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Abstract—In the realm of medical imaging, particularly for
COVID-19 detection, deep learning models face substantial
challenges such as the necessity for extensive computational

resources, the paucity of well-annotated datasets, and a significant /OY_ 88
amount of unlabeled data. In this work, we introduce the first —  _________ g| 078
lightweight detector designed to overcome these obstacles, lever- COVID ' . ) @

aging a frozen CLIP image encoder and a trainable multilayer ' Traditional =
perception (MLP). Enhanced with Conditional Value at Risk ¢ ,

(CVaR) for robustness and a loss landscape flattening strategy S ] Ol}rs

for improved generalization, our model is tailored for high : "'- r - N %, 2.
efficacy in COVID-19 detection. Furthermore, we integrate a NONCOVIDY Flattening loss landseape ", ™
teacher-student framework to capitalize on the vast amounts --------- ! ; %
of unlabeled data, enabling our model to achieve superior Input Ly _,%_, L

performance despite the inherent data limitations. Experimental b CVaR

results on the COV19-CT-DB dataset demonstrate the effective- MLP

ness of our approach, surpassing baseline by up to 10.6% in : . . .
‘macro’ F1 score in supervised learning. The code is available at Fig. 1. Comparison between our method with traditional

https://github.com/Purdue-M2/COVID-19_Detection_M2_PURDUE.
Index Terms—COVID-19, CLIP, Detection, Robust, CT Images

I. INTRODUCTION

COVID-19 detection [2] based on 3-D chest CT scans is
a diagnostic technique that uses computed tomography (CT)
imaging to capture detailed images of the lungs and chest
area in three dimensions. This method has been explored and
utilized during the COVID-19 pandemic as a means to detect
and assess the severity of infections caused by the SARS-
CoV-2 virus. CT scans are particularly useful for visualizing
the condition of the lungs and can help in identifying char-
acteristic signs of COVID-19, such as ground-glass opacities
and bilateral pulmonary lesions, which are not always visible
on standard X-rays [24].

Deep learning has emerged as a pivotal technology in
medical image analysis, demonstrating remarkable success in
enhancing the detection and diagnosis of various diseases,
including COVID-19 [27]. By leveraging complex neural
network architectures, deep learning models can automatically
learn from vast amounts of medical imaging data, such as X-
rays, CT scans, and MRI images, to identify intricate patterns
and anomalies that may elude human experts. In the context
of COVID-19, deep learning algorithms have been particularly
instrumental in analyzing 3-D chest CT scans, enabling rapid,
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method. First row: The traditional method trains a whole
deep learning model (e.g., CNN) with a binary cross-entropy
loss Lpcg. Second row: Our method enhances COVID-19
detection by unitizing a frozen CLIP and a lightweight MLP
classifier with Conditional Value at Risk (CVaR) loss Lovar
across a flattened loss landscape.

accurate identification of viral infections and assessment of
disease severity [5]. This capability has proved invaluable in
managing the pandemic, as it assists healthcare professionals
in making informed decisions quickly, optimizing patient
management, and ultimately saving lives.

The integration of deep learning in medical imaging for
COVID-19 detection not only exemplifies the potential of Al
in healthcare but also paves the way for its broader applica-
tion in diagnosing a wide range of pathologies, promising a
future where medical diagnostics are more efficient, precise,
and accessible [36]. However, the detection of COVID-19
using computational methods, especially through deep learning
models, faces significant challenges that are critical to address
for improving diagnostic accuracy and reliability. Firstly, the
effectiveness of these models often hinges on the availability
of extensive, high-quality datasets for training. However, real-
world COVID-19 positive data is scarce, limiting the ability
of these models to learn diverse manifestations of the disease
[38]. This scarcity is compounded by the high variability in
symptom presentation among different populations, making
it difficult to develop models that are universally effective.
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Secondly, the issue of unlabeled data represents a substantial
hurdle. Many datasets consist of images that have not been
annotated with diagnostic outcomes, rendering them unusable
for supervised learning methods without considerable effort
to label them accurately. Finally, improving detection per-
formance with limited data while simultaneously enhancing
model generalization requires innovative approaches. Address-
ing these challenges is vital, as it directly impacts the models’
ability to accurately diagnose COVID-19 across diverse global
populations and varying stages of the disease, thereby playing
a crucial role in managing the pandemic effectively [40].

To address the challenges in COVID-19 detection due to
limited and unlabeled data, existing methods have adopted
several innovative strategies, yet they also encounter inherent
limitations and gaps. To tackle the issue of limited data, tech-
niques such as transfer learning have been widely used, where
models pre-trained on vast, diverse datasets are fine-tuned
using the smaller available COVID-19 datasets. This approach,
however, may not always capture the unique characteristics
of COVID-19-related anomalies due to the potential domain
shift between the original and target datasets. For handling
unlabeled data, semi-supervised and self-supervised learning
methods have gained popularity. These methods leverage unla-
beled data to learn general features or patterns, which can then
be fine-tuned with a smaller labeled dataset for specific tasks.
While effective to a degree, these methods can sometimes
introduce biases or inaccuracies if the unlabeled data is not
representative of the wider population or the specific nuances
of COVID-19 pathology [39].

To improve generalization capabilities, existing approaches
often employ data augmentation techniques to artificially
expand the training dataset and introduce more variability,
simulating a broader range of cases. Ensemble learning meth-
ods, which combine multiple models or predictions, are also
used to enhance generalization. However, these strategies may
still fall short when faced with highly diverse or novel cases
outside of the training dataset’s scope, highlighting a gap in
the ability to robustly handle unseen variations. Overall, while
existing methods have made significant strides in COVID-19
detection, challenges remain in ensuring high accuracy and
generalizability across varied clinical settings and populations,
underscoring the need for continuous innovation and validation
in diverse real-world scenarios. These challenges also lead
many competitions such as the 4" COV19D Competition [3],
[41, [17]1-[23]

In this work, we propose a novel framework as de-
picted in Fig.2, comprising three modules: frozen Contrastive
Language-Image Pre-training (CLIP) [32] ViT as feature
extractor, trainable classifier MLP, and optimization. This
straightforward framework is used for both supervised and
semi-supervised learning to detect COVID-19 from CT scan
images. Specifically, for Supervised Learning, we leverage
CLIP ViT-L/14 [15] image encoder to capture high-level rep-
resentations of the CT images. These representations are then
fed into a 3-layer MLP trained to detect COVID-19 and non-
COVID-19. We enhance the model’s robustness and ability to
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focus on the most challenging cases by incorporating Con-
ditional Value at Risk (CVaR) into the binary cross-entropy
(BEC) loss. This is complemented by the optimization module,
which enhances the model’s generalizability by flattening the
loss landscape. For Semi-Supervised Learning, we design a
teacher-student framework in Fig.3 to capitalize on the abun-
dance of unlabeled data. The teacher model, after training on
annotated data, assigns pseudo-labels to the unlabeled dataset.
This process augments the training set, which is then used to
train the student model. Through this transfer of knowledge,
the student model is equipped to potentially surpass the teacher
in detecting COVID-19. Our contributions are summarized as
follows:

1) We propose the first lightweight detector for exposing
COVID-19 based on labeled 3-D CT scans.

2) We also propose a teacher-student framework for improv-
ing the COVID-19 detection performance by integrating
unlabeled data.

3) Our method outperforms state-of-the-art approaches, as
demonstrated in extensive experiments on the COV19-
CT-DB dataset.

II. RELATED WORK

A. COVID-19 Detection

According to [35], Al-empowered methods are employed
for the detection of COVID-19 using medical images such as
X-rays and CT scans. These include the preprocessing method
and segmentation. Data preprocessing [1] involves resizing to
224x224 pixels, cropping for relevant regions, and sharpening
filters to enhance edges, while data augmentation includes
rescaling, zooming, flipping, and shearing to increase sample
diversity and training robustness. The segmentation method
proposed by [28] combines a DRD U-Net for image segmen-
tation, integrating residual modules to enhance feature extrac-
tion, with a WGAN-based DNN classifier for efficient multi-
class classification of COVID-19 images to train the classifier
and optimize model parameters. Additionally, methods like
transfer learning, fine-tuning, and novel architectures [37]
are employed in this domain.Transfer learning [31] leverages
pre-trained models like VGG-16, originally trained on large
datasets like ImageNet, to classify COVID-19 CT-Scan images
by fine-tuning some pre-trained layers, replacing the classifier
layer, and utilizing features extracted by convolutional and
pooling layers for classification.

B. CLIP

Contrastive Language-Image Pre-training (CLIP) [32], a
simple yet effective pre-training paradigm, successfully in-
troduces text supervision to vision models. It has shown
promising results across various tasks in medical imaging (i.e.,
classification [25], [41], detection [7], and segmentation [30]),
attributable to its generalizability [32].
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Fig. 2: Overview of our proposed model using CLIP ViT for encoding the input images, an MLP module with robust CVaR
loss, and an optimization step involving a flattened loss landscape for detecting COVID-19 cases apart from NON-COVID-19.

ITII. METHOD

A. Supervised Learning

Feature Space Modeling. We propose a simple procedure
to tell apart COVID-19 CT scan series from non-COVID-19
based on features extracted from the image encoder of CLIP
ViT L/14 [15]. CLIP ViT is trained on an extraordinarily large
dataset of 400M image-text pairs, so the high-level feature
extracted from it is sufficient exposure to the visual world.
Additionally, since ViT L/14 has a smaller starting patch size
of 14 x 14 (compared to other ViT variants), we believe
it can also aid modeling the low-level CT-scan slice details
(i.e., Ground-Glass Opacities and Consolidation) needed for
COVID-19 VS non-COVID-19 classification. Given a dataset
D = {(X;,Y;)}, with size n, where X is the i-th CT scan
slice and Y; € {0,1} is the i-th sample label (0 means non-
COVID-19, 1 means COVID-19). Feed CLIP visual encoder
with dataset D, and use its final layer to map the training data
to their feature representations (of 768 dimensions). We get
the resulting feature bank C = {(F},Y;)}}_; and further use
the feature bank, which is our training set, to design an MLP
classifier.

MLP Classifier. After constructing the feature bank, we use
those feature embeddings to train a binary classifier to detect
COVID-19 and non-COVID-19 CT scan slices. Our classifier
is a straightforward 3-layer Multilayer Perceptron (MLP), and
to foster a stable learning process and enhance the model’s
ability to generalize, we incorporate batch normalization after
each linear transformation. This is followed by a ReLU
activation, allowing for the model to capture intricate data
patterns effectively. To further combat the risk of overfitting,
a dropout layer is included following the activation function.

Objective Function. To obtain a robust model, we apply
a distributionally robust optimization (DRO) technique called
Conditional Value-at-Risk (CVaR) [8], [10]-[14], [16], [26],
[29], [33], [34]. By integrating CVaR into the binary cross-
entropy (BEC) loss, the model is encouraged to pay more
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attention to the riskiest predictions. In the context of COVID-
19 detection, these could be cases where the model is most
uncertain and where misclassification could lead to the worst
outcomes, such as failing to detect COVID-19 in patients with
the disease. To this end, in what follows, we assume that C =
{(F;,Y:)}_, consists of i.i.d. samples from a joint distribution
P, F; is the ¢-th data point’s feature, and Y; is the i-th point’s
label. Given some variant of minibatch gradient descent, in the
COVID-19 detection task, we are minimizing the empirical
risk of the loss Lavg(0) = 30 £(0,F;,Y;) for§ € O,
instead of minimizing the true unknown risk R,.4(0) =
Er,y)~pll(0; F,Y)], where £ is the individual loss function
(e.g., binary cross-entropy) of the COVID-19 detection model,
which has parameters 6 for MLP.

However, the average loss is not robust to the imbalanced
data, which is a common charismatic of the existing COVID-
19 datasets. In addition, the training data distribution is usually
not consistent with the testing data distribution, which is called
the domain shift problem that widely exists in real-world
COVID-19 detection scenarios. For example, the training set
may be from one hospital but the test data may be from a dif-
ferent hospital. Therefore, we explore a DRO technique CVaR
for handling imbalanced data, which can be formulated as:
CVaRo(0) = infaer {A + ZE(py)up [(L(0; F,Y) — A), ]},
where [a]+ = max{0, a} is the hinge function, the conditional
value at risk at level o € (0,1). As aw — 0, we are concerned
about minimizing the risk of ‘hard’ samples (cases that are
difficult to diagnose). In contrast, as « — 1, it becomes
minimizing the Rg,4(¢). Inspired by [42], we can minimize
a loss function that aims to minimize an upper bound on
the worst-case risk by employing the CVaR. In practice, we
minimize an empirical version of CVaR,, (6). This gives us the
following optimization problem:

n
ST FLYi) - AL

=1

1
£C’VaR(9) = IAnin)\ + — (1)

an

Suppose for a moment that we have obtained the optimal
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Fig. 3: Diagrammatic representation of our robust model with
teacher-student framework by leveraging unlabeled data for
enhancing detection performance.

value of A\* in (1), then the only training points that contribute
to the loss are the ‘hard’ ones with a loss value greater than
A*, whereas the ‘easy’ training points with low loss smaller
than A* are ignored. To this end, a robust model is obtained.
These procedures are demonstrated in Fig.2.

B. Semi-Supervised Learning

In addressing the challenge of limited labeled data for
COVID-19 diagnosis from imaging, we propose a semi-
supervised learning framework [9] that leverages knowledge
distillation to utilize unlabeled data effectively. Our methodol-
ogy comprises two primary phases: the teacher model training
and the student model training. Note the model we use here
is the same architecture as in supervised learning, both are
fixed CLIP with a trainable 3-layer MLP. The whole training
framework is illustrated in Fig.3. We explain each module as
follows.

Teacher Model Training. The teacher model is first trained
on a small set of labeled data. The aim of this phase is to
develop a robust initial model that captures the high-level
features and complexities associated with the diagnosis from
the labeled dataset.

Pseudo-Labeling with Teacher Model. Once the teacher
model is trained, it is employed to perform inference on a
larger corpus of unlabeled data. The model’s predictions are
used to assign pseudo-labels to the unlabeled CT scan slices,
creating a new set of training data that, while not verified by
human experts, carries the inferred knowledge of the teacher
model. These pseudo-labels are subject to uncertainty but offer
a valuable starting point for expanding the training dataset
beyond the limits of the labeled data.

Student Model Training. Subsequently, a student model
is trained on a combination of the original labeled data and
the newly created pseudo-labeled data. This process allows
the student model to learn from both the ground truth in
the labeled data and the nuanced patterns inferred by the
teacher in the unlabeled data. The student model, through this
extended training, is expected to outperform the teacher model
by generalizing better to unseen data, thanks to the larger and
more diverse training set it has been exposed to.

C. Optimization

Last, to further improve the detector’s generalization capa-
bility, we optimize the COVID-19 detection model by utilizing
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Algorithm 1: Optimization (CVaR+SAM)

Input: A training dataset C with size n, «, 7
max_iterations, num_batch, learning rate (3
Output: A robust COVID-19 detection model

1 Initialization: 6y, [ =0

2 for e = 1 to max_iterations do

3 for b = 1 to num_batch do

4 Sample a mini-batch C; from C

5 Compute £(0;; F;, X;), V(F;, Y;) € C

6 Use binary search to find A that minimizes (1)
on Cp,

7 Compute €* based on Eq. (2)

8 Compute gradient approximation for (3)

9 Update 0: 91+1 — 0, — /3v9£CVGR|91+e*

10 l+—1+1

11 end

12 end

13 return 6,

the sharpness-aware minimization (SAM) method [6] to flatten
the loss landscape. Note that this optimization module can
be used in both supervised learning and semi-supervised
learning. As shown in Fig.2, by utilizing such a technique,
the model yields a more flattened loss landscape indicating
a stronger generalization capability [29]. As a reminder, the
model’s parameters are denoted as 6, flattening is attained by
determining an optimal €* for perturbing 6 to maximize the
loss, formulated as:

€ =arg max Loyar(ld+ ¢€)
llell2<~

2
~arg max. €' VoLovar = 1519n(VeLovar), @
where 7 is a hyperparameter that controls the perturbation
magnitude. The approximation is obtained using first-order
Taylor expansion with the assumption that ¢ is small. The
final equation is obtained by solving a dual norm problem,
where sign represents a sign function and VyLcy g being
the gradient of Loy g With respect to 6. As a result, the model
parameters are updated by solving the following problem:

3

Perturbation along the gradient norm direction increases the
loss value significantly and then makes the model more
generalizable while detecting COVID-19.

End-to-end Training. In practice, we first initialize the
model parameters 6 and then randomly select a mini-batch set
Cyp from C, performing the following steps for each iteration
on (Y (see Algorithm 1):

o Fix 0 and use binary search to find the global optimum

of X since (1) is convex w.r.t. \.

« Fix A, compute ¢* based on Eq. (2).

o Update 0 based on the gradient approximation for (3):

0+ 06— ﬁV@ECVdR|H+6*, where f is a learning rate.

mgin Lovar(@ + €).
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IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: The COV19-CT-DB dataset, as referenced in
[19], forms the basis of our study, comprising 3-D chest CT
scans. This collection encompasses 7,756 3-D CT scans, with
1,661 being COVID-19 positive and 6,095 being negative for
COVID-19. It aggregates to approximately 2,500,000 images,
of which 724,273 images are categorized under the COVID-19
class and 1,775,727 images under the non-COVID-19 class.
Our analysis employs slices, meaning 2-D images derived
from these scans, with each scan series containing 50 to
700 slices. Each slice has a resolution of 512x512. This
dataset also features in the 4" COVI9D Competition as
documented in [20]. Based on the guidelines from [20], our
approach involves: (a) using 703 3-D COVID-19 and 655 3-
D non-COVID-19 CT scans from the dataset for supervised
learning training, while reserving 170 3-D COVID-19 and
156 3-D non-COVID-19 CT scans for testing; (b) employing
a semi-supervised learning framework, which includes CT
scans obtained from various hospitals and medical facilities
to ensure data diversity. In addition to the labeled scans used
for supervised learning, our training set is augmented with 239
additional annotated 3-D CT scans (120 COVID-19 and 119
non-COVID-19) and 494 3-D CT scans without annotations,
with the test set comprising 178 3-D CT scans (65 COVID-19
and 113 non-COVID-19). Further dataset details are elaborated
in [20].

2) Evaluation Metrics: In line with the evaluation protocol
established in [20], we adopt the macro F1 score as our
primary metric for assessing the performance of all methods.
This metric is essentially the unweighted mean of the F1 scores
across different classes or labels, such as averaging the F1
scores for both the COVID-19 and non-COVID-19 categories.
Given that our models are designed to classify individual
images or slices rather than entire CT scans, we employ a
majority voting strategy to aggregate the slice-level predictions
into a singular diagnostic outcome for each CT scan. This
approach allows us to compile the discrete predictions across
all slices from a specific CT scan to arrive at a consolidated
final diagnosis, thereby aligning our methodology with the
comprehensive evaluation framework referenced in [20].

3) Baseline Methods: The baseline methods for our study
are sourced from [20], which outlines two primary approaches:
(a) Within the supervised learning framework, we process
input 3-D CT scans by applying padding to standardize their
dimensions, which then proceed to a Convolutional Neural
Network (CNN) segment for initial analysis. This CNN com-
ponent is tailored to extract pivotal features, predominantly
from lung areas, on an individual 2D slice basis. Following this
feature extraction phase, a Recurrent Neural Network (RNN)
sequentially processes the CNN-derived features, directing
them through a Fully Connected (FC) layer and culminating in
a softmax activation-based output layer dedicated to COVID-
19 classification. A Dropout layer is integrated within this
architecture to mitigate the risk of overfitting. This model
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Method ‘macro’ F1 Score
Supervised CNN+RNN [20] 0.780
i Ours 0.886
i i Dropout [20] 0.730
Semi-Supervised it P

TABLE 1. Comparison with the baseline method in terms
of ‘macro’ F1 score under supervised and semi-supervised
learning, respectively. The best results are shown in Bold.

is denoted as CNN+RNN. (b) The semi-supervised learning
strategy incorporates Monte Carlo Dropout to gauge uncer-
tainty levels during the training phase with labeled data. This
uncertainty measurement guides the annotation of unlabeled
data, especially highlighting COVID-19 instances where the
model demonstrates substantial confidence in its predictions.
This technique is referred to as Dropout.

4) Implementation Details: We adopt the CLIP framework,
incorporating the Vision Transformer (ViT) as the image
processing unit, specifically configured to the L./14 scale. This
setup is augmented with three Multi-Layer Perceptron (MLP)
layers, each consisting of 768 neurons, serving as our primary
computational model. Our training protocol is executed with
a batch size of 32, ensuring a precise management of samples
during each training iteration.

The optimization process is facilitated by the Adam opti-
mizer, which kicks off with an initial learning rate set at 5 =
le — 3. Additionally, we employ a Cosine Annealing Learning
Rate Scheduler to modulate the learning rate adaptively across
the training duration, aiming to bolster the model’s path to
convergence. The tuning of hyperparameters involves adjusting
o within the range of 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 as
delineated in Eq. (1), alongside setting v to 0.05 as specified
in Eq. (2). These experiments are conducted using the PyTorch
framework and leverage the computational prowess of an
NVIDIA RTX A6000 GPU for training purposes.

B. Results

Table I shows our results compared with the baseline
method CNN+RNN [20] for two primary approaches: super-
vised learning and semi-supervised learning. It is clear that,
in supervised learning, our method has superior COVID-19
detection ability compared to CNN+RNN [20]. It enhances the
‘macro’ F1 score by 10.6%. When applied to semi-supervised
learning, our method slightly outperforms the baseline. This
is because our method simplifies the semi-supervised learn-
ing process by employing a direct pseudo-labeling approach
without the added complexity of Monte Carlo Dropout for
uncertainty estimation. Despite this simplification, our method
achieves a higher ‘macro’ F1 score. This indicates that the
quality of pseudo-labels generated by our model is high, and
our model is particularly effective at identifying and learning
from the most informative unlabeled instances.

C. Ablation Study

Visualization of Loss Landscape. Fig.4 visually illustrates
the impact of incorporating SAM optimization in our proposed
method. The loss landscape, without SAM, shows a more
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With SAM

Fig. 4: The loss landscape visualization of our proposed
method without (left) and with (right) using the sharpness-
aware minimization (SAM) method. The axis’s scales are the
same for both figures.

Without SAM

Method [ BCE | BCE+SAM [ CVaR | Ours(CVaR+SAM)

‘macro’ F1 score | 0.868 | 0.874 | 0.877 | 0.886

TABLE II: An ablation study of our key components. ‘BCE’
denotes cross-entropy loss, ‘BCE+SAM’ represents BCE loss
with the sharpness-aware minimization (SAM) optimization,
‘CVaR’ and ‘Ours’ represent Conditional Value at Risk without
SAM and with SAM, respectively.

rugged and uneven loss surface. This unevenness can make the
optimization process challenging, as it may lead to inconsistent
generalization. In contrast, the right side reveals a much
smoother loss landscape when SAM is applied. The smoother
surface indicates a more robust model with parameters that
generalize better to new data. The consistency in the loss
surface with SAM also suggests that the optimization process
is more straightforward, leading to improved learning during
training. This visualization underscores the significance of
the optimization module in our method for enhancing the
detector’s generalization.

Effects of CVaR and SAM. The results in Table II
reveal the effects of CVaR technique and SAM optimization
we applied in our proposed method. Compared with ‘BCE’,
‘BCE+SAM’ improves the ‘macro’ F1 score by 0.6%, ‘CVaR’
enhances performance by 0.9%, indicating the effectiveness
of SAM optimization and CVaR loss, respectively. When we
incorporate CVaR with SAM, it achieves the best performance
surpassing ‘BCE’ by 1.8%. Overall, our method with both
CVaR and SAM optimization yields the most substantial gains
in ‘macro’ F1 score.

D. Sensitive Analysis

Fig.5 shows the ‘macro’ F1 score to different o values in
Eq. (1). The F1 scores are significantly lower when « is 0.1,
0.2, and 0.3. This is because the model focuses on the worst-
case outcomes (extreme risks), it is either not predicting the
positive class at all or predicting the negative class (F1 positive
is 0 or F1 negative is 0). It shows a steep increase in the
F1 Score at an « value of 0.4, indicating that the model’s
performance improves drastically when it moves away from
the most extreme risk assessments to slightly more moderate
ones. At this point, the balance between precision and recall
that the F1 Score represents is much more favorable.
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V. CONCLUSION

The current landscape of COVID-19 detection through deep
learning models is faced with various challenges: requires
large computational resources, the scarcity of high-quality,
labeled datasets, and the abundance of unlabeled data. Ad-
dressing these issues, we introduce a streamlined detector that
employs a frozen CLIP image encoder and a trainable MLP,
augmented with CVaR and a loss landscape flattening strategy.
The CVaR integration bolsters our model’s robustness, while
the loss flattening strategy enhances generalization. Moreover,
our teacher-student framework adeptly leverages unlabeled
data, ensuring effective model training even with limited
labeled data. Experimental results showcase the superiority of
our method compared with the baseline.

Limitation. A notable limitation of our study is that our
proposed methodologies overlook the inherent correlations
among CT images derived from the same 3-D CT scan.
This oversight potentially results in the omission of valuable
information that could enhance the diagnostic accuracy of our
models.

Future Work. We plan to apply the CLIP text encoder by
utilizing the medical diagnosis report data with the COVID-19
CT images to improve the detector’s performance further.
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