
IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024 4085

DiffTune: Autotuning Through Autodifferentiation
Sheng Cheng , Member, IEEE, Minkyung Kim , Graduate Student Member, IEEE, Lin Song , Chengyu Yang,

Yiquan Jin, Shenlong Wang , and Naira Hovakimyan , Fellow, IEEE

Fig. 1. Evolution of a quadrotor’s tracking performance using DiffTune in ten trials [with 3.5× reduction on the root-mean-squared-error (RMSE)]. The quadrotor
is commanded to track a 3 m/s circular trajectory (9 m/s2 centripetal acceleration). The tuning is conducted over 12 parameters. Video recordings of the four trials
are available in the supplementary material.

Abstract—The performance of robots in high-level tasks depends
on the quality of their lower level controller, which requires fine-
tuning. However, the intrinsically nonlinear dynamics and con-
trollers make tuning a challenging task when it is done by hand. In
this article, we present DiffTune, a novel, gradient-based automatic
tuning framework. We formulate the controller tuning as a pa-
rameter optimization problem. Our method unrolls the dynamical
system and controller as a computational graph and updates the
controller parameters through gradient-based optimization. The

Manuscript received 4 March 2024; revised 27 June 2024; accepted 8 July
2024. Date of publication 16 July 2024; date of current version 18 September
2024. This work was supported in part by NASA under the cooperative agree-
ment 80NSSC20M0229, in part by National Science Foundation (NSF)-AoF
Robust Intelligence under Grant 2133656, in part by NSF SLES under Grant
2331878, in part by Air Force Office of Scientific Research (AFOSR) under
Grant FA9550-21-1-0411, in part by Amazon Research Award, and in part by
Illinois-Insper Collaborative Research Fund. This article was recommended for
publication by Associate Editor L. Righetti and Editor P. Robuffo Giordano
upon evaluation of the reviewers’ comments. (Minkyung Kim and Lin Song
contributed equally to this work.)

Sheng Cheng, Minkyung Kim, Lin Song, Chengyu Yang, Yiquan Jin, and
Naira Hovakimyan are with the Department of Mechanical Science and En-
gineering, University of Illinois Urbana-Champaign, Champaign, IL 61820
USA (e-mail: chengs@illinois.edu; mk58@illinois.edu; linsong2@illinois.edu;
cy45@illinois.edu; yiquanj2@illinois.edu; nhovakim@illinois.edu).

Shenlong Wang is with the Department of Computer Science, University
of Illinois Urbana-Champaign, Champaign, IL 61820 USA (e-mail: shen-
long@illinois.edu).

Video: https://youtu.be/g42UxcIHUdg
Code: https://github.com/Sheng-Cheng/DiffTuneOpenSource
This article has supplementary downloadable material available at

https://doi.org/10.1109/TRO.2024.3429191, provided by the authors.
Digital Object Identifier 10.1109/TRO.2024.3429191

gradient is obtained using sensitivity propagation, which is the only
method for gradient computation when tuning for a physical system
instead of its simulated counterpart. Furthermore, we useL1 adap-
tive control to compensate for the uncertainties (that unavoidably
exist in a physical system) such that the gradient is not biased by the
unmodeled uncertainties. We validate the DiffTune on a Dubin’s
car and a quadrotor in challenging simulation environments. In
comparison with state-of-the-art autotuning methods, DiffTune
achieves the best performance in a more efficient manner owing
to its effective usage of the first-order information of the system.
Experiments on tuning a nonlinear controller for quadrotor show
promising results, where DiffTune achieves 3.5× tracking error
reduction on an aggressive trajectory in only ten trials over a 12-D
controller parameter space.

Index Terms—Aerial systems: Mechanics and control, controller
auto-tuning, learning and adaptive systems.

I. INTRODUCTION

ROBOTIC systems are at the forefront of executing intricate
tasks, relying on the prowess of their low-level controllers

to deliver precise and agile motions. An optimal controller
design starts with a meticulous analysis to ensure stability,
followed by parameter tuning to achieve the intended perfor-
mance on real-world robotic platforms. Traditionally, controller
tuning is done either by hand using trial-and-error or proven
methods for specific controllers (e.g., Ziegler–Nichols method
for proportional-integral-derivative (PID) controller tuning [1]).
Nevertheless, manual tuning often demands seasoned experts

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1987-1466
https://orcid.org/0009-0004-8110-430X
https://orcid.org/0000-0001-8648-5501
https://orcid.org/0000-0002-7984-266X
https://orcid.org/0000-0003-3850-1073
mailto:chengs@illinois.edu
mailto:mk58@illinois.edu
mailto:linsong2@illinois.edu
mailto:cy45@illinois.edu
mailto:yiquanj2@illinois.edu
mailto:nhovakim@illinois.edu
mailto:shenlong@illinois.edu
mailto:shenlong@illinois.edu
https://youtu.be/g42UxcIHUdg
https://github.com/Sheng-Cheng/DiffTuneOpenSource
https://doi.org/10.1109/TRO.2024.3429191


4086 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

and is inefficient, particularly for systems with lengthy loop
times or extensive parameter space.

To improve efficiency and performance, automatic tuning (or
autotuning) methods have been investigated. Such methods inte-
grate system knowledge, expert experience, and software tools
to determine the best set of controller parameters, especially
for the widely used PID controllers [2], [3], [4]. Commercial
autotuning products have been available since 1980s [3], [5].
A desirable autotuning scheme should have the following three
qualities: i) stability of the target system; ii) compatibility with
physical systems’ data; and iii) efficiency for online deployment,
possibly in real time. However, how to design the autotuning
scheme, simultaneously having the above three qualities, for
general controllers, is still a challenge.

Existing autotuning methods can be categorized into model
based [6], [7] and model free [8], [9], [10], [11], [12], [13]. Both
approaches iteratively select the next set of parameters for evalu-
ation that is likely to improve the performance over the previous
trials. Model-based autotuning methods leverage the knowledge
of the system model to improve performance, often using the
gradient of the performance criterion (e.g., tracking error) and
applying gradient descent so that the performance can improve
based on the local gradient information [6], [7]. Stability can
be ensured by explicitly leveraging knowledge about the system
dynamics. However, model-based autotuning might not work in
a real environment, where the knowledge about the dynamical
model might be imperfect. This issue is especially severe when
controller parameters are tuned in simulation and then deployed
to a physical system.

Model-free autotuning methods approximate gradient or a
surrogate model to improve the performance. Representative
approaches include Markov chain Monte Carlo (MCMC) [12],
deep neural network (DNN) [13], and Bayesian optimization
(BO) [8], [9], [10], [11], [14]. Such approaches often make no
assumptions about the model and have the advantage of com-
patibility with physical systems’ data owing to their data-driven
nature. However, it is hard to establish stability guarantees with
most of the data-driven methods (e.g., MCMC and DNN), where
empirical methods are often applied. BO has the advantage of
establishing stability/safety guarantees, but it can be inefficient
when tuning in high-dimensional (e.g., >20) parameter spaces.

To overcome the challenges in the autotuning scheme, we
present DiffTune: an autotuning method based on autodiffer-
entiation (AD). Our method is inspired by the “end-to-end”
idea from the machine learning community. Specifically, in
the proposed scheme, the gradient of the loss function (eval-
uating the performance of the controller) with respect to the
controller parameters can be directly obtained and then applied
to gradient descent to improve the performance. DiffTune is
generally applicable to tune all the controller parameters as long
as the system dynamics and controller are differentiable (we
will define “differentiable” in Section III), which is the case
with most of the systems. For example, algebraically computed
controllers, e.g., with the structure of gain-times-error (PID [7]),
are differentiable. Moreover, following the seminal work [15]
that differentiates theargmin operator using the Implicit Func-
tion Theorem, one can see that controllers relying on solutions

of an optimization problem to generate control actions (e.g.,
model predictive control (MPC) [16], [17], optimal control [18],
[19], safe controllers enabled by control barrier function [20],
[21], [22], [23], linear-quadratic regulator (LQR) [24]) are also
differentiable.

We build DiffTune by unrolling the dynamical system into
a computational graph and then applying AD to compute the
gradient. Since the structure of the dynamics and controller
are untouched by the unrolling operation, the system is still
interpretable, which is a distinctive feature compared to the
NN-structured dynamics or controllers (widely applied in re-
inforcement learning). Furthermore, existing tools that sup-
port AD (e.g., PyTorch [25], TensorFlow [26], JAX [27], and
CasADi [28]) can be conveniently applied for gradient compu-
tation.

However, when tuning physical systems, we need gradient
information based on the data collected from such systems. In
this scenario, the computational graph is broken because the
states of the system are obtained from sensors rather than by
evaluating the dynamics function. The broken graph forbids
the usage of AD over the computational graph. We present
an alternative way of gradient computation, called sensitivity
propagation, which is based on the sensitivity equation [29] of
a dynamical system. It propagates the sensitivity of the system
state to the controller parameters in the forward direction in
parallel to the dynamics’ propagation. Finally, the gradient of
the loss to controller parameters is simply a weighted sum of the
sensitivities. Furthermore, uncertainties and disturbances exist
in physical systems. If they are not dealt with, the resulting
gradient based on the nominal dynamics (free of uncertainty
and disturbance) will be biased. We propose to use L1 adaptive
control [30] to compensate for the uncertainties and distur-
bances so that the physical system behaves similarly to the
nominal system. The uncertainty compensation will preserve
the gradient from being biased, thus resulting in more efficient
tuning.

DiffTune enjoys the three earlier mentioned qualities simulta-
neously: stability is inherited from the controllers with stability
guarantees by design; compatibility with physical systems’ data
is enabled by the sensitivity propagation; efficiency is provided
since the sensitivity propagation runs forward in time and in
parallel to the system’s evolution. We have validated DiffTune
in both simulations and experiments. DiffTune achieves smaller
loss more efficiently than strong baseline autotuning methods
AutoTune [12] and SafeOpt [9] (and its variant [31]) in sim-
ulations. Notably, in experiments, DiffTune achieves a 3.5×
reduction in tracking error in only ten trials when tuning a
nonlinear controller (12-D parameter space) of a quadrotor for
tracking an aggressive trajectory, demonstrating the efficacy of
the proposed approach.

Our contributions are summarized as follows: i) We propose
an autotuning method for controller parameters over nonlinear
dynamical systems and controllers in general forms by formu-
lating the tuning problem as a parameter optimization problem.
Only differentiability of the dynamics, controller, and loss func-
tion (for tuning) is required. ii) We treat the unrolled system as
a computational graph, over which we use autodifferentiation to



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4087

compute the gradient efficiently. Specifically, we propose sensi-
tivity propagation, which is compatible with data collected from
a physical system and can be efficiently computed online. iii)
We combine tuning with the L1 adaptive control to compensate
for the model uncertainties in a physical system that can bias
the computed gradient for tuning. iv) We validate the proposed
approach in extensive simulations and experiments, where the
compatibility with physical data, stability, and efficiency of
DiffTune are demonstrated.

A previously published paper [32] has studied an extension
of DiffTune for hyperparameter-free auto-tuning by optimizing
the gradient update, with results validated only by simulated
systems. In this article, our focus is to introduce DiffTune to
solve the autotuning problem with a physical system, which has
been validated through extensive experiments in Section VI. We
show that simulation-based autotuning can lead to parameter
overfitting to a particular simulated system, which does not apply
to or even fail the physical system (details in Section VI-E).
To handle the uncertainties that can bias the gradient used in
the autotuning of a physical system, we use the L1 adaptive
control for uncertainty compensation with the methodology
introduced in Section IV-B and experimental results detailed
in Section VI-D.

The rest of the article is organized as follows: Sections II
and III review related work and background, respectively, of
this article. Section IV describes our autotuning method and
sensitivity propagation. We also discuss uncertainty handling
when using physical systems’ data. Section V shows the simu-
lation results on a Dubins’ car and on a quadrotor. Section VI
demonstrates the experimental results on a quadrotor. Finally,
Section VII concludes the article.

II. RELATED WORK

Our approach closely relates to classical work on automatic
parameter tuning and recent learning-based controllers. In this
section, we briefly review previous work in the following direc-
tions.

Model-based autotuning leverages model knowledge to infer
the parameter choice for performance improvement. In [6], an
autotuning method is proposed for LQR. The gradient of a
loss function with respect to the parameterized quadratic matrix
coefficients is approximated using simultaneous perturbation
stochastic approximation [33], which essentially computes the
difference quotients at two random perturbation directions of
the current parameter values. Simulations and experiments on
an inverted pendulum platform demonstrate the effectiveness of
this method. Kumar and Ramadge [7] applied autodifferenti-
ation to tune a PID controller with input saturation, which is
done by differentiating through the model and the feedback
loop. Numerical examples are provided to show the efficacy
of the proposed method on single-input-single-output systems.
Romero et al. [34] proposed a probabilistic policy search method
to efficiently tune a model predictive contouring control (MPCC)
for quadrotor agile flight. The MPCC allows tradeoffs between
progress maximization and path following in real time, albeit the
dimension of parameters grows linearly to the number of gates

on a race track. The search of the parameters is turned into maxi-
mizing a weighted likelihood function. The approach is validated
in real-world scenarios, demonstrating superior performance
compared to both manually tuned controllers and state-of-the-art
autotuning baselines in aggressive quadrotor racing. In [35],
actor-critic reinforcement learning (RL) is used to tune the
parameters of a differentiable MPC for agile quadrotor tracking.
The proposed approach enables short-term predictions and op-
timization of actions based on system dynamics while retaining
the end-to-end training benefits and exploratory behavior of an
RL agent. Zero-shot transfer to a real quadrotor is demonstrated
on different high-level tasks. Giordano et al. [36], [37] proposed
to use metrics on the sensitivity of a system’s state to uncertain
parameters to reduce the variance of the system’s performance to
uncertainties. The approach has been validated in Monte Carlo
simulations to show the benefits of such optimization metrics.

Model-free autotuning relies on a zeroth-order approximate
gradient or surrogate performance model to decide the new can-
didate parameters. In [38], the authors used extremum seeking to
sinusoidally perturb the PID gains and then estimate the gradient.
Gradient-free methods, e.g., Metropolis–Hastings (M-H) algo-
rithm [39], have also been used for tuning. The M-H algorithm
can produce a sequence of random samples from a desired
distribution that cannot be directly accessed, whereas a score
function is used instead to guide the sampling. In [12], the M-H
algorithm was tailored to tuning the tracking MPC controller
for high-speed quadrotor racing that demands minimum-time
trajectory completion. In terms of surrogate models, machine
learning tools have been frequently used for their advantages
in incorporating data, which, in general, make no assumptions
about the systems that produce the data. In [40], an end-to-end,
data-driven hyperparameter tuning was applied to an MPC using
a surrogate dynamical model. Such a method jointly optimizes
the hyperparameters of system identification, task specification,
and control synthesis. Simulation validation is conducted in the
OpenAI Gym environment.

Gaussian process (GP) is often used as a nonparametric model
that approximates an unknown function from input–output pairs
with probabilistic confidence measures. This property makes GP
a suitable surrogate model that approximates the performance
function with respect to the tuned parameters. In [8], GP is
applied to approximate the unknown cost function using noisy
evaluations and then induce the probability distribution of the
parameters that minimize the loss. The distribution is used
to determine new parameters that can maximize the relative
entropy, yielding information-efficient exploration of the pa-
rameter space. The proposed method is demonstrated to tune an
LQR for balancing an inverted pole using a robot arm. In [9], the
authors apply BO [41] to controller tuning (SafeOpt), which uses
GP to approximate the cost map over controller parameters while
constructing safe sets of parameters to ensure safe exploration.
Safe sets of parameters are constructed while exploring new
parameters such that the next evaluation point that can improve
the current performance will also be safe. Quadrotor experiments
are presented where the proposed method is used to tune a PD
position controller on a single axis. Follow-up experiments [42]
demonstrated the proposed autotuning scheme to quadrotor



4088 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

control with nonlinear tracking controllers. However, one draw-
back of SafeOpt is that the search for the maximizer requires
discretizing the parameters space, which scales poorly to the
dimension of parameters. An improved version [31] applies
particle swarm heuristics to perform adaptive discretization,
which drastically reduces the computation time of SafeOpt to
determine the maximizer. A more recent work [43] proposes a
local BO-like optimizer called Gradient Information with BO
(GIBO), which uses a GP for jointly inferring the objective
function and its gradients with a probabilistic posterior. The
queries of GIBO are chosen to minimize the uncertainty about
the gradient. However, the assumption that the objective function
is a sample from a known GP prior may not fit the autotuning sce-
nario, especially when the system dynamics and the controller
hold strong nonlinearities. Bayesian optimization has also been
applied to gait optimization for bipedal walking, where GP is
used to approximate the cost map of parameterized gaits [10],
[11].

Learning for control is a recently trending research direction
that strives to combine the advantages of model-driven control
and data-driven learning for the safe operation of a robotic
system. Exemplary approaches include, but not limited to, the
following: reinforcement learning [44], [45], whose goal is to
find an optimal policy while gathering data and knowledge of the
system dynamics from interactions with the system; imitation
learning [46], which aims to mimic the actions taken by a su-
perior controller while making decisions using less information
of the system than the superior controller; and iterative learning
control [47], [48], which constructs the present control action
by exploiting every possibility to incorporate past control and
system information, typically for systems working in a repetitive
mode. A recent survey [49] provided a thorough review of the
safety aspect of learning for control in robotics.

Autodifferentiation is a technique that evaluates the partial
derivative of a function specified by a computer program [50],
[51]. Utilizing the inherent nature of computer programs, re-
gardless of their complexity, autodifferentiation capitalizes on
the execution of elementary arithmetic operations (such as addi-
tion, subtraction, multiplication, division, etc.) and elementary
functions (such as exp, log, sin, cos, etc.). By iteratively applying
the chain rule to these operations, it automatically computes
partial derivatives of any desired order with high accuracy while
incurring only a marginal increase in the number of arith-
metic operations compared to the original program. Autodif-
ferentiation has a significant advantage over other differentia-
tion methods, e.g., manual differentiation (prone to errors and
time-consuming), numerical differentiation like finite difference
(poor scalability to high-dimensional inputs and proneness to
round-off errors), or symbolic differentiation (suffering from
overly complicated symbolic representations of the derivative,
known as “expression swell”). A comprehensive comparison of
these differentiation methods is provided in [51]. There are two
modes of AD, reverse mode and forward mode, both relying on
the chain rule to propagate the derivative. The reverse-mode AD
requires a forward pass of the computational graph and keeps the
values of the intermediate nodes in the memory. Subsequently, a
backward pass propagates the partial derivatives from the output

to the input of the graph. The forward-mode AD propagates
the partial derivatives while conducting the forward pass on
the graph, storing both the values and partial derivatives of the
intermediate nodes in the memory.

III. PROBLEM FORMULATION

Consider a discrete-time dynamical system

xk+1 = f(xk,uk) (1)

where xk ∈ Rn and uk ∈ Rm are the state and control, respec-
tively, and the initial state x0 is known. The control is generated
by a feedback controller that tracks a desired state x̄k ∈ Rn such
that

uk = h(xk, x̄k,θ) (2)

where θ ∈ Rp denotes the parameters of the controller, e.g.,
θ ∈ R2 may represent the P- and D-gain in a PD controller.
We assume that the state xk can be measured directly or, if
not, an appropriate state estimator is used. Furthermore, we
assume the dynamics (1) and controller (2) are differentiable,
i.e., the Jacobians ∇xf , ∇uf , ∇xh, and ∇θh exist, which
widely applies to general systems.

The tuning task adjusts θ to minimize an evaluation criterion,
denoted byL(·), which is a differentiable function of the desired
states x̄, actual states x, and control actions u over a time
interval of lengthN . An illustrative example is the tracking error
plus control-effort penalty, where L(x0:N , x̄0:N ,u0:N−1;θ) =∑N
k=0 ‖xk − x̄k‖2 +

∑N−1
k=0 λ‖uk‖2 with λ > 0 being the

penalty coefficient. We will use the short-hand notation L(θ)
for conciseness in the rest of the article.

With the setup introduced above, controller tuning can be
formulated as a parameter optimization problem as follows:

minimize
θ∈Θ

L(θ)

subject to xk+1 = f(xk,uk)

uk = h(xk, x̄k,θ)

k ∈ {0, 1, . . . , N − 1}. (P)

Note that problem (P) searches for controller parameter θ to
minimize the lossL subject to the system’s dynamics and a cho-
sen controller (to be tuned). Problem (P) is generally nonconvex
due to the nonlinearity in dynamics f and controller h. We will
introduce our method, DiffTune, in Section IV for autotuning,
especially for tuning a controller for a physical system.

IV. METHOD

We use a gradient-based method to solve problem (P) due
to its nonconvexity, where the system performance is gradually
improved by adjusting the controller parameters using gradient
descent. We unroll the dynamical system (1) and controller (2)
into a computational graph. Fig. 2 illustrates the unrolled sys-
tem, which stacks the iterative procedure of state update via the
“dynamics” and control-action generation via the “controller.”
The gradient ∇θL is then applied to update the parameters
θ. Specifically, since the parameters are usually confined to a



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4089

Fig. 2. Illustration of an unrolled dynamical system as a computational graph.

feasible set Θ, we use the projected gradient descent [52] to
update θ:

θ ← PΘ(θ − α∇θL) (3)

where PΘ is the projection operator that projects its operand
into the set Θ, and α is the learning rate. The feasible set Θ is
used here to ensure the stability of the system, where Θ can be
determined via the Lyapunov analysis or empirically determined
by engineering practice.

What remains to be done is to compute the gradient∇θL, for
which AD can be used when the computational graph is complete
(e.g., in simulations). AD can be conveniently implemented
using off-the-shelf tools like PyTorch [25], TensorFlow [26],
JAX [27], or CasADi [28]: one will program the computational
graph using the dynamics and controller and set the parameter
θ with respect to which the loss function will be differentiated.

However, AD methods cannot incorporate data (state and
control) from a physical system because AD relies on a com-
plete computation graph, whereas the computational graph cor-
responding to a physical system is broken. Specifically, the
dynamics (1) have to be evaluated each time to obtain a new
state, which is not the case in a physical system: the states are
obtained through sensor measurements or state estimation rather
than evaluating the dynamics [see the comparison in Fig. 3(a)
and (b)]. This explains why the computational graph is broken
when considered for a physical system. Thus, AD can only be
applied to autotuning in simulations, forbidding its usage with
physical systems’ data. We introduce sensitivity propagation
next to address the compatibility with physical systems’ data.

A. Sensitivity Propagation

We first break down the gradient ∇θL using chain rule

∇θL =

N∑
k=1

∂L

∂xk

∂xk
∂θ

+

N−1∑
k=0

∂L

∂uk

∂uk
∂θ

. (4)

Since∂L/∂xk and∂L/∂uk can be determined onceL is chosen,
what remains to be done is to obtain ∂xk/∂θ and ∂uk/∂θ.
Given that the system states xk are iteratively defined using the
dynamics (1), we can derive an iterative formula for ∂xk/∂θ
and ∂uk/∂θ by taking partial derivative with respect to θ on

Fig. 3. Difference between a conceptual dynamical system (a) and a physical
system (b). Since a physical system in (b) does not have a complete computa-
tional graph for autodifferentiation, sensitivity propagation is used for gradient
computation and is illustrated in (c).

both sides of the dynamics (1) and controller (2):

∂xk+1

∂θ
= (∇xk

f +∇uk
f∇xk

h)
∂xk
∂θ

+∇uk
f∇θh (5a)

∂uk
∂θ

= ∇xk
h
∂xk
∂θ

+∇θh (5b)

with ∂x0/∂θ = 0. Note that (5a) is essentially the sensitivity
equation of a system [29, Ch. 3.3]. We name the Jacobians
∂xk/∂θ and ∂uk/∂θ by sensitivity states.

The sensitivity propagation (5a) works by propagating the
sensitivity state ∂xk/∂θ forward in time. In fact, (5a) is a
time-varying linear system with the sensitivity state ∂xk/∂θ.
The system matrix ∇xk

f +∇uk
f∇xk

h and the excitation
∇uk

f∇θh are computed each time with the data sampled
from the physical system. Specifically, the coefficients ∇xk

f ,
∇uk

f , ∇xk
h, and ∇θh, whose formula are known since f

and h are known, are evaluated at sampled state xk and con-
trol uk. Once {∂xk/∂θ}k=0:N and {∂uk/∂θ}k=0:N−1 are
all computed, ∇θL can be computed as the weighted sum
of the sensitivity states, where the weights {∂L/∂xk}k=0:N

and {∂L/∂uk}k=0:N−1 (whose formula are also known) are
evaluated at the sampled data. An illustration of how sensitivity
propagation works is shown in Fig. 3(c). Furthermore, sensitivity
propagation permits online tuning. Since the formulas of∇xk

f ,
∇uk

f , ∇xk
h, and ∇θh can be derived offline, the sensitivity

propagation can update ∂xk+1/∂θ online whenever the system
data xk and uk are sampled. Owing to the forward-in-time
nature of sensitivity propagation, the horizonN can be adjusted
online by need, which further contributes to the flexibility of



4090 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

gradient computation to a varying horizon using sensitivity prop-
agation. We summarize the DiffTune algorithm with sensitivity
propagation in Algorithm 1.

Remark 1: The sensitivity propagation and forward-mode
AD share the same formula as in (4) and (5). The difference
lies in what type of data is applied. Two types of data are
considered: The first type is from simulation, where xk is
obtained by the computation xk = f(xk−1,uk−1); the second
type is sampled from a physical system, where xk is obtained
by either sensor measurements or state estimation, which cannot
be represented as the evaluation a mathematical expression. In
principle, forward-mode AD can only work with data of the first
type, which limits its application to autotuning in simulations
only. Sensitivity propagation, however, can work with both
types of data. The most significant usage is associated with the
second-type data, which provides a straightforward method of
tuning a physical system. When applied to the first type of data,
the sensitivity propagation is equivalent to the forward-mode
AD.

Remark 2: One may notice that the sensitivity state ∂x0/∂θ
is set to a zero matrix. This initialization relates to how the
sensitivity state is interpreted. Suppose we have sampled the
sequence of state {xk}k=0:N and control {uk}k=0:N−1 subject
to a certain parameter θ. Consider a small perturbation ε ∈ Rp

to θ. The sensitivity states allow inferring about the state and
control sequence subject to the parameter beingθ + εusing first-
order approximation (without implementing the controller with
the parameter θ + ε and then sampling the data). Specifically,
we have

xk(θ + ε) ≈ xk(θ) +
∂xk
∂θ

ε (6)

uk(θ + ε) ≈ uk(θ) +
∂uk
∂θ

ε. (7)

The sensitivity state ∂xk/∂θ is initialized at zero such that
x0(θ + ε) = x0(θ) to ensure the same initial state despite pa-
rameter change. Therefore, how the state xk(θ + ε) will change
subject to the ε parameter perturbation can be inferred from the
sensitivity ∂xk/∂θ which simply evolves with the sensitivity
equation. Furthermore, the sensitivity states allow for autotuning
without hyperparameters (e.g., learning rateα), which is detailed
in [32].

Remark 3: Although AD cannot be applied to the entire
computational graph when using data from a physical system,
it can still be applied to obtain the Jacobians ∇xk

f , ∇uk
f ,

∇xk
h, and ∇θh. Since the iterative structure in (5) remains

the same among iterations, AD packages like PyTorch [25],
TensorFlow [26], JAX [27], and CasADi [28] can be applied
for evaluating these Jacobians.

The unique aspect of sensitivity propagation is its compatibil-
ity with data from a physical system. Using such data for tuning
is vital because the ultimate goal is to improve the performance
of a physical system instead of its simulated counterpart. Despite
the fidelity of the model in simulation, the physical system will
have discrepancies with the model, leading to suboptimal per-
formance if the parameters come from simulation-based tuning.
This phenomenon is part of the sim-to-real gap, which leads to

Algorithm 1: DiffTune.
Input: Initial state x̃0, initial parameter θ0, feasible set
Θ, horizon N , desired state {x̄k}k=0:N , step size α,
formulas of the Jacobians {∇xf,∇uf,∇xh,∇θh}, and
termination condition C.

Output: Tuned parameter θ∗

1: Initialize θ ← θ0.
2: while C is FALSE do
3: Set x0 ← x̃0 and ∂x0/∂θ ← 0.
4: for k ← 0 to N do
5: Obtain xk from system and compute uk using (2).
6: Update ∂xk+1/∂θ and ∂uk/∂θ using (5).
7: Compute ∂L/∂xk and ∂L/∂uk.
8: Store ∂xk+1/∂θ, ∂uk/∂θ, ∂L/∂xk and ∂L/∂uk

in memory.
9: end for

10: Compute ∇θL using (4) and update θ by (3).
11: end while
12: return the tuned parameter θ∗ ← θ.

degraded performance on physical systems compared to their
simulated counterparts. The sensitivity propagation, unlike the
forward- or reverse-mode AD, can still be applied to compute
the gradient while using data collected from the physical system.

B. Autotuning With Data From Physical Systems

The core of DiffTune is to obtain∇θL from physical systems’
data and then apply projected gradient descent.

However, model uncertainties and noise have to be carefully
handled when using such data. Controller design usually uses
the nominal model of the system, which is uncertainty- and
noise-free. However, both uncertainties and noise exist in a
physical system. If not dealt with, then the uncertainties and
noise will contaminate the sensitivity propagation, leading to
biased sensitivities and, thus, biased gradient∇θL, which results
in inefficient parameter update. Since noise can be efficiently
addressed by filtering or state estimation, our focus will be on
handling the model uncertainties.

Existing methods that can compensate for the uncertainties
can be applied to mitigate this issue. For example, the L1

adaptive control (L1AC) is a robust adaptive control architecture
that has the advantage of decoupling estimation from control,
thereby allowing for arbitrarily fast adaptation subject only to
hardware limitations [30]. It can be augmented to the controller
to be tuned such that the resulting system, even though suffering
from model uncertainties, behaves like a nominal system by
L1AC’s compensation for the uncertainties. To proceed with
the illustration of how L1AC works, we use continuous-time
dynamics to stay consistent with the notation in the majority of
the L1AC references [30], [53]. Consider the nominal system
dynamics:

ẋ�(t) = f(x�(t), t) +Bm(x
�(t), t)u(x�(t)), x�(0) = x0

(8)



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4091

where we use x� to denote the nominal state, Bm ∈ Rn×m to
denote the control input matrix and u to denote the control input
to the system. For example, in the tuning setup, u is chosen as
the baseline control uh from the to-be-tuned controller h in (2).

Consider the system in the presence of uncertainties:

ẋ(t) = f(x(t), t) +Bm(x(t), t) (u(x(t)) + σm(x(t), t))

+Bumσum(x(t), t) (9)

where σm ∈ Rm and σum ∈ Rn−m denote the matched and un-
matched uncertainties, respectively, and x(0) = x0. The matrix
Bum ∈ Rn×(n−m) satisfies B�mBum = 0 and rank([Bm Bum]) =
n. The uncertainty σ, defined as σ� := [σ�m σ�um], poses chal-
lenges to the sensitivity propagation because the mapping
x(t) 	→ σ(x(t), t)may not be explicitly known, leaving∂σ/∂x
uncomputable in the sensitivity propagation. We consider the
following control design u = uh + uad, with uad being the
adaptive control, which results in the following system:

ẋ(t) = f(x(t), t) +Bum(x(t), t)σum(x(t), t)

+Bm(x(t), t)(uh(x(t)) + uad(t) + σm(x(t), t)).
(10)

The adaptive control uad aims to cancel out the matched uncer-
tainty σm, i.e., ‖σm + uad‖ ≈ 0 (see [30], [54], [55], [56] for
details of how L1AC is implemented). Specifically, L1AC esti-
mates the uncertaintyσ based on a state predictor and adaptation
law. The state predictor propagates the state prediction x̂ based
on the estimated uncertainty σ̂ and control inputs uh and uad,
i.e.,

˙̂x(t) = f(x(t), t) +Bum(x(t), t)σ̂um(t) +As(x̂(t)− x(t))

+ Bm(x(t), t) (uh(x(t)) + σ̂m(t) + uad(t)) (11)

where As ∈ Rn×n is a Hurwitz matrix, and x̂(0) = x0. The
error x̂(t)− x(t) between the predicted and actual states are
used to compute the estimated uncertainty, where we use the
piecewise-constant adaptation law [30]:

σ̂(t) =

[
σ̂m(t)
σ̂um(t)

]
= −[Bm Bum]

−1expm(AsTs − I)−1

Asexpm(AsTs)(x̂(t)− x(t)) (12)

withTs being the sample time ofL1AC, expm(·)denoting matrix
exponential, and I being the identity matrix. The uncertainty’s
estimation error ‖σ − σ̂‖ is shown to be uniformly bounded
under a set of mild regularity assumptions [57], [58]. Once the
estimated uncertainty σ̂ is computed, the compensation uad is
obtained by low-pass filtering σ̂, i.e.,

uad(s) = C(s)σ̂m(s) (13)

with s being the complex variable in the frequency domain,
and C(s) is the transfer function of the low-pass filter (LPF).
The LPF is used here because the compensation is limited by
the bandwidth of the actuator, where only the low-frequency
components of σ̂ can be implemented by the actuator. It can
be shown that the residual ‖σm + uad‖ is bounded [53], [59],
and the error norm ‖x� − x‖ between the nominal state x� and
the closed-loop state x in (10) is uniformly bounded both in

transient and steady-state [58], [59], which renders the uncer-
tain system (10) behaving similar to the nominal system (8).
Therefore, the sensitivity propagation remains unchanged while
L1AC handles the uncertainties. We will illustrate how theL1AC
facilitates the autotuning of a physical system in Sections V
and VI.

Remark 4: Note that uad is not applied to the sensitivity
propagation (only uh is applied) because uad is used to cancel
out the uncertainty σm to preserve the validity of the nominal
dynamics (8).

C. Open-Source DiffTune Toolset

Our toolset DiffTuneOpenSource [60] is publicly avail-
able, which facilitates users’ DiffTune applications in two ways.
First, it enables the automatic generation of the partial derivatives
required in sensitivity propagation. In this way, a user only needs
to program the dynamics and controller, eliminating the need for
additional programming of the partial derivatives. Second, we
provide a template that allows users to quickly set up DiffTune
for custom systems and controllers. The Dubin’s car and quadro-
tor cases used in Section V are used as examples to illustrate the
usage of the template.

V. SIMULATION RESULTS

In this section, we implement DiffTune for a Dubin’s car and
a quadrotor in simulations, where the controller in each case
is differentiable. For all simulations, we use ode45 to obtain
the system states by integrating the continuous-time dynamics
(mimicking the continuous-time process on a physical system).
The states are sampled at discrete-time steps. We use the sen-
sitivity propagation to compute ∇θL, where the discrete-time
dynamics in (1) are obtained by forward-Euler discretization.

We intend to answer the following questions through the
simulation study:

1) How does DiffTune compare to other autotuning methods?
Since equipment wear is not an issue for tuning in simula-
tions, we conduct sufficiently many trials to understand
the asymptotic performance of autotuning methods for
comparison.

2) How can the tuned parameters generalize to other unseen
trajectories during tuning?

3) How does L1AC help tuning when the system has un-
certainties? We show our main results in the following
sections while supplying the details of configurations in
Appendices A and B.

A. Dubin’s Car

Dynamics, controller, and loss function: Consider the follow-
ing nonlinear model:

ẋ(t) = v(t) cos(ψ(t)), ẏ(t) = v(t) sin(ψ(t)) (14a)

ψ̇(t) = ω(t), v̇(t) = F (t)/m, ω̇(t) =M(t)/J (14b)

where the state contains five scalar variables (x, y, ψ, v, ω),
which stand for horizontal position, vertical position, yaw an-
gle, linear speed in the forward direction, and angular speed.



4092 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 4. Comparison of autotuning of Dubin’s car using DiffTune, Auto-
Tune [12], SafeOpt [9], and GIBO [43]. The shaded areas show the range of
RMSEs (min to max) achieved in a total of 10 runs of algorithms that involve
stochasticity (AutoTune and GIBO).

The control actions in this model include the force F ∈ R in
the forward direction of the vehicle and the moment M ∈ R.
The vehicle’s mass and moment of inertia (MoI) are known
and denoted by m and J , respectively. The feedback tracking
controller with tunable parameter θ = (kp, kv, kψ, kω) is given
by

F (t) = m(kpep(t) + kvev(t) + ˙̄v(t))�q(t) (15a)

M(t) = J(kψeψ(t) + kωeω(t) + ˙̄ω(t)) (15b)

where ·̄ indicates the desired value, the error terms are defined by
ep = p̄− p, ev = v̄ − v, eψ = ψ̄ − ψ, and eω = ω̄ − ω for p
and v being the 2-D vector of position and velocity, respectively,
q = [cos(ψ) sin(ψ)]� being the heading of the vehicle, v̄ =
[v̄ cos(ψ̄) v̄ sin(φ̄)]� and ˙̄v being the desired linear velocity and
acceleration, respectively. The control law (15) is a PD controller
with proportional gains (kp, kψ) and derivative gains (kv , kω). If
θ > 0, then this controller is exponentially stable for the tracking
errors (‖ep‖, ‖ev‖, ‖eψ‖, ‖eω‖). We set the loss function as the
RMSE of the position tracking error.

Comparison to other methods: We compare DiffTune
with strong baseline autotuning methods: Auto-Tune [12],
SafeOpt [9], and GIBO [43]. Note that these baseline methods
are model-free probabilistic approaches that do not require
knowledge of system dynamics and control. We compare the
tuning performance on a circular trajectory and assign 100 trials
in each method. Other details of implementation are available
in Appendix A. The results are shown in Fig. 4. The final
tracking errors obtained by all methods are similar, and all are
below 0.05 m. DiffTune achieves the fastest error reduction
in the first 20 trials due to its efficient usage of the system’s
first-order information that can effectively guide the parameter
search. After 20 trials, GIBO achieves the minimum error,
indicating that the GP model has captured the mapping from the
control parameters to the objective function. The performance
of AutoTune and SafeOpt is inferior to that of DiffTune and
GIBO, with a slower error reduction and larger errors at the
end of 100 trials. However, GIBO and AutoTune are limited
to autotuning in simulations because they require randomly
sampled parameters for controller implementation and rollouts
for performance evaluation, and then decide how to pick the
next candidate parameter. This procedure leads to huge me-
chanical wear and tear when applied to autotuning of a physical

Fig. 5. Comparison of performance between tuned and untuned controller
parameters on testing trajectories for generalization. (a) Peanut. (b) Lemon.
(c) Spiral. (d) Twist.

system. SafeOpt can produce acceptable performance by the
end of the 100 trials, albeit the RMSE reduction is not smooth.
The performance of SafeOpt relies on both prior knowledge
(including the kernel function and its parameters and the range
of feasible parameters) and the parameter space’s discretization
(for searching maximizers), both of which are difficult to tune
(as hyperparameters in autotuning).

Generalization: We illustrate the generalization of DiffTune
in a batch tuning example. We select nine trajectories (shown
in Fig. 13 in Appendix A) as the batch tuning set. These
trajectories are generated by composing constant, sinusoidal,
and cosinusoidal signals for the desired linear and angular
velocities. The maximum linear speed and angular speed are
set to 1 m/s and 1 rd/s, respectively, to represent trajectories
in one operating region. The four control parameters are all
initialized at 2. The tuning proceeds by batch gradient de-
scent on the tuning set. The controller parameters converge
to (kp, kv, kψ, kω) = (18.83, 6.69, 14.97, 2.66). We then test
the tuned parameters on four testing trajectories (unseen in the
tuning set) with lemon-, twist-, peanut-, and spiral-shape, as
shown in Fig. 5. The tuned parameters lead to better tracking
performance than the untuned ones. The loss on the testing set is
compared to the untuned parameters in Table I. It can be observed
that the tuned parameters generalize well and are robust to the
previously unseen trajectories.

Handling uncertainties: In this simulation, we implement the
L1AC to facilitate the compensation for the uncertainties during
tuning. For theL1AC, we use the piecewise-constant adaptation
law and a first-order low-pass filter with 20 rd/s bandwidth. In
this simulation, we inject additive force0.1a1 sin(t) and moment
0.1a2 cos(t) to the control channels in the dynamics (14) as



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4093

TABLE I
TESTING TRAJECTORIES FOR DUBIN’S CAR SIMULATION AND ASSOCIATED

LOSSES

Fig. 6. Loss L subject to uncertainties (additive force 0.1a1 sin(t) and mo-
ment 0.1a2 cos(t) with a1 and a2 taking values from 1 to 10) in the ablation
study of DiffTune and L1AC.

uncertainties from the environment. To understand how the
performance is impacted by the uncertainties, we set (a1, a2)
to a 10 × 10 grid such that a1 and a2 take integer values from
1 to 10, representing gradually intensified uncertainties. The
four control parameters are all initialized at 10. We tune the
controller parameters with both L1 ON and L1 OFF, where the
sensitivity propagation in both cases is based on the nominal
model in (14). Different from the generalization test, we only
tune the parameters on one trajectory (the focus is on how to
reduce the impact of the uncertainties that are not considered in
the nominal dynamics). The step size and termination criterion
remain the same as before. To clearly understand the individual
role of DiffTune and theL1AC in tuning, we conduct an ablation
study. The losses are shown in Fig. 6. It can be observed
that both DiffTune and L1AC improve the performance, and a
combination of both achieves the best overall performance: the
L1AC does so by compensating for the uncertainties, whereas
DiffTune does so by driving the parameters to achieve smaller
tracking error. Although the two heatmaps with L1 on show
indistinguishable colors within each itself, the actual loss values
have minor fluctuations.

B. Quadrotor

Dynamics, controller, and loss function: Consider the follow-
ing model on SE(3):

ṗ = v, v̇ = ge3 − f

m
Re3 (16a)

Ṙ = RΩ×, Ω̇ = J−1(M −Ω× JΩ) (16b)

where p ∈ R3 and v ∈ R3 are the position and velocity of
the quadrotor, respectively, R ∈ SO(3) is the rotation matrix
describing the quadrotor’s attitude, Ω ∈ R3 is the angular ve-
locity, g is the gravitational acceleration, m is the vehicle mass,
J ∈ R3×3 is the MoI matrix, f is the collective thrust, and
M ∈ R3 is the moment applied to the vehicle. The wedge
operator ·× : R3 → so(3) denotes the mapping to the space of
skew-symmetric matrices. The control actions f and M are
computed using the geometric controller [61]. The geometric
controller has a 12-D parameter space, which splits into four
groups of parameters: kp, kv , kR, kΩ (applying to the tracking
errors in position, linear velocity, attitude, and angular velocity,
respectively). Each group is a 3-D vector (associated with the
x-, y-, and z-component in each’s corresponding tracking error).
The initial parameters for tuning are set askp = 16I,kv = 5.6I,
kR = 8.81I, and kΩ = 2.54I, for I = [1, 1, 1]�. The feasible
sets of controller parameters are set as kp ∈ [15, 24], kv ∈
[4, 16], kR ∈ [8, 12], and kΩ ∈ [0.1, 3]. We set the loss function
as the squared norm of the position tracking error, summed
over a horizon of 10 s. We add zero-mean Gaussian noise to
the position, linear velocity, and angular velocity (with standard
deviation 0.1 m, 0.1 m/s, 1e-3 rd/s, respectively).

Comparison to other methods: We compare DiffTune
with strong baselines AutoTune [12], SafeOpt-PSO [31], and
GIBO [43]. Note that these baseline methods are model-free
probabilistic approaches that do not require knowledge of sys-
tem dynamics and control. The middle is a variant of the
SafeOpt [9], which applies particle swarm optimization (PSO) to
enable adaptive discretization of the parameter space. The orig-
inal SafeOpt is not applicable because it requires fine discretiza-
tion of the parameter space to search for the maximizer, which
suffers from the curse of dimensionality. Specifically, autotuning
of the geometric controller requires at least 12M discretization
points if each parameter admits at leastM discretization points.

The detailed settings of AutoTune and SafeOpt in this example
are shown in Appendix B. We compare the three autotuning
methods on three trajectories, where 100 trials are performed
for each method on each trajectory. The results are shown in
Fig. 7, where DiffTune achieves the minimum tracking RMSE
with the best efficiency. Note that the autotuning of the quadrotor
is more complicated than that of Dubin’s car due to the former’s
higher dimensional parameter space and stronger nonlinearities
in dynamics and control. In the autotuning on the 2-D/3-D
circular trajectories, the RMSEs show oscillation near the end of
the tuning trials, indicating the learning rate might be too large
when the loss is close to a (local) minimum. In terms of the
final RMSE, AutoTune, SafeOpt-PSO, and GIBO demonstrate
similar performance, all inferior to that of DiffTune. AutoTune
and GIBO have a smoother RMSE reduction than SafeOpt-PSO.



4094 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 7. Comparison of tuning the controller of a quadrotor using DiffTune
(proposed), AutoTune [12], SafeOpt-PSO [31], and GIBO [43]. The shaded
areas show the range of RMSEs (min to max) achieved in a total of ten runs of
the algorithms that involve stochasticity (AutoTune, SafeOpt-PSO, and GIBO).
(a) 2-D circle. (b) 3-D circle. (c) 3-D lemniscate.

TABLE II
TRACKING RMSE [CM] WITH MOI PERTURBATION β RANGING FROM 0.5 TO

4 IN THE ABLATION STUDY OF DIFFTUNE AND L1AC

Moreover, the three baseline methods are less favorable for
practical usage since they demand more hyperparameters to be
tuned (e.g., the variance of the transition model for each param-
eter in AutoTune; kernel functions, lower/upper bound of each
parameter, safety thresholds, and swarm size for SafeOpt-PSO;
kernel functions, local search bounds, learning rate, and number
of queries for GIBO) than the number of controller parameters
for autotuning. In contrast, DiffTune only requires tuning the
learning rate as the sole hyperparameter, yet still delivering the
best outcome.

Handling uncertainties: In this simulation, we consider the
uncertainty caused by the imprecise knowledge of the MoI J .
We set the vehicle’s true MoI as βJ for β from 0.5 to 4 and use
J in the controller design as our best knowledge of the system.
The scaled MoI can be treated as an unknown control input gain
[see (16b)], leading to decreased (β > 1) or increased (β < 1)
moment in reality compared to the commanded moment by the
geometric controller. However, the uncertainty caused by the
perturbed MoI can be well handled by L1AC, which is adopted
in the simulation (formulation detailed in [54]). We conduct an
ablation study to understand the roles of DiffTune and L1AC
by comparing the root-mean-square error (RMSE) of position
tracking, as shown in Table II (where the tuning is conducted
over a 3-D lemniscate trajectory in 100 trials with a learning rate

ofα = 0.005). It can be seen that tuning andL1 can individually
reduce the tracking RMSE. The best performance is achieved
when DiffTune and L1AC are applied jointly.

C. Discussion

The advantage of DiffTune is its efficient usage of the first-
order information (gradient ∇θL) of the target system. Com-
pared with DiffTune, the baseline autotuning methods (Auto-
Tune, SafeOpt/SafeOpt-PSO, and GIBO) have the advantage
of requiring less prior information [e.g., explicit formulas for
dynamics (1) and controller (2)] than DiffTune. All baseline
methods use probabilistic approaches (Metropolis–Hastings al-
gorithm or Bayesian optimization) to explore candidates of
parameters and iteratively improve the performance based on ob-
served input–output (i.e., parameters-performance) pairs. How-
ever, when the knowledge of the system is perceived through
such “sampling” procedures, sufficiently many trials are needed
to gain enough information and infer the optimal parameter
choice, and the number of trials scales badly with the dimension
of the parameter space. However, in practice, many physical
systems have models obtained by physics or first principles,
which can provide sufficiently useful first-order information to
guide parameter searches. Such information will significantly
reduce the number of trials in autotuning compared to when one
uses “sampling” to obtain this information, which is clear in the
comparison shown in Figs. 4 and 7. For BO-based approaches
(SafeOpt/SafeOpt-PSO and GIBO), the assumption that the
objective function is a sample from a known GP prior may not
fit the autotuning scenario, especially when the system dynam-
ics or controller hold strong nonlinearities. This conclusion is
drawn from the observation of BO-based approaches’ inferior
performance to DiffTune for quadrotor autotuning in Fig. 7, in
contrast to the similar performance obtained by DiffTune and
BO-based approaches for the autotuning of Dubin’s car (whose
dynamics and controller exhibit less nonlinearities than those of
the quadrotor) in Fig. 4. We will illustrate the efficiency of au-
totuning using the first-order information with the experimental
results in Section VI next.

VI. EXPERIMENT RESULTS

We validate and evaluate DiffTune on a quadrotor in exper-
iments, through which we would like to answer the following
four questions:

1) How is the performance improvement using DiffTune with
only limited tuning budgets (e.g., ten trials)?

2) How do the tuned parameters generalize to trajectories that
are unseen during tuning?

3) What are the individual role of DiffTune and L1AC in
terms of performance improvement?

4) How is the real-flight performance compared between
parameters autotuned with experimental data and those
autotuned with simulation data?

A. Experiment Setup

We use the same dynamics and controller as used in Sec-
tion V-B. The controller’s initial parameters are shown in



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4095

TABLE III
TRAJECTORIES USED IN THE GENERALIZABILITY STUDY

TABLE IV
TRACKING RMSE [CM] IN THE GENERALIZABILITY TEST

TABLE V
TRACKING RMSE [CM] IN ABLATION STUDY WITH DIFFTUNE AND L1AC

TABLE VI
TRACKING RMSE (UNIT: [CM]) OF THE REAL QUADROTOR USING

SIMULATION-BASED AUTOTUNING PARAMETERS (SIMX ), EXPERIMENT-BASED

AUTOTUNING PARAMETERS (EXPT), AND HAND-TUNED PARAMETERS (HT)

Table VII. We only permit ten tuning trials as the budget to
limit the time and mechanical wear of the tuning. The loss
function is chosen as the sum of the translational and rotational
tracking errors to penalize undesirable tracking performance in
these two perspectives, i.e., L = ‖p− p̄‖2 + tr(I − R̄�R)/2.
A horizon of 7 s is used to collect the data and perform sensitivity

propagation. The data contain the full state and control actions
sampled at 400 Hz (by the design of Ardupilot), where the state
is obtained via the original EKF developed by Ardupilot, with
Vicon providing only position and yaw measurements of the
quadrotor. The data are logged onboard and downloaded to
a laptop to compute the new controller parameter θ. We use
learning rate α = 0.1 together with gradient clipping such that
the parameters in the next trial θj+1 will always fall within
10% of the current parameters θj , i.e., θj+1 ∈ [0.9θj , 1.1θj ].
Such a saturation scheme is used to i) prevent the parameters
from turning negative when the gradient is large and ii) enforce
a “trust region” around the current parameters to avoid overly
large parameter changes. The laptop has an Intel i9-8950HK
CPU, and the run time for sensitivity propagation to update the
sensitivity states in one iteration (from k to k + 1) is 91± 13μs
(in MATLAB).

B. Run DiffTune on Three Trajectories

We use a circular trajectory for tuning, where the speeds
are set to [1, 2, 3] m/s for a spectrum of agility from slow to
aggressive. The controller is tuned individually for these three
speeds,1 and we denote the final parameters by P1, P2, and P3
(associated with the speeds of 1, 2, and 3 m/s, respectively). The
parameters P2 are obtained in seven trials because the quadrotor
experiences oscillations after the seventh trial, and we decided
to use the parameters tuned at the last nonoscillating trial. The
reduction of the tracking RMSE is shown in Fig. 8. Comparing
the tracking performance at the last trial to the initial trial, the
RMSE has achieved 1.5×, 2.5×, and 3.5× reduction on the 1,
2, and 3 m/s circular trajectories, respectively. Furthermore, all
the tuned parameters achieve lower tracking RMSEs than the
hand-tuned parameters. While the reduction in tracking RMSE
is monotone in the 2 and 3 m/s cases, for the case of 1 m/s,
a minor fluctuation is superposed on the monotone reduction
of the tracking RMSE. This phenomenon happens since the
dominant z-axis RMSE fluctuates, which is caused by the large
learning rate for z-axis tracking when the parameters are close to
the (local) minimum of z-axis error (observe the z-axis RMSE
reduces only from 6.8 to 5.5 cm). For the x- and y-axis tracking
RMSE, we observe a monotone reduction in all three speeds.
Notably, we observe the sensitivity of the angular velocity gains
kΩx

and kΩy
are larger than the other parameters (by at least

a magnitude). In other words, the partial derivatives ∂L/∂kΩx

and ∂L/∂kΩy
are large, which leads to significant changes in

the gains kΩx
and kΩy

. This reduction leads to a more agile
response in rotational tracking on the roll and pitch commands,
which efficiently improves the position tracking performance
on the x- and y-axis. The trajectories on the horizontal plane
through the tuning trials are shown in Fig. 9. For the 3 m/s
circular tuning trajectory, we show the stacked images during
the flight in Fig. 1. It is clear that the quadrotor’s tracking of the
circular trajectory becomes better as more trials are conducted.

1The video recordings of the zeroth, third, sixth, and tenth trials while tuning
for the 3 m/s circular trajectory are available in the supplementary material, in
which one can see the performance improvement through the trials.



4096 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 8. Tracking error (RMSE) of the tuning on three circular trajectories. The dashed line shows the RMSE achieved by hand-tuning. (a) 1 m/s. (b) 2 m/s.
(c) 3 m/s.

Fig. 9. Horizontal trajectories of the quadrotor during tuning on three circular trajectories with different speeds. (a) 1 m/s. (b) 2 m/s. (c) 3 m/s.

Fig. 10. History of parameters during the tuning on three circular trajectories with different speeds. (a) 1 m/s. (b) 2 m/s. (c) 3 m/s.

The evolution of the parameters in the tuning trials is shown in
Fig. 10. Overall, the parameters tend to converge following one
direction, except for the derivative gain kΩ for angular tracking.
Specifically, near the end of the tuning, kΩ shows a change of
evolution direction, which indicates that the mapping from these
parameters to the loss function is likely to lie on a nonlinear
manifold. Such a nonlinear manifold is difficult for a human
to perceive and understand in hand-tuning unless sufficiently
many, possibly pessimistically unrealistically many, trials are
provided, which leads to the challenges in tuning a nonlinear
controller by hand. Furthermore, another challenge of hand
tuning is that one may alter one or (at most) two parameters in
each trial since humans essentially perform coordinatewise finite

differences via trial and error to tune the controller. These two
factors combined result in inefficient tuning by hand, especially
when the dimension of parameter space is high (e.g., 12 for
the geometric control [61]). We display the tuned parameters in
Table VII in Appendix C, along with the initial parameters and
hand-tuned parameters for comparison.

C. Generalization

We conducted experiments to test the generalization capa-
bility of the tuned parameters in Section VI-B. The testing
set contains circular, 3-D lemniscate, and vertical lemniscate
trajectories, with their coordinates shown in Table III and shapes



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4097

Fig. 11. Simulation-based autotuning performance for a quadrotor (with
identical physical parameters to the real quadrotor in experiments) on circular
trajectories with speeds ranging from 1 to 3 m/s.).

Fig. 12. Performance of DiffTune in Dubin’s car example with different
learning rates.

Fig. 13. Trajectories for batch tuning in Dubin’s car example.

shown in Fig. 15 (in the Appendix C). The latter two trajectories
are considered here for their wide range of speed and acceler-
ation (see Table IV), which is in contrast to those static values
of the circular trajectories. We test the three groups of tuned
parameters P1, P2, and P3 on circular trajectories with 1, 2, and
3 m/s speed, respectively. The tracking performance of these
tuned parameters on the testing trajectories is shown in Table IV,
in which we also include the baseline of hand-tuned parameters.

When tested on the circular trajectories, the tuned parameters
perform the best on the speed that they were tuned for, i.e., Pn
performs the best on trajectoryC(n) forn ∈ {1, 2, 3}. The same
phenomenon has been observed in [12] (although the controller
therein is different from the one used here), where parameters
perform the best over the trajectories that they are autotuned

Fig. 14. Loss reduction by DiffTune under different learning rates α in the
quadrotor simulation. (a) 2-D circle. (b) 3-D circle. (c) 3-D lemniscate.

on. This behavior is similar to an overfitted NN in machine
learning. In our case, this type of “overfitting” is expected since
the proportional-derivative structure of the geometric controller
determines that there does not exist a group of parameters that
work well for all conditions (e.g., the aggressive trajectoryC(3)
demands a distinct parameter combination than for the slow
trajectory C(1)). However, the parameters can still generalize
to the 3-D lemniscate and vertical lemniscate trajectories that
are not used for tuning. Specifically, P2 and P3, which are
tuned for increasingly aggressive maneuvers with fast-changing
directions of velocity and acceleration, generalize to the two
variants of the lemniscate trajectory that demands fast-changing
speed and acceleration. P3 demonstrates better agility, which
shows the best performance on DF (2) and V F (2). However,
P3 is overly agile for the speed and acceleration in DF (1) and
V F (1), which leads to minimum RMSE compared to P1 and
P2, albeit with minor oscillations on the pitch angle.

D. Ablation Study

We conduct an ablation study of how much contribution
DiffTune and L1AC provide to performance improvement. We
repeat the tuning in Section VI-B but with L1AC in the loop,
which results in different sets of parameters for the three trajecto-
ries denoted by Pn-L1 for n ∈ {1, 2, 3} and shown in Table VII
in Appendix C. Our implementation follows [58]. Unlike the
simulations in Section V-B where we deliberately introduce
uncertainties in MoI, in the experiment, we do not introduce
uncertainties. The quadrotor naturally has uncertainties existing
in the system (e.g., varying battery voltage in flight and mis-
match between the actual MoI and estimated MoI through CAD
computation), in which case L1AC can help compensate for
these uncertainties and thus improve the tracking performance.
The results are shown in Table V. Here, “DiffTune off” shows



4098 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

the performance of the initial parameters (no tuning occurs);
“DiffTune on” shows the tracking performance in the final tuning
trial. “L1 on/off” indicate whether L1AC is used or not during
the tuning trials. We conclude that 1. DiffTune alone can improve
the tracking performance, albeit the system has uncertainties and
measurement noise. 2. WhenL1AC is combined with DiffTune,
L1AC helps improve the performance in two ways: i) compen-
sating for the uncertainties so that the uncertainties’ degradation
to system performance is mitigated; and ii) DiffTune can pro-
ceed with less biased gradient thanks to the uncertainties being
“canceled out” by L1AC, which leads to more efficient tuning.
Intuitively, DiffTune raises the performance’s upper limit (in an
ideal case subject to no uncertainty), whereas L1AC keeps the
actual performance (in a realistic case subject to uncertainties)
close to the upper limit. When the two are used together, the best
performance is achieved.

E. Comparison of Parameters Autotuned in Experiments With
Those Obtained in Simulations

In this section, we compare the parameters autotuned in
experiments (detailed in Section VI-B) with those obtained in
simulations. For the latter, we apply Algorithm 1 to a quadrotor
system in simulation, where the vehicle’s physical parameters
(mass and inertia) are identical to the quadrotor used in the
experiments. Furthermore, to stay consistent with the setup in
experiments, we use the same initial controller parameters, loss
function, horizon of evaluation, gradient clipping, and sampling
time as in Section VI-B. Since equipment wear and tear is not an
issue in simulation, we raise the autotuning budget to 50 trials
and reduce the learning rate α to 0.01. We autotune parameters
for the circular trajectories at speeds of 1, 2, and 3 m/s. In Fig. 11,
we show the tracking errors through the trials. The tracking
error shows a monotone reduction in the beginning and ends
with small oscillations when it terminates after 50 trials, which
indicates that the best performance is achieved with the selected
learning rate. We deploy the parameters autotuned in simula-
tions on the real quadrotor used in the previous experiments in
Section VI-B. Furthermore, we test the parameters obtained in
the 10th, 30th, and 50th trials in the simulation to examine the
performance at different stages of the autotuning. The results are
shown in Table VI. In general, one can observe the reduced track-
ing error from the parameters that have been obtained through
more trials in simulation, for example, with trajectories C(1)
and C(2). However, the crashes seen on trajectories C(2) and
C(3)with relatively more simulation trials indicate the common
issue of sim-to-real gap: as the parameters evolve on simulation
data, they inevitably (over)fit the simulation rather than the real
system. The new results indicate the benefit of experiment-based
autotuning, which is conditioned on the model-based gradient on
data from a real system, and thus provides the best knowledge of
parameter change for performance improvement. Nevertheless,
the parameters extracted from the tenth trial in simulations
result in tracking errors close to the errors with the hand-tuned
parameters, which may be used as initial parameters or warm
start for further performance improvement in experiment-based
autotuning.

Fig. 15. Trajectories used in the generalization test. (a) Circle. (b) 3-D lem-
niscate. (c) Vertical lemniscate.

VII. CONCLUSION

In this article, we propose DiffTune: an autotuning method
using autodifferentiation, with the advantage of stability, com-
patibility with data from physical systems, and efficiency. Given
a performance metric, DiffTune gradually improves the perfor-
mance using gradient descent, where the gradient is computed
using sensitivity propagation that is compatible with physical
systems’ data. We also show how to useL1AC to mitigate the dis-
crepancy between the nominal model and the associated physical
system when the latter suffers from uncertainties. Simulation re-
sults (on a Dubin’s car and a quadrotor) and experimental results
(on a quadrotor) both show that DiffTune can efficiently improve
the system’s performance. When uncertainties are present in a
system, L1 adaptive control facilitates tuning by compensating
for the uncertainties. Generalization of the tuned parameters
to unseen trajectories during tuning is also illustrated in both
simulation and experiments.

One limitation of the proposed approach is that it only applies
to systems with differentiable dynamics and controllers. The
requirement on differentiability is not met in contact-rich appli-
cations [62] (e.g., legged robots [63] and dexterous manipula-
tion [64]) and systems with actuation limits [7] (e.g., saturations
in magnitude or changing rate). Although subgradients [65]
generally exist at the points of discontinuity, the impact of
surrogate gradient on the tuning efficiency is unknown, which
will be investigated in the future. Another limitation of this work
is the convergence to a local minimum due to the usage of
gradient descent. Future work will investigate conditions for
convergence to a global minimum or methods that can help
escape from local minimums.

APPENDIX

A. Details of the Dubin’s Car Simulation

Autotuning setup: For Autotune [12], we use a Gaussian dis-
tribution with variances set to 1.0 to sample the four parameters
iteratively. The scoring function is the exponential of the tracking
RMSE. Since sampling is used in AutoTune, we conduct ten
runs and show the mean, max, and min RMSEs in Fig. 4. For
SafeOpt [9], we choose the radial basis function kernel for GP.
Both the length scales and the kernel variance are set to 1.0. The
noise variance for the model is set to 0.01. The objective function
to maximize is negative tracking RMSE, and the safety threshold
is set to−1m. For GIBO [43], stochastic gradient descent is used
as an optimizer, and the learning rate is set to 1. Like SafeOpt, the



CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4099

TABLE VII
COMPARISON OF THE INITIAL PARAMETERS, DIFFTUNE FINAL PARAMETERS (P1, P2, AND P3), DIFFTUNE-L1AC FINAL PARAMETERS (P1-L1, P2-L1, AND

P3-L1), AND HAND-TUNED PARAMETERS

objective function to maximize is the negative tracking RMSE.
The GP model uses a squared exponential kernel, and we assume
the initial loss as a prior mean of the model. At each trial,
four samples are used for a gradient estimate, and the last 20
sampled points are used for the approximation of the posterior.
The normalized gradient is used for the parameter update. For
DiffTune, we use a learning rateα = 100. (The tracking RMSE’s
reduction with different learning rates in Dubin’s car example
is shown in Fig. 12, which is consistent with how learning
rate influences the loss reduction in general in a gradient-
descent algorithm.) The feasible set of each parameter is set to
[1, 20] and applies to all three methods compared.

For the batch autotuning for generalization, we see the loss
function as the squared norm of the position tracking error
summed over a horizon of 10 s and set the learning rate α to 0.1.
The termination condition is the relative reduction in the total
loss between two consecutive steps being smaller than 1e−4 of
the current loss value.

The trajectories used for batch tuning for Dubin’s car are
shown in Fig. 13, where the tuned parameters can achieve
acceptable tracking on these trajectories.

B. Details of the Quadrotor Simulation

Autotuning setup: For all methods, we use the same feasible
set of parameters and the same horizon for performance evalua-
tion. For AutoTune [12], the variances of Gaussian distribution
in the transition model are set to 2 for kp, kv , and kR and 1
for kΩ. The scoring function is the exponential of the RMSE
tracking error. For the SafeOpt-PSO [31], the swarm size is set
to 400 and we choose Matérn kernel with parameter ν = 5/2.
The length scales are set to 5 for kp, kv , and kR and 0.1 for
kΩ. The kernel variance is set to 0.01, and the noise variance
for the model is set to 0.05 for all trajectories. The objective
function to maximize is negative tracking RMSE, and we set
the safety threshold to −1 m. For GIBO [43], we have used
the same setup for all trajectories. Stochastic gradient descent
is used as an optimizer, and the learning rate is scheduled to
0.5 for the first 40 trials and then reduced to 0.2 until the
maximum number of trials is reached. The objective function
is set to the negative tracking RMSE (for maximization). The

GP model uses a squared exponential kernel, and we assume
the initial loss of the 3-D lemniscate trajectory as a prior mean
of the model. We use a uniform prior between 0.1 and 5 as a
hyperprior of the length scales. At each trial, 12 samples are
used for a gradient estimate, and the last 12 sampled points are
used to approximate the posterior. We set δ = 0.5 to limit local
search bounds. The normalized gradient is used for the parameter
update.

For DiffTune, the learning rate is set to 0.1. In addition,
we tested three learning rates of α ∈ {0.1, 0.01, 0.001} for
DiffTune. The results are shown in Fig. 14, where the rate of
loss reduction is positively correlated with the magnitude of
the learning rate. Furthermore, oscillation in the loss value is
observed when α is relatively large (0.1), indicating the learning
rate is too large when the parameters are close to the (local) min-
imum. These observations are consistent with how the learning
rate influences the loss reduction in gradient descent.

In the ablation study of L1AC and DiffTune, we relax the
upper bound on the feasible parameters so that the parameters
can grow to higher values to handle the uncertainties.

C. Details of the Quadrotor Experiment

We use a custom-built quadrotor to conduct the experiments.
The quadrotor weighs 0.63 kg with a 0.22 m diagonal motor-
to-motor distance. The quadrotor is controlled by a Pixhawk
4 mini flight controller running the ArduPilot firmware. We
modify the firmware to enable the geometric controller and the
L1 adaptive control, which both run at 400 Hz on the Pixhawk.
Position feedback is provided by 9 Vicon V16 cameras. We use
ArduPilot’s EKF to fuse the Vicon measurements with IMU
readings onboard.

The tuned parameters, without and with L1AC in the loop,
are shown in Table VII. The trajectories used for testing gener-
alization in Table III are shown in Fig. 15.

ACKNOWLEDGMENT

The authors would like to thank Pan Zhao, Aditya Gahlawat,
and Zhuohuan Wu for their valuable feedback during insightful
discussions and Junjie Gao for his help with demo filming.



4100 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

REFERENCES

[1] A. O’dwyer, Handbook of PI and PID Controller Tuning Rules. Singapore:
World Scientific, 2009.

[2] C.-C. Yu, Autotuning of PID Controllers: A. Relay Feedback Approach.
Berlin, Germany: Springer, 2006.

[3] K. J. Åström, T. Hägglund, C. C. Hang, and W. K. Ho, “Automatic tuning
and adaptation for PID controllers—A survey,” Control Eng. Pract., vol. 1,
no. 4, pp. 699–714, 1993.

[4] Y. Li, K. H. Ang, and G. C. Chong, “Patents, software, and hardware for
PID control: An overview and analysis of the current art,” IEEE Control
Syst. Mag., vol. 26, no. 1, pp. 42–54, Feb. 2006.

[5] M. Zhuang and D. Atherton, “Automatic tuning of optimum PID con-
trollers,” in Proc. IEE Proc. D. (Control Theory Appl.), IET Digital Library,
1993, vol. 140, no. 3, pp. 216–224.

[6] S. Trimpe, A. Millane, S. Doessegger, and R. D’Andrea, “A self-tuning
LQR approach demonstrated on an inverted pendulum,” IFAC Proc. Vol.,
vol. 47, no. 3, pp. 11281–11287, 2014.

[7] A. R. Kumar and P. J. Ramadge, “DiffLoop: Tuning PID controllers by
differentiating through the feedback loop,” in Proc. IEEE 55th Annu. Conf.
Inf. Sci. Syst., Baltimore, MD, USA, 2021, pp. 1–6.

[8] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic LQR
tuning based on gaussian process global optimization,” in Proc. IEEE Int.
Conf. Robot. Autom., Stockholm, Sweden, 2016, pp. 270–277.

[9] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller optimiza-
tion for quadrotors with Gaussian processes,” in Proc. IEEE Int. Conf.
Robot. Autom., Stockholm, Sweden, 2016, pp. 491–496.

[10] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. P. Deisenroth,
“Bayesian gait optimization for bipedal locomotion,” in Proc. Int. Conf.
Learn. Intell. Optim., Gainesville, FL, USA, 2014, pp. 274–290.

[11] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Automatic
gait optimization with Gaussian process regression,” in Proc. Int. Joint
Conf. Artif. Intell. Org., vol. 7, Hyderabad, India, 2007, pp. 944–949.

[12] A. Loquercio, A. Saviolo, and D. Scaramuzza, “AutoTune: Controller
tuning for high-speed flight,” IEEE Robot. Autom. Lett., vol. 7, no. 2,
pp. 4432–4439, Apr. 2022.

[13] M. Mehndiratta, E. Camci, and E. Kayacan, “Can deep models help a
robot to tune its controller? A step closer to self-tuning model predictive
controllers,” Electronics, vol. 10, no. 18, 2021, Art. no. 2187.

[14] R. Moriconi, M. P. Deisenroth, and K. Sesh Kumar, “High-dimensional
Bayesian optimization using low-dimensional feature spaces,” Mach.
Learn., vol. 109, pp. 1925–1943, 2020.

[15] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a layer in
neural networks,” in Proc. 34th Int. Conf. Mach. Learn., Sydney, Australia,
2017, pp. 136–145.

[16] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable
MPC for end-to-end planning and control,” in Proc. 32nd Conf. Neural
Inf. Process. Syst., vol. 31, Montreal, Canada, 2018.

[17] S. East, M. Gallieri, J. Masci, J. Koutnik, and M. Cannon, “Infinite-horizon
differentiable model predictive control,” in Proc. Int. Conf. Learn. Repre-
sentations, 2020, pp. 1–15.

[18] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Pontryagin differentiable pro-
gramming: An end-to-end learning and control framework,” in Proc.
34th Conf. Neural Inf. Process. Syst., vol. 33, Vancouver, Canada, 2020,
pp. 7979–7992.

[19] W. Jin, T. D. Murphey, D. Kulić, N. Ezer, and S. Mou, “Learning from
sparse demonstrations,” IEEE Trans. Robot., vol. 39, no. 1, pp. 645–664,
Feb. 2023.

[20] H. Ma, B. Zhang, M. Tomizuka, and K. Sreenath, “Learning differentiable
safety-critical control using control barrier functions for generalization to
novel environments,” in Proc. Eur. Control Conf. (ECC), pp. 1301–1308,
2022.

[21] W. Xiao et al., “BarrierNet: A safety-guaranteed layer for neural networks,”
IEEE Trans. Robot., vol. 39, no. 3, pp. 2289–2307, 2023.

[22] W. Xiao, T.-H. Wang, M. Chahine, A. Amini, R. Hasani, and D. Rus,
“Differentiable control barrier functions for vision-based end-to-end au-
tonomous driving,” 2022, arXiv:2203.02401.

[23] H. Parwana and D. Panagou, “Recursive feasibility guided optimal pa-
rameter adaptation of differential convex optimization policies for safety-
critical systems,” in Proc. Int. Conf. Robot. Automat., 2022, pp. 6807–6813.

[24] N. A. Vien and G. Neumann, “Differentiable robust LQR layers,” 2021,
arXiv:2106.05535.

[25] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. 33rd Conf. Neural Inf. Process. Syst., Vancouver,
Canada, 2019, pp. 8024–8035.

[26] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2016, arXiv:1603.04467.

[27] J. Bradbury et al., “JAX: Composable transformations of Python NumPy
programs,” 2018. [Online]. Available: http://github.com/google/jax

[28] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi–A software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, 2019.

[29] H. K. Khalil, Nonlinear Control, vol. 406. London, U.K.: Pearson, 2015.
[30] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory: Guaranteed

Robustness With Fast Adaptation. Philadelphia, PA, USA: SIAM, 2010.
[31] R. R. Duivenvoorden, F. Berkenkamp, N. Carion, A. Krause, and A.

P. Schoellig, “Constrained Bayesian optimization with particle swarms
for safe adaptive controller tuning,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 11800–11807, 2017.

[32] S. Cheng, L. Song, M. Kim, S. Wang, and N. Hovakimyan, “Difftune+:
Hyperparameter-free auto-tuning using auto-differentiation,” in Proc.
Learn. Dyn. Control Conf. PMLR, 2023, pp. 170–183.

[33] J. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. Hoboken, NJ, USA: Wiley, 2005.

[34] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Trans. Robot.,
vol. 38, no. 6, pp. 3340–3356, Dec. 2022.

[35] A. Romero, Y. Song, and D. Scaramuzza, “Actor-critic model predictive
control,” 2023, arXiv:2306.09852.

[36] P. R. Giordano, Q. Delamare, and A. Franchi, “Trajectory generation for
minimum closed-loop state sensitivity,” in Proc. IEEE Int. Conf. Robot.
Autom., 2018, pp. 286–293.

[37] A. Srour, A. Franchi, and P. R. Giordano, “Controller and trajectory
optimization for a quadrotor UAV with parametric uncertainty,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023, pp. 1–7.

[38] N. J. Killingsworth and M. Krstic, “PID tuning using extremum seeking:
Online, model-free performance optimization,” IEEE Control Syst. Mag.,
vol. 26, no. 1, pp. 70–79, Feb. 2006.

[39] W. K. Hastings, “Monte Carlo sampling methods using Markov
chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109,
doi: 10.1093/biomet/57.1.97.

[40] W. Edwards, G. Tang, G. Mamakoukas, T. Murphey, and K. Hauser,
“Automatic tuning for data-driven model predictive control,” in Proc. IEEE
Int. Conf. Robot. Autom., Xi’an, China, 2021, pp. 7379–7385.

[41] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” 2014, arXiv:1403.5607.

[42] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimization
with safety constraints: Safe and automatic parameter tuning in robotics,”
Mach. Learn., vol. 112, no. 10, pp. 3713–3747, 2023.

[43] S. Müller, A. von Rohr, and S. Trimpe, “Local policy search with
Bayesian optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 20708–20720.

[44] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement
learning: Applications on robotics,” J. Intell. Robot. Syst., vol. 86, no. 2,
pp. 153–173, 2017.

[45] F. Tambon et al., “How to certify machine learning based safety-critical
systems? A systematic literature review,” Autom. Softw. Eng., vol. 29, no. 2,
pp. 1–74, 2022.

[46] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annu. Rev. Control,
Robot., Auton. Syst., vol. 3, pp. 297–330, 2020.

[47] J.-X. Xu, “A survey on iterative learning control for nonlinear systems,”
Int. J. Control, vol. 84, no. 7, pp. 1275–1294, 2011.

[48] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 96–114,
Jun. 2006.

[49] L. Brunke et al., “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control, Robot., Auton. Syst.,
vol. 5, pp. 411–444, 2022.

[50] R. D. Neidinger, “Introduction to automatic differentiation and MATLAB
object-oriented programming,” SIAM Rev., vol. 52, no. 3, pp. 545–563,
2010.

[51] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Auto-
matic differentiation in machine learning: A survey,” J. Mach. Learn. Res.,
vol. 18, pp. 1–43, 2018.

[52] N. Parikh et al., “Proximal algorithms,” Found. Trends Optim., vol. 1, no. 3,
pp. 127–239, 2014.

[53] X. Wang and N. Hovakimyan, “L1 adaptive controller for nonlinear time-
varying reference systems,” Syst. Control Lett., vol. 61, no. 4, pp. 455–463,
2012.

http://github.com/google/jax
https://dx.doi.org/10.1093/biomet/57.1.97


CHENG et al.: DIFFTUNE: AUTOTUNING THROUGH AUTODIFFERENTIATION 4101

[54] Z. Wu et al., “L1 adaptive augmentation for geometric tracking control
of quadrotors,” in Proc. Int. Conf. Robot. Autom., Philadelphia, PA, USA,
2022, pp. 1329–1336.

[55] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A. Theodorou,
“L1-adaptive MPPI architecture for robust and agile control of multiro-
tors,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst., Las Vegas, NV,
USA, 2020, pp. 7661–7666.

[56] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Perfor-
mance, precision, and payloads: Adaptive nonlinear MPC for quadrotors,”
IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 690–697, Apr. 2022.

[57] P. Zhao, Y. Mao, C. Tao, N. Hovakimyan, and X. Wang, “Adaptive robust
quadratic programs using control Lyapunov and barrier functions,” in Proc.
59th IEEE Conf. Decis. Control, 2020, pp. 3353–3358.

[58] Z. Wu et al., “L1Quad:L1 adaptive augmentation of geometric control for
agile quadrotors with performance guarantees,” 2023, arXiv:2302.07208.

[59] A. Gahlawat et al., “Contraction L1-adaptive control using Gaussian
processes,” in Proc. 3rd Conf. Learn. Dyn. Control, Jun. 2021, vol. 144,
pp. 1027–1040.

[60] S. Cheng, L. Song, and M. Kim, 2023. [Online]. Available: https://github.
com/Sheng-Cheng/DiffTuneOpenSource

[61] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” in Proc. IEEE 49th Conf. Decis. Control,
Atlanta, GA, USA, 2010, pp. 5420–5425.

[62] M. Parmar, M. Halm, and M. Posa, “Fundamental challenges in deep
learning for stiff contact dynamics,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2021, pp. 5181–5188.

[63] P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control
of legged robots,” in Springer Handbook of Robotics. Berlin, Germany:
Springer, 2016, pp. 1203–1234.

[64] W. Jin and M. Posa, “Task-driven hybrid model reduction for dexterous
manipulation,” 2022, arXiv:2211.16657.

[65] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Lecture Notes
EE392o, Stanford Univ., Autumn Quarter, vol. 2004, pp. 2004–2005, 2003.

Sheng Cheng (Member, IEEE) received the B.Eng.
degree in control science and engineering from
Harbin Institute of Technology, Harbin, China, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Maryland, College Park, MD,
USA, in 2014, 2018, and 2021, respectively.

He is a Postdoctoral Research Associate with
the University of Illinois Urbana-Champaign, Cham-
paign, IL, USA. His current research interests include
aerial robotics, learning for control, adaptive control,
and optimization.

Minkyung Kim (Graduate Student Member, IEEE)
received the B.Eng. degree in mechanical engineering
from the Korea Advanced Institute of Science and
Technology, Daejeon, South Korea, in 2020. She is
currently working toward the Ph.D. degree in me-
chanical engineering with the University of Illinois
Urbana-Champaign, Champaign, IL, USA.

Her research interests include robotics and ma-
chine learning, focusing on learning for control and
safe autonomous systems.

Lin Song received the B.E. degree in automation from
the Harbin Institute of Technology, Harbin, China,
in 2017, the M.S. degree in mechanical engineering
from Carnegie Mellon University, Pittsburgh, PA,
USA, in 2019, and the Ph.D. degree in mechanical
engineering from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 2024.

His research interests include optimal control, non-
linear and adaptive control, and safe data-driven con-
trol.

Chengyu Yang received the B.S. degree in ocean en-
gineering and technology from Zhejiang University,
Hangzhou, China, in 2021. He received the M.S. de-
gree in mechanical engineering from the University of
Illinois, Urbana-Champaign, Champaign, IL, USA,
in 2023. He is currently working toward the Ph.D.
degree in mechanical engineering with the University
of Illinois, Urbana-Champaign.

His research interests include adaptive control, ro-
bust control and planning for autonomous robots.

Yiquan Jin received the B.Eng. degree in mechan-
ical engineering from Zhejiang University, Haining,
China, and the B.S. degree in mechanical engineering
from the University of Illinois Urbana-Champaign,
Champaign, IL, USA, in 2024. He will continue
the graduate studies at University of Pennsylvania,
Philadelphia, PA, USA.

His current research interests include aerial
robotics, machine learning and control systems.

Shenlong Wang received the Ph.D. degree from the
University of Toronto, Toronto, ON, Canada, in 2021.
He is an Assistant Professor with the Department
of Computer Science, University of Illinois Urbana-
Champaign, Champaign, IL, USA, specializing in
computer vision and robotics.

His research focuses on creating a digital replica
of the world and simulating realistic new content to
train and validate autonomous systems. His past work
received IROS Best Application Paper Runner-Up
and CVPR Best Paper Candidate. His contributions

to autonomy and simulation have led to 25 filed patents.
Dr. Wang has received the NSF CAREER Award, Amazon Research Award,

and various fellowships from Facebook, Adobe, and the Royal Bank of Canada.
He regularly serves as an Area Chair for conferences in computer vision,
robotics, and machine learning.

Naira Hovakimyan (Fellow, IEEE) received the
M.S. degree in applied mathematics from Yerevan
State University, Yerevan, Armenia, in 1988. She
received the Ph.D. degree in physics and mathematics
from the Institute of Applied Mathematics, Russian
Academy of Sciences in Moscow, Moscow, Russia,
in 1992.

She is currently W. Grafton and Lillian B. Wilkins
Professor of mechanical science and engineering and
the Director of AVIATE Center of UIUC. She has
coauthored two books, 11 patents, and more than 450

refereed publications.
Dr. Hovakimyan is the 2011 recipient of AIAA Mechanics and Control of

Flight Award, the 2015 recipient of SWE Achievement Award, the 2017 recipient
of IEEE CSS Award for Technical Excellence in Aerospace Controls, and the
2019 recipient of AIAA Pendray Aerospace Literature Award. In 2014, she
was awarded the Humboldt prize for her lifetime achievements. In 2015 and
2023, she was awarded the UIUC Engineering Council Award for Excellence in
Advising, and in 2024 she was recognized as the Winner of the College Award
for Excellence in Translational Research. She is a fellow of AIAA, ASME, and
a senior member of NAI. She is a cofounder and the Chief Scientist of Intelinair.
Her work was featured in the New York Times, on Fox TV and CNBC.

https://github.com/Sheng-Cheng/DiffTuneOpenSource
https://github.com/Sheng-Cheng/DiffTuneOpenSource

