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Abstract—This letter focuses on the entropy-regularized
independent natural policy gradient (NPG) algorithm in
multi-agent reinforcement learning. In this letter, agents are
assumed to have access to an oracle with exact policy eval-
uation and seek to maximize their respective independent
rewards. Each individual’s reward is assumed to depend on
the actions of all agents in the multi-agent system, leading
to a game between agents. All agents make decisions under
a policy with bounded rationality, which is enforced by the
introduction of entropy regularization. In practice, a smaller
regularization implies that agents are more rational and
behave closer to Nash policies. On the other hand, with
larger regularization agents tend to act randomly, which
ensures more exploration. We show that, under sufficient
entropy regularization, the dynamics of this system con-
verge at a linear rate to the quantal response equilibrium
(QRE). Although regularization assumptions prevent the
QRE from approximating a Nash equilibrium (NE), our find-
ings apply to a wide range of games, including cooperative,
potential, and two-player matrix games. We also provide
extensive empirical results on multiple games (including
Markov games) as a verification of our theoretical analysis.

Index Terms—Game theory, multi-agent reinforcement
learning, natural policy gradient, quantal response
equilibrium.

I. INTRODUCTION

IN THE emerging field of reinforcement learning (RL), the
topic of multi-agent reinforcement learning (MARL) has

been increasingly gaining attention. This surge in interest may
be attributed to the fact that many real-world problems are

Manuscript received 8 March 2024; revised 9 May 2024; accepted
28 May 2024. Date of publication 5 June 2024; date of current version
19 June 2024. This work was supported in part by the U.S. Office
of Naval Research under Grant N00014-21-1-2385; in part by the
U.S. Army Contracting Command under Grant W911NF-22-1-0151;
in part by U.S. ARO under Grant W911NF2120064; and in part
by the U.S. National Science Foundation under Grant CNS-2328395
and Grant CMMI-2038625. Recommended by Senior Editor S. Olaru.
(Corresponding author: Shahin Shahrampour.)

Youbang Sun and Shahin Shahrampour are with the Department
of Mechanical and Industrial Engineering, Northeastern University,
Boston, MA 02115 USA (e-mail: sun.youb@northeastern.edu;
s.shahrampour@northeastern.edu).

Tao Liu and P. R. Kumar are with the Department of Electrical
and Computer Engineering, Texas A&M University, College Station, TX
77843 USA (e-mail: tliu@tamu.edu; prk@tamu.edu).

Digital Object Identifier 10.1109/LCSYS.2024.3410149

multi-agent in nature, including tasks such as robotics [19],
modern production systems [3], economic decision mak-
ing [25], and autonomous driving [21].
Although applying single-agent RL algorithms, like policy

gradient (PG) and natural policy gradient (NPG), to individ-
ual agents in MARL may seem straightforward, analyzing
multi-agent systems presents numerous challenges. In the
single-agent setting, the optimal policy selects the action with
the highest cumulative reward and converges to the unique
global optimal solution. However, in the multi-agent setting,
the global policy is constructed by taking the product of
the local policies. Agents have individual rewards in general,
but each individual reward depends on the actions of all
agents, leading to a game between agents. Even for a game
as simple as a two-agent cooperative matrix game, there can
be potentially multiple local stationary points. Each stationary
point is known as a Nash equilibrium (NE), where no agent
can enjoy a larger reward by unilaterally changing its strategy.
For general games, it is known that a system where each

agent follows the policy gradient update (i.e., gradient play)
can easily fail [22]. For a game to converge to an NE through
gradient play, additional assumptions are needed, such as exis-
tence of a potential function and isolatedness of the NEs [24].
In addition, in MARL we encounter similar challenges to
single-agent RL, including navigating sub-optimal regions
characterized by flat curvatures and managing the exploration-
exploitation trade-off. One mitigation strategy in practice is to
enforce an entropy regularization [12], [13], [16].

Intuitively speaking, the addition of an entropy regulariza-
tion term penalizes the policies that are not stochastic enough.
The entropy regularization introduces rationality, where deci-
sions are selected to be satisfactory rather than optimal, which
encourages the exploration of agents and prevents the system
from being stuck at local sub-optimal policies caused by pure
strategies. The introduction of entropy was also highlighted by
Soft Actor Critic [11], which is widely used today in robotics.
When entropy is introduced into the problem, the system
converges to the quantal response equilibrium (QRE) [15]
instead of NE. A QRE refers to an equilibrium with bounded
rationality, which we formally define in Definition 2.

In this letter, we consider a general static game, where
the system state is assumed to be fixed and no additional
assumptions on rewards are imposed (except boundedness).
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Our framework subsumes various settings, such as cooperative
games, potential games, and two-player matrix games.

A. Contributions
Motivated by the effectiveness of entropy regularization

in both single-agent RL and certain multi-agent settings in
games, we have adapted the entropy-regularized natural policy
gradient algorithm to games. While some existing works
like [5] use QRE to approximate NE for some structured
games, we consider the regularization as a given factor and
study the convergence for general static games. We summarize
our contributions as follows.
1) We consider the NPG update with entropy regulariza-

tion in static games (Section III-A) without structured
assumptions such as potential games.

2) We study the convergence properties of the proposed
algorithm and establish in Section III-B that the system
can reach a QRE with a linear convergence rate when
entropy regularization is sufficiently large.

3) In Section IV, we present extensive numerical experi-
ments demonstrating the effectiveness of the algorithm
and provide some discussion on its performance across
various settings.

Although our theoretical analysis only considers the static
game setting, in Section IV-C we conduct experiments for
stochastic (Markov) games. We show that similar empirical
results also hold for Markov games, the theoretical investiga-
tion of which is interesting for future work.

B. Related Literature
This section provides a review of the related literature on

the topics of policy gradient-based algorithms in RL and
independent learning in games.

a) Policy Gradient: There is a lot of interest in the
theoretical understanding of policy gradient methods in recent
literature [1], [4]. There are many variations of policy gradi-
ent methods under different parameterizations. An important
extension of the policy gradient method is the natural policy
gradient (NPG) method [1], [14], [17], which introduces the
addition of pre-conditioning in the policy update based on
the problem geometry. To promote exploration and improve
stochasticity within the system, entropy regularization has
been introduced. In general, entropy regularization has been
shown to accelerate convergence rates for several algo-
rithms. Policy gradient methods with entropy regularization
include [16] for PG and [6] for NPG. Additionally, a broad
class of convex regularizers has been proposed in [13], [27].

b) Independent Learning in Games: Recent years have
witnessed significant progress in understanding the system
dynamics of independent learning algorithms in games. It has
been shown in game theory that a system where agents use
simple gradient play in a game could fail to converge, such
as the “cycling problem” shown in [20]. Therefore, additional
settings, such as competitive and cooperative settings have
been considered. For the competitive setting, zero-sum games
have been studied by [10], [26]. A framework more general
than the cooperative setting is the potential game setting [5],
where agents do not have the same rewards, but there exists a
potential function tracking the value changes across all agents.

These settings have also been extended from static games
to stochastic games, where the system follows a Markov
state transition model. A series of works tackle the system
convergence rate in the Markov potential games setting [9],
[24], [28], [29].

Entropy regularization is also widely considered in games.
The convergence rate has been shown to be linear for two-
player zero-sum games [7], [8], and sub-linear for potential
games [5]. In particular, [5] studies NPG for potential games
with entropy regularization and is of great relevance to our
work.
We note that though many works consider entropy reg-

ularization in games and study the system convergence to
QRE, most of the previous works, including [5], address
arbitrarily small regularization factors and view QRE as an
approximation of NE. Although these works provide theo-
retical insights that effectively demonstrate the intended use
case, their effectiveness is largely confined to games with
structure, such as zero-sum games or potential games. These
works do not consider more general games. In contrast, our
work considers regularization as a constant penalizing factor
and discusses the convergence of the system dynamics for
regularized rewards.

II. PROBLEM FORMULATION

In this section, we introduce the basic setting for a general
multi-player game with the consideration of entropy regular-
ization.
Throughout this letter, we use ∥ · ∥1 to denote the ℓ1 norm

and ∥ · ∥∞ to represent the ℓ∞ norm, respectively. We denote
[n] := {1, . . . , n}. For the time-varying sequence of a set of
parameters {θki }i∈[n],k∈N, we use superscript k to denote the
k-th time step and subscript i to denote the i-th agent.

A. Games in the Multi-Agent System
Consider a tabular strategic game G = (n,A, {ri}i∈[n])

consisting of n agents. The global discrete action space A =
A1×· · ·×An is the product of individual action spaces, where
the global action is denoted by a := (a1, . . . , an). The reward
for each agent i ∈ [n] is denoted as ri : A → [0, 1].
A mixed strategy for the entire system is a decentralized

multi-agent policy [28], where all agents make decisions
independently. Therefore, the global system policy is denoted
by π ∈ $(A1) × · · · × $(An) ⊂ $(A), where $ denotes
the probability simplex operator. We can write π(a) =∏

i∈[n] πi(ai), where πi ∈ $(Ai) is the local policy for agent
i. We also denote the combined policy of all agents other than
i as π−i :=

∏
j∈[n]\{i} πj, so that π = πi × π−i. Similarly, we

denote the combined action as a = (ai, a−i), where a−i :=
{aj}j̸=i.

With a slight abuse of notation, we represent the expectation
of the reward ri under policy π as

ri(π) := Ea∼π [ri(a)] = ⟨π, ri⟩.

We also define the marginalized reward function of reward
ri with respect to the policy π−i as

r̄i(ai) := Ea−i∼π−i

[
ri(ai, a−i)

]
.
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We note that the calculation of the marginalized reward
requires π−i, the policy of all agents but i. Next, we introduce
the notion of Nash equilibrium (NE) [18] in games.
Definition 1 (Nash Equilibrium): A joint policy π∗ is a

Nash equilibrium if

ri
(
π∗
i ,π

∗
−i

)
≥ ri

(
π ′
i ,π

∗
−i

)
∀π ′

i ∈ $(Ai) ∀i ∈ [n].

It is known that if mixed strategies (where a player assigns a
strictly positive probability to every pure strategy) are allowed,
at least one NE exists in any finite game [18].

B. Entropy Regularization in Games
The Shannon entropy of policy πi, defined as

H(πi) := −
∑

ak∈Ai

πi(ak) logπi(ak)

measures the level of randomness in actions of agent i. When
entropy is added to the problem with regularization factor τ ,
the regularized objective for agent i is modified to r̂i(π) :=
ri(π) + τH(πi). With the consideration of entropy, a new
type of equilibrium for the system has been defined in [15],
referred to as the quantal response equilibrium (QRE) or logit
equilibrium.
Definition 2 (Quantal Response Equilibrium): For any

given τ > 0, a joint policy π∗ is a corresponding quantal
response equilibrium when it holds that,

r̂i
(
π∗
i ,π

∗
−i

)
≥ r̂i

(
π ′
i ,π

∗
−i

)
, ∀π ′

i ∈ $(Ai), ∀i ∈ [n].

It can be easily verified that when a QRE has been
reached, each agent uses a policy that assigns probability of
actions according to the marginalized reward, i.e., π∗

i (·) ∝
exp (r̄i(·)/τ ). This is often referred to by the literature as the
policy with bounded rationality [5] with rationality parameter
1
τ . Intuitively, an NE refers to a perfectly rational policy with
τ → 0, whereas a fully random policy with τ → ∞ is
considered as completely irrational.

III. MAIN RESULTS

In this section, we study the dynamics of a multi-agent
system where each agent seeks a policy to maximize the
individual regularized reward. We first provide the exact
algorithm update in Section III-A, and then in Section III-B
we show that with a sufficient entropy regularization, the game
converges to a QRE with a linear rate.

A. Algorithm Update
We first outline the NPG update applied by agents, which

has been studied for single-agent RL in [1]. Since policies
are constrained on the probability simplex, in order to relax
this constraint, the softmax parameterization has been widely
adopted. A set of unconstrained parameters θi ∈ R|Ai| are
updated, and the policy is calculated by

πi(ai) =
exp (θi(ai))∑

aj∈Ai
exp (θi(aj))

.

In the static games setting, the NPG algorithm performs
gradient updates that are pre-conditioned on the problem
geometry [1],

θk+1
i = θki + ηF†

θki

∂

∂θki
r̂i
(
πk

)
, (1)

where η denotes the step-size, and F†
θi
is the Moore-Penrose

pseudo-inverse of the Fisher information matrix [1], defined as,

Fθi := Eai∼πi

[(
∇θi logπi(ai)

)(
∇θi logπi(ai)

)⊤]
.

Based on the definition of the regularized reward r̂i(π), the
policy gradient for agent i can be calculated as

∂ r̂i(π)
∂θi(aj)

= πi
(
aj

)(
r̄i(aj) − τ log(πi(aj)) − r̂i(π)

)
.

Detailed calculation of this derivative can be found in [23].
Using step-size η, the corresponding update for agent i

under softmax parameterization [5] becomes

πk+1
i (ai) ∝ πk

i (ai)
1−ητ exp

(
ηr̄ki (ai)

)
, (2)

where r̄ki (ai) = Ea−i∼πk
−i
[ri(ai, a−i)]. Intuitively speaking, if

the policy π−i is fixed at iteration k, the game reduces to a
single-agent RL problem for agent i, and the updates shown
in (2) will converge to a local optimal policy, with

πk∗
i (ai) ∝ exp

(
r̄ki (ai)/τ

)
, for 0 < ητ < 1. (3)

B. Convergence Analysis
Before presenting our main theorem, we first introduce the

notion of QRE-gap as

QRE-gap(π) := max
i∈[n],π ′

i∈$(Ai)

[
r̂i
(
π ′
i ,π−i

)
− r̂i(πi,π−i)

]
,

where at iteration k, given policy πk
−i, the maximum for agent

i is reached at π ′
i = πk∗

i given in (3).
For the case of τ = 0, the agents are purely rational, and the

QRE-gap recovers NE-gap. It is easily verified that a system
has reached a QRE if and only if QRE-gap = 0. We study
the convergence of the QRE-gap in this section. For the ease
of notation, we denote the QRE-gap at iteration k (i.e., policy
π k) by QRE-gapk.

Given the definition of πk∗
i in (3), we have:

QRE-gapk = max
i∈[n]

[
r̂i
(
πk∗
i ,πk

−i

)
− r̂i

(
πk
i ,π

k
−i

)]

= max
i∈[n]

[
⟨πk∗

i − πk
i , r̄

k
i ⟩ + τ

(
H(πk∗

i ) − H(πk
i )

)]

= max
i∈[n]

[
⟨πk∗

i − πk
i , τ logπk∗

i ⟩

−τ ⟨πk∗
i , logπk∗

i ⟩ + τ ⟨πk
i , logπk

i ⟩
]

= τ max
i∈[n]

[
⟨πk

i , logπk
i − logπk∗

i ⟩
]
. (4)

Motivated by [6], we introduce the following auxiliary
sequence {ξ ki ∈ R|Ai|, i ∈ [n]} to help further with analysis.

ξ0i (ai) = ∥ exp
(
r̄0i /τ

)
∥
1
π0
i (ai)

ξ k+1
i (ai) = ξ ki (ai)

1−ητ exp
(
ηr̄ki (ai)

)
. (5)
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By the definition of the auxiliary sequence, two consecutive
iterates ξ k+1

i (ai) and ξ ki (ai) satisfy the following equality

log ξ k+1
i (ai) − r̄k+1

i (ai)/τ

= (1 − ητ )
(
log ξ ki (ai) − r̄ki (ai)/τ

)

+
(
r̄ki (ai) − r̄k+1

i (ai)
)
/τ. (6)

It can be observed that πk
i ∝ ξ ki according to Equations (2)

and (5). We now introduce the following lemma to establish
direct relationships between πk

i and ξ ki .
Lemma 1 [6]: For any two probability distributions

π1,π2 ∈ $(A) that satisfy

π1(a) ∝ exp (θ1(a)), and π2(a) ∝ exp (θ2(a)),

with θ1, θ2 ∈ R|A|, the following inequality holds

∥ log(π1) − log(π2)∥∞ ≤ 2∥θ1 − θ2∥∞.

The proof of this lemma is provided by [6]. Next, we
introduce the following lemma regarding decentralized multi-
agent policies.
Lemma 2: For two sets of policies {π1

i }, {π2
i }, i ∈ [n],

where each policy π
j
i ∈ $(Ai), we have the following

inequality:
∑

a1,...,an

|π1
1 (a1) × · · · × π1

n (an) − π2
1 (a1) × · · · × π2

n (an)|

≤
∑

i∈[n]

∑

ai

|π1
i (ai) − π2

i (ai)|,

i.e., for two policies π1,π2, we have ∥π1−π2∥1 ≤ ∑
i ∥π1

i −
π2
i ∥1.
The proof can be found in the full version of this letter [23].

From Lemma 2, we are able to evaluate the difference between
the marginalized rewards of two consecutive iterations, which
is used to prove our main result below.
Theorem 1: Consider a static game with independent NPG

update shown in (2), where the regularization factor τ >
2

∑
i∈[n] |Ai| and the step-size 0 < η < 1

τ−2
∑

i∈[n] |Ai| . We then
have that

QRE-gapk

≤ 2τ

(

1 − ητ + 2η
∑

i

|Ai|
)k

max
i∈[n]

∥ logπ0
i − logπ0∗

i ∥∞,

where π0∗
i ∝ exp(r̄0i /τ ).

Proof: For any agent i, we know that the reward is upper-
bounded by 1, so with the help of Lemma 2 we have

∥r̄k+1
i − r̄ki ∥∞ ≤ ∥πk+1

−i − πk
−i∥1 ≤

∑

j̸=i

∥πk+1
j − πk

j ∥1

≤
∑

j

|Aj|∥πk+1
j − πk

j ∥∞

≤
∑

j

|Aj|∥ logπk+1
j − logπk

j ∥∞

≤ 2
∑

j

|Aj|∥ log ξ k+1
j − log ξ kj ∥∞

≤

⎛

⎝2ητ
∑

j

|Aj|

⎞

⎠max
i∈[n]

∥ log ξ ki − r̄ki /τ∥∞,

(7)

where the third line follows by mean-value theorem, the fourth
line follows from Lemma 1, and the last inequality follows
from the definition of ξ ki . We can then provide an upper bound
on the following term,

max
i∈[n]

∥ log ξ k+1
i − r̄k+1

i /τ∥∞

≤ max
i∈[n]

[
(1 − ητ )∥ log ξ ki − r̄ki /τ∥∞ + ∥r̄ki − r̄k+1

i ∥∞/τ
]

≤

⎛

⎝1 − ητ + 2η
∑

j

|Aj|

⎞

⎠max
i∈[n]

∥ log ξ ki − r̄ki /τ∥∞

≤

⎛

⎝1 − ητ + 2η
∑

j

|Aj|

⎞

⎠
k+1

max
i∈[n]

∥ log ξ0i − r̄0i /τ∥∞.

(8)

Here, the first inequality is provided given the properties of the
auxiliary sequence in (6), the second inequality comes directly
from (7), and the final bound is obtained by recursion.
With the help of (4), we can now bound the QRE-gap by

QRE-gapk

= max
i∈[n]

[
τ ⟨πk

i , logπk
i − logπk∗

i ⟩
]

≤ τ max
i∈[n]

∥ logπk
i − logπk∗

i ∥∞

≤ 2τ max
i∈[n]

∥ log ξ ki − r̄ki /τ∥∞

≤ 2τ

(

1 − ητ + 2η
∑

i

|Ai|
)k

max
i∈[n]

∥ log ξ0i − r̄0i /τ∥∞

≤ 2τ

(

1 − ητ + 2η
∑

i

|Ai|
)k

max
i∈[n]

∥ logπ0
i − logπ0∗

i ∥∞.

(9)

We applied the Hölder’s inequality in the second line, and then
Lemma 1 and (8) are used to complete the proof.
Theorem 1 presents an interesting perspective on the choice

of the regularization factor τ . For small values of τ , the system
is not guaranteed to converge. Once τ satisfies the lower bound
condition in the theorem, the system is guaranteed convergence
to a QRE with a suitable step-size. As τ increases further,
the rate of convergence becomes faster, yet the corresponding
QRE becomes less rational and more stochastic (and less
desirable generally). As shown in the next section, it is crucial
to find a suitable τ that provides a fast convergence speed but
still retains rationality.

IV. NUMERICAL RESULTS

In the previous section, we established the convergence rate
for QRE-gap in games. In this section, we verify the analytical
results through three sets of experiments.
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Fig. 1. Convergence of QRE-gap in random reward setting for different
values of τ .

A. Synthetic Game Setting
We first consider a multi-agent system where the rewards ri

are generated randomly and independently. We set the number
of agents to n = 3, with each agent having a different
discrete action space size, |A1| = 3, |A2| = 4, |A3| =
5. At the start of the experiment, all agents are initialized
with random policies. This setting is similar to that of [24];
however, the rewards assigned to the agents in [24] satisfy the
potential game assumption, but they are set to be independent
in our experiment. We use the same initialization across a
selection of regularization factors. The step-size is set to ητ =

1
2(τ+2

∑
i |Ai|) , which is within the range given in Theorem 1

and guarantees convergence.
The results are presented in Fig. 1 in log-scale. It can be seen

that when there is no regularization, or the regularization factor
is negligible, the system fails to converge. As τ increases,
the system converges. When τ is large enough, the QRE-gap
decreases monotonically and converges to zero at a linear rate,
with the decay rate increasing as τ gets larger. The system
dynamics in Fig. 1 perfectly verifies our finding on conditions
of τ, η and the convergence rate in Theorem 1.

Analytical results and experiments both indicate that the
system converges faster when there is a larger weight on
regularization, with the system actually failing to converge if
the regularization factor is too small. This observation aligns
with our analytical results in Theorem 1. In practice, a trade-
off needs to be maintained, such that the system convergence
is guaranteed, yet the QRE is still meaningful. Furthermore,
we find that for the synthetic reward experiment above, a
regularization factor of τ ≈ 0.1 is enough for the system to
converge with a linear rate. Interestingly, this requirement is
much more relaxed than the theoretical requirement provided
in Theorem 1. This could be due to the random generation of
rewards, whereas the theorem provides a bound in the worst-
case scenario.

B. Network Zero-Sum Games
Next, we focus on zero-sum games in the network set-

ting with poly-matrix rewards [2]. This problem cannot be
solved using the vanilla independent NPG update and requires
additional design elements such as using extra-gradient meth-
ods [6]. However, most of the methods are restricted to the
two-agent setting and cannot be adapted to the network setting.

We consider a 5-agent network with a ring graph. Each edge
denotes a randomly generated zero-sum matrix game between
the two neighbors. All agents are assumed to have the same
action space |A1| = · · · = |A5| = 10.

We first present the QRE-gap in Fig. 2(a) (log-scale). It can
be seen that the convergence properties in this setting mirror
those of the synthetic game in Section IV-A. We also present
the results on the NE-gap of the system shown in Fig. 2(b).
As previously mentioned, NE-gap can be recovered by setting
τ = 0 in QRE-gap. We note that while NE-gap only depends
on the current policies and is independent of τ , the update
steps to calculate the policies still depend on the regularization
factor τ . With a moderate regularization, the system is able to
converge to stationarity with relatively small NE-gap. When
the regularization term is too large, the system does converge
but with a somewhat undesirable NE-gap.

C. Markov Games
We now extend our experiments to the stochastic setting

and use independent NPG to solve general Markov games.
The Markov games setting can be seen as a generalization of
the Markov decision process used in single-agent RL. Both
the policy and reward depend on the current state of the
system, which evolves according to a transition probability
kernel P:S × A → $(S), and the agent value function is a
cumulative reward with a discount factor γ .
We refer to [28] for the exact problem formulation and

definition for natural gradients. We define the exact update for
entropy-regularized NPG in Markov games as

πk+1
i (ai|s) ∝ πk

i (ai|s)1−ητ exp
(

η

1 − γ
Āk
i (s, ai)

)
,

where Āk
i (s, ai) denotes the marginalized advantage function

defined therein. We consider a synthetic Markov game with
agent number n = 3, individual action space |Ai| = 5, and the
total number of states is set to |S| = 5.
We plot the log-scale results in Fig. 2(c). The figure shows

that the convergence properties of Markov games closely
resemble those of static games, suggesting that our theoretical
results in Section III could potentially be extended to the
stochastic setting.

V. CONCLUSION AND FUTURE DIRECTIONS

In this letter, we have studied the independent NPG algo-
rithm with entropy regularization under the static game setting.
We have shown that the system converges to QRE under
independent NPG updates, and the rate of convergence is
linear. However, such convergence only occurs with a suffi-
ciently large regularization. On the other hand, a system with
inadequate regularization may fail to converge. Experimental
results were provided for both cases across various settings.
There are still many open problems for policy gradient-

based algorithms in games. A future direction is to extend
the analytical results to the stochastic (Markov) game setting.
Our preliminary experiments have suggested that stochastic
games could enjoy similar convergence to static games. This
topic may contribute to multi-agent reinforcement learning,
where the system is generally assumed to be Markov. Another
potential direction is to consider the scenario where oracle
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Fig. 2. Network zero-sum game and Markov game.

information is unavailable, and the policy gradient needs to be
estimated via sampling. Lastly, our analysis can be extended to
policy gradient-based algorithms such as safe MARL, robust
MARL, and multi-objective MARL, following recent literature
in single-agent RL [30], [31].
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