and introduces a scheme to 
enforce the original constraints. The proximal policy optimization algorithm is modified to speed 
up the learning progress and achieve better final performance. In the case study, the root-mean- 
square gap between components is reduced by 98.4% on average compared with their initial 
shape mismatch. Our proposed method outperforms the benchmark methods with smaller final 
shape errors, smaller maximum forces, and lower variations across different test samples.
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1. Introduction

In recent years, composite materials such as Carbon Fiber 
Reinforced Polymers (CFRP) and fiberglass-reinforced plas
tics have become ubiquitous in commercial aerospace appli
cations; they now comprise more than 50% in flagship 
passenger airplanes of the major manufacturers. These com
posites possess superior stiffness-to-weight ratios and corro
sion resistance and can be specifically tuned for a particular 
application. However, producing large primary structures 
(e.g., fuselages, wing boxes) from composites has not been 
without complications. For example, while monolithic con
struction techniques reduce the number of fasteners that are 
required in the assembly of an airplane, they also require 
ultra-high precision for successful assembly, because there 
are fewer opportunities to correct geometric shape errors. 
Over the past few years, repeated problems with the assem
bly of fuselages made from CFRP have led the Federal 
Aviation Administration (FAA) to intervene and force deliv
eries from a major manufacturer to be halted (Schaper, 
2022).

The shape adjustment and dimensional quality control of 
large composite components in aircraft assembly are very 
challenging, due to two major reasons: (i) complex proper
ties of composite materials. Composite materials are highly 
nonlinear, anisotropic, and compliant, which have quite dif
ferent mechanical properties from conventional aerospace 

materials such as Aluminum and Titanium alloys. Existing 
physical model-driven quality control approaches do not 
work well; (ii) ultra-high precision quality requirement. The 
precision of composite fuselage assembly may be as high as 
0.007 inches, which raises new challenges for conventional 
quality management. Considering varying assembly condi
tions and initial deformations, such a high precision is very 
challenging. There have been several efforts to address the 
shape adjustment and quality control problem in the context 
of large aerospace parts, particularly for fuselage assembly, 
including physics-driven methods and data-driven methods. 
For a detailed literature review, refer to Section 2.1. Our 
main contribution in this article is to propose a new 
reinforcement learning approach for shape adjustment and 
quality control in aircraft assembly.

Reinforcement Learning (RL) has garnered a lot of atten
tion in recent years for its ability to exceed human-level per
formance in playing games, e.g., Atari games (Mnih et al., 
2015), Starcraft (Vinyals et al., 2019), Chess, and perhaps 
most notably AlphaGo and AlphaZero (Silver et al., 2018). 
Advances in RL have also originated from efforts to apply it 
to classic control tasks (e.g., cartpole, mountain car, inverted 
pendulum) (Bertsekas, 2019), chip design (Mirhoseini et al., 
2021), human–robot interaction (Oliff et al., 2020), and so 
on. RL has several advantages: (i) it can enable adaptive 
decision-making by interacting with environments dynamic
ally and adjusting policies in real time; (ii) it can optimize 
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their actions based on feedback from the environment and 
reduce the need for manual intervention; (iii) it can handle 
the complexities and uncertainties in engineering systems by 
learning robust policies that can adapt to different situations 
and make reliable decisions; (iv) it leverages the knowledge 
learned from offline simulations and model training. 
Therefore, RL has the potential to improve manufacturing 
systems with dynamical patterns, complex environments, 
and inherent uncertainties and variations.

Unfortunately, the use of RL in the manufacturing space 
has not taken hold thus far due to unique challenges in this 
domain. For one, there is often a limited set of data avail
able, and generating new data through experimentation is 
generally not cheap. In particular, conducting experiments 
on a running production line usually comes at a large cost 
of time and resources. Furthermore, real-world problems 
encountered in manufacturing are often more complex than 
the scenarios on which much of RL has been built. There 
are a few studies on using RL in manufacturing systems, 
such as additive manufacturing (Chung et al., 2022), sched
uling of semiconductor manufacturing (Park et al., 2019), 
biological manufacturing (Ueda et al., 2000), sheet metal 
parts assembly Wang et al. (2024), and other manufacturing 
systems (Li et al., 2023).

The main contribution of this article is to develop a RL 
approach for fuselage shape control during aircraft assembly. 
As far as we know, this is the first RL exploration in the air
craft assembly field. In our study, we develop a RL environ
ment and apply a modified Proximal Policy Optimization 
(PPO) algorithm to the task of shape control during fuselage 
assembly. Our detailed technical contributions are listed as 
follows:

� We formulate a compliant part shape control problem 
for RL. As part of this, we define a reward function that 
captures the objective of shape control optimization.

� We set up a finite element simulator as an RL environ
ment and build an interface with an RL agent that enfor
ces the associated constraints on the number and 
magnitude of applied forces.

� We propose a modified PPO algorithm implementation, 
in which we anneal the variance of the probability distri
bution from which actions are sampled during training. 
Our modification can guide the RL agent’s learning pro
cedure, accelerate convergence, and improve the per
formance of an RL agent whose actions are to be 
deterministic once deployed.

The proposed RL approach has the potential to reduce 
human operation errors, increase productivity, adapt to 
varying initial deformations of components, enhance robust
ness, and enable continuous quality improvement for multi
stage aircraft assembly. It provides a new pillar for the 
digitalization and intelligence in advanced aircraft assembly.

The remainder of this article is organized as follows: 
Section 2 discusses the literature review on composite struc
tures assembly and RL in manufacturing, Section 3 proposes 
our RL algorithm for fuselage shape control, Section 4

discusses the method evaluation based on case study Section 
5 concludes the article with a brief summary.

2. Literature review

2.1. Assembly of thin-walled composite parts in 
aerospace manufacturing

Primary aerospace structures rely on thin-walled panels 
joined to internal rib structures to achieve superior high 
strength-to-weight ratios. Prior to being joined as a support
ing member, thin-walled panels are very compliant. As a 
result, joining operations tend to be difficult to control and 
model, in particular when non-nominal shapes are to be 
considered. Past works have treated process parameter opti
mization, error propagation, comprehensive quality control, 
and simulation model calibration. For example, Zhang et al. 
(2021) considered the assembly of a wing box panel to an 
internal skeleton and applied a genetic algorithm for multi- 
objective optimization to determine the ideal clamping 
forces in response to non-ideal parts. They relied on a Finite 
Element (FE) simulation and validated their results against 
physical experiments. Considering the assembly quality 
across multiple manufacturing steps, digital twin simulation 
approaches have been devised to measure and control qual
ity targets via physical models (Cai et al., 2021). Guo et al. 
(2023) analyzed the quantifiable and controllable assembly 
of thin-walled structures to avoid out-of-tolerance and 
deformation rebound errors. The assembly quality was 
improved by dynamic stiffness matrix learning, physical 
modeling, and inverse optimization on assembly parameters. 
Manohar et al. (2018) developed a sparse sensing and 
machine learning scheme to predict gaps along the wing- 
to-body joint on an aircraft and determined the appropriate 
shim size to be fabricated to fill these gaps.

Some researchers have focused on the assembly of com
posite fuselage sections. Wen et al. (2018) developed an 
accurately calibrated FE model that characterized the behav
ior of a composite fuselage in response to shape control 
actuator forces. Starting with this calibrated model, a num
ber of control strategies have subsequently been devised. 
Yue et al. (2018) built a surrogate model considering uncer
tainties and performed a multivariate optimization to come 
up with a feed-forward control strategy for determining 
actuator forces. Du et al. (2019) proposed a sparse learning 
method that chooses a prescribed number of actuator loca
tions from a set of candidate locations and specifies forces 
for shape adjustments of a single fuselage. In this work, the 
optimization objective was to reduce the mean gap around 
the joint. Following up on this work, another sparse learning 
method with a different objective of reducing the maximum 
(rather than mean) gap was introduced in Du et al. (2022), 
now considering simultaneous shape adjustments for two 
mating fuselage parts. Physics-constrained Bayesian opti
mization approaches are developed to optimize the actua
tors’ placement and achieve superior performance (AlBahar 
et al., 2022; Wang and Yue, 2024). Neural network Gaussian 
process considering input uncertainties (Lee et al., 2020) 
and Gaussian process extension (Wang et al., 2022) have 
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been developed for predicting the dimensional deformation 
in shape adjustment. While the aforementioned strategies 
relied on statistical models derived from FE analysis for 
their optimizations, Zhong et al. (2022) exported a reduced- 
order FE model from the simulator and used it to solve the 
actuator force optimization problem. Towards utilizing 
online measurements in an efficient manner, Mou et al. 
(2023) considered a sparse sensor placement problem and 
proposed an adaptive control strategy that aims to correct 
for deviations between models used in optimization and 
physical parts seen in production.

Although these approaches achieved very good perform
ance in the fuselage shape adjustment, they have a few limi
tations: (i) limited adaptability due to pre-defined model 
structures and assumptions; (ii) high dependence on accur
ate and reliable models; (iii) possible performance degrad
ation or instability from the model errors; (iv) requirement 
of high-quality and sufficient data samples. RL has the 
potential to adapt and learn from real-time interactions 
between the system and the environments and overcome 
these limitations.

2.2. RL in manufacturing

In RL, an agent interacts with an environment. In response 
to a current state, it selects actions adaptively and receives a 
reward. Many accomplishments of RL have relied on simu
lated environments such as OpenAI gym (Brockman et al., 
2016) or arcade games (Machado et al., 2018). In real-world 
applications, RL faces challenges that are yet to be resolved. 
Amongst them are limited access to samples, large continu
ous action spaces, and satisfying environmental constraints 
(Dulac-Arnold et al., 2021). These challenges relate to the 
need for the agent to efficiently explore its environment to 
learn a successful policy. There exist many approaches to 
exploration strategies, which can be grouped into uncer
tainty-oriented and intrinsically motivated strategies (Hao 
et al., 2023). Perhaps the simplest exploration strategy is the 
so-called ϵ-greedy strategy (Tokic, 2010). In this scheme, 
either the action that the agent currently rates as the best is 
performed (with probability 1 − ϵ), or else a completely ran
dom action is executed. Although simple, this scheme also 
tends to be sample-inefficient. However, in an online setting, 
random actions can lead to erratic and dangerous behaviors. 
In off-policy algorithms, the action is often construed by 
adding noise to a deterministic action that is selected by the 
agent. The role of action noise has been identified as having 
an impact on the learning progress by Hollenstein et al. 
(2022), who determined that the action noise scale can make 
or break success in training a policy that achieves the 
desired goal. Accordingly, they argue that it is necessary to 
tune the action noise scale for the learning task at hand.

When applying RL in a real-life setting, challenges arise 
that tend to be of little concern in simulated or virtual envi
ronments. In the physical world, erratic actions are particu
larly problematic in motion control problems. Jerky motions 
can damage components, due to mechanical wear and exces
sive heat buildup. Unfortunately, superimposing Gaussian 

noise to actions in order to explore the environment has 
exactly that effect. Towards achieving smooth motions dur
ing online training with a robot manipulator, Raffin et al. 
(2022) modified state-dependent exploration as follows: 
instead of generating noise from the initial state of an epi
sode, they take policy features as the input to a noise-gener
ating function at regular intervals of n steps. As an 
alternative to adding noise to actions, Plappert et al. (2017) 
proposed to instead introduce noise to the agent’s parame
ters, perturbing them at the start of a learning episode. This 
idea is borrowed from evolutionary methods. By doing so, 
the actions for a given state are deterministic, i.e., they are 
repeatable. This is not the case when random noise is added 
after the agent selects an action. These strategies can be 
complex and rely on the agent to automatically adjust the 
exploration/exploitation trade-off during training. The 
current article takes a different approach in which we exert 
direct control over the exploration/exploration scheme as 
learning progresses. This allows us to incorporate prior 
knowledge about the RL environment and to drive the agent 
to learn its policy according to the desired behavior once it 
is deployed.

In the manufacturing domain, RL has most commonly 
been applied to problems in process control, scheduling and 
dispatching, design, quality control of diverse manufacturing 
systems such as additive manufacturing, semiconductor 
manufacturing and biological manufacturing (Park et al., 
2019; Ueda et al., 2000; Chung et al., 2022; Panzer and 
Bender, 2022; Li et al., 2023). For process control, applica
tions span chemical processes, welding, machining, and 
additive manufacturing. For example, Chung et al. (2022) 
proposed a RL method that conducts online learning while 
incorporating prior knowledge to mitigate defects in fused 
filament fabrication. In the context of assembly, the focus 
has largely been on simple insertion tasks (peg-in-a-hole) 
performed by a robot with some kind of sensory equipment 
such as vision or force feedback (Panzer and Bender, 2022; 
Li et al., 2023). Although this represents a notable challenge, 
it is only one of many problems that arise in assembly proc
esses. On an assembly line, there are many steps that con
tribute to the overall quality of the final product. One 
problem that naturally arises is to determine a suitable 
assembly sequence, a problem that De Giorgio et al. (2021) 
sought to address with RL. Missing from previous work, 
however, are instances in which parameters may need to be 
adjusted in response to part variations, e.g., flexible fixtures 
in automotive, shipbuilding, and aerospace applications. 
This article explores this issue with the application of assem
bling composite fuselage sections. As far as we know, this is 
the first work of using RL for quality control of advanced 
aircraft assembly.

3. RL for fuselage shape control

In this section, we first formulate the problem of dimen
sional shape control of aircraft fuselages. From there, we 
convert the problem into a RL framework, which offers a 
different way to achieve the goals of quality optimization. 
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Towards this end, we propose a reward function that cap
tures the optimization objective and sets up an architecture 
that enforces constraints on the actions that the agent can 
perform in its environment. Finally, we propose a modified 
PPO algorithm to solve the RL problem.

3.1. Program formulation of dimensional shape control 
of aircraft fuselages

In the aircraft assembly process, dimension gaps inevitably 
exist between two sections of the fuselage due to shape 
deformation. Therefore, a set of actuators is placed on the 
boundary of the fuselage to adjust its shape to minimize the 
dimension gap. The effect of shape adjustment is jointly 
determined by the layout of actuators along with their forces 
(push or pull), which is not trivial to optimize. Therefore, 
we propose to formulate the problem of fuselage shape con
trol as an optimization problem and develop a tailored RL 
algorithm to solve it. The objective is to generate the layout 
of actuators over the fuselage along with the applied forces, 
such that the shapes of two assembled fuselages match well.

Relying on a finite element (FE) model of a fuselage (or 
possible digital twin in the future), we can set up the shape 
control problem as an optimization problem. Suppose in 
our FE model, we define a set N that contains all nodes of 
interest to us. These nodes could correspond to a set of key 
measurement points on a physical part (i.e., the fuselage). 
Let N denote the number of nodes in N : In our case, by 
measuring the distance between the opposite nodes in the 
set N , the finite element model can generate the shape of 
the fuselage. In addition, there is a total number of nc candi
date locations (denoted as Pc ¼ fP1, P2, :::, Pnc g) at which 
the actuators can be applied. However, not all the available 
positions will be used as (i) the total number of available 
actuators is much smaller than the available locations, and 
(ii) the design space of actuator forces will be more complex 
with the increase of its number. Therefore, we introduce na 
to denote the number of actuators (i.e., the number of 
candidate locations that will be used). In addition, we use 
na � nc to indicate the fact that the number of available 
actuators is usually much smaller than the total number of 
candidate locations. In the setting of the FE model, applying 
a specific layout of na actuators along with designed forces 
is implemented as applying na nonzero forces as boundary 
conditions out of nc candidate locations. The forces at the 
remaining ðnc − naÞ locations can be set to zero, corre
sponding to no actuator being present there. Hence, we can 
define a vector F with the length of nc where each element 
Fi corresponds to the force applied at the candidate location 
Pi 2 Pc: The resulting nodal displacements by actuator 
forces can be evaluated at the N measurement points, which 
are denoted as U ¼ ðu1, u2, :::, uNÞ: These displacements 
may be nonlinear in response to the applied forces, and they 
also depend on the fixtures for which boundary conditions 
have been defined. The nodal displacement at each measure
ment point is stored as ui ¼ ðui

x, ui
y, ui

zÞ for i ¼ 1, 2, :::, N:

The objective of shape control is to adjust the dimensions of 
the fuselage towards the target one. Therefore, there is a 

corresponding target position of each measurement point, 
which is denoted as pi

t ¼ ðxi
t , yi

t , zi
tÞ (subscript t indicates 

“target”). Suppose the final positions after force vector F has 
been applied are pi

f ¼ ðxi
f , yi

f , zi
f Þ for i ¼ 1, 2, :::, N, which are 

obtained by adding the nodal displacements to the initial 
positions (i.e., pi

f ¼ pi
0 þ ui). The pi

0 with subscript 0 indi
cates the initial position at the measurement point i. Note 
that U is the output of the FE method with the forces F as 
boundary conditions. At each measurement point, the differ
ence between current and target dimensions ϵ can be calcu
lated as follows:

ϵi
0 ¼ pi

0 − pi
t (1) 

ϵi
f ¼ pi

f − pi
t ¼ ϵi

0 þ ui (2) 

From this, we can define initial and final deviation pat
terns D0 ¼ ðϵ1

0, ϵ2
0, :::, ϵN

0 Þ and Df ¼ ðϵ1
f , ϵ2

f , :::, ϵN
f Þ: These 

deviations characterize the assembly gap between two com
ponents that are to be joined, where the shape of one of the 
components is set as the target shape of the other.

Based on the deviation patterns, we can define an object
ive function L to set up a minimization problem. For 
example, we can choose the Root-Mean-Square Gap (magni
tudes of deviations) between the mating fuselage sections 
(RMSG):

eRMSG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Df >Dfð Þ

r

(3) 

In practice, it is easier to avoid taking the square root 
when solving an optimization problem. We can choose a 
squared objective function

L ¼ Df
>Df : (4) 

When minimizing the RMSG, the actuator forces are typ
ically limited by engineering requirements. Let us denote the 
lowest and highest allowed limits of forces as FLL and FUL:

In addition, there is a maximum of na actuators available to 
use, which is formulated by the second constraint that the 
total number of non-zero elements in force vector F can not 
exceed na: We can now formulate a quality optimization 
problem of composite fuselages as follows:

minL

Fi
LL < Fi < Fi

UL 8i ¼ 1, 2, :::, nc

jjFjj0 � na 

Here, the first constraint is straightforward to enforce. 
However, the second constraint introduces a lot of complex
ity to the problem because the L0-norm is NP-hard and dif
ficult to use in solutions. Possible approaches are to 
reformulate with Boolean variables (i.e., convert to a mixed- 
integer programming MILP), or to convert and solve with 
an L1-heuristic. In effect, the latter approach is taken by Du 
et al. (2019), who reformulate the objective with a sparse 
penalty term and solve the resulting optimization problem 
via the method of alternating direction method of 
multipliers.
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3.2. RL for dimensional shape control of aircraft 
fuselages

Model-free RL algorithms have been successfully used to 
solve many optimization problems (Bertsekas, 2019). A 
major advantage of RL algorithms over optimization techni
ques is that they do not rely on solving a system of equa
tions, but rather can interact with an environment (this can 
be the real world or digital twin or a model), and learn 
from that interaction. However, it can be challenging to 
achieve a desired objective and to explicitly enforce con
straints on the actions the RL agent can take.

To describe the fundamental steps, a RL problem is set 
up as follows: there is an environment with a state space S

which is in some state s 2 S: From this state, an agent col
lects an observation o from the environment. This observa
tion may, or may not, be a direct measure of the state of the 
environment, so it is drawn from a set of possible observa
tions O: Hence, the observation space O may differ from S:

Based on the observation, the agent decides to take an 
action a 2 A, where A is the set of all possible actions, i.e., 
the action space. Based on the chosen action, the state of 
the environment transitions to a new state, s0, according to 
a transition function Pðs0js, aÞ: A reward function Rðs, a, s0Þ

returns a reward r to the agent. It is typically assumed that 
the goal is to find an optimal policy for a Markov Decision 
Process (MDP) that maximizes the reward received over a 
time horizon H and takes into account a discount factor c:

Namely, the optimal policy p� for an MDP ðS, A, P, R, c, HÞ

is sought. In the following sections, we will illustrate the 
details of the proposed approach.

3.2.1. Objective function formulation
In the RL formulation, an optimization objective can be cap
tured via the reward function. However, choosing a reward 
function is a crucial decision in RL that can determine 
whether or not the agent is able to learn a successful policy 
to improve the quality management of aircraft assembly. 
Furthermore, the reward function can strongly influence the 
rate at which the policy converges towards a successful pol
icy. A poorly designed reward function can drive an agent 
towards undesired and unexpected behaviors. For example, 
if an agent tends to receive a lot of negative rewards during 
episodes, it may lose its “will to live” and strive towards 
early episode termination by taking only “bad” actions in 
quick succession. Another challenging circumstance arises 
when rewards are rarely given, i.e., rewards are sparse. In 
this scenario, the agent must explore the environment a lot 
until it observes a positive reward, and thus, learning tends 
to be very slow and sample-inefficient. Ideally, rewards are 
given frequently to provide enough of a learning signal to 
the agent during training and scaled in a way to not encour
age erratic (¼too large) policy changes. In situations where 
a reward function is directly accessible, e.g., scores in Atari 
games, some successful strategies have been devised that 
seek to normalize and scale rewards to facilitate learning 
(van Hasselt et al., 2016; Schaul et al., 2021).

In manufacturing, directly accessible reward functions 
exist as well. Oftentimes, a deviation from a target value or 
setpoint is of interest, and the goal is to minimize it. This 
could be the case for shape errors in mechanical applications 
(machining, joining, 3d printing) or control of process 
parameters such as temperature, flow rate, or forces. For 
this purpose, some distance function is typically used, most 
often the absolute or squared error, e.g, the L1 or L2 norm.

However, it is not necessarily best to directly use the 
absolute error term as a reward for an RL agent that is used 
in the manufacturing system. Suppose we simply return the 
magnitude of the reduction in error, i.e., R ¼ ei − ef , where 
ei and ef indicate the dimension errors before and after 
applying the forces. Since the best achievable error reduction 
is capped by the initial error (i.e., the ideal case is always to 
have the initial error reduced to zero), the magnitude of the 
reward is jointly determined by the performance of the pol
icy and the initial error. If the initial error is small, an ideal 
policy (reduce the error to zero) can only achieve a small 
reward. Conversely, if the initial error is very large, even a 
comparatively bad policy (fail to reduce the error to zero) 
can still receive a considerable reward, as the error reduction 
might be large. In an actor-critic setting, where the critic 
aims to learn the value function (i.e., the cumulative 
expected future reward on the current state), the issue of 
using absolute error term as the reward function may slow 
learning progress. Considering the compatibility of our RL 
environment with a wide variety of algorithms, we propose 
the following scheme that normalizes the scale of the 
rewards to the range [-1,1] in order to facilitate the learning 
process while maintaining a sensible interpretation of what 
the reward represents.

For quality targets in a production environment, we pro
pose to calculate rewards based on a relative improvement of 
the distance from the target value relative to the starting dis
tance. Intuitively, we aim to provide zero reward if no 
change is detected, a positive reward for an improvement, 
and a negative reward for an increase in error. As for the 
scale of the rewards, we choose a maximum reward of þ1 
to be returned when the final distance from the target value 
becomes zero. On the other hand, when the outcome of the 
episode is worse than, or equal to, a chosen threshold, we 
bound the negative reward at −1. This was implemented by 
a simple clipping operation on the reward function. Note 
that we could also perform a “squishing” transformation, 
but for a policy that is quite “bad,” such refinement is not 
really necessary. A straightforward way to formulate this 
mathematically is as follows:

R ¼ max 1 −
ef

ei
, − 1

� �

: (5) 

In this equation, ei and ef refer to the dimension errors 
calculated via the chosen distance function before and after 
applying a specific force, respectively. The reward function 
is visualized in Figure 1. For zero final error, the reward is 
þ1. When the initial and final errors are equal, zero reward 
is given. In the case where the final error is greater than 
double the initial error, the reward is clipped at −1. 
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Otherwise, the reward is calculated on a linear scale, nor
malized by the initial error.

3.2.2. Constraints definition
1. Limits on the number of actuators. It is common for an 
agent to encounter situations where it is impossible to take 
certain actions. For example, in a game-type environment, 
rules often dictate what a player is and is not allowed to to. 
Or in navigation tasks, the presence of a wall may preclude 
an agent from moving in one or more directions. One may 
expect the agent to learn such rules or features of the envir
onment by trial and error. However, this would come as a 
cost since the agent will have to interact with the environ
ment many times to learn when to avoid a set of actions. It 
also turns out that it is not always easy to design a reward 
function or other mechanism that provides the necessary 
signal to the agent from which it can learn the desired 
behavior. Methods such as providing negative rewards for 
invalid actions or ignoring invalid actions inside the envir
onment do not always work.

A recent advance to overcome this challenge has been 
introduced by Vinyals et al. (2019), who propose a method 
to mask out invalid actions when the action space is discrete. 
The method works by setting the probabilities of taking 
invalid actions to zero, which is done inside the policy 
neural network. Thus, the agent cannot attempt an invalid 
action at all. Effectively, this means that the policy utilizes 
prior knowledge about the environment that is coded dir
ectly into the inner workings of the agent. This approach 
can speed up learning significantly compared with an agent 
that tries to execute invalid actions over and over. After all, 
the mask is a function of the state of the environment and, 
as such, contains information that is very helpful to the 
agent. Importantly, the neural network weights associated 
with taking particular invalid actions are not being updated 
when it is masked out.

Here, we propose an approach for incorporating the influ
ence of constraints when the action space is continuous. Such 
scenarios arise when a continuous action is only allowed to 
be triggered in a particular situation and is supposed to be at 
a constant value otherwise (e.g., zero). In general, we can 

provide a Boolean input mask along with constant replace
ment values for the continuous output to the agent. As such, 
the underlying principle of operation is quite similar to that 
of the discrete case: provide an output mask and replace rele
vant values at the output of the agent.

A related scenario arises when the allowed number of 
actions is restricted. Rather than providing a set of specific 
actions to mask out, we may limit the count of continuous 
actions being output. For example, say a humanoid robot 
worker has two hands, but suppose there are five hand tools 
to choose from for assembling a certain part. We can say 
that the continuous outputs for the tools not in use are to 
be zero, while the chosen tools require a non-zero output so 
that they can be activated with the proper parameters. To 
accomplish this, we can perform a thresholding operation 
that masks out all but the actions with the largest magni
tude, i.e., the actions that the agent most strongly wants to 
perform. For this to work, the magnitudes of all action out
puts are scaled to the same interval of ½−1, 1�, with the 
assumption that an appropriate mapping of these output 
values is performed inside the environment.

2. Limits on the magnitude of forces. We deliberately apply a 
tanh activation function to the final layer in our neural net
work. This is in contrast to many implementations of neural 
network architectures for RL, where the final activation 
layers are simply fully connected linear layers. The outputs 
of such layers are unbounded, which can lead to problems 
when, in contrast, the action space is supposed to be 
bounded. The naive solution is to simply clip the output of 
the neural network to match the bounds of the action space. 
Indeed, this is often done in popular implementations of RL 
algorithms. However, doing so discards information: sup
pose the output is constrained to be at most one according 
to action space bounds. When clipped to this value, the 
environment reacts the same whether the agent outputs 2, 
10 or some other value greater than 1. Hence, it is better to 
perform a “squishing” operation as can be accomplished 
with a tanh activation, which squeezes the output into the 
interval ð−1, 1Þ but maintains a gradient that can affect pol
icy updates. From this interval, the force bounds can be 
enforced by transforming the neural network outputs as fol
lows:

Fi ¼ Yi
Fi

UL − Fi
LL

2

� �

þ
Fi

UL þ Fi
LL

2
(6) 

In this linear transformation, Yi are the ith outputs from 
the tanh activation, and Fi

UL and Fi
LL are the upper and 

lower limits of permitted forces, respectively. We apply this 
scaling inside our RL environment.

3.3. Modified PPO

Policy gradient algorithms aim to find a local maximum of 
a policy objective function JðhÞ: The policy parameters h are 
changed according to the gradient ascent update rule htþ1 ¼

ht þ arhJðhÞ: In this expression, a is a hyperparameter that 
corresponds to the step size of policy parameter updates, 

Figure 1. Visualization of the reward function.
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and rhJðhÞ is the policy gradient. For the most straightfor
ward objective function that underlies the REINFORCE 
algorithm (Williams, 1992) (also referred to as “vanilla” pol
icy gradient), the objective function chosen is such that the 
gradient is

rJðhÞ ¼ Ep

rpðajs, hÞ

pðajs, hÞ
Â

� �

:

This objective directly aims to maximize the future 
returns under the current policy. It gives rise to the update 
rule

htþ1 ¼ ht þ aGt
rpðajs, hÞ

pðajs, hÞ
, 

which intuitively increases the probability of taken actions 
that increase returns and vice versa. Since REINFORCE was 
introduced, more sophisticated objective functions have 
been proposed to improve upon the performance when uti
lizing policy gradients. As one of the latest advances, PPO 
(Schulman et al., 2017) improves upon the vanilla policy 
gradient in several ways. Realizing that policy updates are 
often too large, PPO simplifies the objective of its direct suc
cessor, trust region policy optimization (Schulman et al., 
2015) by introducing a clipped objective function:

LCLIP ¼ Êt minðrtðhÞÂtÞ, clipðrtðhÞ, 1 − ϵ, 1 þ ϵÞ
� �

: (7) 

In this expression, rtðhÞ is the probability ratio

rtðhÞ ¼
phðatjstÞ

phold ðatjstÞ
:

The clipping ratio prevents the probability ratio from 
moving outside the interval ½1 − ϵ, 1 þ ϵ�, thus limiting how 
much action probabilities can change for the new updated 
policy relative to the old one. The min operation makes it 
so that the clipping is in effect on only one side, depending 
on the sign of the advantage estimate Â:

To encourage exploration, we can add an entropy loss of 
the form LS ¼ S½pt�ðstÞ scaled by some factor cs, in which S 
indicates the entropy function. Thus, the overall objective 
becomes

JðhÞ ¼ LCLIP þ csLS (8) 

For estimating the advantage function, we use a neural 
network that acts as a critic. Its parameters are updated to 
estimate the value function according to the quadratic value 
loss LVF ¼ ðVhðstÞ − V target

t Þ
2
: From the value function esti

mate, the advantage can be estimated for a predetermined 
period of T timesteps as Ât ¼ −VðstÞ þ rt þ crtþ1 þ ::: þ

cT−tþ1rT−1 þ cT−tVðsTÞ: If the policy and value networks 
were to share network parameters, then this objective could 
be added to equation (7). In our network architecture, they 
are independent of each other and their objectives can thus 
remain separated.

3.4. Annealing the variance of the action distribution 
for efficient exploration

Our proposed RL algorithm aims to explore the available 
actions (the action space) in order to develop its policy. In 
continuous action spaces, it is designed to select actions 
based on a Gaussian policy that is parameterized with a 
mean l and a standard deviation r: Accordingly, on-policy 
algorithms often employ neural network architectures that 
estimate these hyperparameters (i.e., l and r), in effect hav
ing them as the output from a learnable neural network. 
However, limited trials focused on dynamically adjusting 
these hyperparameters to guide the exploration of action 
space and facilitate efficient training. Intuitively, a large 
value of r indicates a wide spread-out of the distribution 
over possible actions, which tends to encourage exploration. 
On the contrary, a small value of r indicates the RL agent is 
more confident about the current policy while is less intent 
for exploration. Therefore, the propensity of exploration can 
be tuned by controlling over the standard deviation r dur
ing training. The principle guideline is that the initial train
ing stages should encourage the exploration of action space 
(a larger value of r) while the action policy should gradually 
converge as the training evolves (a smaller value of r). 
Hence, we propose to exert greater control over the param
eter r during training. Compared with the common practice 
of estimating the r directly from the neural network, our 
proposed method improves the efficiency and performance 
of the learning process. In addition, the classic design of the 
PPO algorithm includes an entropy term in the objective 
function to control the exploration process. The impact of 
this entropy term is adjusted through a coefficient cs (shown 
in equation (8)), which also requires extensive tuning. 
Introducing annealing the action distribution variance can 
eliminate the need to use the entropy term and, therefore, 
reduces the need for tuning the coefficient. The technical 
details are provided as follows.

In order for the agent to learn about its environment, in 
general the agent must explore its action space during train
ing. In the case of the on-policy PPO algorithm, the agent 
typically is set up to parameterize an action distribution, i.e., 
a probability distribution from which actions are sampled. 
In typical implementations of PPO, the agent specifies the 
mean l and variance r2 for a normal distribution based on 
the observed state at its input. The actions are then sampled 
from this distribution. Hence, the agents actually performs 
the following function: f : st ! l, r Based on this mapping, 
the action distribution is

pðatjstÞ ¼
1

r
ffiffiffiffiffi
2p

p exp −
1
2

x − l

r

� �2
( )

from which actions are sampled as at � N ðl, r2Þ:

There are some scenarios where it is desirable for the 
agent to not be entirely predictable. For example, in a com
petitive game setting such as tennis, it may be beneficial for 
the agent to keep the opponent guessing as to where the 
next shot is going to be aimed. In contrast, engineering 
environments most often require that the agent acts 
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deterministically, meaning that the same observation produ
ces the same action. Questions about the trustworthiness of 
a manufacturing process could arise if actions were not 
repeatable, in particular if the process is subject to validation 
procedures, as is the case in aerospace applications.

Suppose we require that after training, the RL agent acts 
deterministically. Then the agent should be tasked to learn the 
mapping f : st ! l, from which we can then specify actions 
as at ¼ f ðstÞ ¼ l: This implies that the agent does not have to 
learn how to specify r in order to be deployed. Furthermore, 
it begs the question if learning r may be detrimental to the 
final goal, as it may detract from the overarching objective. 
That is, the agent ought to maximize rewards under a deter
ministic policy, but it acts stochastically during training, and 
the randomness of actions is, in fact, controlled by r: It may 
be the case that a small r (corresponding to deterministic 
behavior) maximizes the reward during training, but this is 
not necessarily guaranteed. So, instead, we propose to grad
ually guide the actions of the agent from random towards 
more deterministic behavior by imposing an annealing sched
ule on r: For example, we may impose a linear or exponential 
decay on the variance of the action distribution. Figure 2 illus
trates how, as a result, the action distribution changes as train
ing progresses. The agent starts off exploring the environment 
through stochastic actions. Then, as training progresses, the 
agent reduces the randomness of its policy according to an 
annealing schedule for the standard deviation of the action 
distribution. Hence, during training, the agent is steered 
towards the deterministic behavior that it is supposed to fol
low upon being deployed in the real world. In effect, our 
method reduces the need to tune a hyperparameter that is typ
ically not even accessible for tuning.

There is another reason why we may want to manually 
set the variance of the action distribution during learning. 

That is, it may be prudent to ensure cautious exploration so 
as not to exceed the engineering limits of the assembly. This 
is especially true if the agent is allowed to learn online 
rather than inside a simulated environment. Furthermore, a 
learning strategy that starts with small adjustments centered 
around zero is a sensible heuristic strategy similar to how an 
engineer would approach an unknown problem. Taking this 
a step further, engineering knowledge could be incorporated 
into a prior for the action distribution.

4. Case study on fuselage shape control in 
aerospace manufacturing

4.1. Overview

For our case study, we are considering the assembly of a 
composite fuselage. In our application, two fuselage sections 
are to be joined together. Due to manufacturing variations, 
there typically exist gaps between the components that need 
to be minimized to meet quality targets. Such gaps have 
been found to be up to an inch in magnitude, far above tol
erable limits (Wen et al., 2018). Hence, it is almost always 
necessary to correct the shape of mating parts. In current 
practice, shape adjustments are performed via a fixture that 
features several force-controlled actuators that can exert a 
force (push or pull) perpendicular to the fuselage skin. This 
solution is not as straightforward as it seems because it is 
difficult to prescribe a suitable set of forces. Typically, this 
requires the input of expert knowledge and several steps of 
trial-and-error adjustments. Not only is it costly to involve 
an application engineer for this purpose, but incremental 
adjustments take a lot of time because they necessitate 
repeated measurements of the components. Accordingly, it 

Figure 2. The action distribution changes as training progresses.
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is desirable to calculate an optimal set of actuator forces and 
locations from a single measurement step.

4.2. Problem definition

We define an idealized fuselage shape as a cylinder with a 
diameter of 216 inches and 288 inches in length. Our model 
specifications were adapted from Wen et al. (2018), who 
experimentally validated the simulation outputs. Based on a 
design-of-experiment, we generate a set of deviated fuselage 
shapes that are generated by applying forces to our nominal 
(“ideal”) starting shape. We use the same design of experi
ment as Du et al. (2019) to generate 40 sample shapes for 
training and 20 sample shapes for testing purposes. Pairs of 
these deviated shapes are then to be mated to each other so 
that the total set of possible scenarios consists of all pairwise 
combinations of these shapes. In total, there are 1560 train
ing scenarios and 380 test cases.

Mimicking an existing process, we assume that one fix
ture simply holds one of the two fuselage sections stationary. 
For the second fuselage section, another fixture is equipped 
with actuators that can exert forces at up to 18 candidate 
locations. There are supports and a strap that hold the fusel
age in place, as illustrated in Figure 3. According to engin
eering knowledge, the maximum force that the actuator can 
apply to the fuselage is 1000 lbs (Wen et al., 2018). 
Therefore, the action space is defined with the maximum 
force magnitude as 1000 lbs. In addition, it is desirable to 
use a small number of actuators when matching the shape 
of the adjusted fuselage section to that of its counterpart.

4.3. RL environment

The developed RL scheme can be visualized in Figure 4. The 
detailed simulation platform, surrogate model, action space, 
observation space, and reward function will be introduced as 
follows.

4.3.1. Simulation platform
Many RL environments have been created based on to a 
standardized interface provided by OpenAI gym (Brockman 
et al., 2016). For this interface, many RL algorithms have 

been implemented and can thus be used with modifications 
and setting of hyperparameters. Using the pyMAPDL frame
work (Kaszynski et al., 2020), we built a customized envir
onment that follows the gym specifications. Our algorithm 
is adaptable to other environments.

The pyMAPDL package makes it possible to control an 
existing ANSYS simulation from a Python script. To create 
our gym environment, we first define a FE model of our 
fuselage section in ANSYS Workbench using the ACP Pre/ 
Post and Mechanical tools. The fixturing and application of 
forces are realized via boundary conditions that are applied 
to the geometrical features of the fuselage. Our simulation 
encompasses two stages: (i) generation of deviated shapes 
and (ii) shape adjustment.

We run the first stage of the simulation with input 
parameters from a design-of-experiment (DOE) to generate 
a set of solutions that correspond to the initial shapes of 
mating fuselage sections. From here, the shape adjustment 
stage is performed. This latter stage is the part of the simu
lation that the RL agent interacts with - at this point, the 
agent specifies the actuator forces and locations via bound
ary conditions defined in the FE model, given the initial 
observation from the first stage solution output.

4.3.2. Surrogate model
We build a surrogate model according to the approach of 
previous works (Yue et al., 2018; Du et al., 2019), relying on 
fuselage deformations generated from a DOE. In total, 40 
samples were used for training and 20 for testing purposes. 
On these samples, the linear model performs very well, as 
evidenced in Table 1.

Whereas the ANSYS FE model took 7 s to compute a sin
gle solution, the surrogate model could provide up to 500þ

solutions per second while running on 12 parallel CPU 
cores. For validation and testing purposes, we rely on the 
outputs from the ANSYS simulator as our ground truth.

4.3.3. Action space
There are 18 candidate locations for actuators that are used 
to adjust the shape of the fuselage. The environment can be 
instantiated with a maximal number of actuators, na: The 

Figure 3. Fixtures and actuator forces in the fuselage model.
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agent can specify forces for all nc ¼ 18 actuator positions. 
However, only the na-largest forces are actually applied to 
the fuselage. In fact, the (nc − na)-smallest forces are set to 
zero by the environment. By doing so, the constraints on 
the number of actuators is always enforced, regardless of 
whether or not the agent imposes this constraint on itself.

4.3.4. Observation space
The environment returns the deviations of the fuselage edge 
from its target shape. In total, deviations at N ¼ 177 nodes 
along the circumference of the fuselage are returned to the 
agent. The deviation at each node comprises the x− and y− 
displacements from its target position, measured in inches. 
The environment returns the observation as a flattened vec
tor with 354 elements.

4.3.5. Reward function
The reward is calculated from the deviations of the final 
shape as compared with the original shape. More specific
ally, it is calculated as the relative improvement of RMSG 
during the shape adjustment according to equations (5) and 
(3). On the negative side, the reward is clipped at −1 so that 
the reward function returns values in the interval ½−1, 1�:

R ¼ max 1 −
ef

RMSG
ei

RMSG
, − 1

 !

¼ max 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Df >Df

Di>Di

s

, − 1

0

@

1

A:

(9) 

4.3.6. Episode
All forces are applied all at once, hence each episode lasts 
only a single step.

4.3.7. Hyperparameters
The PPO algorithm can be tuned through a number of 
hyperparameters. For most of them, the default values as 
recommended by Schulman et al. (2017) were used. Some 
adjustments were made to improve performance in our con
tinuous action space setting. Table 2 provides a summary of 
the parameters used in training.

4.4. Results and discussion

In this section, the performance of our proposed method is 
first demonstrated by comparing it with the state-of-the-art 
benchmark. In addition, the effectiveness of our designed 
modules is demonstrated through ablation studies.

4.4.1. Actuator selections and experimental results
The desired or allowed number of actuators can be freely set for 
our learning environment. Intuitively, with more actuators, we 
expect to have more control over the shape of the fuselage. 
Figure 5 illustrates the final RMSG after 8,000,000 training steps 
evaluated over 100 test samples, where the target shape is non- 
ideal. Indeed, our results show that with a greater number of 

Figure 4. Overview of the RL scheme.

Table 1. Goodness of fit statistics for the surrogate model.

Metric Train Test

MAE [in] 1.18e-8 1.89e-8

Table 2. PPO hyperparameters used for training

Hyperparameter Symbol Value

Optimizer learning rate a 1e-5
Optimizer learning rate annealing True (linear)
Discount factor c 0.99
Max gradient norm 0.5
Minibatch size 16
Number steps 16
Number minibatches 12
Update epochs 4
Number parallel environments 12
Clip coefficient ϵ 0.2
Entropy coefficient cs various  

ð0:0, − 0:1, − 0:01, 0:01Þ

Value function coefficient 0.5
Reward normalization False
Advantage normalization True
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actuators, a smaller shape error can be achieved. From a cost 
perspective, we may be interested in the smallest number of 
actuators necessary to achieve good enough results. As we can 
see, performance is very similar when eight or more actuators 
are used but degrades quickly when fewer forces are applied to 
the fuselage. That is to say, beyond eight actuators, the return of 
adding more actuators diminishes.

The agent tends to select actuators on the sides rather 
than the bottom of the fuselages. This can be explained by 
the fact that, given the fixture supports, the fuselage can 

move more freely in the horizontal direction than in the 
vertical direction. Thus, a greater displacement can be 
achieved with these actuators. Examples of actuator selec
tions and corresponding forces are illustrated in Figure 6, 
which shows the cross-sectional view of the fuselage joining 
edge before and after shape control has been applied.

The magnitudes of forces also tend to be greater at loca
tions where larger deviations are present. This is not a sur
prise. In effect, the results using a small number of actuators 
show that a few actuators with large forces are sufficient to 
roughly match the target shape. Additional actuators then 
help eliminate local gaps via small forces applied in the 
vicinity where gaps still exist. In a heuristic step-wise strat
egy, an operator would typically adjust the overall shape 
with a few actuators and then try to match the overall shape 
by fine-tuning forces at additional actuator locations where 
gaps are still present. The downside of the manual step-wise 
method is that each subsequent addition of a force can dis
tort the overall shape, and so the fact that forces are pre
scribed in a single step as in our method is desirable.

We compare our performance to forces calculated via the 
method by Du et al. (2019). In this related work, the non- 
nominal fuselage shapes were adjusted back to the ideal 
shape. We replicated this approach and evaluated the results 
on the corresponding test samples from the DOE. As shown 
in Table 3, the mean RMSG we obtain with our RL agent is 
smaller than that of the benchmark method. Furthermore, 
the RL agent achieves a smaller variance of the RMSG Figure 5. The final test RMSG v.s. the number of actuators.

Figure 6. Examples of shape adjustment results, indicating which actuators were chosen. Force arrows are scaled by the magnitude of the proposed forces.
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across the results. At the same time, our method applies 
smaller maximum forces on the parts, suggesting that the 
assembly experiences less stress during the assembly process. 
Hence, our method can achieve overall better performance 
than the benchmark method. An added benefit of our 
method is that the trained RL agent performs a single for
ward pass in the policy neural network given the initial 
deformation of the fuselage, which is a very fast and simple 
computation that does not require any interaction with the 
environment. Contrast this with the benchmark method, 
which has to re-run thousands of calculations on the surro
gate model in order to return a set of actuator forces. 
Although this may take only a handful of seconds with a 
surrogate model, it is time-prohibitive to utilize a FE 
method for the optimization. In turn, the RL agent is actu
ally able to refine its solution with just a handful of interac
tions with the environment, so it can be feasible to directly 
act upon the FE model.

4.4.2. Ablation study on the reward function
To demonstrate the effectiveness of our proposed reward 
function, we compare the performance of our proposed 
method using the reward function evaluating relative 
improvement (our proposed) versus the existing reward 
function evaluating the absolute error reduction in different 
measurement units (i.e., inches and millimeters), which is 
defined as the difference of dimension errors before and 
after applying the actuators (R ¼ ei − ef ).

The results are demonstrated in Figure 7, from which we 
can summarize the advantages of our proposed reward func
tion into two aspects. First, following the discussion in 
Section 3.2.1, the learning process using the proposed 
reward function consistently encourages the policy that 
reduces the initial dimension error towards zero, which is 
demonstrated to converge faster (i.e., shown in the blue 
curve in Figure 7) than using the absolute error reduction as 
the reward function (i.e., shown in the orange and green 
dashed curves in Figure 7). Second, the proposed reward is 
invariant to the magnitude of the error and consistently falls 
into ½−1, 1�, which enables its invariant performance under 
different units of dimension measurement and different 
magnitudes of initial errors. We also demonstrated how the 
magnitude of the reward will impact the training process. 
when using the absolute reduction in dimension error as the 
reward, we compared the results using inches or millimeters 
as the measurement unit for dimension error. We can 
observe a smaller magnitude of the reward function (meas
ured in inches and shown in the orange dashed curve in 
Figure 7) leading to a faster convergence compared with a 
larger magnitude (measured in inches and shown in the 
orange dashed curve in Figure 7). It provides another reason 
to define the reward function as the relative improvement 

for a consistently small magnitude for the reward function, 
which always falls into ½−1, 1�:

4.4.3. Ablation study on annealing the action distribution 
variance

To demonstrate the effectiveness of our proposed improved 
PPO algorithm in our case study, we compare the perform
ance of the PPO algorithm with annealing the standard 
deviation of the action distribution versus using the entropy 
term in the objective function (the second term in equation 
(8)) when controlling the exploration. We find that the vari
ance of the action distribution has a significant effect on the 
training progress, as evident in Figure 8.

Using the default settings of an initial standard deviation 
r0 ¼ 1 for initializing the action distribution, training the 
PPO algorithm without the entropy loss term does not yield 
satisfactory results for our problem. With this approach, the 
agent is set to explore far too much, and it takes a long time 
to sufficiently refine the policy. Furthermore, when we add 
the suggested entropy loss term to the reward optimization 
objective, the training progress becomes even worse. The 
coefficient cs in equation (8) is the weight associated with 

Table 3. Comparison statistics on 20 test samples with n ¼ 10 forces applied.

Method Mean RMSG [in] Stdev RMSG [in] Mean MF [lbf]

Du et al. (2019) 0.011 0.0063 289.5
RL (our method) 0.010 0.0025 214.8

Figure 7. Training process using different reward functions.

Figure 8. Training progress (rolling average over 1000 update steps) in terms 
of the episodic return. Controlling exploration via the entropy loss does not 
achieve the same speed of learning as a well-chosen annealing schedule. If the 
entropy loss is set to aggressively discourage exploration, a breakdown can 
occur, e.g., cs ¼ −0:1 in our example.
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the entropy term. A coefficient of 0.01 is often prescribed as 
a good starting point, but in our scenario, this only makes 
things worse. This is because by adding the entropy term, 
exploration is further encouraged rather than discouraged, 
even though, in our case, the opposite turns out to be 
needed. We can instead make cs negative, which is an 
unusual choice. At a small scale (cs ¼ −0:01), we see a slight 
improvement in how fast training progresses, but pushing 
this parameter further into the negative, training breaks 
down. At cs ¼ −0:1, the episodic returns all of a sudden 
decrease after 14,000,000 time steps and then fall off dra
matically. All training progress up to that point is lost. An 
explanation for this is that the entropy loss term starts to 
dominate the reward optimization objective function, and 
the reward itself no longer drives the behavior of the agent. 
This motivates us to design a new method to control the 
exploration process more effectively.

Annealing the action distribution variance can intuitively 
encourage the exploration at the beginning when the variance 
the large and gradually converges to the best policy with the 
reduction of variance. Simple linear annealing of the standard 
deviation of the action distribution according to r ¼

r0ð1 − t=ttotalÞ is initially very slow to learn a policy that 
improves the RMSG at all. It takes almost 30,000 time steps 
for the agent to achieve an improvement over the initial con
figuration of the pairs of fuselage sections. At this point, r is 
around 6% of r0: This indicates that the standard deviation of 
the action distribution is far too large to begin with and points 
us towards prescribing a more rapidly decaying annealing 
function for r: In practice, it may still be worthwhile to ini
tially perform a linear annealing schedule as it effectively 
sweeps the available range of the action distribution variance. 
By paying attention to the episodic rewards, a more feasible 
value for r0 may be determined. For example, we may con
sider r0 ¼ 1 − 30,000,000=32,000,000 ¼ 0:0625 as a potential 
choice in our example.

Once we choose a more sensible annealing schedule, i.e., 
penalizing the initial action distribution by the square root 
of the number of policy updates already performed 
(r ¼ r0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffinupdates
p ), the agent exhibits much better and faster 

learning performance. The policy begins to converge 
towards R ¼ 1 quickly. Table 4 shows that this annealing 
schedule achieves a better performance on 100 test samples 
(which are identical across evaluations) than any other 
approaches.

5. Conclusion

The exploration–exploitation tradeoff during training 
remains an important consideration for reinforcement learn
ing algorithms. In this article, we proposed a strategy that 
exerts more direct control over the standard deviation of the 

action distribution of a PPO agent. Typically, the PPO 
agent’s eagerness to explore is tuned by adding an entropy 
loss term to the reward optimization objective. However, we 
showed that this can lead to surprising and undesirable 
behavior. Our scheme can ensure that the agent explores 
enough at the beginning of training and then refines its pol
icy while moving closer to acting predictably as training 
progresses. When deterministic behavior is required upon 
deployment of the agent in the real world (as is often the 
case in manufacturing applications), this strategy ensures 
that the agent was trained in a manner that reflects the 
desired behavior. By choosing a sensible annealing schedule, 
it is possible to converge to a well-performing policy in a 
more sample-efficient manner.

We successfully proposed and implemented an RL algo
rithm for fuselage shape control in an aircraft assembly case 
study. The results demonstrate that the developed RL algo
rithm can achieve high scalability to a large design space, 
improved adaptability to unseen scenarios, and superior 
shape control accuracy. Our method is superior when 
compared with the current practice from three perspectives: 
(i) it can deal with a large design space to optimize the lay
out and forces of actuators to adjust the fuselage shape 
toward a non-ideal target shape, whereas the benchmark 
method adjusts the fuselage components to their ideal shape; 
(ii) our method can be directly applied to unseen scenarios 
by conducting a single forward pass in the policy neural net
work, whereas the benchmark method has to perform many 
calculations on its surrogate model or simulation in order to 
solve the optimization from scratch; and (iii) the case study 
shows the RL method achieves the best performance on 
shape control by receiving the smallest shape deviation. 
Therefore, it can be considered the best approach to revolu
tionizing advanced aircraft assembly and enhancing the 
productivity, quality, and safety of aircraft products.

With respect to the limitations of the proposed method, 
it can be roughly summarized into two folds: (i) restricted 
by the nature of RL, the proposed method still requires a 
certain number of samples for training and optimization 
purposes, which restricts its application on the simulation 
environment instead of the real manufacturing process con
sidering the potential “trial-and-error” costs; (ii) there inev
itably exists gap between the simulation and real 
manufacturing scenario, which challenges the practical effect 
of the solution generated from the simulation. However, we 
would like to highlight that the simulation model used in 
our work has been carefully calibrated and shown to have 
an accurate representation of the real manufacturing scen
ario (Wen et al., 2018).

The proposed method can be regarded as a trial for 
developing an “AlphaGo” or “AlphaZero” for advanced air
craft assembly, in particular, the fuselage shape control 

Table 4. Ablation study results comparing the performance of the trained agents on 100 test samples. Our proposed method outperforms the 
standard implementation of PPO wherein no annealing schedule for the action distribution variance is set.

Action variance annealing (r0 ¼ 1) Standard PPO (r indirectly controlled via cs)

Method r ¼ r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nupdates

p
r ¼ r0ð1 − t=ttotalÞ cs ¼ −0:1 cs ¼ −0:01 cs ¼ 0:0 cs ¼ 0:01

RMSG [in] 0.01664 0.1202 3.167 0.03562 0.03897 0.06147
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process. The proposed method can also be extended to other 
manufacturing systems, given that the simulation environ
ments are well-defined. In addition, by targeting the sample 
efficiency, we can further develop novel RL methods that 
can better incorporate the domain knowledge into the 
exploration of action space to learn optimal policy more 
efficiently and reduce the need for training samples.
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