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Abstract

Exotic annual grass invasions in water-limited systems cause degradation of native plant and
animal communities and increased fire risk. The life history of invasive annual grasses allows for
high sensitivity to interannual variability in weather. Current distribution and abundance models
derived from remote sensing, however, provide only a coarse understanding of how species
respond to weather, making it difficult to anticipate how climate change will affect vulnerability
to invasion. Here we derived germination covariates (rate sums) from mechanistic germination
and soil microclimate models to quantify favorability of soil microclimate for cheatgrass
(Bromus tectorum L.) establishment and growth across 30 years at 2662 sites across the
sagebrush steppe system in the western United States. Our approach, using four bioclimatic
covariates alone, predicted cheatgrass distribution with accuracy comparable to previous models
fit using many years of remotely-sensed imagery. Accuracy metrics from our out-of-sample
testing dataset indicate that our model predicted distribution well (72% overall accuracy) but
explained patterns of abundance poorly (R? = 0.22). Climatic suitability for cheatgrass presence
depended on both spatial (mean) and temporal (annual anomaly) variation of fall and spring rate
sums. Sites that on average have warm and wet fall soils and warm and wet spring soils (high
rate sums during these periods) were predicted to have a high abundance of cheatgrass.
Interannual variation of fall soil conditions had a greater impact on cheatgrass presence and
abundance than spring conditions. Our model predicts that climate change has already affected
cheatgrass distribution with suitable microclimatic conditions expanding 10-17% from 1989 to
2019 across all aspects at low to mid-elevation sites, while high elevation sites (> 2100m) remain

unfavorable for cheatgrass due to cold spring and fall soils.
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Introduction

Invasive annual grasses have been linked to a worldwide decline of biodiversity and ecosystem
functioning in water-limited systems (D’ Antonio & Vitousek 1992; Ostoja & Schupp 2009;
Davies 2011). Once present, these grasses accelerate fire return intervals (Fusco et al. 2019),
increase nitrogen storage in soils (Wolkovich et al., 2010), and compete with native vegetation
for soil moisture (Melgoza et al., 1990). Positive feedback loops with fire and nutrient cycles
have enabled invasive annual grasses to dominate substantial portions of water-limited systems
that now burn 2-4 times more frequently than native communities (D’ Antonio & Vitousek 1992;
Bradley et al., 2018; Fusco et al., 2019; Pastick et al. 2021). Information about the current and
future distribution of these grasses is crucial to guide management decisions and wildfire

planning (Chambers et al., 2014).

Climate change will likely alter the vulnerability of different ecosystems to annual grass invasion
and dominance (Catford et al., 2019). In the sagebrush steppe, arid conditions are becoming
more prevalent (Ficklin & Novick 2017) due to increases in annual minimum temperature,
increased climatic water deficit, and less summer rainfall (Smith et al., 2022). These temporal
trends have potential to impact invasion, as colder and wetter locations that have previously been
classified as resistant to invasion (Chambers et al., 2014) are now becoming warmer and drier
(Bradford et al., 2019: Smith et al., 2022). Despite many experimental and observational studies,
there remains uncertainty surrounding future effects of climate change on cheatgrass (Bromus
tectorum L.) distribution. Large-scale studies predict range expansion of annual grasses (Pastick
et al., 2021; Smith et al., 2022), but results of cheatgrass-specific studies vary. While some
predict increases in abundance (Boyte et al., 2016), others predict no changes (Brummer et al.,

2016; Zimmer et al., 2021) or a dependence on future precipitation scenarios (Bradley 2009).
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Experimental studies show both gains in fitness with warming (Compagnoni & Adler 2014,
Blumenthal et al. 2016), and no effect (Zelikova et al., 2013; Larson et al., 2017; 2018). The
signal may be unclear because of site-level factors that influence how atmospheric weather
impacts soil temperature and moisture. What is clear is a lack of consensus on how changing

climate will facilitate or inhibit cheatgrass expansion across western North America.

Our understanding of the climatic niche of invasive annual grass species and potential shifts in
distribution due to climate change could be improved by new modeling approaches that directly
link field observations with soil microclimate (Bradford et al., 2019: Boehm et al., 2021;
Hardegree et al., 2022). Current landscape-scale mapping approaches use reflectance indices
such as NDVI (normalized difference vegetation index) to estimate the distribution and
abundance of invasive annual grasses (Downs et al., 2016; Bradley et al., 2018; Pastick et al.,
2021). While these models are useful for mapping large areas and make it possible to study the
distribution or abundance of invasive annual grass species without extensive field sampling, they
do not directly describe species-climate relationships. Rather, one model links cheatgrass
abundance or distribution with reflectance, and a second analysis correlates climate variables
with estimates of abundance or distribution. Quantifying error propagation from the first model
through to the second is challenging; ignoring that error means overestimating the certainty of
the species-climate correlations. Previous studies linking climate to large-scale cheatgrass
distribution (Bradley 2009; Boyte et al., 2016) correlated climate metrics to remotely sensed
estimates of cheatgrass distribution that either included large uncertainty (R? = 0.21)(Peterson
2006) or required several years of imagery to distinguish between cheatgrass dominated sites and
sites dominated by other vegetation types (Bradley & Mustard 2005). An approach that directly

explains spatially and temporally extensive field observations with fine-scale climate indices
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would improve inference about species-climate relationships and could also account for

interannual variation in abundance.

Persistent cheatgrass presence and abundance is largely driven by soil moisture and temperature
(Chambers et al., 2007; Roundy et al., 2018), but regional-scale studies are generally constrained
to using coarse climate data from gridded climate products. These products provide information
about precipitation and temperature at 0.8-4 km? spatial resolution (Daly et al., 2008; Abatzoglou
2013), but do not capture the shifts in soil moisture and temperature that occur with finer-scale
variation in topography and soil type (Hardegree et al., 2022) and which determine local
cheatgrass dynamics (Roundy et al., 2007, Condon et al., 2011, Bishop et al., 2019). Soil
moisture models use edaphic characteristics and topography, in addition to weather inputs, to
explicitly account for factors that modify soil microclimate (Hardegree et al., 2022) and calculate

soil moisture and temperature estimates at a smaller scale (10m? with current methods).

By combining germination models with output from a soil microclimate model, we can link
species-specific physiology with fine-scale information about soil temperature and moisture
across large spatial extents (Terry et al., 2022). Hydrothermal and thermal-germination models
have previously been used to predict cheatgrass response to microclimate variability at small
scales (Roundy et al., 2007; Rawlins et al., 2012; Hardegree et al, 2017; 2018). These models
predict the timing of cumulative germination response in the seedbed, but also yield rate sum
metrics that can be used to quantify favorability of soil microclimate for plant establishment and
growth (Hardegree et al., 2020). Rate sum metrics account for cumulative effects of small
disparate windows of germination and growth favorability that are exploited by annual plants
(Terry et al., 2022). Rate sum values have been shown to capture shifts in soil microclimate that

occur with gradients of elevation and topography, which are generally associated with ecological
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resilience and resistance to cheatgrass invasion (Chambers et al., 2014; Roundy et al., 2018;

Hardegree et al., 2022).

The objective of this study was to combine a mechanistic understanding of cheatgrass
germination with soil microclimate data to predict its abundance and distribution across the
sagebrush steppe. Specifically, we asked, 1) can we accurately model cheatgrass distribution and
abundance using solely germination metrics of soil microclimate favorability? And, 2) have
microclimatic conditions become more favorable for cheatgrass over the last 30 years in the

sagebrush steppe?

Methods

Overview of approach

We used a species-specific germination model for cheatgrass to quantify favorability of soil
microclimate for growth as a function of soil temperature and moisture estimates in the
sagebrush steppe system in the western United States. We use hourly rates of germination
progress for cheatgrass and sum them over time to capture the favorability of soils for
germination and growth (Figure 1). We used monthly germination rate sums (Hardegree et al.,
2020) to explain field observations of cheatgrass presence (>2% cover) and abundance. We split
the dataset into a training and out-of-sample (OOS) testing dataset, with both spanning the
temporal (2002-2016) and spatial range of the dataset to test model performance. We created two
models, one to predict presence/absence, and one to predict abundance. After testing both models
on the OOS dataset, we applied the model to simulated soil conditions at all sites (training and
testing) from 1989 to 2019 and analyzed trends in potential distribution and abundance across all

sites.
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Soil water model

We used the Simultaneous Heat and Water Model (SHAW) (Flerchinger et al., 2012) to generate
soil moisture and soil temperature estimates for each site. This model uses atmospheric, edaphic,
and geographic variables to model soil water and temperature as a function of soil depth (Figure
1). Soil texture data for each site were acquired from OpenLandMap (Hengl 2018) for the three
soil depths (0-10,10-30, 30-60) for each simulated field site. Other edaphic variables (field
capacity, bulk density, and saturated conductivity) needed for the SHAW model
parameterization were calculated using soil texture via Saxton equations (Saxton et al., 1986).
Daily temperature, precipitation, solar radiation, relative humidity, and wind variables were
obtained from the gridMET gridded historical climate database (4000m spatial resolution, daily
temporal resolution) (Abatzoglou 2013). Geographic inputs of aspect, slope and elevation were
derived from topographic data (10m spatial resolution) acquired from Farr et al. (2007). We did
not include optional vegetation inputs in the model for simplicity and for potential application to
post-wildfire landscapes with minimal vegetation. From this model we generated hourly
estimates of soil temperature (°C) and soil water potential (MPa) at 2 cm depth, a depth common
for seeding success in restoration settings. These estimates from the SHAW model were then
used as input into the wet-thermal germination models to estimate hourly and cumulative rate

sum values.

Germination model

Our approach utilizes germination curves that specify how hourly germination rate changes with
temperature when soil is wet (>-1.25 MPa). With soil moisture and temperature metrics as
inputs, we calculate the sum of germination rates for early spring and late fall months. We used

germination models with soil conditions at 2cm depth to provide hourly rate sum metrics

7



158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

throughout the year at all sites. In this study, we used the rate sum of the 35% subpopulation of
seeds for our analysis (Terry et al., 2022). This metric explicitly represents the number of
sequential times during a given time period where conditions were sufficient for 35% of a given
seed population to germinate (Hardegree et al., 2020). The rate sum value for a given time period
is a quantitative index of seedbed favorability for germination and growth (Hardegree et al.,

2013; Terry et al., 2022).

Germination rates and rate sum calculations were based on wet-thermal germination models,
(Roundy et al., 2007; Rawlins et al., 2012) an approach that calculates germination rate, or the
relative progress toward germination during a specific time period, according to soil temperature
under continuously wet conditions (soil water availability < -1.25 MPa). Methods for predicting
germination response to temperature above threshold levels of soil water availability have been
previously described and validated (Roundy et al., 2007; Hardegree et al. 2018). We used data
from previous germination trials of cheatgrass seeds collected from 8 different field sites in the
sagebrush steppe (Roundy et al., 2007; Hardegree et al., 2010). We averaged germination curves
that explain how hourly progress toward germination varies under wet condition under different
temperatures. This average was done across all cheatgrass collection sites (seedlots) for the 35%
subpopulation to produce Equation 1. We chose the 35% subpopulation, or germination rates for
35% of the seeds to germinate, as this grouping captures the majority of high-quality seed with
the best chance for growth and fecundity (Baskin & Baskin 2014). Equation 1 calculates
germination rate of cheatgrass for each hour (t) as a function of soil temperature (T) when soil
temperature is greater than 0°C and soil water potential is greater than -1.25 MPa (Roundy et al.,

2007; Terry et al., 2022). Outside these conditions, germination rate was considered zero.

Equation 1



129%107* + T, #-1.25% 107 + T, * 6.16 * 10%,  T>0°C and MPa>-1.25

181 Germination Rate,= { .
0 , otherwise

182
183  Cheatgrass presence and abundance data

184  We used field observations of cheatgrass presence/absence and abundance from 2662 field

185  observations collected from 2002-2016 (Appendix S1: Table S1), which was a subset of data
186  compiled by (Bradley et al., 2018). The field observations span much of the sagebrush steppe in
187  the western United States, with sites in Idaho, Utah, Nevada, California, Oregon, and

188  Washington (Figure 2). Our dataset does not include any observations in the Mojave Desert or
189  eastern portions of the sagebrush steppe in Wyoming, Montana, or Colorado. Most of the data
190  was collected using line transects, with some of the cover estimates coming from ocular

191  estimates and quadrat frames. We analyzed a subset of the data consisting of all sites with

192  measures of absolute cover (area covered by species/total geographic area) rather than relative
193  cover (% of total vegetative cover) to train and test our model to predict estimates of cheatgrass

194  cover.
195  Model Training and Testing

196  We split our data into a training set and an out-of-sample (OOS) testing set to validate the

197  accuracy of our model. We utilized 8-digit watershed units (USGS), a spatial delineation that
198 identifies watershed basins, to identify independent spatial groupings of field observations

199  (Figure 2). Altogether our data encompass 102 unique watershed units within the sagebrush

200 steppe. Field observations were randomly separated into testing (1/3 of watershed units and 29%

201  of data) and training data (2/3 of watershed units and 71% data). This resulted in a training
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dataset composed of 884 presence points and 785 absence points and an independent testing
dataset composed of 533 presence points and 449 absence points. Both the training and test
datasets comprise field observations spanning the temporal and spatial range of our dataset
(Figure 2), with no repeat observations. Histograms of percent cheatgrass cover were generated
to ensure similar distribution of cheatgrass cover between training and testing dataset (Appendix

S1: Figure S1).

We assessed prediction accuracy based on the model’s ability to predict presence (>2%
cheatgrass cover) and percent cover at OOS test sites in the specific year of the field observation.
Accuracy metrics are percentage of test sites correctly identified as present/absent and R? value
for cover predictions across OOS test sites (observed versus predicted). We chose this as our
comparison metric for cover predictions to allow comparison with models from previous studies,

which do not always report other metrics such as mean absolute error or root mean square error.
Cheatgrass model

We used a generalized additive model (GAM) from the mgcv package (Wood 2004) in R (R core
team 2019, version 3.6.1) to relate spatial and temporal soil favorability metrics to cheatgrass
presence and cheatgrass abundance. We selected a GAM modeling approach to account for non-
linear effects of microclimate that would require complex interaction terms in a linear model.
Our response variables were distribution (presence/absence) and abundance (cheatgrass cover),
which we analyzed in two separate models. We chose a cubic-splines smoothing approach to
allow knots to spread evenly throughout covariate values (Wood 2006) to ensure all

combinations of covariate values were considered within the smoothing terms of the model.

10
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Our distribution model was a GAM binomial model, with field observations of cheatgrass cover
> 2% considered as species presence. Our abundance model was a GAM model with a normal
error distribution. We used four covariates that represent both temporal and spatial variation of
microclimate in the form of rate sum. Spatial covariates were mean rate sum values of spring
(March) and late fall (Oct-Dec) and were scaled spatially by subtracting off the mean of all sites
and dividing by standard deviation of all sites for each variable, such that a site with a value of 0
would indicate an average value relative to all the other sites. The spatial covariates describe
variation in climate among locations. Temporal covariates were rate sum values of spring
(March) and late fall (Oct-Dec) soil conditions immediately preceding the field observation.
These measurements were scaled temporally (across years at each site) by subtracting off the
site-level mean and dividing by site-level standard deviation of each variable, such that a value
of 0 would indicate average conditions within a given site. These temporal covariates describe

interannual variation in weather for each location.

To select the four covariates described in the previous paragraph, we first computed correlations
of cheatgrass cover in our training dataset with all individual monthly rate sums and groupings of
monthly values to seasonal sums that previous studies suggested may influence cheatgrass
abundance and distribution (Bradley et al., 2016; Roundy et al., 2018). After creating models
with the top 10 most correlative (with cheatgrass cover) rate sum metrics, we found that having
many non-linear parameters did not facilitate interpretation, and that by reducing the covariates
to the two most correlated rate sum values of late fall (Oct-Dec) and Spring (March), we could
retain most of the predictive power of the models while increasing interpretability. We assumed

that susceptibility to invasion was driven by both spatial and temporal microclimate dynamics

11
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and thus included both the spatial and temporal values of these metrics to allow interannual

variation and average soil microclimate conditions to inform our models.

Models were checked for goodness-of-fit on the training data using the gam.check function in
the mgev package (Wood, 2005). Specifically, we checked the basis dimensions of smoothing
terms to ensure that they were not so small that they force over-smoothing and checked residuals
for over-dispersion. While we monitored specific GAM model diagnostics, we placed more

emphasis on model validation with our OOS testing dataset.
Results
Model Performance

All spatial and temporal parameters within our model had significant effects (P<0.001, Appendix
S1: Table S1 & S2) on cheatgrass distribution (presence/absence) and abundance (cheatgrass
cover). Accuracy metrics for the OOS testing dataset show that our mechanistic soil favorability
metrics covariates predicted presences with 77.8% accuracy and absences with 65.6% accuracy,
with an overall balanced accuracy of 71.7% (Figure 3). Soil favorability covariates predicted
abundance less well (R? 0.22 testing, 0.22 training), with poor ability to distinguish high and low

cover sites (Figure 4).
Response to spatial variation in microclimate

Cheatgrass presence and cover responded in similar ways to spatial variation in soil microclimate
(Figure 5). GAM coefficient curves indicate that cheatgrass performs best in locations with
warmer and wetter soils in spring and fall. Cheatgrass abundance and distribution (persistence)
responded to average fall rate sum with a concave down shape, indicating a preference for
locations that on average have moderately wetter and warmer fall soils. Abundance and

12
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distribution responded to spring rate sum values with a concave down but a generally positive
slope, indicating a preference for locations that on average have warmer and wetter spring soils

(Figure 5).

Response to temporal variation in microclimate

Temporal variation in fall and spring soil conditions had significant effects (P<0.001) on
interannual cheatgrass distribution and abundance (Figure 5). Wetter and warmer soils from the
previous fall increased likelihood of presence but benefits of warm and wet fall soils for cover
declined at high values, exhibiting a concave-down shape with optimal conditions occurring in
slightly above average years. Years with wetter and warmer spring soils were associated with

lower cover and probability of abundance (Figure 5).

Long-term trends

Given the reasonable predictive ability of our distribution (presence) model for our OOS testing
dataset, we applied our model to soil metrics at all sites (n=2662) across years 1990-2019 to
hindcast trends in cheatgrass distribution. We found that conditions identified in our model as
favorable for cheatgrass presence are becoming more prevalent across our study sites (Figure 6)
during the period 1990-2019. Specifically, we saw evidence of climate change induced range
expansion, with predicted cheatgrass presence expanding 10-17% across our mid- and low-

elevation sites (Figure 6). Higher elevation sites remained abiotically unfavorable for cheatgrass.

Discussion

We developed a new modeling approach to improve understanding of an important climate-
species relationship and investigate how climate change has influenced the potential distribution
of cheatgrass over the last 30 years (1989-2019). Our results indicate that modeling the

13



289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

distribution of an invasive annual grass species using microclimate covariates linked directly to
germination is a viable method to understand the relationship between climate and potential
distribution. The combination of site level soil-microclimate data and information about
germination response allowed our model to identify soil conditions in space and time that favor
germination and result in persistent cheatgrass presence. The relationships derived from our

model also allowed us to track changes in habitat suitability for cheatgrass across years.
Comparison to Remotely Sensed Models

Our model predicted the distribution of cheatgrass well, with accuracy (72%) similar to previous
species distribution models despite using only four microclimate-based covariates. Cheatgrass-
specific distribution models based on remotely-sensed covariates with similar geographic range
had similar performance: Downs et al., (2016) reported an overall accuracy of 71%, Bradley &
Mustard (2006) reported an overall accuracy of 61%, and Bradley et al., (2018) reported an
overall accuracy of 74%. The advantage of our approach is that it provides more direct inference
about the relationship between climate and cheatgrass distribution and abundance. Our model is
also able to capture interannual variation in climate suitability, whereas previous models that
correlate average climate to distribution based on several years of reflectance data (Bradley

2009) cannot predict variation among years.

Our model was unable to explain variability in cheatgrass cover as well as remotely sensed
models. Our model predicted percent cover with an R? value of 0.22, whereas other remotely
sensed models produced more accurate estimates of percent cheatgrass cover: Bradley et al.
(2018) reported R? value of 0.32 (3769 testing points), Peterson (2005) reported an R? of 0.5 (75
testing points), and Peterson (2006) reported an R? of 0.24 (806 testing points). More

specifically, our model failed to predict high values of cheatgrass cover, which is a similar
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problem experienced by these other remote sensing models. The inaccuracy of our abundance
model probably reflects the importance of many non-climate factors, such as disturbance and

competition from native vegetation, in determining cheatgrass abundance.

Species-Climate Relationship

Our study indicates that areas characterized by warm and wet fall seasons (Oct-Dec) and warm
and wet springs (March) have the greatest abiotic potential for cheatgrass presence and
abundance. Fall conditions had a stronger positive effect on cheatgrass presence and abundance
than spring conditions (Figure 5). Previous studies have indicated hot, dry summer atmospheric
conditions as a key factor in cheatgrass dynamics (Bradley 2009; Bansal & Sheley 2016;
Brummer et al., 2016) and strong topographical effects of elevation and aspect, but our initial
screening of covariates indicated that fall and spring soil conditions were more informative to
our model than summer soil metrics. Though summer conditions are likely to affect annual
species indirectly by shaping competing perennial vegetation (Condon et al., 2011), summer
conditions should not have large effects on cheatgrass seeds that largely remain dormant until
germinating in the fall or early spring (Hulbert 1955; Mack & Pyke 1984). We suspect that
impacts of summer climate found in previous models reflect their correlation with elevation,
seasonal soil moisture timing, and shifts in vegetation type. Experimental findings from field
studies indicate that year-round warming has a positive effect on cheatgrass (Compagnoni &
Adler 2014; Blumenthal et al. 2016), whereas late-spring and summer warming alone had a
negative effect on cheatgrass cover and fecundity (Larson et al., 2017). Year-round warming
would increase the quantity of warm, wet conditions in the spring and fall, which is shown by

our model to increase suitability for cheatgrass.
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Our results provide insight into the climate factors that generate increasing resistance to
cheatgrass invasion with increasing elevation. Current hypotheses link resistance to water
availability, soil temperature and competition (Chambers et al., 2014; 2019), but disentangling
the role of these abiotic factors is difficult because they are tightly correlated. Our results support
the conclusions of Roundy et al. (2018) that resistance to cheatgrass invasion depends on spring
and fall soil conditions, with colder fall and spring soils, and increasing elevation, reducing the
abiotic potential for cheatgrass establishment (Figure 6 & Appendix S1: Figure S2). The
explanatory power of our model, with explicit ties to germination, indicate further that fall and
spring soil conditions are important due to their influence on germination. We also anticipate,
that fall and spring soil conditions are linked to cheatgrass invasion, because they may allow
cumulative periods of growth, captured by the summing nature of our microclimate metric, that

can be utilized by a winter annual grass for early growth.

Our models generally indicate that warmer and wetter soil in the fall and spring periods, in both
space and time, increase probability of cheatgrass presence, and to a lesser degree, cheatgrass
cover (Figure 5). However, the effects of temporal anomalies in spring conditions did not follow
this pattern and indicated that warmer and wetter conditions decreased cheatgrass presence
(Figure 5). We hypothesize that this discrepancy is indicative of the complex relationships
between spring soil microclimate and cheatgrass dynamics. Though warm and wet spring soils
have been shown to be beneficial to cheatgrass, they also decrease the likelihood of fire (Pilliod
et al., 2017), a factor strongly linked to cheatgrass distribution (Bradley et al., 2018). Without
accounting for fire or spatial factors that determine the abundance of competing native flora, our
model predicted anomalies in spring soil microclimate to be the least informative parameter in

both our abundance and distribution models. We anticipate that accounting for interactive effects
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of spatial factors of fire and native species composition with spring soil conditions would not
only improve model fit but would also indicate a strong positive effect of warm and wet spring
soils when native plant cover is low. This would support findings from Bradford & Lauenroth
(2006) showing that the effect of temporal conditions only becomes important in scenarios where
spatial factors such as total plant cover and disturbance history allow a sizeable response to

interannual variation in weather.

The contrasting accuracy of our distribution and abundance models suggests that different factors
control cheatgrass distribution and abundance. Our model is based on the abiotic factors that
directly influence germination. The success of this model in explaining cheatgrass
presence/absence indicates a primary role for germination and periods of wet and warm shallow
soil microclimate. In contrast, the low explanatory power of our model for abundance indicates
the importance of other biotic and abiotic factors likely unrelated to germination and shallow soil
microclimate. This fits well with the conclusion of (Bradford & Lauenroth 2006) that climate
drives susceptibility to annual grass invasion, and disturbance regime dictates severity of
invasion. There are many studies that indicate the positive impact of disturbance, especially fire,
on annual grass abundance (D’ Antonio & Vitousek 1992; Condon et al., 2011; Bradley et al.,
2018; Gill et al., 2018; Fusco et al., 2019; Williamson et al., 2020). Failure to account for
disturbance history or competitive interactions may limit our model’s ability to distinguish
between high and low cheatgrass cover, primarily because cover of competitive species and lack
of disturbance may limit propagule pressure and thus complicate species response of annual

plants species to favorable soil conditions.

Trends in Cheatgrass Distribution
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Our analysis suggests that climate change has already benefitted cheatgrass and expanded its
potential range 10-17% across low and mid-elevation sites (Figure 6). These results are
consistent with trends found in remotely sensed data by Smith et al. (2022), showing an increase
in annual grass dominance across sites with elevation <2100m, and Pastick et al. (2021), who
found similar increases in cheatgrass distribution and cover across low and mid-elevation sites.
Understanding new changes in distribution is critical due to potential positive feedback where
even small amounts of cheatgrass (<10% cover) have been linked with heightened wildfire risk
(Pastick et al., 2021), which can quickly lead to post-wildfire dominance of invasive annual

grasses and more subsequent fires (D’Antonio & Vitousek 1992; Bradley et al., 2018).

Benefits of our Approach

Our approach only considers soil moisture and temperature metrics known to directly influence
cheatgrass germination. This sets up a relatively simple model with few covariates to describe a
site’s potential for cheatgrass compared to current remotely sensed models (Bradley et al., 2018;
Pastick et al., 2021). Using a model with fewer covariates also simplifies interpretation. Because
our approach explains field observations of cheatgrass distribution and abundance solely as a
function of microclimate covariates, we are able to understand climate constraints and
preferences of cheatgrass without introducing additional uncertainty that occurs when estimating
cheatgrass distribution based on remotely-sensed imagery. In addition, our model can explain
interannual variation in cheatgrass suitability at a single site, in contrast to models limited to

inference of mean climate conditions at each site.

Our results may be useful for natural resource management as it indicates not only which
locations that may be vulnerable to cheatgrass invasion, but also provides the tools to understand

which new areas may become vulnerable with current trajectories of climate that alter climatic
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suitability for cheatgrass presence. This allows managers to mitigate activities in locations that
have recently become vulnerable to cheatgrass invasion but also provides time for management

to prepare for future invasion vulnerability.

Potential Limitations of our Approach

The soil microclimate approach we used is appropriate for systems where water availability is a
key limiting factor but may not provide meaningful information regarding a species’ potential in
systems where resource availability or survival are not explicitly tied to soil moisture and soil
temperature metrics. Our study also focuses on a species with an annual life history, meaning
that annual germination and growth favorability metrics are very relevant to each year’s
distribution and abundance. Perennial species could be less sensitive to factors regulating
germination and seedling performance. We suspect that distribution and abundance of perennial
species will have different microclimate requirements with lag-effects of favorable or
unfavorable conditions being important. Finally, our approach depends on lab trials to generate
germination curves, and thus requires more resources than remote sensing approaches to map
distribution, though it remains unknown if rate sum values from one species are adequate
estimates of soil favorability for other species. Currently, it is best suited for understanding

climate-species relationships or predicting susceptibility to invasion.

Our model indicates whether cheatgrass persistence may be a possible due to relationship with
climate but does not include disturbance, a major driving factor behind exotic annual grass
dominance (Bradley et al., 2018; Fusco et al., 2019; Pastick et al. 2021). While our approach
illustrates that the influence of climate alone may determine distribution and persistence of
cheatgrass, we encourage future effort to study how soil favorability metrics interact with

disturbance and competitive native plant abundance to better understand how/where climate and
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disturbance may interact to create systems dominated by exotic annual grasses, where impacts of

Invasion are most severe.
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Figure captions

Figure 1. Flowchart indicating inputs used to estimate soil microclimate conditions and how they

are combined with germination models to produce monthly rate sum values.

Figure 2. Location of all field observations (right) and an example of how watershed units were
used to split the data into training (blue points) and testing (pink) sets. This approach allowed us
to test our model on a dataset that matches the spatiotemporal extent of the training dataset while

ensuring a degree of independence between the two datasets.

Figure 3. Map of model predictions for cheatgrass presence/absence using our final model at

both testing and training sites.

Figure 4. Predictions of Cheatgrass cover versus actual values on independent (OOS) test

dataset. Line represents 1:1 ratio.

Figure 5. Plots showing smoothed parameter effects. Y-axis values indicate magnitude of the
effect, and X-axis values indicate possible parameter values within the dataset. Blue values
represent likelihood (log odds) of cheatgrass presence at a site. Red values indicate impacts on
cheatgrass cover. Top panel includes average rate sum values that were scaled spatially with
other sites in the dataset. Bottom panel includes recent rate sum values corresponding to the
annual conditions during the year of observation. Recent rate sum values were scaled within site

to indicate deviations from a site’s respective mean.

Figure 6. Predicted distribution of cheatgrass across sites according to elevation and aspect. Each

dot represents the percent of total sites predicted to be occupied by cheatgrass in each year with
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682  color indicating different aspects. The elevation categories represent the bottom, middle, and top

683 tercile of the dataset.
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