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ABSTRACT

Critical safety requirements necessitate ultra-high precision quality control during the assembly of
large aerospace components to reduce the mismatch between parts to be joined. Traditional
methods use heuristic shape adjustment or surrogate model-based control. These methods are
limited by reliance on accurate model learning and inadequate robustness to varying initial assem-
bly conditions. To address these limitations, this article proposes a model-free reinforcement learn-
ing approach for adaptive fuselage shape control during aircraft assembly. The trained
reinforcement learning agent directly adjusts the aircraft components in response to their part var-
iations and enables an autonomous system (like AlphaGo) to learn the optimal shape control pol-
icy. Specifically, the reinforcement learning environment is built on the finite element simulator. A
reward function is developed to capture the optimization objective and introduces a scheme to
enforce the original constraints. The proximal policy optimization algorithm is modified to speed
up the learning progress and achieve better final performance. In the case study, the root-mean-
square gap between components is reduced by 98.4% on average compared with their initial
shape mismatch. Our proposed method outperforms the benchmark methods with smaller final
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shape errors, smaller maximum forces, and lower variations across different test samples.

1. Introduction

In recent years, composite materials such as Carbon Fiber
Reinforced Polymers (CFRP) and fiberglass-reinforced plas-
tics have become ubiquitous in commercial aerospace appli-
cations; they now comprise more than 50% in flagship
passenger airplanes of the major manufacturers. These com-
posites possess superior stiffness-to-weight ratios and corro-
sion resistance and can be specifically tuned for a particular
application. However, producing large primary structures
(e.g., fuselages, wing boxes) from composites has not been
without complications. For example, while monolithic con-
struction techniques reduce the number of fasteners that are
required in the assembly of an airplane, they also require
ultra-high precision for successful assembly, because there
are fewer opportunities to correct geometric shape errors.
Over the past few years, repeated problems with the assem-
bly of fuselages made from CFRP have led the Federal
Aviation Administration (FAA) to intervene and force deliv-
eries from a major manufacturer to be halted (Schaper,
2022).

The shape adjustment and dimensional quality control of
large composite components in aircraft assembly are very
challenging, due to two major reasons: (i) complex proper-
ties of composite materials. Composite materials are highly
nonlinear, anisotropic, and compliant, which have quite dif-
ferent mechanical properties from conventional aerospace

materials such as Aluminum and Titanium alloys. Existing
physical model-driven quality control approaches do not
work well; (ii) ultra-high precision quality requirement. The
precision of composite fuselage assembly may be as high as
0.007 inches, which raises new challenges for conventional
quality management. Considering varying assembly condi-
tions and initial deformations, such a high precision is very
challenging. There have been several efforts to address the
shape adjustment and quality control problem in the context
of large aerospace parts, particularly for fuselage assembly,
including physics-driven methods and data-driven methods.
For a detailed literature review, refer to Section 2.1. Our
main contribution in this article is to propose a new
reinforcement learning approach for shape adjustment and
quality control in aircraft assembly.

Reinforcement Learning (RL) has garnered a lot of atten-
tion in recent years for its ability to exceed human-level per-
formance in playing games, e.g., Atari games (Mnih et al,
2015), Starcraft (Vinyals et al., 2019), Chess, and perhaps
most notably AlphaGo and AlphaZero (Silver et al., 2018).
Advances in RL have also originated from efforts to apply it
to classic control tasks (e.g., cartpole, mountain car, inverted
pendulum) (Bertsekas, 2019), chip design (Mirhoseini et al.,
2021), human-robot interaction (OIiff et al., 2020), and so
on. RL has several advantages: (i) it can enable adaptive
decision-making by interacting with environments dynamic-
ally and adjusting policies in real time; (ii) it can optimize
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their actions based on feedback from the environment and
reduce the need for manual intervention; (iii) it can handle
the complexities and uncertainties in engineering systems by
learning robust policies that can adapt to different situations
and make reliable decisions; (iv) it leverages the knowledge
learned from offline simulations and model training.
Therefore, RL has the potential to improve manufacturing
systems with dynamical patterns, complex environments,
and inherent uncertainties and variations.

Unfortunately, the use of RL in the manufacturing space
has not taken hold thus far due to unique challenges in this
domain. For one, there is often a limited set of data avail-
able, and generating new data through experimentation is
generally not cheap. In particular, conducting experiments
on a running production line usually comes at a large cost
of time and resources. Furthermore, real-world problems
encountered in manufacturing are often more complex than
the scenarios on which much of RL has been built. There
are a few studies on using RL in manufacturing systems,
such as additive manufacturing (Chung et al., 2022), sched-
uling of semiconductor manufacturing (Park et al, 2019),
biological manufacturing (Ueda et al., 2000), sheet metal
parts assembly Wang et al. (2024), and other manufacturing
systems (Li et al., 2023).

The main contribution of this article is to develop a RL
approach for fuselage shape control during aircraft assembly.
As far as we know, this is the first RL exploration in the air-
craft assembly field. In our study, we develop a RL environ-
ment and apply a modified Proximal Policy Optimization
(PPO) algorithm to the task of shape control during fuselage
assembly. Our detailed technical contributions are listed as
follows:

e We formulate a compliant part shape control problem
for RL. As part of this, we define a reward function that
captures the objective of shape control optimization.

e We set up a finite element simulator as an RL environ-
ment and build an interface with an RL agent that enfor-
ces the associated constraints on the number and
magnitude of applied forces.

e We propose a modified PPO algorithm implementation,
in which we anneal the variance of the probability distri-
bution from which actions are sampled during training.
Our modification can guide the RL agent’s learning pro-
cedure, accelerate convergence, and improve the per-
formance of an RL agent whose actions are to be
deterministic once deployed.

The proposed RL approach has the potential to reduce
human operation errors, increase productivity, adapt to
varying initial deformations of components, enhance robust-
ness, and enable continuous quality improvement for multi-
stage aircraft assembly. It provides a new pillar for the
digitalization and intelligence in advanced aircraft assembly.

The remainder of this article is organized as follows:
Section 2 discusses the literature review on composite struc-
tures assembly and RL in manufacturing, Section 3 proposes
our RL algorithm for fuselage shape control, Section 4

discusses the method evaluation based on case study Section
5 concludes the article with a brief summary.

2. Literature review

2.1. Assembly of thin-walled composite parts in
aerospace manufacturing

Primary aerospace structures rely on thin-walled panels
joined to internal rib structures to achieve superior high
strength-to-weight ratios. Prior to being joined as a support-
ing member, thin-walled panels are very compliant. As a
result, joining operations tend to be difficult to control and
model, in particular when non-nominal shapes are to be
considered. Past works have treated process parameter opti-
mization, error propagation, comprehensive quality control,
and simulation model calibration. For example, Zhang et al.
(2021) considered the assembly of a wing box panel to an
internal skeleton and applied a genetic algorithm for multi-
objective optimization to determine the ideal clamping
forces in response to non-ideal parts. They relied on a Finite
Element (FE) simulation and validated their results against
physical experiments. Considering the assembly quality
across multiple manufacturing steps, digital twin simulation
approaches have been devised to measure and control qual-
ity targets via physical models (Cai et al., 2021). Guo et al.
(2023) analyzed the quantifiable and controllable assembly
of thin-walled structures to avoid out-of-tolerance and
deformation rebound errors. The assembly quality was
improved by dynamic stiffness matrix learning, physical
modeling, and inverse optimization on assembly parameters.
Manohar et al. (2018) developed a sparse sensing and
machine learning scheme to predict gaps along the wing-
to-body joint on an aircraft and determined the appropriate
shim size to be fabricated to fill these gaps.

Some researchers have focused on the assembly of com-
posite fuselage sections. Wen et al. (2018) developed an
accurately calibrated FE model that characterized the behav-
ior of a composite fuselage in response to shape control
actuator forces. Starting with this calibrated model, a num-
ber of control strategies have subsequently been devised.
Yue et al. (2018) built a surrogate model considering uncer-
tainties and performed a multivariate optimization to come
up with a feed-forward control strategy for determining
actuator forces. Du et al. (2019) proposed a sparse learning
method that chooses a prescribed number of actuator loca-
tions from a set of candidate locations and specifies forces
for shape adjustments of a single fuselage. In this work, the
optimization objective was to reduce the mean gap around
the joint. Following up on this work, another sparse learning
method with a different objective of reducing the maximum
(rather than mean) gap was introduced in Du et al. (2022),
now considering simultaneous shape adjustments for two
mating fuselage parts. Physics-constrained Bayesian opti-
mization approaches are developed to optimize the actua-
tors’ placement and achieve superior performance (AlBahar
et al., 2022; Wang and Yue, 2024). Neural network Gaussian
process considering input uncertainties (Lee et al, 2020)
and Gaussian process extension (Wang et al, 2022) have



been developed for predicting the dimensional deformation
in shape adjustment. While the aforementioned strategies
relied on statistical models derived from FE analysis for
their optimizations, Zhong et al. (2022) exported a reduced-
order FE model from the simulator and used it to solve the
actuator force optimization problem. Towards utilizing
online measurements in an efficient manner, Mou et al.
(2023) considered a sparse sensor placement problem and
proposed an adaptive control strategy that aims to correct
for deviations between models used in optimization and
physical parts seen in production.

Although these approaches achieved very good perform-
ance in the fuselage shape adjustment, they have a few limi-
tations: (i) limited adaptability due to pre-defined model
structures and assumptions; (ii) high dependence on accur-
ate and reliable models; (iii) possible performance degrad-
ation or instability from the model errors; (iv) requirement
of high-quality and sufficient data samples. RL has the
potential to adapt and learn from real-time interactions
between the system and the environments and overcome
these limitations.

2.2. RL in manufacturing

In RL, an agent interacts with an environment. In response
to a current state, it selects actions adaptively and receives a
reward. Many accomplishments of RL have relied on simu-
lated environments such as OpenAl gym (Brockman et al.,
2016) or arcade games (Machado et al., 2018). In real-world
applications, RL faces challenges that are yet to be resolved.
Amongst them are limited access to samples, large continu-
ous action spaces, and satisfying environmental constraints
(Dulac-Arnold et al., 2021). These challenges relate to the
need for the agent to efficiently explore its environment to
learn a successful policy. There exist many approaches to
exploration strategies, which can be grouped into uncer-
tainty-oriented and intrinsically motivated strategies (Hao
et al., 2023). Perhaps the simplest exploration strategy is the
so-called e-greedy strategy (Tokic, 2010). In this scheme,
either the action that the agent currently rates as the best is
performed (with probability 1 — €), or else a completely ran-
dom action is executed. Although simple, this scheme also
tends to be sample-inefficient. However, in an online setting,
random actions can lead to erratic and dangerous behaviors.
In off-policy algorithms, the action is often construed by
adding noise to a deterministic action that is selected by the
agent. The role of action noise has been identified as having
an impact on the learning progress by Hollenstein et al.
(2022), who determined that the action noise scale can make
or break success in training a policy that achieves the
desired goal. Accordingly, they argue that it is necessary to
tune the action noise scale for the learning task at hand.
When applying RL in a real-life setting, challenges arise
that tend to be of little concern in simulated or virtual envi-
ronments. In the physical world, erratic actions are particu-
larly problematic in motion control problems. Jerky motions
can damage components, due to mechanical wear and exces-
sive heat buildup. Unfortunately, superimposing Gaussian
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noise to actions in order to explore the environment has
exactly that effect. Towards achieving smooth motions dur-
ing online training with a robot manipulator, Raffin et al.
(2022) modified state-dependent exploration as follows:
instead of generating noise from the initial state of an epi-
sode, they take policy features as the input to a noise-gener-
ating function at regular intervals of n steps. As an
alternative to adding noise to actions, Plappert et al. (2017)
proposed to instead introduce noise to the agent’s parame-
ters, perturbing them at the start of a learning episode. This
idea is borrowed from evolutionary methods. By doing so,
the actions for a given state are deterministic, i.e., they are
repeatable. This is not the case when random noise is added
after the agent selects an action. These strategies can be
complex and rely on the agent to automatically adjust the
exploration/exploitation trade-off during training. The
current article takes a different approach in which we exert
direct control over the exploration/exploration scheme as
learning progresses. This allows us to incorporate prior
knowledge about the RL environment and to drive the agent
to learn its policy according to the desired behavior once it
is deployed.

In the manufacturing domain, RL has most commonly
been applied to problems in process control, scheduling and
dispatching, design, quality control of diverse manufacturing
systems such as additive manufacturing, semiconductor
manufacturing and biological manufacturing (Park et al,
2019; Ueda et al., 2000; Chung et al, 2022; Panzer and
Bender, 2022; Li et al., 2023). For process control, applica-
tions span chemical processes, welding, machining, and
additive manufacturing. For example, Chung et al. (2022)
proposed a RL method that conducts online learning while
incorporating prior knowledge to mitigate defects in fused
filament fabrication. In the context of assembly, the focus
has largely been on simple insertion tasks (peg-in-a-hole)
performed by a robot with some kind of sensory equipment
such as vision or force feedback (Panzer and Bender, 2022;
Li et al., 2023). Although this represents a notable challenge,
it is only one of many problems that arise in assembly proc-
esses. On an assembly line, there are many steps that con-
tribute to the overall quality of the final product. One
problem that naturally arises is to determine a suitable
assembly sequence, a problem that De Giorgio et al. (2021)
sought to address with RL. Missing from previous work,
however, are instances in which parameters may need to be
adjusted in response to part variations, e.g., flexible fixtures
in automotive, shipbuilding, and aerospace applications.
This article explores this issue with the application of assem-
bling composite fuselage sections. As far as we know, this is
the first work of using RL for quality control of advanced
aircraft assembly.

3. RL for fuselage shape control

In this section, we first formulate the problem of dimen-
sional shape control of aircraft fuselages. From there, we
convert the problem into a RL framework, which offers a
different way to achieve the goals of quality optimization.
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Towards this end, we propose a reward function that cap-
tures the optimization objective and sets up an architecture
that enforces constraints on the actions that the agent can
perform in its environment. Finally, we propose a modified
PPO algorithm to solve the RL problem.

3.1. Program formulation of dimensional shape control
of aircraft fuselages

In the aircraft assembly process, dimension gaps inevitably
exist between two sections of the fuselage due to shape
deformation. Therefore, a set of actuators is placed on the
boundary of the fuselage to adjust its shape to minimize the
dimension gap. The effect of shape adjustment is jointly
determined by the layout of actuators along with their forces
(push or pull), which is not trivial to optimize. Therefore,
we propose to formulate the problem of fuselage shape con-
trol as an optimization problem and develop a tailored RL
algorithm to solve it. The objective is to generate the layout
of actuators over the fuselage along with the applied forces,
such that the shapes of two assembled fuselages match well.
Relying on a finite element (FE) model of a fuselage (or
possible digital twin in the future), we can set up the shape
control problem as an optimization problem. Suppose in
our FE model, we define a set A/ that contains all nodes of
interest to us. These nodes could correspond to a set of key
measurement points on a physical part (i.e., the fuselage).
Let N denote the number of nodes in N. In our case, by
measuring the distance between the opposite nodes in the
set \V, the finite element model can generate the shape of
the fuselage. In addition, there is a total number of n, candi-
date locations (denoted as P. = {P;,P,...,P, }) at which
the actuators can be applied. However, not all the available
positions will be used as (i) the total number of available
actuators is much smaller than the available locations, and
(ii) the design space of actuator forces will be more complex
with the increase of its number. Therefore, we introduce n,
to denote the number of actuators (i.e., the number of
candidate locations that will be used). In addition, we use
n, < n, to indicate the fact that the number of available
actuators is usually much smaller than the total number of
candidate locations. In the setting of the FE model, applying
a specific layout of n, actuators along with designed forces
is implemented as applying n, nonzero forces as boundary
conditions out of n. candidate locations. The forces at the
remaining (n. —n,) locations can be set to zero, corre-
sponding to no actuator being present there. Hence, we can
define a vector F with the length of n, where each element
F; corresponds to the force applied at the candidate location
P; € P.. The resulting nodal displacements by actuator
forces can be evaluated at the N measurement points, which
are denoted as U= (uj,up,...,uy). These displacements
may be nonlinear in response to the applied forces, and they
also depend on the fixtures for which boundary conditions
have been defined. The nodal displacement at each measure-
ment point is stored as w; = (u, u;,, ul) for i=1,2,..,N.
The objective of shape control is to adjust the dimensions of
the fuselage towards the target one. Therefore, there is a

corresponding target position of each measurement point,
which is denoted as pi = (x},y,2!) (subscript ¢ indicates
“target”). Suppose the final positions after force vector F has
been applied are pj = (x},y},2}) for i = 1,2,...,N, which are
obtained by adding the nodal displacements to the initial
positions (i.e., pi = p} + w;). The p} with subscript 0 indi-
cates the initial position at the measurement point i. Note
that U is the output of the FE method with the forces F as
boundary conditions. At each measurement point, the differ-
ence between current and target dimensions € can be calcu-
lated as follows:

€ = Po ~ P, M

& =Pi—P =6t u 2)
From this, we can define initial and final deviation pat-
terns Ao = (€5, €, .- €) and Af = (¢}, €, ...,€f'). These
deviations characterize the assembly gap between two com-
ponents that are to be joined, where the shape of one of the
components is set as the target shape of the other.
Based on the deviation patterns, we can define an object-
ive function £ to set up a minimization problem. For
example, we can choose the Root-Mean-Square Gap (magni-

tudes of deviations) between the mating fuselage sections
(RMSG):

1
erMsG = \| 3 (Af"A¢) (3)

In practice, it is easier to avoid taking the square root
when solving an optimization problem. We can choose a
squared objective function

L= As" As. (4)

When minimizing the RMSG, the actuator forces are typ-
ically limited by engineering requirements. Let us denote the
lowest and highest allowed limits of forces as Fy; and Fyp.
In addition, there is a maximum of #, actuators available to
use, which is formulated by the second constraint that the
total number of non-zero elements in force vector F can not
exceed n,. We can now formulate a quality optimization
problem of composite fuselages as follows:

minl
Fi, <F <Fj, Vi=12,..,n
[[Ello < 7

Here, the first constraint is straightforward to enforce.
However, the second constraint introduces a lot of complex-
ity to the problem because the Ly-norm is NP-hard and dif-
ficult to use in solutions. Possible approaches are to
reformulate with Boolean variables (i.e., convert to a mixed-
integer programming MILP), or to convert and solve with
an L1-heuristic. In effect, the latter approach is taken by Du
et al. (2019), who reformulate the objective with a sparse
penalty term and solve the resulting optimization problem
the method of alternating direction method of
multipliers.

via



3.2. RL for dimensional shape control of aircraft
fuselages

Model-free RL algorithms have been successfully used to
solve many optimization problems (Bertsekas, 2019). A
major advantage of RL algorithms over optimization techni-
ques is that they do not rely on solving a system of equa-
tions, but rather can interact with an environment (this can
be the real world or digital twin or a model), and learn
from that interaction. However, it can be challenging to
achieve a desired objective and to explicitly enforce con-
straints on the actions the RL agent can take.

To describe the fundamental steps, a RL problem is set
up as follows: there is an environment with a state space S
which is in some state s € S. From this state, an agent col-
lects an observation o from the environment. This observa-
tion may, or may not, be a direct measure of the state of the
environment, so it is drawn from a set of possible observa-
tions O. Hence, the observation space O may differ from S.
Based on the observation, the agent decides to take an
action a € A, where A is the set of all possible actions, i.e.,
the action space. Based on the chosen action, the state of
the environment transitions to a new state, s, according to
a transition function P(s'|s,a). A reward function R(s,a,s)
returns a reward r to the agent. It is typically assumed that
the goal is to find an optimal policy for a Markov Decision
Process (MDP) that maximizes the reward received over a
time horizon H and takes into account a discount factor 7.
Namely, the optimal policy n* for an MDP (S, A,P,R,7, H)
is sought. In the following sections, we will illustrate the
details of the proposed approach.

3.2.1. Objective function formulation

In the RL formulation, an optimization objective can be cap-
tured via the reward function. However, choosing a reward
function is a crucial decision in RL that can determine
whether or not the agent is able to learn a successful policy
to improve the quality management of aircraft assembly.
Furthermore, the reward function can strongly influence the
rate at which the policy converges towards a successful pol-
icy. A poorly designed reward function can drive an agent
towards undesired and unexpected behaviors. For example,
if an agent tends to receive a lot of negative rewards during
episodes, it may lose its “will to live” and strive towards
early episode termination by taking only “bad” actions in
quick succession. Another challenging circumstance arises
when rewards are rarely given, i.e., rewards are sparse. In
this scenario, the agent must explore the environment a lot
until it observes a positive reward, and thus, learning tends
to be very slow and sample-inefficient. Ideally, rewards are
given frequently to provide enough of a learning signal to
the agent during training and scaled in a way to not encour-
age erratic (=too large) policy changes. In situations where
a reward function is directly accessible, e.g., scores in Atari
games, some successful strategies have been devised that
seek to normalize and scale rewards to facilitate learning
(van Hasselt et al., 2016; Schaul et al., 2021).
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In manufacturing, directly accessible reward functions
exist as well. Oftentimes, a deviation from a target value or
setpoint is of interest, and the goal is to minimize it. This
could be the case for shape errors in mechanical applications
(machining, joining, 3d printing) or control of process
parameters such as temperature, flow rate, or forces. For
this purpose, some distance function is typically used, most
often the absolute or squared error, e.g, the L1 or L2 norm.

However, it is not necessarily best to directly use the
absolute error term as a reward for an RL agent that is used
in the manufacturing system. Suppose we simply return the
magnitude of the reduction in error, i.e., R=1¢; — ef, where
e; and e indicate the dimension errors before and after
applying the forces. Since the best achievable error reduction
is capped by the initial error (i.e., the ideal case is always to
have the initial error reduced to zero), the magnitude of the
reward is jointly determined by the performance of the pol-
icy and the initial error. If the initial error is small, an ideal
policy (reduce the error to zero) can only achieve a small
reward. Conversely, if the initial error is very large, even a
comparatively bad policy (fail to reduce the error to zero)
can still receive a considerable reward, as the error reduction
might be large. In an actor-critic setting, where the critic
aims to learn the value function (i.e., the cumulative
expected future reward on the current state), the issue of
using absolute error term as the reward function may slow
learning progress. Considering the compatibility of our RL
environment with a wide variety of algorithms, we propose
the following scheme that normalizes the scale of the
rewards to the range [-1,1] in order to facilitate the learning
process while maintaining a sensible interpretation of what
the reward represents.

For quality targets in a production environment, we pro-
pose to calculate rewards based on a relative improvement of
the distance from the target value relative to the starting dis-
tance. Intuitively, we aim to provide zero reward if no
change is detected, a positive reward for an improvement,
and a negative reward for an increase in error. As for the
scale of the rewards, we choose a maximum reward of +1
to be returned when the final distance from the target value
becomes zero. On the other hand, when the outcome of the
episode is worse than, or equal to, a chosen threshold, we
bound the negative reward at —1. This was implemented by
a simple clipping operation on the reward function. Note
that we could also perform a “squishing” transformation,
but for a policy that is quite “bad,” such refinement is not
really necessary. A straightforward way to formulate this
mathematically is as follows:

R:max< —e—f,—l). (5)

€

In this equation, e; and e refer to the dimension errors
calculated via the chosen distance function before and after
applying a specific force, respectively. The reward function
is visualized in Figure 1. For zero final error, the reward is
+1. When the initial and final errors are equal, zero reward
is given. In the case where the final error is greater than
double the initial error, the reward is clipped at —1.
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Figure 1. Visualization of the reward function.

Otherwise, the reward is calculated on a linear scale, nor-
malized by the initial error.

3.2.2. Constraints definition

1. Limits on the number of actuators. It is common for an
agent to encounter situations where it is impossible to take
certain actions. For example, in a game-type environment,
rules often dictate what a player is and is not allowed to to.
Or in navigation tasks, the presence of a wall may preclude
an agent from moving in one or more directions. One may
expect the agent to learn such rules or features of the envir-
onment by trial and error. However, this would come as a
cost since the agent will have to interact with the environ-
ment many times to learn when to avoid a set of actions. It
also turns out that it is not always easy to design a reward
function or other mechanism that provides the necessary
signal to the agent from which it can learn the desired
behavior. Methods such as providing negative rewards for
invalid actions or ignoring invalid actions inside the envir-
onment do not always work.

A recent advance to overcome this challenge has been
introduced by Vinyals et al. (2019), who propose a method
to mask out invalid actions when the action space is discrete.
The method works by setting the probabilities of taking
invalid actions to zero, which is done inside the policy
neural network. Thus, the agent cannot attempt an invalid
action at all. Effectively, this means that the policy utilizes
prior knowledge about the environment that is coded dir-
ectly into the inner workings of the agent. This approach
can speed up learning significantly compared with an agent
that tries to execute invalid actions over and over. After all,
the mask is a function of the state of the environment and,
as such, contains information that is very helpful to the
agent. Importantly, the neural network weights associated
with taking particular invalid actions are not being updated
when it is masked out.

Here, we propose an approach for incorporating the influ-
ence of constraints when the action space is continuous. Such
scenarios arise when a continuous action is only allowed to
be triggered in a particular situation and is supposed to be at
a constant value otherwise (e.g., zero). In general, we can

provide a Boolean input mask along with constant replace-
ment values for the continuous output to the agent. As such,
the underlying principle of operation is quite similar to that
of the discrete case: provide an output mask and replace rele-
vant values at the output of the agent.

A related scenario arises when the allowed number of
actions is restricted. Rather than providing a set of specific
actions to mask out, we may limit the count of continuous
actions being output. For example, say a humanoid robot
worker has two hands, but suppose there are five hand tools
to choose from for assembling a certain part. We can say
that the continuous outputs for the tools not in use are to
be zero, while the chosen tools require a non-zero output so
that they can be activated with the proper parameters. To
accomplish this, we can perform a thresholding operation
that masks out all but the actions with the largest magni-
tude, i.e., the actions that the agent most strongly wants to
perform. For this to work, the magnitudes of all action out-
puts are scaled to the same interval of [-1,1], with the
assumption that an appropriate mapping of these output
values is performed inside the environment.

2. Limits on the magnitude of forces. We deliberately apply a
tanh activation function to the final layer in our neural net-
work. This is in contrast to many implementations of neural
network architectures for RL, where the final activation
layers are simply fully connected linear layers. The outputs
of such layers are unbounded, which can lead to problems
when, in contrast, the action space is supposed to be
bounded. The naive solution is to simply clip the output of
the neural network to match the bounds of the action space.
Indeed, this is often done in popular implementations of RL
algorithms. However, doing so discards information: sup-
pose the output is constrained to be at most one according
to action space bounds. When clipped to this value, the
environment reacts the same whether the agent outputs 2,
10 or some other value greater than 1. Hence, it is better to
perform a “squishing” operation as can be accomplished
with a tanh activation, which squeezes the output into the
interval (—1,1) but maintains a gradient that can affect pol-
icy updates. From this interval, the force bounds can be
enforced by transforming the neural network outputs as fol-

lows:
Fi, —F
Fi Yl( UL > LL>

Fy, + Fiy

5 (6)

In this linear transformation, Y; are the ith outputs from
the tanh activation, and Fi; and Fi, are the upper and
lower limits of permitted forces, respectively. We apply this
scaling inside our RL environment.

3.3. Modified PPO

Policy gradient algorithms aim to find a local maximum of
a policy objective function J(0). The policy parameters 0 are
changed according to the gradient ascent update rule 0,1 =
0; + aVJ(0). In this expression, o is a hyperparameter that
corresponds to the step size of policy parameter updates,



and VyJ(0) is the policy gradient. For the most straightfor-
ward objective function that underlies the REINFORCE
algorithm (Williams, 1992) (also referred to as “vanilla” pol-
icy gradient), the objective function chosen is such that the
gradient is

VJ(0) = E, [WA].

n(als, 0)

This objective directly aims to maximize the future
returns under the current policy. It gives rise to the update
rule

Ory1 = 0; + oGy —zr([iﬂfb?) >
which intuitively increases the probability of taken actions
that increase returns and vice versa. Since REINFORCE was
introduced, more sophisticated objective functions have
been proposed to improve upon the performance when uti-
lizing policy gradients. As one of the latest advances, PPO
(Schulman et al., 2017) improves upon the vanilla policy
gradient in several ways. Realizing that policy updates are
often too large, PPO simplifies the objective of its direct suc-
cessor, trust region policy optimization (Schulman et al.,
2015) by introducing a clipped objective function:

LMP = &, [min(r,(0)A,), clip(r;(0),1 — 1 + €)]. (7)
In this expression, r,(0) is the probability ratio

7o (alst)
0) = —————.
rt( ) n.oold(ut|st)

The clipping ratio prevents the probability ratio from
moving outside the interval [1 —€,1+ €], thus limiting how
much action probabilities can change for the new updated
policy relative to the old one. The min operation makes it
so that the clipping is in effect on only one side, depending
on the sign of the advantage estimate A.

To encourage exploration, we can add an entropy loss of
the form L% = S[n](s;) scaled by some factor ¢, in which S
indicates the entropy function. Thus, the overall objective
becomes

J(0) = L + c.L® ®)

For estimating the advantage function, we use a neural
network that acts as a critic. Its parameters are updated to
estimate the value function according to the quadratic value
loss LVE = (Vj(s;) — Vi*)?. From the value function esti-
mate, the advantage can be estimated for a predetermined
period of T timesteps as A, = =V(s;)+re+yrea + ...+
9T ) + 9TV (sy). If the policy and value networks
were to share network parameters, then this objective could
be added to equation (7). In our network architecture, they
are independent of each other and their objectives can thus
remain separated.
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3.4. Annealing the variance of the action distribution
for efficient exploration

Our proposed RL algorithm aims to explore the available
actions (the action space) in order to develop its policy. In
continuous action spaces, it is designed to select actions
based on a Gaussian policy that is parameterized with a
mean y and a standard deviation . Accordingly, on-policy
algorithms often employ neural network architectures that
estimate these hyperparameters (i.e., 4 and o), in effect hav-
ing them as the output from a learnable neural network.
However, limited trials focused on dynamically adjusting
these hyperparameters to guide the exploration of action
space and facilitate efficient training. Intuitively, a large
value of ¢ indicates a wide spread-out of the distribution
over possible actions, which tends to encourage exploration.
On the contrary, a small value of ¢ indicates the RL agent is
more confident about the current policy while is less intent
for exploration. Therefore, the propensity of exploration can
be tuned by controlling over the standard deviation ¢ dur-
ing training. The principle guideline is that the initial train-
ing stages should encourage the exploration of action space
(a larger value of o) while the action policy should gradually
converge as the training evolves (a smaller value of o).
Hence, we propose to exert greater control over the param-
eter ¢ during training. Compared with the common practice
of estimating the ¢ directly from the neural network, our
proposed method improves the efficiency and performance
of the learning process. In addition, the classic design of the
PPO algorithm includes an entropy term in the objective
function to control the exploration process. The impact of
this entropy term is adjusted through a coefficient ¢, (shown
in equation (8)), which also requires extensive tuning.
Introducing annealing the action distribution variance can
eliminate the need to use the entropy term and, therefore,
reduces the need for tuning the coefficient. The technical
details are provided as follows.

In order for the agent to learn about its environment, in
general the agent must explore its action space during train-
ing. In the case of the on-policy PPO algorithm, the agent
typically is set up to parameterize an action distribution, i.e.,
a probability distribution from which actions are sampled.
In typical implementations of PPO, the agent specifies the
mean g and variance ¢? for a normal distribution based on
the observed state at its input. The actions are then sampled
from this distribution. Hence, the agents actually performs
the following function: f : s, — p, 0 Based on this mapping,
the action distribution is

1 1 /x—p 2

expy —=
ovan P72\
from which actions are sampled as a; ~ N (p, 6%).

There are some scenarios where it is desirable for the
agent to not be entirely predictable. For example, in a com-
petitive game setting such as tennis, it may be beneficial for
the agent to keep the opponent guessing as to where the

next shot is going to be aimed. In contrast, engineering
environments most often require that the agent acts

n(als:) =
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deterministically, meaning that the same observation produ-
ces the same action. Questions about the trustworthiness of
a manufacturing process could arise if actions were not
repeatable, in particular if the process is subject to validation
procedures, as is the case in aerospace applications.

Suppose we require that after training, the RL agent acts
deterministically. Then the agent should be tasked to learn the
mapping f : s, — u, from which we can then specify actions
as a; = f(s;) = u. This implies that the agent does not have to
learn how to specify ¢ in order to be deployed. Furthermore,
it begs the question if learning ¢ may be detrimental to the
final goal, as it may detract from the overarching objective.
That is, the agent ought to maximize rewards under a deter-
ministic policy, but it acts stochastically during training, and
the randomness of actions is, in fact, controlled by ¢. It may
be the case that a small ¢ (corresponding to deterministic
behavior) maximizes the reward during training, but this is
not necessarily guaranteed. So, instead, we propose to grad-
ually guide the actions of the agent from random towards
more deterministic behavior by imposing an annealing sched-
ule on o. For example, we may impose a linear or exponential
decay on the variance of the action distribution. Figure 2 illus-
trates how, as a result, the action distribution changes as train-
ing progresses. The agent starts off exploring the environment
through stochastic actions. Then, as training progresses, the
agent reduces the randomness of its policy according to an
annealing schedule for the standard deviation of the action
distribution. Hence, during training, the agent is steered
towards the deterministic behavior that it is supposed to fol-
low upon being deployed in the real world. In effect, our
method reduces the need to tune a hyperparameter that is typ-
ically not even accessible for tuning.

There is another reason why we may want to manually
set the variance of the action distribution during learning.

That is, it may be prudent to ensure cautious exploration so
as not to exceed the engineering limits of the assembly. This
is especially true if the agent is allowed to learn online
rather than inside a simulated environment. Furthermore, a
learning strategy that starts with small adjustments centered
around zero is a sensible heuristic strategy similar to how an
engineer would approach an unknown problem. Taking this
a step further, engineering knowledge could be incorporated
into a prior for the action distribution.

4, Case study on fuselage shape control in
aerospace manufacturing

4.1. Overview

For our case study, we are considering the assembly of a
composite fuselage. In our application, two fuselage sections
are to be joined together. Due to manufacturing variations,
there typically exist gaps between the components that need
to be minimized to meet quality targets. Such gaps have
been found to be up to an inch in magnitude, far above tol-
erable limits (Wen et al., 2018). Hence, it is almost always
necessary to correct the shape of mating parts. In current
practice, shape adjustments are performed via a fixture that
features several force-controlled actuators that can exert a
force (push or pull) perpendicular to the fuselage skin. This
solution is not as straightforward as it seems because it is
difficult to prescribe a suitable set of forces. Typically, this
requires the input of expert knowledge and several steps of
trial-and-error adjustments. Not only is it costly to involve
an application engineer for this purpose, but incremental
adjustments take a lot of time because they necessitate
repeated measurements of the components. Accordingly, it

Proposed scheme
Action sampling at the start of training

-0.5 0.0 0.5 1.0
Action space
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Anneal the standard deviation of the action distribution during training
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Figure 2. The action distribution changes as training progresses.



is desirable to calculate an optimal set of actuator forces and
locations from a single measurement step.

4.2. Problem definition

We define an idealized fuselage shape as a cylinder with a
diameter of 216 inches and 288 inches in length. Our model
specifications were adapted from Wen et al. (2018), who
experimentally validated the simulation outputs. Based on a
design-of-experiment, we generate a set of deviated fuselage
shapes that are generated by applying forces to our nominal
(“ideal”) starting shape. We use the same design of experi-
ment as Du et al. (2019) to generate 40 sample shapes for
training and 20 sample shapes for testing purposes. Pairs of
these deviated shapes are then to be mated to each other so
that the total set of possible scenarios consists of all pairwise
combinations of these shapes. In total, there are 1560 train-
ing scenarios and 380 test cases.

Mimicking an existing process, we assume that one fix-
ture simply holds one of the two fuselage sections stationary.
For the second fuselage section, another fixture is equipped
with actuators that can exert forces at up to 18 candidate
locations. There are supports and a strap that hold the fusel-
age in place, as illustrated in Figure 3. According to engin-
eering knowledge, the maximum force that the actuator can
apply to the fuselage is 1000 lbs (Wen et al., 2018).
Therefore, the action space is defined with the maximum
force magnitude as 1000 lbs. In addition, it is desirable to
use a small number of actuators when matching the shape
of the adjusted fuselage section to that of its counterpart.

4.3. RL environment

The developed RL scheme can be visualized in Figure 4. The
detailed simulation platform, surrogate model, action space,
observation space, and reward function will be introduced as
follows.

4.3.1. Simulation platform

Many RL environments have been created based on to a
standardized interface provided by OpenAl gym (Brockman
et al., 2016). For this interface, many RL algorithms have
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been implemented and can thus be used with modifications
and setting of hyperparameters. Using the pyMAPDL frame-
work (Kaszynski et al., 2020), we built a customized envir-
onment that follows the gym specifications. Our algorithm
is adaptable to other environments.

The pyMAPDL package makes it possible to control an
existing ANSYS simulation from a Python script. To create
our gym environment, we first define a FE model of our
fuselage section in ANSYS Workbench using the ACP Pre/
Post and Mechanical tools. The fixturing and application of
forces are realized via boundary conditions that are applied
to the geometrical features of the fuselage. Our simulation
encompasses two stages: (i) generation of deviated shapes
and (ii) shape adjustment.

We run the first stage of the simulation with input
parameters from a design-of-experiment (DOE) to generate
a set of solutions that correspond to the initial shapes of
mating fuselage sections. From here, the shape adjustment
stage is performed. This latter stage is the part of the simu-
lation that the RL agent interacts with - at this point, the
agent specifies the actuator forces and locations via bound-
ary conditions defined in the FE model, given the initial
observation from the first stage solution output.

4.3.2. Surrogate model

We build a surrogate model according to the approach of
previous works (Yue et al., 2018; Du et al., 2019), relying on
fuselage deformations generated from a DOE. In total, 40
samples were used for training and 20 for testing purposes.
On these samples, the linear model performs very well, as
evidenced in Table 1.

Whereas the ANSYS FE model took 7s to compute a sin-
gle solution, the surrogate model could provide up to 500+
solutions per second while running on 12 parallel CPU
cores. For validation and testing purposes, we rely on the
outputs from the ANSYS simulator as our ground truth.

4.3.3. Action space

There are 18 candidate locations for actuators that are used
to adjust the shape of the fuselage. The environment can be
instantiated with a maximal number of actuators, n,. The

Strap

Support A

Support B

0.0 100.0
I

200.0 (in)

Figure 3. Fixtures and actuator forces in the fuselage model.
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Deterministic
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update policy every 7' timesteps

Environment
Update state
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ANSYS Surrogate
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Calculate reward r;(s;)

Observation

Figure 4. Overview of the RL scheme.

Table 1. Goodness of fit statistics for the surrogate model.
Metric
MAE [in]

Test
1.89%e-8

Train
1.18e-8

agent can specify forces for all n. = 18 actuator positions.
However, only the n,-largest forces are actually applied to
the fuselage. In fact, the (n. — n,)-smallest forces are set to
zero by the environment. By doing so, the constraints on
the number of actuators is always enforced, regardless of
whether or not the agent imposes this constraint on itself.

4.3.4. Observation space

The environment returns the deviations of the fuselage edge
from its target shape. In total, deviations at N = 177 nodes
along the circumference of the fuselage are returned to the
agent. The deviation at each node comprises the x— and y—
displacements from its target position, measured in inches.
The environment returns the observation as a flattened vec-
tor with 354 elements.

4.3.5. Reward function

The reward is calculated from the deviations of the final
shape as compared with the original shape. More specific-
ally, it is calculated as the relative improvement of RMSG
during the shape adjustment according to equations (5) and
(3). On the negative side, the reward is clipped at —1 so that
the reward function returns values in the interval [-1,1].

AsT Ag

|-Gy AT
ATAY

R = max =max|1-— 1

ERMSG
)
4.3.6. Episode

All forces are applied all at once, hence each episode lasts
only a single step.

Table 2. PPO hyperparameters used for training

Hyperparameter Symbol Value
Optimizer learning rate o le-5
Optimizer learning rate annealing True (linear)
Discount factor y 0.99
Max gradient norm 0.5
Minibatch size 16
Number steps 16
Number minibatches 12
Update epochs 4
Number parallel environments 12
Clip coefficient € 0.2
Entropy coefficient Cs various
(0.0, — 0.1, — 0.01,0.01)
Value function coefficient 0.5
Reward normalization False
Advantage normalization True

4.3.7. Hyperparameters

The PPO algorithm can be tuned through a number of
hyperparameters. For most of them, the default values as
recommended by Schulman et al. (2017) were used. Some
adjustments were made to improve performance in our con-
tinuous action space setting. Table 2 provides a summary of
the parameters used in training.

4.4. Results and discussion

In this section, the performance of our proposed method is
first demonstrated by comparing it with the state-of-the-art
benchmark. In addition, the effectiveness of our designed
modules is demonstrated through ablation studies.

4.4.1. Actuator selections and experimental results

The desired or allowed number of actuators can be freely set for
our learning environment. Intuitively, with more actuators, we
expect to have more control over the shape of the fuselage.
Figure 5 illustrates the final RMSG after 8,000,000 training steps
evaluated over 100 test samples, where the target shape is non-
ideal. Indeed, our results show that with a greater number of



actuators, a smaller shape error can be achieved. From a cost
perspective, we may be interested in the smallest number of
actuators necessary to achieve good enough results. As we can
see, performance is very similar when eight or more actuators
are used but degrades quickly when fewer forces are applied to
the fuselage. That is to say, beyond eight actuators, the return of
adding more actuators diminishes.

The agent tends to select actuators on the sides rather
than the bottom of the fuselages. This can be explained by
the fact that, given the fixture supports, the fuselage can

Test error vs. number of actuators
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move more freely in the horizontal direction than in the
vertical direction. Thus, a greater displacement can be
achieved with these actuators. Examples of actuator selec-
tions and corresponding forces are illustrated in Figure 6,
which shows the cross-sectional view of the fuselage joining
edge before and after shape control has been applied.

The magnitudes of forces also tend to be greater at loca-
tions where larger deviations are present. This is not a sur-
prise. In effect, the results using a small number of actuators
show that a few actuators with large forces are sufficient to
roughly match the target shape. Additional actuators then
help eliminate local gaps via small forces applied in the
vicinity where gaps still exist. In a heuristic step-wise strat-

0301 g egy, an operator would typically adjust the overall shape
° with a few actuators and then try to match the overall shape
0.25] 8 by fine-tuning forces at additional actuator locations where
gaps are still present. The downside of the manual step-wise
< 0.20 method is that each subsequent addition of a force can dis-
Q tort the overall shape, and so the fact that forces are pre-
= . . . . . .
& 0.15 scribed in a single step as in our method is desirable.
c .
s We compare our performance to forces calculated via the
= .
0.10 method by Du et al. (2019). In this related work, the non-
nominal fuselage shapes were adjusted back to the ideal
0.05 8 8 s 8 shape. We replicated this approach and evaluated the results
= % % i %, on the corresponding test samples from the DOE. As shown
0.00 ; S M : ‘ i — ;
1 : Tt 3 8 310 1 12 16 18 in Table 3, the mean RMSG we obtain with our RL agent is
Number of actuators smaller than that of the benchmark method. Furthermore,
Figure 5. The final test RMSG v.s. the number of actuators. the RL agent achieves a smaller variance of the RMSG
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Figure 6. Examples of shape adjustment results, indicating which actuators were chosen. Force arrows are scaled by the magnitude of the proposed forces.
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Table 3. Comparison statistics on 20 test samples with n = 10 forces applied.

Method Mean RMSG [in] Stdev RMSG [in] Mean MF [Ibf]
Du et al. (2019) 0.011 0.0063 289.5
RL (our method) 0.010 0.0025 214.8

across the results. At the same time, our method applies
smaller maximum forces on the parts, suggesting that the
assembly experiences less stress during the assembly process.
Hence, our method can achieve overall better performance
than the benchmark method. An added benefit of our
method is that the trained RL agent performs a single for-
ward pass in the policy neural network given the initial
deformation of the fuselage, which is a very fast and simple
computation that does not require any interaction with the
environment. Contrast this with the benchmark method,
which has to re-run thousands of calculations on the surro-
gate model in order to return a set of actuator forces.
Although this may take only a handful of seconds with a
surrogate model, it is time-prohibitive to utilize a FE
method for the optimization. In turn, the RL agent is actu-
ally able to refine its solution with just a handful of interac-
tions with the environment, so it can be feasible to directly
act upon the FE model.

4.4.2. Ablation study on the reward function

To demonstrate the effectiveness of our proposed reward
function, we compare the performance of our proposed
method using the reward function evaluating relative
improvement (our proposed) versus the existing reward
function evaluating the absolute error reduction in different
measurement units (i.e., inches and millimeters), which is
defined as the difference of dimension errors before and
after applying the actuators (R = e; — ey).

The results are demonstrated in Figure 7, from which we
can summarize the advantages of our proposed reward func-
tion into two aspects. First, following the discussion in
Section 3.2.1, the learning process using the proposed
reward function consistently encourages the policy that
reduces the initial dimension error towards zero, which is
demonstrated to converge faster (i.e., shown in the blue
curve in Figure 7) than using the absolute error reduction as
the reward function (i.e., shown in the orange and green
dashed curves in Figure 7). Second, the proposed reward is
invariant to the magnitude of the error and consistently falls
into [—1,1], which enables its invariant performance under
different units of dimension measurement and different
magnitudes of initial errors. We also demonstrated how the
magnitude of the reward will impact the training process.
when using the absolute reduction in dimension error as the
reward, we compared the results using inches or millimeters
as the measurement unit for dimension error. We can
observe a smaller magnitude of the reward function (meas-
ured in inches and shown in the orange dashed curve in
Figure 7) leading to a faster convergence compared with a
larger magnitude (measured in inches and shown in the
orange dashed curve in Figure 7). It provides another reason
to define the reward function as the relative improvement

Training progress with different reward functions
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Figure 7. Training process using different reward functions.
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Figure 8. Training progress (rolling average over 1000 update steps) in terms
of the episodic return. Controlling exploration via the entropy loss does not
achieve the same speed of learning as a well-chosen annealing schedule. If the
entropy loss is set to aggressively discourage exploration, a breakdown can
occur, e.g., ¢ = —0.1 in our example.

for a consistently small magnitude for the reward function,
which always falls into [—1,1].

4.4.3. Ablation study on annealing the action distribution
variance

To demonstrate the effectiveness of our proposed improved
PPO algorithm in our case study, we compare the perform-
ance of the PPO algorithm with annealing the standard
deviation of the action distribution versus using the entropy
term in the objective function (the second term in equation
(8)) when controlling the exploration. We find that the vari-
ance of the action distribution has a significant effect on the
training progress, as evident in Figure 8.

Using the default settings of an initial standard deviation
oo = 1 for initializing the action distribution, training the
PPO algorithm without the entropy loss term does not yield
satisfactory results for our problem. With this approach, the
agent is set to explore far too much, and it takes a long time
to sufficiently refine the policy. Furthermore, when we add
the suggested entropy loss term to the reward optimization
objective, the training progress becomes even worse. The
coefficient ¢, in equation (8) is the weight associated with
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Table 4. Ablation study results comparing the performance of the trained agents on 100 test samples. Our proposed method outperforms the
standard implementation of PPO wherein no annealing schedule for the action distribution variance is set.

Action variance annealing (6o = 1)

Standard PPO (o indirectly controlled via c;)

Method 0 = 00/ /Nupdates = 0o(1—t/totar) ¢ = —0.1 ¢ = —0.01 ¢ =0.0 ¢ = 0.01
RMSG [in] 0.01664 0.1202 3.167 0.03562 0.03897 0.06147

the entropy term. A coefficient of 0.01 is often prescribed as
a good starting point, but in our scenario, this only makes
things worse. This is because by adding the entropy term,
exploration is further encouraged rather than discouraged,
even though, in our case, the opposite turns out to be
needed. We can instead make ¢, negative, which is an
unusual choice. At a small scale (¢; = —0.01), we see a slight
improvement in how fast training progresses, but pushing
this parameter further into the negative, training breaks
down. At ¢, = —0.1, the episodic returns all of a sudden
decrease after 14,000,000 time steps and then fall off dra-
matically. All training progress up to that point is lost. An
explanation for this is that the entropy loss term starts to
dominate the reward optimization objective function, and
the reward itself no longer drives the behavior of the agent.
This motivates us to design a new method to control the
exploration process more effectively.

Annealing the action distribution variance can intuitively
encourage the exploration at the beginning when the variance
the large and gradually converges to the best policy with the
reduction of variance. Simple linear annealing of the standard
deviation of the action distribution according to o =
00(1 — t/totm) is initially very slow to learn a policy that
improves the RMSG at all. It takes almost 30,000 time steps
for the agent to achieve an improvement over the initial con-
figuration of the pairs of fuselage sections. At this point, ¢ is
around 6% of gy. This indicates that the standard deviation of
the action distribution is far too large to begin with and points
us towards prescribing a more rapidly decaying annealing
function for ¢. In practice, it may still be worthwhile to ini-
tially perform a linear annealing schedule as it effectively
sweeps the available range of the action distribution variance.
By paying attention to the episodic rewards, a more feasible
value for oy may be determined. For example, we may con-
sider oo = 1 — 30,000,000/32,000,000 = 0.0625 as a potential
choice in our example.

Once we choose a more sensible annealing schedule, i.e.,
penalizing the initial action distribution by the square root
of the number of policy updates already performed
(0 =00/ /Tupdates)> the agent exhibits much better and faster
learning performance. The policy begins to converge
towards R =1 quickly. Table 4 shows that this annealing
schedule achieves a better performance on 100 test samples
(which are identical across evaluations) than any other
approaches.

5. Conclusion

The exploration-exploitation tradeoff during training
remains an important consideration for reinforcement learn-
ing algorithms. In this article, we proposed a strategy that
exerts more direct control over the standard deviation of the

action distribution of a PPO agent. Typically, the PPO
agent’s eagerness to explore is tuned by adding an entropy
loss term to the reward optimization objective. However, we
showed that this can lead to surprising and undesirable
behavior. Our scheme can ensure that the agent explores
enough at the beginning of training and then refines its pol-
icy while moving closer to acting predictably as training
progresses. When deterministic behavior is required upon
deployment of the agent in the real world (as is often the
case in manufacturing applications), this strategy ensures
that the agent was trained in a manner that reflects the
desired behavior. By choosing a sensible annealing schedule,
it is possible to converge to a well-performing policy in a
more sample-efficient manner.

We successfully proposed and implemented an RL algo-
rithm for fuselage shape control in an aircraft assembly case
study. The results demonstrate that the developed RL algo-
rithm can achieve high scalability to a large design space,
improved adaptability to unseen scenarios, and superior
shape control accuracy. Our method is superior when
compared with the current practice from three perspectives:
(i) it can deal with a large design space to optimize the lay-
out and forces of actuators to adjust the fuselage shape
toward a non-ideal target shape, whereas the benchmark
method adjusts the fuselage components to their ideal shape;
(ii) our method can be directly applied to unseen scenarios
by conducting a single forward pass in the policy neural net-
work, whereas the benchmark method has to perform many
calculations on its surrogate model or simulation in order to
solve the optimization from scratch; and (iii) the case study
shows the RL method achieves the best performance on
shape control by receiving the smallest shape deviation.
Therefore, it can be considered the best approach to revolu-
tionizing advanced aircraft assembly and enhancing the
productivity, quality, and safety of aircraft products.

With respect to the limitations of the proposed method,
it can be roughly summarized into two folds: (i) restricted
by the nature of RL, the proposed method still requires a
certain number of samples for training and optimization
purposes, which restricts its application on the simulation
environment instead of the real manufacturing process con-
sidering the potential “trial-and-error” costs; (ii) there inev-
itably gap between the simulation and real
manufacturing scenario, which challenges the practical effect
of the solution generated from the simulation. However, we
would like to highlight that the simulation model used in
our work has been carefully calibrated and shown to have
an accurate representation of the real manufacturing scen-
ario (Wen et al., 2018).

The proposed method can be regarded as a trial for
developing an “AlphaGo” or “AlphaZero” for advanced air-
craft assembly, in particular, the fuselage shape control

exists
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process. The proposed method can also be extended to other
manufacturing systems, given that the simulation environ-
ments are well-defined. In addition, by targeting the sample
efficiency, we can further develop novel RL methods that
can better incorporate the domain knowledge into the
exploration of action space to learn optimal policy more
efficiently and reduce the need for training samples.
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