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Abstract—We present Sim-on-Wheels, a safe, realistic, and
vehicle-in-loop framework to test autonomous vehicles® perfor-
mance in the real world under safety-critical scenarios. Sim-on-
wheels runs on a self-driving vehicle operating in the physical
world. It creates virtual traffic participants with risky behaviors
and seamlessly inserts the virtual events into images perceived from
the physical world in real-time. The manipulated images are fed
into autonomy, allowing the self-driving vehicle to react to such
virtual events. The full pipeline runs on the actual vehicle and
interacts with the physical world, but the safety-critical events it
sees are virtual. Sim-on-Wheels is safe, interactive, realistic, and
easy to use. The experiments demonstrate the potential of Sim-on-
Wheels to facilitate the process of testing autonomous driving in
challenging real-world scenes with high fidelity and low risk.

Index Terms—Autonomous agents, simulation and animation,
robot safety.

[. INTRODUCTION

VALUATING how a self-driving car performs in danger-

ous scenarios is hard. Pure real-world evaluations create
situations that are dangerous to participants, while pure simu-
lation evaluations may simulate various scenarios inaccurately,
such as cases in which the vehicle has extreme control inputs.
This letter describes a mixed method, Sim-on-Wheels. In Sim-
on-Wheels, we run actual autonomy stack on real cars, but create
scenarios by inserting people and objects into the sensor feed in
real-time. This means we can evaluate the autonomy stack in
scenarios known to be dangerous to pedestrians without risking
harm because the pedestrians are simulated. Furthermore, we
apply the control inputs to a real vehicle. If the autonomy could
cause an uncontrolled skid, we will be able to measure that.
Fig. 1 illustrates our evaluation pipeline and Table I compares

Manuscript received 25 May 2023; accepted 26 September 2023. Date of
publication 18 October 2023; date of current version 1 November 2023. This
letter was recommended for publication by Associate Editor J. D. Herndndez
and Editor A. Bera upon evaluation of the reviewers’ comments. This work was
supported in part by the Amazon Research Award, Nvidia Hardware Grants, the
Insper-Illinois Innovative Grant, the NCSA Faculty Fellow under NSF Award
2331878, and in part by the Illinois Smart Transportation Infrastructure Initiative
under Grant STII-21-07. ( Yuan Shen and Bhargav Chandaka contributed equally
to this work.) (Corresponding author: Shenlong Wang.)

Yuan Shen, Bhargav Chandaka, Zhi-Hao Lin, Albert Zhai, David Forsyth,
and Shenlong Wang are with the Department of Computer Science,
University of Illinois Urbana-Champaign, Champaign, IL 61820 USA
(e-mail: yshen47@illinois.edu; bhargav9@illinois.edu; cl121@illinois.edu;
azhai2 @illinois.edu; daf @illinois.edu; shenlong @illinois.edu).

Hang Cui is with the Center for Autonomy, University of Illinois Urbana-
Champaign, Champaign, IL 61820 USA (e-mail: hangcui3 @illinois.edu).

Additional results and open-sourced code are available on our project page
here: https://sim-on-wheels.github.io/.

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2023.3325689, provided by the authors.

Digital Object Identifier 10.1109/LRA.2023.3325689

, Graduate Student Member, IEEE, Albert Zhai
, Fellow, IEEE, and Shenlong Wang ', Member, IEEE

, Hang Cui'"”,

it to previous methods. In contrast to previous approaches,
Sim-on-Wheels is simultaneously safe, interactive, realistic, and
easy fo use.

There is no current consensus on evaluation protocols for
autonomous vehicles. Safety evaluation is typically through
a combination of real-world road-tests, off-policy data col-
lection, and computer simulation. Real-world testing is a
resource-intensive and risky process, and testing in some sce-
narios is unethical (because there is a strong chance of hurting a
participant). Annoyingly, these are the cases where evaluation is
particularly important. Off-policy data can be an effective tool
for training and evaluating perception algorithms, but does not
yield a closed-loop evaluation of the safety of the entire auton-
omy stack. Computer simulation is safe and scalable, but is not
currently reliable in extreme physical and mechanical situations.
Sim-on-Wheels is a mashup of real-world road tests (so we can
observe true vehicle behavior) and computer simulation (so we
don’t have to risk harm to participants).

An ideal self-driving evaluation environment should be safe,
realistic, and closed-loop. Achieving safe evaluation is chal-
lenging, because one should be evaluating dangerous scenarios
but experiments that pose a risk to life are unethical. Realistic
evaluation is essential — we need to be sure that evaluation
predictions reflect real-life behavior. Finally, closed-loop eval-
uation is essential because we must faithfully evaluate how the
controller behaves during actual interaction with the environ-
ment. Sim-on-Wheels is intrinsically safe and closed-loop. We
show that Sim-on-Wheels results are realistic by both evaluating
the realism of the inserted objects and by comparing conclu-
sions on real and Sim-on-Wheels scenarios (Section IV-D).
We use Sim-on-Wheels to “spoof™ a total of 40 variations of
safety-critical scenarios using two different autonomous vehicle
pipelines (Section I'V-C). With the capability of testing scenar-
ios configured at system limit, our Sim-on-Wheel framework
reveals our modular agent is more cautious than our end-to-end
learned agent in terms of obstacle avoidance, achieving a lower
collision rate but taking longer to reach the goals.

II. RELATED WORK

Self-driving autonomy: There are two paradigms for self-
driving autonomy: (i) modular [9], [26] and (ii) end-to-end [27].
A modular stack has multiple sub-tasks in a pipeline framework,
including localization [28], [29], perception [30], [31], [32],
planning [33], and control [9], [34], [35]. Advantages include
interpretability, modularity, and versatility [27], but tuning the
pipeline can be challenging, errors can propagate, and runtime
may be slow. End-to-end autonomy directly maps sensor input
to planner or controller commands [36], [37], [38]. End-to-end
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TABLEI
COMPARING RELATED WORKS

Realistic Sensor Real-world Physics Closed-loop Safe Convenient

Off-policy datasets [1], [2], [3]

Real-world: road test [4], [5], [6]

Real-world: test track [7], [8], [9]

Simulation: CG-based [10], [11], [12], [13]

Simulation: data-driven [14], [15], [16], [17], [18], [19]
Vehicle-in-the-loop [20], [21], [22], [23], [24]. [25]
Sim-on-Wheels (ours)
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A reliable self-driving vehicle evaluation framework requires providing realistic sensors, realistic physics, and closed-loop interaction, all
while being safe and easy to use. We situate past frameworks along these five dimensions and discuss them in Section II.
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Fig. 1.

Sim-on-Wheels Pipeline. In Sim-on-Wheels’ evaluation paradigm, vehicle autonomy is evaluated on images that are perceived in the real world but

transmitted to the onboard simulator and manipulated in real-time to show important and dangerous traffic scenarios. The autonomy is asked to react to the
manipulated sensory input as if the scenario actually happened. Onboard evaluation can be conducted in real-time to verify the safety and effectiveness of the

autonomy.

methods are usually simple to develop and fast to run, but tend to
be difficult to interpret and less robust to environmental changes,
making it hard to diagnose errors, establish safety guarantees,
and incorporate traffic rules [39]. Recent advances in end-to-end
autonomy have demonstrated promising results by combining
the strengths of both paradigms [37], [40]. Sim-on-Wheels is de-
signed to be agnostic to the autonomy methods under evaluation,
providing a platform for comprehensive hardware-in-the-loop
evaluation of any autonomy stack. We evaluate both modular
and end-to-end autonomy in Section I'V-C.

Self-driving evaluation: Evaluation practice is shaped by
an important tension between safety and accuracy (accurate
evaluation requires assessment of dangerous scenarios, posing
risks to life). One strategy is to use off-policy datasets [1],
[2], [3], which are safe and convenient. But because they do
not close the perception-action loop, such evaluations cannot
accurately assess a full autonomy stack. Another is to use
real-world road tests [4], [5], [6]. These are expensive and pose
large risks to safety [41], and so are necessarily limited in scope.
Road tests on test tracks [7], [8], [9] are somewhat safer than
actual road tests, but are expensive to set up and necessarily
lack environment diversity.

Yet another is to use a simulator, which is safe and convenient.
Simulated sensor inputs (as in [10], [11], [12], [13]) face a
sim2real gap, despite significant literature on improving the
realism of simulation (e.g. data-driven simulation in [14], [15].
[17], [18]; dynamic models in [42], [43], [44]; environments
in [16], [45], [46], [47]). Itis extremely difficult to be sure that a
simulator captures all relevant physical modeling, especially for
dangerous scenarios, where one expects extreme control inputs
and odd physics may become important. For example, reverted
rubber hydroplaning is an effect where very aggressive braking
causes tire rubber to break down and capture a surface water

film that breaks contact with the road; this and similar effects
significantly affect the safety of a stack, but may not appear
in simulators. Although modeling capacity could be added to
simulators, it remains difficult to know what to add and when
to stop. In contrast, Sim-on-Wheels uses a real vehicle (and
so relies on nature for these effects) but simulates dangerous
scenarios (and so does not endanger participants).

Vehicle-in-the-loop simulation: Sim-on-Wheels is considered
a vehicle-in-the-loop simulation, because it incorporates the en-
tire vehicle into the test. Early such methods use a simulated driv-
ing environment [20], [48], [49], [50], with attendant sim2real
problems. MiRE [21] improves realism by using a body tracking
system to map a human into the scene to act as a pedestrian,
but the environment is far from realistic. AR on LiDAR [22]
inserts objects in a perceptually realistic manner into LiDAR
point clouds (but not RGB images). WIL [23] is a general
framework for integrating simulated sensor inputs and real in-
puts, but does not attend to rendering realism. Hallerbach et al.
propose to automatically generate scenario configurations for
various X-in-the-loop settings, including car-in-the-loop [24],
[25]. However, they only simulate at the traffic level, without
explicit camera sensor simulation when testing on a real car. In
contrast, Sim-on-Wheels provides realistic rendering aimed at
specific, safety-critical scenarios.

III. SIMULATION IN THE PHYSICAL WORLD

Sim-on-Wheels operates by inserting actors, objects, and
their animations into the camera stream observed by a con-
troller for a physical autonomous vehicle platform (the “ego-
vehicle™) moving in a real test space. Fig. 1 depicts the entire
pipeline of our framework. There are three main components.
Authoring: one must first author a driving scenario to be
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Traffic Light Violation

Illustration of Testing Scenarios and 3D Assets. Left: Our scenarios depict common pre-collision events such as road obstacles, jaywalker, jaywalker with

occlusion, and traffic light violations. These scenarios are represented as customizable and reproducible spatial-temporal waypoint trajectories for all actors, with
triggers, and can be easily expanded upon. Right: We show a subset of our 3D assets, generated from real-world 3D scans using an iPhone equipped with LiDAR.

evaluated (which is likely to be safety critical), including defin-
ing appropriate real-world waypoints and animation sequences
for virtual actors/objects, and determining the planned path for
the ego-vehicle to follow (Section III-A). Insertion rendering: a
real-time procedure takes raw RGB-D images, composites the
simulated events into the image stream, and re-publishes the
composite images to the agent. Sufficiently realistic insertion
rendering means the ego-vehicle should react in real-time to the
inserted objects as if they were truly present (Section III-B).
Evaluation: metrics such as collision rate, trip completion time,
comfort, and goal reaching rate are computed onboard to eval-
uate the effectiveness and safety of different autonomy agents
(Section III-C).

A. Authoring Safety-Critical Scenarios

We choose safety-critical pre-crash scenarios based on the
NHTSA pre-crash event report [51]. Our scenarios encompass
common traffic events such as static obstacles, jaywalking,
jaywalking with occlusions, and traffic light violations. They are
modeled as spatial-temporal waypoint trajectories for all actors,
allowing for full reproducibility of each scenario. The testing is
conducted to mimic both rural and urban environments, either in
a straight road segment or a four-way intersection. A selection
of the scenarios is depicted in Fig. 2.

Authoring involves selecting from a rich collection of 3D
assets, including artist-designed assets from SketchFab [52] and
in-house created assets reconstructed using an iPhone and multi-
view reconstruction software [53]. Once 3D assets (in real-world
scale) are generated, we place the static objects manually in
the scene. As for dynamic agents, based on manually-set start
and end positions, we sample a feasible trajectory based on the
occupancy from a real-world map and animate the agent along it
using Mixamo [54] with realistic and diverse human animations,
such as walking and running.

The evaluation procedure involves triggering each scenario as
the ego-vehicle reaches the trigger zone at a certain speed range.
A crash will occur if the vehicle fails to conduct any evasive
action. The hyper-parameters of each scenario can be adjusted
to control the level of difficulty, including the type and trajectory
of static objects for the static obstacle scenarios, the type and
trajectory of traffic light runners and trigger distance for the
intersection scenarios, and the walking speed, type and number
of jaywalkers and trigger distance for the jaywalking scenarios,
etc. Our scenario bank can be easily expanded to cover additional
safety-critical events. One unique advantage of Sim-on-Wheels
is thatitenables setting aggressive hyper-parameters without any
risk for physical harm to any vehicles or pedestrians, and the re-
sults of the evaluations provide a comprehensive understanding
of the performance limits of each autonomy stack. Another is

that the effect of (say) actor motion or dress on outcomes can be
assessed by changing the evaluation scenario accordingly.

B. Insertion Rendering

Insertion rendering involves producing realistic frames of a
scene by inserting assets (image fragments; 3D models; etc.) into
a target image (variants in [55], [56], [57], [58], [59]). Realistic
frames can be produced very fast if difficulties presented by
lighting, shadows, and geometrical consistency can be managed.
Once the scenario is triggered, we render the simulated scenarios
and compose them into images in real time. This requires the
insertion rendering to be realistic, efficient, and geometrically
consistent. To achieve this, we adopt a real-time OpenGL-based
rasterization pipeline [60].

We first place the object accurately in the predefined world
coordinate, and the camera pose is acquired in real-time through
an RTK-INS localization module. The lighting consists of the
skybox and the sunlight; parameters are inferred from real-time
weather, GPS, and the time of day.

The rendering process is then conducted using a customized
physical-based rendering (PBR) shader that follows the split-
sum shading model, as described by the equation: L(x,w,) =
Lo+ Le(ws) fr(X,wo,ws)(ws - n), where x is the observed
point, w, is the outgoing ray and w, is the incoming ray.
L(x,w,) is observed radiance; L, is ambient sky color and
L. is the directional sunlight; f, is the Cook-Torrence reflection
model [61]: f, =kafa + ksfs, fa is diffuse reflection under
sunlight, and f. describes specular reflection, which accesses
the base color, roughness, and metallic textures of the object
to compute specular reflection. k; and k, are the ratios of the
respective components. The resulting output, as shown in Fig. 3,
exhibits a visually appealing surface appearance.

Shadows cast by the inserted objects contribute to the per-
ceived realism. In our framework, a two-pass shadow mapping
procedure is applied [62]. The first pass renders a depth buffer
from the lighting source to the visible surface, and the second
pass renders per-view depth from the camera perspective. The
shadowed areas are the pixels at which the two passes have
inconsistent depth. Poisson sampling is used to reduce aliasing,
and occlusion reasoning is conducted by comparing the rendered
and observed depth. Finally, the rendered objects are composited
via alpha-channel blending.

C. Evaluation

The performance of an autonomous driving stack is being
evaluated in a simulated safety-critical scenario using recorded
behaviors. We adopt the evaluation metrics from the CARLA
platform [10], which include the collision rate, trip completion
time, comfort metric, and goal reaching rate. The collision rate
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Fig. 3.

Rendering Quality. We evaluate the quality of insertion rendering by comparing reconstructed 3D humans/objects in Sim-on-Wheels with their real-world

counterparts under the same pose. The results demonstrate that our real-time insertion rendering can produce realistic, high-fidelity appearances, and cast-shadows.

Table III quantitatively measures the sim2real gap.

represents the percentage of scenarios where the ego-vehicle ex-
periences at least one collision, which is determined by checking
for overlap between the oriented bounding box of the vehicle and
other virtual objects. In addition to ensuring safety, we aim for
our autonomous vehicle to be as efficient as possible, which
is reflected in the trip completion time. During each run, the
trip completion time is measured until the vehicle is within
5 m of a static obstacle, or in other scenarios, within 1.5 m
of the end of its planned path. In any scenario, if the vehicle
is not able to reach its goal, we penalize that run by recording
its time metric as 100 s. For our passenger comfort metric, we
record the maximum absolute vehicle acceleration, measuring
how hard the vehicle brakes. Finally, the goal reaching rate is the
percentage of scenarios where the ego-vehicle reaches its goal.
Furthermore, in order to account for real-world uncertainties,
we report the mean of all four metrics over multiple runs under
different hyper-parameters for one scenario.

IV. EXPERIMENTS

The goal of the experiments in this section is to address the
following three crucial questions: (1) Can the Sim-on-Wheels
framework, as proposed, be utilized as a rigorous and compre-
hensive benchmark for evaluating the performance of various
autonomous stacks? (2) Can we empirically validate the authen-
ticity of our simulation? (3) To what extent does the onboard
simulation result in an increase in latency?

In this section, we first provide an overview of the hardware
platform and the test track used for our experiments. We then
benchmark the performance of two self-driving agents in various
safety-critical scenarios using the Sim-on-Wheels framework
and conduct a comprehensive analysis of their performance.
We then conduct an empirical analysis of the sim2real gap at
both the perception and the action level, followed by additional
discussions of our framework.

A. Real-World Testbed

All of our experiments are carried out on the Polaris GEM e2,
a street-legal, two-seater electric vehicle with a top speed of 25
mph. The sensor stack of the vehicle includes a Velodyne-16
LiDAR, a Novatel RTK GNSS+INS unit, a ZED 2 Stereo

Camera, and a Delphi ESR 2.5 radar. The vehicle supports
drive-by-wire through the PACMod kit. Our experiments utilize
the AStuff Spectra 2 [63], an industrial-grade edge computing
platform equipped with an NVIDIA A4000 GPU. This computer
is connected to a built-in monitor.

The experiments were carried out in a shared testing track
facility with a secure testbed area. A designated safety driver
and safety lookout were present at all times.

B. Evaluated Autonomous Agents

We subject two distinct autonomous agents for evaluation
using the Sim-on-Wheels framework: (1) a modular autonomy
stack, and (2) an end-to-end imitation learning stack. These
two autonomy stacks were chosen to represent the mainstream
approaches for self-driving cars. Note that developing new au-
tonomy methods is not the focus of our letter.

1) Modular Autonomy Agent: Our modular autonomy
pipeline takes as input the RGB-D image stream and a coarse
planned path. It is composed of four components: detection,
tracking, motion prediction, and rule-based longitudinal plan-
ning.

Obstacle detection is split into static and dynamic obstacles.
Static obstacles are detected via a pretrained foreground segmen-
tation model [64], and dynamic obstacles (pedestrians and cars)
are detected via a pretrained instance segmentation model [65].
Each instance mask is converted to a 3D position by unprojecting
the pixels and taking the median.

At the tracking stage, greedy matching [66] is performed to
associate the latest detected object and existing tracks based
on a bird’s eye view. We then estimate the state (velocity and
position) through a linear motion model. Using these states
and the ego-car’s current speed and planned trajectory, we
predict the positions of each entity at every 0.2s step up to
10s into the future and identify potential collisions. At each
future time step, we search for collisions within a fixed collision
radius (3 m) and travel distance threshold (5 m). This threshold
can be increased to compensate for latency. If a collision is
found, we output a desired speed of zero. Otherwise, we output
2m/s.

2) Imitation Learning (IL) Agent: We train an end-to-end
neural controller using behavior cloning. The network takes as
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Fig.4. Qualitative driving results.: We show bird’s-eye view layouts of four different scenarios across both agents in ego-vehicle coordinates (meters). The images

are captured at the first braking point before approaching an obstacle. The ego-car trajectory points are plotted every two seconds. We can see that the modular
agent tends to be more cautious and takes longer to reach the goal, while the imitation learner drives smoothly but brakes too early/late in certain scenarios.

TABLEII
SIM-ON-WHEELS BENCHMARK RESULTS
Static Obstacle Traffic Light Violation Jaywalker Jaywa!ker with Occlusion
i | Coll. | Trip Goal Trp , Max , Goal, | Coll , Trp , Max , Goal Trp , Max. , Goal
Agent Tvpe | pae ¥ Time * Aoc 4 Rae ! Rame .+ Time* Acc ¥ Rae | | Rate* Tme* Acc. ¥ Rate | Rate .+ Timet Acc.t Rae !
Modular | 00 5333 085 07 00 8602 128 05 | 0125 3435 149 075 | 096 3781 223 033
L 033 2778 117 078 | 033 2290 174 1 0875 1958 166 096 | 058 2941 185 1

Metrics are described in Section III-C. Coll. Rate stands for collision rate. Trip completion time is measured in seconds. Max. Acc. (comfort metric) is measured in m/s®
Findings: The results show that the modular pipeline is better overall at avoiding collisions, but the imitation learning pipeline reaches the goal faster.
The bold values represent the best value for the corresponding metric among all methods compared in that column.

input the last eight frames of speed, position, and RGB image,
separated by 0.2 seconds. The controller outputs a continuous
brake command to be executed 0.2 s in the future, accounting
for the latency of the overall pipeline.

The network consists of a COCO-pretrained FCN back-
bone [67], [68] and a GRU for temporal aggregation [69]. Brake
values are decoded by a multi-layer perceptron.

To train the network, diverse real-world data is collected
from human driving where the driver brakes for static ob-
jects and jaywalking pedestrians (195 static, 200 jaywalk-
ing). The network learns to predict the human brake inputs

using a L; regression loss, with an Adam optimizer and a
learning rate of 5e-4. Weighted sampling is applied to focus
on snippets right before brakes. During training, we apply
color jittering, random cropping, and dropout regularization
(p =0.8).

3) Vehicle Controller: The output from both the modular
agent and the IL agent is sent to the same vehicle controller to
produce the final vehicle command. The longitudinal direction is
controlled by a proportional-integral (PI) speed controller [70].
Meanwhile, the lateral direction is controlled by the Stanley
controller utilizing a bicycle model [71].
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4) Human Driver Reference: We also benchmark human
driver performance within our Sim-on-Wheel system as a ref-
erence. The human driver is tasked with navigating along the
planned path while avoiding collisions by monitoring the aug-
mented video displayed in real-time. To prevent the human
driver from preemptively avoiding obstacles, we randomized
the agent’s spawn point, forcing the driver to react on the fly.

C. Autonomy Benchmark Results

Table II reports the performance metrics of our driving agents
using the Sim-on-Wheels evaluation framework. For each of the
two agents, we performed 15 experiments for static obstacles, 3
for traffic light violations, 8 for jaywalker, and 24 for jaywalker
with occlusion. The human driver was only evaluated on the
jaywalker with occlusion scenario. Qualitative examples of these
scenarios are depicted in Fig. 4.

Our results indicate that the modular agent generally takes
longer to reach the destination due to false positive detections
of obstacles that lead to intermittent braking. Nevertheless, it is
capable of safely reaching the goal in most scenarios, except for
jaywalker-with-occlusion. This scenario involves a very limited
reaction time window, so the agent usually brakes too late.
Furthermore, the challenging textures of the occluding walls
causes some missed detections.

In contrast to the modular agent, the imitation learning agent
does not experience intermittent braking and achieves a shorter
time to reach the goal. Furthermore, it performs acceptably
well in the traffic intersection scenario, which was not part of
the training data. However, the agent generally tends to react
late, resulting in more jaywalker collisions. This may be due to
latency differences during training and onboard deployment. It
is important to note that such drawbacks were not frequently
observed during offline validation, highlighting the importance
of real-world vehicle-in-the-loop testing.

We also found that the modular agent had a lower max
acceleration in all scenario types, except for Jaywalker with
Occlusion. Based on an acceleration threshold of 4m/52 for
driving comfort suggested by Wang et al. [72], both agents drove
comfortably in terms of acceleration in all scenarios.

Note that none of the agents, including the human driver
(Collision Rate: 0.08, Trip Completion Time: 31.79 s, Comfort:
1.94 m/sz, Goal Reaching Rate: 1), achieve a zero collision
rate across all scenarios, which highlights the difficulty of our
designed scenarios. Fig. 5 visualizes the episode where the
human driver failed. It is worth mentioning that many of the
test cases, particularly the jaywalking ones, are impractical to
test in the real world due to safety concerns and can only be
physically evaluated with Sim-on-Wheels.

D. Analysis

Reality Gap Analysis: In Fig 3, we qualitatively assess our
insertion rendering by comparing real vs. simulated results.
The image pairs appear quite similar overall, demonstrating the
realism of the framework. However, some minor differences
do exist, such as incomplete 3D reconstructed shapes, slight
differences in shaded color, and variations in sunlight intensity,
shadow shape, and cloud patterns due to two images being taken
in a windy outdoor environment at different times.

Table III reports the quantitatively measured reality gap us-
ing the peak signal-to-noise ratio (PSNR), structural similarity
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Fig. 5. Human Driving Failure Case: The one episode in which the human
driver collided was the variation of Jaywalker with Occlusion scenario that
involved multiple fast jaywalkers. The left image is captured at the braking
point.

TABLE III
REALITY GAP
Sensor Perception
PSNR 1+ SSIM*t LPIPS | mloU T
Sim-on-Wheels 21.8 0.833 0.108 0.839
Baseline: No lighting | 19.9 0.831 0.143 0.727
Baseline: No PBR 20.1 0.831 0.142 0.727

The reality gap is assessed using three metrics: 1) sensor image fidelity between
reality and simulation, 2) mloU of perception algorithm output 3) similarity of
final actions (brake values). We compare with baseline rendering methods
which do not perform lighting or physically-based rendering (PBR). Results
indicate a small reality gap for sim-on-wheels, validating its efficacy and
reliability as an evaluation framework.

The bold values represent the best value for the corresponding metric among all
methods compared in that column.

index (SSIM) [73], and a learned perceptual similarity metric
(LPIPS) [74]. The mean absolute error (MAE) of each pixel is
calculated and the percentage of outlier pixels with errors over
a threshold of 25.5 under the RGB intensity range (0, 255) were
reported. As indicated in Table III , the results show that the
virtual object insertions exhibit high fidelity and realism with a
low percentage of outlier pixels.

We also evaluate the impact of the reality gap on the per-
formance of our autonomy pipelines. Firstly, we measure the
mean Intersection over Union (mloU) between the static obstacle
segmentation network’s outputs on real and simulated images.
Although the silhouettes of the obstacles match closely, the
mloU is not perfect, which is likely due to the sensitivity of
the network to slight variations in color and the background,
such as cloud movement. This limitation is a result of the time
required to physically arrange obstacles.

To better convey the quality of our rendering, we ablate on two
aspects of our insertion rendering: physically-based rendering
(PBR) and lighting. Compared to the baselines without lighting
or PBR, ours renders better across all metrics.

Additionally, we evaluate the action-level reality gap by
comparing agent behavior in real and simulated scenarios. The
scenarios were set up to be identical except for the obstacle (real
object vs digital twin). We obtained two metrics: an average
endpoint offset of 1.09 + 0.49 meters and a A predicted brake
(L1)of 0.18 = 0.08. Our results show that the modular agent can
stop without collision in both real and Sim-on-Wheels experi-
ments. However, the nonzero trajectory discrepancy suggests
that the reality gap is not fully closed yet. This may also be due
to other factors, such as changes in background illumination as
mentioned above.

Generalization to other environments: We can easily adapt
to new environments as long as the scenario is compatible with
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TABLE IV
SYSTEM RUNTIME BREAKDOWN
Sim-on-Wheels  Auntonomy ROS Total Relative %
Offline 43.5ms - - - -
Online 65.8ms - 100.4ms  163.9ms 387
Online + IL 73.6ms 101.5ms 106.6ms 281.7ms 21.13
Online + Modular 99.3ms 135.6ms 1338ms  368.7ms 26.93

IL stands for imitation learning agent, and modular for modular agent. The ROS column
refers to the time for processing input sensor data and sending/receiving synced messages
across nodes.

Sim-on-Wheels

Fig. 6. Sim-on-Wheels on KITTI-360: Two jaywalkers on a street are simu-
lated on top of KITTI-360 camera data.

the surroundings. As one example, we generalize to KITTI-360
data [75] as shown Fig. 6.

Runtime Analysis: The runtime performance of the Sim-
on-Wheels system (Table IV) was evaluated on an onboard
computer equipped with a single Intel Xeon(R) E-2278G CPU
@3.40 GHz x 16 and a single NVIDIA RTX A4000 GPU. The
standalone rendering component of the system processes pre-
recorded sensor data with a frame rate of 23 FPS. Upon integra-
tion with ROS, the frame rate is impacted by the consumption of
system resources by hardware drivers, communication modules,
the autonomy agent, and the controller. Nonetheless, the system
still can publish rendered images at a minimum frame rate of 10
FPS, even when the autonomy agents run concurrently.

Our results show that the end-to-end latency from the camera
capture time to vehicle command increases by 21-27% with
the integration of Sim-on-Wheels, which could be mitigated by
equipping the vehicle with two onboard GPUs. Additionally,
both autonomy agents can predict future states and actions to
compensate for such latency.

Limitations: As shown in Table IV, ROS consumes a signifi-
cant amount of time. We plan to optimize node communication
to further reduce the ROS latency. In addition, despite our use of
strong insertion techniques, the domain gap between simulation
and real world is challenging to close completely. Another future
direction is to marry Sim-on-Wheels with robust verification
techniques to provide theoretical guarantees about performance
in the real world.

V. CONCLUSION

‘We propose Sim-on-Wheels, a vehicle-in-the-loop framework
for evaluating the performance of autonomous vehicles in real-
world scenarios in a safe and realistic manner. To the best of our
knowledge, Sim-on-Wheels is the first framework of its kind
to support the integration of simulation and real-world testing
practices for the safe and realistic evaluation of autonomous
vehicles. Our results demonstrate the versatility and reliability
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of Sim-on-Wheels as a framework for evaluating various agents.
To further support the research and development of autonomous
driving, we will open-source Sim-on-Wheels to the community
and establish a safe, closed-loop, end-to-end, real-world bench-
mark.
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