
1 
 

Journal: Ecological Applications 1 

Manuscript Type: Article  2 

Title: Modeling cheatgrass distribution, abundance, and response to climate change as a 3 

function of soil microclimate 4 

Tyson J. Terry1,2, Stuart P. Hardegree3, Peter B. Adler1 5 

1Department of Wildland Resources and the Ecology Center, Utah State University, Logan UT, 6 

USA 7 

2Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth University, Bayreuth 8 

BY, DE 9 

3USDA-ARS Northwest Watershed Research Center, Boise ID, USA 10 

 11 

*Corresponding Author: Tyson Terry Email: tysonjterry@gmail.com 12 

 13 

Open Research Statement: Data and code (Terry 2023) are publicly available in the Open 14 
Science Framework: https://doi.org/10.17605/OSF.IO/7PUVN 15 

 16 

Keywords: Annual grass, biological invasion, Bromus tectorum, germination, rate sum, 17 
resistance and resilience, SHAW model 18 

 19 

 20 

  21 



2 
 

Abstract 22 

Exotic annual grass invasions in water-limited systems cause degradation of native plant and 23 

animal communities and increased fire risk. The life history of invasive annual grasses allows for 24 

high sensitivity to interannual variability in weather. Current distribution and abundance models 25 

derived from remote sensing, however, provide only a coarse understanding of how species 26 

respond to weather, making it difficult to anticipate how climate change will affect vulnerability 27 

to invasion. Here we derived germination covariates (rate sums) from mechanistic germination 28 

and soil microclimate models to quantify favorability of soil microclimate for cheatgrass 29 

(Bromus tectorum L.) establishment and growth across 30 years at 2662 sites across the 30 

sagebrush steppe system in the western United States. Our approach, using four bioclimatic 31 

covariates alone, predicted cheatgrass distribution with accuracy comparable to previous models 32 

fit using many years of remotely-sensed imagery. Accuracy metrics from our out-of-sample 33 

testing dataset indicate that our model predicted distribution well (72% overall accuracy) but 34 

explained patterns of abundance poorly (R2 = 0.22). Climatic suitability for cheatgrass presence 35 

depended on both spatial (mean) and temporal (annual anomaly) variation of fall and spring rate 36 

sums. Sites that on average have warm and wet fall soils and warm and wet spring soils (high 37 

rate sums during these periods) were predicted to have a high abundance of cheatgrass. 38 

Interannual variation of fall soil conditions had a greater impact on cheatgrass presence and 39 

abundance than spring conditions. Our model predicts that climate change has already affected 40 

cheatgrass distribution with suitable microclimatic conditions expanding 10-17% from 1989 to 41 

2019 across all aspects at low to mid-elevation sites, while high elevation sites (> 2100m) remain 42 

unfavorable for cheatgrass due to cold spring and fall soils.  43 
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Introduction 44 

Invasive annual grasses have been linked to a worldwide decline of biodiversity and ecosystem 45 

functioning in water-limited systems (D’Antonio & Vitousek 1992; Ostoja & Schupp 2009; 46 

Davies 2011). Once present, these grasses accelerate fire return intervals (Fusco et al. 2019), 47 

increase nitrogen storage in soils (Wolkovich et al., 2010), and compete with native vegetation 48 

for soil moisture (Melgoza et al., 1990). Positive feedback loops with fire and nutrient cycles 49 

have enabled invasive annual grasses to dominate substantial portions of water-limited systems 50 

that now burn 2-4 times more frequently than native communities (D’Antonio & Vitousek 1992; 51 

Bradley et al., 2018; Fusco et al., 2019; Pastick et al. 2021). Information about the current and 52 

future distribution of these grasses is crucial to guide management decisions and wildfire 53 

planning (Chambers et al., 2014). 54 

Climate change will likely alter the vulnerability of different ecosystems to annual grass invasion 55 

and dominance (Catford et al., 2019). In the sagebrush steppe, arid conditions are becoming 56 

more prevalent (Ficklin & Novick 2017) due to increases in annual minimum temperature, 57 

increased climatic water deficit, and less summer rainfall (Smith et al., 2022). These temporal 58 

trends have potential to impact invasion, as colder and wetter locations that have previously been 59 

classified as resistant to invasion (Chambers et al., 2014) are now becoming warmer and drier 60 

(Bradford et al., 2019: Smith et al., 2022). Despite many experimental and observational studies, 61 

there remains uncertainty surrounding future effects of climate change on cheatgrass (Bromus 62 

tectorum L.) distribution. Large-scale studies predict range expansion of annual grasses (Pastick 63 

et al., 2021; Smith et al., 2022), but results of cheatgrass-specific studies vary. While some 64 

predict increases in abundance (Boyte et al., 2016), others predict no changes (Brummer et al., 65 

2016; Zimmer et al., 2021) or a dependence on future precipitation scenarios (Bradley 2009). 66 



4 
 

Experimental studies show both gains in fitness with warming (Compagnoni & Adler 2014, 67 

Blumenthal et al. 2016), and no effect (Zelikova et al., 2013; Larson et al., 2017; 2018). The 68 

signal may be unclear because of site-level factors that influence how atmospheric weather 69 

impacts soil temperature and moisture. What is clear is a lack of consensus on how changing 70 

climate will facilitate or inhibit cheatgrass expansion across western North America. 71 

Our understanding of the climatic niche of invasive annual grass species and potential shifts in 72 

distribution due to climate change could be improved by new modeling approaches that directly 73 

link field observations with soil microclimate (Bradford et al., 2019: Boehm et al., 2021; 74 

Hardegree et al., 2022). Current landscape-scale mapping approaches use reflectance indices 75 

such as NDVI (normalized difference vegetation index) to estimate the distribution and 76 

abundance of invasive annual grasses (Downs et al., 2016; Bradley et al., 2018; Pastick et al., 77 

2021). While these models are useful for mapping large areas and make it possible to study the 78 

distribution or abundance of invasive annual grass species without extensive field sampling, they 79 

do not directly describe species-climate relationships. Rather, one model links cheatgrass 80 

abundance or distribution with reflectance, and a second analysis correlates climate variables 81 

with estimates of abundance or distribution. Quantifying error propagation from the first model 82 

through to the second is challenging; ignoring that error means overestimating the certainty of 83 

the species-climate correlations. Previous studies linking climate to large-scale cheatgrass 84 

distribution (Bradley 2009; Boyte et al., 2016) correlated climate metrics to remotely sensed 85 

estimates of cheatgrass distribution that either included large uncertainty (R2 = 0.21)(Peterson 86 

2006) or required several years of imagery to distinguish between cheatgrass dominated sites and 87 

sites dominated by other vegetation types (Bradley & Mustard 2005). An approach that directly 88 

explains spatially and temporally extensive field observations with fine-scale climate indices 89 
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would improve inference about species-climate relationships and could also account for 90 

interannual variation in abundance.  91 

Persistent cheatgrass presence and abundance is largely driven by soil moisture and temperature 92 

(Chambers et al., 2007; Roundy et al., 2018), but regional-scale studies are generally constrained 93 

to using coarse climate data from gridded climate products. These products provide information 94 

about precipitation and temperature at 0.8-4 km2 spatial resolution (Daly et al., 2008; Abatzoglou 95 

2013), but do not capture the shifts in soil moisture and temperature that occur with finer-scale 96 

variation in topography and soil type (Hardegree et al., 2022) and which determine local 97 

cheatgrass dynamics (Roundy et al., 2007, Condon et al., 2011, Bishop et al., 2019). Soil 98 

moisture models use edaphic characteristics and topography, in addition to weather inputs, to 99 

explicitly account for factors that modify soil microclimate (Hardegree et al., 2022) and calculate 100 

soil moisture and temperature estimates at a smaller scale (10m2 with current methods).  101 

By combining germination models with output from a soil microclimate model, we can link 102 

species-specific physiology with fine-scale information about soil temperature and moisture 103 

across large spatial extents (Terry et al., 2022). Hydrothermal and thermal-germination models 104 

have previously been used to predict cheatgrass response to microclimate variability at small 105 

scales (Roundy et al., 2007; Rawlins et al., 2012; Hardegree et al, 2017; 2018). These models 106 

predict the timing of cumulative germination response in the seedbed, but also yield rate sum 107 

metrics that can be used to quantify favorability of soil microclimate for plant establishment and 108 

growth (Hardegree et al., 2020). Rate sum metrics account for cumulative effects of small 109 

disparate windows of germination and growth favorability that are exploited by annual plants 110 

(Terry et al., 2022). Rate sum values have been shown to capture shifts in soil microclimate that 111 

occur with gradients of elevation and topography, which are generally associated with ecological 112 
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resilience and resistance to cheatgrass invasion (Chambers et al., 2014; Roundy et al., 2018; 113 

Hardegree et al., 2022).  114 

The objective of this study was to combine a mechanistic understanding of cheatgrass 115 

germination with soil microclimate data to predict its abundance and distribution across the 116 

sagebrush steppe. Specifically, we asked, 1) can we accurately model cheatgrass distribution and 117 

abundance using solely germination metrics of soil microclimate favorability? And, 2) have 118 

microclimatic conditions become more favorable for cheatgrass over the last 30 years in the 119 

sagebrush steppe? 120 

Methods 121 

Overview of approach 122 

We used a species-specific germination model for cheatgrass to quantify favorability of soil 123 

microclimate for growth as a function of soil temperature and moisture estimates in the 124 

sagebrush steppe system in the western United States. We use hourly rates of germination 125 

progress for cheatgrass and sum them over time to capture the favorability of soils for 126 

germination and growth (Figure 1). We used monthly germination rate sums (Hardegree et al., 127 

2020) to explain field observations of cheatgrass presence (>2% cover) and abundance. We split 128 

the dataset into a training and out-of-sample (OOS) testing dataset, with both spanning the 129 

temporal (2002-2016) and spatial range of the dataset to test model performance. We created two 130 

models, one to predict presence/absence, and one to predict abundance. After testing both models 131 

on the OOS dataset, we applied the model to simulated soil conditions at all sites (training and 132 

testing) from 1989 to 2019 and analyzed trends in potential distribution and abundance across all 133 

sites.  134 
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Soil water model 135 

We used the Simultaneous Heat and Water Model (SHAW) (Flerchinger et al., 2012) to generate 136 

soil moisture and soil temperature estimates for each site. This model uses atmospheric, edaphic, 137 

and geographic variables to model soil water and temperature as a function of soil depth (Figure 138 

1). Soil texture data for each site were acquired from OpenLandMap (Hengl 2018) for the three 139 

soil depths (0-10,10-30, 30-60) for each simulated field site. Other edaphic variables (field 140 

capacity, bulk density, and saturated conductivity) needed for the SHAW model 141 

parameterization were calculated using soil texture via Saxton equations (Saxton et al., 1986). 142 

Daily temperature, precipitation, solar radiation, relative humidity, and wind variables were 143 

obtained from the gridMET gridded historical climate database (4000m spatial resolution, daily 144 

temporal resolution) (Abatzoglou 2013). Geographic inputs of aspect, slope and elevation were 145 

derived from topographic data (10m spatial resolution) acquired from Farr et al. (2007). We did 146 

not include optional vegetation inputs in the model for simplicity and for potential application to 147 

post-wildfire landscapes with minimal vegetation. From this model we generated hourly 148 

estimates of soil temperature (°C) and soil water potential (MPa) at 2 cm depth, a depth common 149 

for seeding success in restoration settings. These estimates from the SHAW model were then 150 

used as input into the wet-thermal germination models to estimate hourly and cumulative rate 151 

sum values. 152 

Germination model 153 

Our approach utilizes germination curves that specify how hourly germination rate changes with 154 

temperature when soil is wet (>-1.25 MPa). With soil moisture and temperature metrics as 155 

inputs, we calculate the sum of germination rates for early spring and late fall months. We used 156 

germination models with soil conditions at 2cm depth to provide hourly rate sum metrics 157 
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throughout the year at all sites. In this study, we used the rate sum of the 35% subpopulation of 158 

seeds for our analysis (Terry et al., 2022). This metric explicitly represents the number of 159 

sequential times during a given time period where conditions were sufficient for 35% of a given 160 

seed population to germinate (Hardegree et al., 2020). The rate sum value for a given time period 161 

is a quantitative index of seedbed favorability for germination and growth (Hardegree et al., 162 

2013; Terry et al., 2022).  163 

Germination rates and rate sum calculations were based on wet-thermal germination models, 164 

(Roundy et al., 2007; Rawlins et al., 2012) an approach that calculates germination rate, or the 165 

relative progress toward germination during a specific time period, according to soil temperature 166 

under continuously wet conditions (soil water availability < -1.25 MPa). Methods for predicting 167 

germination response to temperature above threshold levels of soil water availability have been 168 

previously described and validated (Roundy et al., 2007; Hardegree et al. 2018). We used data 169 

from previous germination trials of cheatgrass seeds collected from 8 different field sites in the 170 

sagebrush steppe (Roundy et al., 2007; Hardegree et al., 2010). We averaged germination curves 171 

that explain how hourly progress toward germination varies under wet condition under different 172 

temperatures. This average was done across all cheatgrass collection sites (seedlots) for the 35% 173 

subpopulation to produce Equation 1. We chose the 35% subpopulation, or germination rates for 174 

35% of the seeds to germinate, as this grouping captures the majority of high-quality seed with 175 

the best chance for growth and fecundity (Baskin & Baskin 2014). Equation 1 calculates 176 

germination rate of cheatgrass for each hour (t) as a function of soil temperature (T) when soil 177 

temperature is greater than 0°C and soil water potential is greater than -1.25 MPa (Roundy et al., 178 

2007; Terry et al., 2022). Outside these conditions, germination rate was considered zero. 179 

Equation 1 180 



9 
 

 Germination Ratet= �
  1.29 ∗ 10−4  +  Tt ∗ -1.25 ∗ 10-5 +  Tt ∗ 6.16 ∗ 10-4,      T>0°C and MPa>-1.25

                       0                                                  ,                         otherwise
     181 

 182 

Cheatgrass presence and abundance data 183 

We used field observations of cheatgrass presence/absence and abundance from 2662 field 184 

observations collected from 2002-2016 (Appendix S1: Table S1), which was a subset of data 185 

compiled by (Bradley et al., 2018). The field observations span much of the sagebrush steppe in 186 

the western United States, with sites in Idaho, Utah, Nevada, California, Oregon, and 187 

Washington (Figure 2). Our dataset does not include any observations in the Mojave Desert or 188 

eastern portions of the sagebrush steppe in Wyoming, Montana, or Colorado. Most of the data 189 

was collected using line transects, with some of the cover estimates coming from ocular 190 

estimates and quadrat frames. We analyzed a subset of the data consisting of all sites with 191 

measures of absolute cover (area covered by species/total geographic area) rather than relative 192 

cover (% of total vegetative cover) to train and test our model to predict estimates of cheatgrass 193 

cover.  194 

Model Training and Testing 195 

We split our data into a training set and an out-of-sample (OOS) testing set to validate the 196 

accuracy of our model. We utilized 8-digit watershed units (USGS), a spatial delineation that 197 

identifies watershed basins, to identify independent spatial groupings of field observations 198 

(Figure 2). Altogether our data encompass 102 unique watershed units within the sagebrush 199 

steppe. Field observations were randomly separated into testing (1/3 of watershed units and 29% 200 

of data) and training data (2/3 of watershed units and 71% data). This resulted in a training 201 
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dataset composed of 884 presence points and 785 absence points and an independent testing 202 

dataset composed of 533 presence points and 449 absence points. Both the training and test 203 

datasets comprise field observations spanning the temporal and spatial range of our dataset 204 

(Figure 2), with no repeat observations. Histograms of percent cheatgrass cover were generated 205 

to ensure similar distribution of cheatgrass cover between training and testing dataset (Appendix 206 

S1: Figure S1).  207 

We assessed prediction accuracy based on the model’s ability to predict presence (>2% 208 

cheatgrass cover) and percent cover at OOS test sites in the specific year of the field observation. 209 

Accuracy metrics are percentage of test sites correctly identified as present/absent and R2 value 210 

for cover predictions across OOS test sites (observed versus predicted). We chose this as our 211 

comparison metric for cover predictions to allow comparison with models from previous studies, 212 

which do not always report other metrics such as mean absolute error or root mean square error. 213 

Cheatgrass model 214 

We used a generalized additive model (GAM) from the mgcv package (Wood 2004) in R (R core 215 

team 2019, version 3.6.1) to relate spatial and temporal soil favorability metrics to cheatgrass 216 

presence and cheatgrass abundance. We selected a GAM modeling approach to account for non-217 

linear effects of microclimate that would require complex interaction terms in a linear model. 218 

Our response variables were distribution (presence/absence) and abundance (cheatgrass cover), 219 

which we analyzed in two separate models. We chose a cubic-splines smoothing approach to 220 

allow knots to spread evenly throughout covariate values (Wood 2006) to ensure all 221 

combinations of covariate values were considered within the smoothing terms of the model.  222 
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Our distribution model was a GAM binomial model, with field observations of cheatgrass cover 223 

> 2% considered as species presence. Our abundance model was a GAM model with a normal 224 

error distribution. We used four covariates that represent both temporal and spatial variation of 225 

microclimate in the form of rate sum. Spatial covariates were mean rate sum values of spring 226 

(March) and late fall (Oct-Dec) and were scaled spatially by subtracting off the mean of all sites 227 

and dividing by standard deviation of all sites for each variable, such that a site with a value of 0 228 

would indicate an average value relative to all the other sites. The spatial covariates describe 229 

variation in climate among locations. Temporal covariates were rate sum values of spring 230 

(March) and late fall (Oct-Dec) soil conditions immediately preceding the field observation.  231 

These measurements were scaled temporally (across years at each site) by subtracting off the 232 

site-level mean and dividing by site-level standard deviation of each variable, such that a value 233 

of 0 would indicate average conditions within a given site. These temporal covariates describe 234 

interannual variation in weather for each location. 235 

To select the four covariates described in the previous paragraph, we first computed correlations 236 

of cheatgrass cover in our training dataset with all individual monthly rate sums and groupings of 237 

monthly values to seasonal sums that previous studies suggested may influence cheatgrass 238 

abundance and distribution (Bradley et al., 2016; Roundy et al., 2018). After creating models 239 

with the top 10 most correlative (with cheatgrass cover) rate sum metrics, we found that having 240 

many non-linear parameters did not facilitate interpretation, and that by reducing the covariates 241 

to the two most correlated rate sum values of late fall (Oct-Dec) and Spring (March), we could 242 

retain most of the predictive power of the models while increasing interpretability. We assumed 243 

that susceptibility to invasion was driven by both spatial and temporal microclimate dynamics 244 
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and thus included both the spatial and temporal values of these metrics to allow interannual 245 

variation and average soil microclimate conditions to inform our models. 246 

Models were checked for goodness-of-fit on the training data using the gam.check function in 247 

the mgcv package (Wood, 2005). Specifically, we checked the basis dimensions of smoothing 248 

terms to ensure that they were not so small that they force over-smoothing and checked residuals 249 

for over-dispersion. While we monitored specific GAM model diagnostics, we placed more 250 

emphasis on model validation with our OOS testing dataset.  251 

Results 252 

Model Performance 253 

All spatial and temporal parameters within our model had significant effects (P<0.001, Appendix 254 

S1: Table S1 & S2) on cheatgrass distribution (presence/absence) and abundance (cheatgrass 255 

cover). Accuracy metrics for the OOS testing dataset show that our mechanistic soil favorability 256 

metrics covariates predicted presences with 77.8% accuracy and absences with 65.6% accuracy, 257 

with an overall balanced accuracy of 71.7% (Figure 3). Soil favorability covariates predicted 258 

abundance less well (R2 0.22 testing, 0.22 training), with poor ability to distinguish high and low 259 

cover sites (Figure 4).  260 

Response to spatial variation in microclimate 261 

Cheatgrass presence and cover responded in similar ways to spatial variation in soil microclimate 262 

(Figure 5). GAM coefficient curves indicate that cheatgrass performs best in locations with 263 

warmer and wetter soils in spring and fall. Cheatgrass abundance and distribution (persistence) 264 

responded to average fall rate sum with a concave down shape, indicating a preference for 265 

locations that on average have moderately wetter and warmer fall soils. Abundance and 266 
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distribution responded to spring rate sum values with a concave down but a generally positive 267 

slope, indicating a preference for locations that on average have warmer and wetter spring soils 268 

(Figure 5).  269 

Response to temporal variation in microclimate 270 

Temporal variation in fall and spring soil conditions had significant effects (P<0.001) on 271 

interannual cheatgrass distribution and abundance (Figure 5). Wetter and warmer soils from the 272 

previous fall increased likelihood of presence but benefits of warm and wet fall soils for cover 273 

declined at high values, exhibiting a concave-down shape with optimal conditions occurring in 274 

slightly above average years.  Years with wetter and warmer spring soils were associated with 275 

lower cover and probability of abundance (Figure 5).  276 

Long-term trends 277 

Given the reasonable predictive ability of our distribution (presence) model for our OOS testing 278 

dataset, we applied our model to soil metrics at all sites (n= 2662) across years 1990-2019 to 279 

hindcast trends in cheatgrass distribution. We found that conditions identified in our model as 280 

favorable for cheatgrass presence are becoming more prevalent across our study sites (Figure 6) 281 

during the period 1990-2019. Specifically, we saw evidence of climate change induced range 282 

expansion, with predicted cheatgrass presence expanding 10-17% across our mid- and low-283 

elevation sites (Figure 6). Higher elevation sites remained abiotically unfavorable for cheatgrass. 284 

Discussion  285 

We developed a new modeling approach to improve understanding of an important climate-286 

species relationship and investigate how climate change has influenced the potential distribution 287 

of cheatgrass over the last 30 years (1989-2019). Our results indicate that modeling the 288 
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distribution of an invasive annual grass species using microclimate covariates linked directly to 289 

germination is a viable method to understand the relationship between climate and potential 290 

distribution. The combination of site level soil-microclimate data and information about 291 

germination response allowed our model to identify soil conditions in space and time that favor 292 

germination and result in persistent cheatgrass presence. The relationships derived from our 293 

model also allowed us to track changes in habitat suitability for cheatgrass across years. 294 

Comparison to Remotely Sensed Models 295 

Our model predicted the distribution of cheatgrass well, with accuracy (72%) similar to previous 296 

species distribution models despite using only four microclimate-based covariates.  Cheatgrass-297 

specific distribution models based on remotely-sensed covariates with similar geographic range 298 

had similar performance: Downs et al., (2016) reported an overall accuracy of 71%, Bradley & 299 

Mustard (2006) reported an overall accuracy of 61%, and  Bradley et al., (2018) reported an 300 

overall accuracy of 74%. The advantage of our approach is that it provides more direct inference 301 

about the relationship between climate and cheatgrass distribution and abundance. Our model is 302 

also able to capture interannual variation in climate suitability, whereas previous models that 303 

correlate average climate to distribution based on several years of reflectance data (Bradley 304 

2009) cannot predict variation among years.  305 

Our model was unable to explain variability in cheatgrass cover as well as remotely sensed 306 

models. Our model predicted percent cover with an R2 value of 0.22, whereas other remotely 307 

sensed models produced more accurate estimates of percent cheatgrass cover: Bradley et al. 308 

(2018) reported R2 value of 0.32 (3769 testing points), Peterson (2005) reported an R2 of 0.5 (75 309 

testing points), and Peterson (2006) reported an R2 of 0.24 (806 testing points). More 310 

specifically, our model failed to predict high values of cheatgrass cover, which is a similar 311 
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problem experienced by these other remote sensing models. The inaccuracy of our abundance 312 

model probably reflects the importance of many non-climate factors, such as disturbance and 313 

competition from native vegetation, in determining cheatgrass abundance. 314 

Species-Climate Relationship 315 

Our study indicates that areas characterized by warm and wet fall seasons (Oct-Dec) and warm 316 

and wet springs (March) have the greatest abiotic potential for cheatgrass presence and 317 

abundance. Fall conditions had a stronger positive effect on cheatgrass presence and abundance 318 

than spring conditions (Figure 5). Previous studies have indicated hot, dry summer atmospheric 319 

conditions as a key factor in cheatgrass dynamics (Bradley 2009; Bansal & Sheley 2016; 320 

Brummer et al., 2016) and strong topographical effects of elevation and aspect, but our initial 321 

screening of covariates indicated that fall and spring soil conditions were more informative to 322 

our model than summer soil metrics. Though summer conditions are likely to affect annual 323 

species indirectly by shaping competing perennial vegetation (Condon et al., 2011), summer 324 

conditions should not have large effects on cheatgrass seeds that largely remain dormant until 325 

germinating in the fall or early spring (Hulbert 1955; Mack & Pyke 1984). We suspect that 326 

impacts of summer climate found in previous models reflect their correlation with elevation, 327 

seasonal soil moisture timing, and shifts in vegetation type. Experimental findings from field 328 

studies indicate that year-round warming has a positive effect on cheatgrass (Compagnoni & 329 

Adler 2014; Blumenthal et al. 2016), whereas late-spring and summer warming alone had a 330 

negative effect on cheatgrass cover and fecundity (Larson et al., 2017). Year-round warming 331 

would increase the quantity of warm, wet conditions in the spring and fall, which is shown by 332 

our model to increase suitability for cheatgrass.  333 
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Our results provide insight into the climate factors that generate increasing resistance to 334 

cheatgrass invasion with increasing elevation. Current hypotheses link resistance to water 335 

availability, soil temperature and competition (Chambers et al., 2014; 2019), but disentangling 336 

the role of these abiotic factors is difficult because they are tightly correlated. Our results support 337 

the conclusions of Roundy et al. (2018) that resistance to cheatgrass invasion depends on spring 338 

and fall soil conditions, with colder fall and spring soils, and increasing elevation, reducing the 339 

abiotic potential for cheatgrass establishment (Figure 6 & Appendix S1: Figure S2). The 340 

explanatory power of our model, with explicit ties to germination, indicate further that fall and 341 

spring soil conditions are important due to their influence on germination. We also anticipate, 342 

that fall and spring soil conditions are linked to cheatgrass invasion, because they may allow 343 

cumulative periods of growth, captured by the summing nature of our microclimate metric, that 344 

can be utilized by a winter annual grass for early growth.   345 

Our models generally indicate that warmer and wetter soil in the fall and spring periods, in both 346 

space and time, increase probability of cheatgrass presence, and to a lesser degree, cheatgrass 347 

cover (Figure 5). However, the effects of temporal anomalies in spring conditions did not follow 348 

this pattern and indicated that warmer and wetter conditions decreased cheatgrass presence 349 

(Figure 5). We hypothesize that this discrepancy is indicative of the complex relationships 350 

between spring soil microclimate and cheatgrass dynamics. Though warm and wet spring soils 351 

have been shown to be beneficial to cheatgrass, they also decrease the likelihood of fire (Pilliod 352 

et al., 2017), a factor strongly linked to cheatgrass distribution (Bradley et al., 2018). Without 353 

accounting for fire or spatial factors that determine the abundance of competing native flora, our 354 

model predicted anomalies in spring soil microclimate to be the least informative parameter in 355 

both our abundance and distribution models. We anticipate that accounting for interactive effects 356 
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of spatial factors of fire and native species composition with spring soil conditions would not 357 

only improve model fit but would also indicate a strong positive effect of warm and wet spring 358 

soils when native plant cover is low. This would support findings from Bradford & Lauenroth 359 

(2006) showing that the effect of temporal conditions only becomes important in scenarios where 360 

spatial factors such as total plant cover and disturbance history allow a sizeable response to 361 

interannual variation in weather.  362 

The contrasting accuracy of our distribution and abundance models suggests that different factors 363 

control cheatgrass distribution and abundance. Our model is based on the abiotic factors that 364 

directly influence germination. The success of this model in explaining cheatgrass 365 

presence/absence indicates a primary role for germination and periods of wet and warm shallow 366 

soil microclimate. In contrast, the low explanatory power of our model for abundance indicates 367 

the importance of other biotic and abiotic factors likely unrelated to germination and shallow soil 368 

microclimate.  This fits well with the conclusion of (Bradford & Lauenroth 2006) that climate 369 

drives susceptibility to annual grass invasion, and disturbance regime dictates severity of 370 

invasion. There are many studies that indicate the positive impact of disturbance, especially fire, 371 

on annual grass abundance (D’Antonio & Vitousek 1992; Condon et al., 2011; Bradley et al., 372 

2018; Gill et al., 2018; Fusco et al., 2019; Williamson et al., 2020). Failure to account for 373 

disturbance history or competitive interactions may limit our model’s ability to distinguish 374 

between high and low cheatgrass cover, primarily because cover of competitive species and lack 375 

of disturbance may limit propagule pressure and thus complicate species response of annual 376 

plants species to favorable soil conditions.  377 

Trends in Cheatgrass Distribution 378 
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Our analysis suggests that climate change has already benefitted cheatgrass and expanded its 379 

potential range 10-17% across low and mid-elevation sites (Figure 6). These results are 380 

consistent with trends found in remotely sensed data by Smith et al. (2022), showing an increase 381 

in annual grass dominance across sites with elevation < 2100m, and Pastick et al. (2021), who 382 

found similar increases in cheatgrass distribution and cover across low and mid-elevation sites. 383 

Understanding new changes in distribution is critical due to potential positive feedback where 384 

even small amounts of cheatgrass (<10% cover) have been linked with heightened wildfire risk 385 

(Pastick et al., 2021), which can quickly lead to post-wildfire dominance of invasive annual 386 

grasses and more subsequent fires (D’Antonio & Vitousek 1992; Bradley et al., 2018). 387 

Benefits of our Approach 388 

Our approach only considers soil moisture and temperature metrics known to directly influence 389 

cheatgrass germination. This sets up a relatively simple model with few covariates to describe a 390 

site’s potential for cheatgrass compared to current remotely sensed models (Bradley et al., 2018; 391 

Pastick et al., 2021). Using a model with fewer covariates also simplifies interpretation. Because 392 

our approach explains field observations of cheatgrass distribution and abundance solely as a 393 

function of microclimate covariates, we are able to understand climate constraints and 394 

preferences of cheatgrass without introducing additional uncertainty that occurs when estimating 395 

cheatgrass distribution based on remotely-sensed imagery. In addition, our model can explain 396 

interannual variation in cheatgrass suitability at a single site, in contrast to models limited to 397 

inference of mean climate conditions at each site.  398 

Our results may be useful for natural resource management as it indicates not only which 399 

locations that may be vulnerable to cheatgrass invasion, but also provides the tools to understand 400 

which new areas may become vulnerable with current trajectories of climate that alter climatic 401 
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suitability for cheatgrass presence. This allows managers to mitigate activities in locations that 402 

have recently become vulnerable to cheatgrass invasion but also provides time for management 403 

to prepare for future invasion vulnerability.  404 

Potential Limitations of our Approach 405 

The soil microclimate approach we used is appropriate for systems where water availability is a 406 

key limiting factor but may not provide meaningful information regarding a species’ potential in 407 

systems where resource availability or survival are not explicitly tied to soil moisture and soil 408 

temperature metrics. Our study also focuses on a species with an annual life history, meaning 409 

that annual germination and growth favorability metrics are very relevant to each year’s 410 

distribution and abundance. Perennial species could be less sensitive to factors regulating 411 

germination and seedling performance. We suspect that distribution and abundance of perennial 412 

species will have different microclimate requirements with lag-effects of favorable or 413 

unfavorable conditions being important. Finally, our approach depends on lab trials to generate 414 

germination curves, and thus requires more resources than remote sensing approaches to map 415 

distribution, though it remains unknown if rate sum values from one species are adequate 416 

estimates of soil favorability for other species. Currently, it is best suited for understanding 417 

climate-species relationships or predicting susceptibility to invasion.  418 

Our model indicates whether cheatgrass persistence may be a possible due to relationship with 419 

climate but does not include disturbance, a major driving factor behind exotic annual grass 420 

dominance (Bradley et al., 2018; Fusco et al., 2019; Pastick et al. 2021). While our approach 421 

illustrates that the influence of climate alone may determine distribution and persistence of 422 

cheatgrass, we encourage future effort to study how soil favorability metrics interact with 423 

disturbance and competitive native plant abundance to better understand how/where climate and 424 
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disturbance may interact to create systems dominated by exotic annual grasses, where impacts of 425 

invasion are most severe. 426 
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Figure captions 662 

Figure 1. Flowchart indicating inputs used to estimate soil microclimate conditions and how they 663 

are combined with germination models to produce monthly rate sum values. 664 

Figure 2. Location of all field observations (right) and an example of how watershed units were 665 

used to split the data into training (blue points) and testing (pink) sets. This approach allowed us 666 

to test our model on a dataset that matches the spatiotemporal extent of the training dataset while 667 

ensuring a degree of independence between the two datasets. 668 

Figure 3. Map of model predictions for cheatgrass presence/absence using our final model at 669 

both testing and training sites. 670 

Figure 4. Predictions of Cheatgrass cover versus actual values on independent (OOS) test 671 

dataset. Line represents 1:1 ratio. 672 

Figure 5. Plots showing smoothed parameter effects. Y-axis values indicate magnitude of the 673 

effect, and X-axis values indicate possible parameter values within the dataset. Blue values 674 

represent likelihood (log odds) of cheatgrass presence at a site. Red values indicate impacts on 675 

cheatgrass cover. Top panel includes average rate sum values that were scaled spatially with 676 

other sites in the dataset. Bottom panel includes recent rate sum values corresponding to the 677 

annual conditions during the year of observation. Recent rate sum values were scaled within site 678 

to indicate deviations from a site’s respective mean. 679 

Figure 6. Predicted distribution of cheatgrass across sites according to elevation and aspect. Each 680 

dot represents the percent of total sites predicted to be occupied by cheatgrass in each year with 681 
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color indicating different aspects. The elevation categories represent the bottom, middle, and top 682 

tercile of the dataset. 683 
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