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Abstract: Sustainable Development Goal 7 of the United Nations is to achieve universal access to

clean, modern and affordable electricity by 2030. However, 600 million people in sub-Saharan Africa

(SSA) currently do not have access to electricity. As a result of this energy inequality, countries

in SSA need to plan electricity systems that provide access in an equitable manner. The research

question we explore in this paper is how integrating elicited preferences for equality into an electricity

system planning model affects investment decisions regarding technology deployment. Our novel

contribution is proposing a framework in the form of a discrete choice experiment and a statistical

estimation model to determine decision makers’ preferences for equality. In our study, we find that

higher preferences for equality result in an increased deployment of solar diesel mini-grids. These

hybrid mini-grids, in turn, drive the carbon emissions intensity of the electricity system fourfold. As

such, there is a need for stakeholders in Africa’s energy sector to consider the potential divergence

between a carbon-minimizing electrification strategy and equitable electrification.

Keywords: electricity system planning; energy justice; discrete choice experiment; equality

1. Introduction

As of 2022, there are roughly 800 million people without access to electricity world-
wide. Of these 800 million people, two-thirds reside in sub-Saharan Africa (SSA) [1]. As
such, it has become pertinent for researchers to investigate pathways to achieve 100%
electrification (i.e., universal electrification) in sub-Saharan Africa. Research shows that
access to electricity is strongly correlated with economic growth in rural areas [2] and the
rate at which economic growth follows urbanization [3]. This will depend on appliance
adoption and dwelling type [4], which subsequently affects demand growth [4]. That being
said, a study in Nigeria identified the nexus between electrification and urbanization as
being tied to development. This correlation is the guiding principle behind United Nations
Sustainable Development Goal Seven, which aims to achieve universal “access to affordable,
reliable, sustainable and modern energy for all” [2]. To achieve universal electrification,
just electricity system planning will be necessary to ensure that people have access to the
quality and quantity of electricity they need. Research has shown that the preferences and
priorities of stakeholders in the energy sector in SSA are crucial to increasing access to
electricity in a just manner [3].

Instead of taking a purely economic-growth-oriented perspective, we create an approach
to integrate energy justice into the electrification process. In their review, Jenkins et al. defined
three energy justice dimensions—distributional, recognition, and procedural [4]. Distribu-
tional justice aims to provide resources to people in the amount proportional to their need.
Recognition justice aims to include marginalized groups in society in the decision-making
process. Procedural justice deals with engaging all stakeholders in the decision-making
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process. Most countries in SSA lack energy-just policy frameworks for electrification deci-
sion making (i.e., legal or policy environments that encourage the implementation of one
or more of the dimensions of energy justice). An assessment of renewable energy policy in
African countries identified that only 9 of 34 countries had both procedural and recognition
justice built into their policy framework. Only South Africa had all three tenets of energy
justice represented in their policy framework [5]. To close this gap in procedural and recog-
nition justice, energy systems researchers should better center stakeholder engagement in
their analysis and optimization of electricity systems in SSA.

There are a multitude of methods to engage stakeholders [6]. One research study
engaged a variety of stakeholders in the energy sector in Ghana [7]. Baker et al. [7] educated
stakeholders about value-focused thinking, interviewed stakeholders, and provided a
questionnaire to the stakeholders to capture their priorities. The authors identified that
the priorities of community leaders representing end-users differed widely from those
of policymakers and international development organizations. Specifically, community
leaders did not prioritize environmental sustainability although they acknowledged its
importance when asked. Specifically, Baker et al. found that stakeholders in Ghana faced a
key tradeoff between cost and reliability: on one hand, cost reduction via subsidies would
alleviate the energy burden of citizens, but on the other hand, the resulting decrease in
revenue would compromise the reliability of service due to the lack of finances to maintain
the electricity system [7].

Another study used a game to empirically illustrate how decision makers can make
“selfish” high-impact decisions affecting large groups [8]. A different study looked at
the tie between engaging stakeholders on the perceived value of the Sustainable Devel-
opment Goals [6]. Engaging stakeholders can help identify the important tradeoffs that
electricity system planners ought to consider in the formulation and implementation of
these systems [9].

The study by Wang et al. showed that study participants in Nepal preferred a more
politically feasible and affordable electricity system than an increased renewable generation
portfolio. Another study showed that preferences for equality among decision makers may
change depending on the individual’s perceived role in allocating a given resource [10].
In the case of electricity as a resource, it can be inferred from the study by Li et al. that
stakeholders in the sector who may be more involved in planning (i.e., policymakers,
generation, transmission and distribution companies, and international funders) will have
preferences that would differ from those of their counterparts less involved in the planning
process (i.e., end-users). The novelty of our paper lies in our creation of a framework that
determines stakeholders’ preferences for equality and integrates those preferences into an
electricity planning model.

Beyond incorporating stakeholder preferences for equality, there are two main meth-
ods of estimating population preferences: (i.) stated preference; (ii.) revealed preferences.
In the first method, stakeholders (i.e., decision makers) are provided with direct questions
asking about choices they would hypothetically make. Atkinson et al. used a stated prefer-
ence approach by issuing a survey on the aversion to risk and inequality [11]. In a revealed
preference study, researchers engage stakeholders in an experiment or simulation, in which
they make a series of decisions to purchase certain goods based on different price and
income levels [8]. One contribution of our study is that we use a discrete choice exper-
iment (a form of stated preference) to capture decision makers’ preferences for equality
based on the choices they make. We then integrate this preference into an optimization
model that determines where to make generation and transmission investments. A stated
preference approach is appropriate in our experiment since we are not examining individ-
uals’ willingness to pay at various income levels, which would have required a revealed
preference study.
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Despite the need for incorporating stakeholder perspectives and preferences in elec-
tricity planning, the existing research on electricity system planning often misses how the
preferences of decision makers impact infrastructure planning for electrification. These
system planning models often use least-cost approaches to optimize generation and trans-
mission investments in a national electrification plan. For example, in two SSA-based
studies, the focus and findings were around the investment needed to provide adequate
access [12], or how differences in demand drive different optimal systems (i.e., low demand:
standalone photovoltaics and diesel generators vs. high demand: grid and mini-grid
systems) [13]. Kemausuor et al. used a decision support tool to explore the cost of differ-
ent electricity supply options in unelectrified communities in Ghana [14]. Ohiare used a
spatial electricity planning model to identify the least-cost supply option for electrification
in Nigeria [15]. Azimoh et al. used a cost-based model to determine the viability of a
hybrid mini-grid as a generation source for rural communities in South Africa [16]. Moner-
Girona et al. developed a spatial electrification model to comprehensively review the
energy infrastructure in Kenya [17]. Trotter et al. developed a multi-objective optimization
tool to determine the tradeoffs involved in achieving equal levels of access and prioritizing
electrification in urban areas in Uganda [18]. Even more problematic, research has also
shown that this disproportionate focus on least-cost methods in electricity system planning
has led to energy policymakers investing in infrastructure that is actually socially and
environmentally inequitable [3].

Overall then, and as recent reviews of rural electrification models have concurred [19],
there is still need for the development of tools that consider other objectives, such as
equity and reliability, in the electricity planning literature for SSA. While there are some
exceptions that have incorporated equity, these studies do not adequately take into account
stakeholders’ aversion to inequality (i.e., [18]), or only measure preferences for equity by
proxy (via representative preferences) rather than directly. Our paper takes these analyses
further by investigating stakeholder preference for energy equality using a discrete choice
experiment and directly evaluating how those equality preferences impact technology
deployment and electricity system configuration. We ask the following: how do the elicited
preferences for equality among decision makers inform electricity system modeling and
technology deployment? Building on prior work [20], we elicit stakeholders’ aversion
to inequality using a discrete choice experiment, and integrate those preferences into an
electricity system planning model. Our work fits into the literature (as shown in Table 1)
by filling in the gap between studies that use least-cost approaches to electricity system
planning and research that has qualitatively shown the need for energy justice when
planning electricity systems.

Table 1. Key literature highlighting our study’s novel contribution.

Study Method Finding
Limitation of

Previous Work
Our Contribution

Mentis et al.,
2017 [13]

Geospatial least-cost
optimization

Rural electrification in
SSA requires

deployment of
standalone systems.

Limited focus on rural
areas and does not
include preferences

for equality.

We expand this work to
consider not just least-cost
models in a rural area, but

integrate equality
preferences into a national

electrification model.

Korkovelos et al.,
2019 [21]

Geospatial least-cost
optimization

Off-grid PV is optimal
for electrifying

most of Malawi.

Solely using least-cost
models does not
capture different

preferences for equality
among stakeholders.

We build on this work to
consider how evolving
preferences of potential

stakeholders may lead to
different national

electrification plans.
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Table 1. Cont.

Study Method Finding
Limitation of

Previous Work
Our Contribution

Conteh et al.,
2021 [22]

Genetic algorithm used
to minimize the loss of

power supply
probability and
cost of energy

Analysis of hybrid
grid-connected

renewable power
generation for

sustainable electricity
supply in Sierra Leone.

Focuses on optimizing
reliability, economic,

and sustainability, but
misses the equality

considerations driving
the universal

development goals
within the continent.

Our model includes an
adjustable reliability

constraint and combines this
with assessments of

renewable power
generation deployment.

Jenkins et al.,
2016 [4]

Qualitative review

Energy justice is a
useful framework for
providing access to

unelectrified societies.

Although this review
paper discusses the

importance of
providing access it
misses, it does not

provide a framework
for integrating

preferences into
electrification models.

We detail a framework for
eliciting preferences for
equality from decision

makers and then integrating
those preferences into

electricity system
planning models.

Tarekegne,
2020 [3]

Qualitative analysis

Emphasis on
techno-economic
approaches has

resulted in locally
ineffective energy

infrastructure.

Misses how different
preferences for equality
from decision makers
may diverge from the
least-cost solutions.

We survey a population of
future engineers and

evaluate how their equality
preferences will lead to

different power
system build outs.

Baker et al.,
2021 [7]

Value-focused thinking
for aligning

stakeholder priorities

Stakeholder
engagement is
necessary for

developing effective
energy system models.

The team surveyed
stakeholders to

determine their values
and objectives for the

power system, but did
not integrate these
objectives into an

electricity
system model.

We develop a discrete choice
survey, elicit people’s actual

equality preferences, and
integrate those into an

energy optimization model
to highlight how these
preferences translate to

generation and
transmission investments.

Our study
Discrete choice + benefit-

maximization model

Higher preferences for
equality result in
deployment of

solar–diesel
hybrid minigrids.

-

We present a novel
framework for eliciting
preferences of decision

makers and integrating these
into electrification models.

Our main contributions to the literature are as follows: (1) We present a novel frame-
work for eliciting preferences of decision makers and integrating these into electrification
models. (2) We highlight how including the preferences of decision makers and stakehold-
ers may diverge from the least-cost solution, which highlights an inherent gap in studies
that only use the least-cost objective. (3) The framework for surveying decision-maker
preferences (using discrete choice) and tying that to infrastructure investments can be used
to understand why models and implementation in practice do not always align.

2. Methods

To determine decision makers’ preferences for equality, we (1) deployed a discrete
choice experiment, (2) statistically estimated decision makers’ individual preferences for
equality, and (3) integrated those preferences into the maximize energy access (MEA) model
to determine the optimal capacity investment strategy. A discrete choice experiment is an
experiment designed to infer the preferences of decision makers from their selections made
in a series of choice sets (i.e., set of possible options). The participants of our experiment
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were mostly engineering graduate students. Globally, studies have shown that decisions
in the energy sector are highly influenced by professionals with engineering graduate
or undergraduate degrees [23]. Geng et al. investigated how the Chinese industry and
government has invested in higher education to address problems in the industry and
research [24]. We fully acknowledge that such a sample of engineering graduate students
poses significant limitations on our work given that they are not representative of African
decision makers. Our novel contribution to the literature is in proposing a framework that
can be used to elicit preferences of decision makers and integrate these preferences into an
electricity system planning model. Furthermore, given the influence of foreign stakeholders
in SSA’s energy sector (the World Bank, USAID, etc.), our sample of engineering graduate
students may provide some insight into the perspectives of stakeholders from developed
countries when making decisions about SSA’s energy sector. Although, due to financial and
time constraints, we were not able to replicate this experiment for engineering graduate
students in SSA, future work should prioritize sampling from decision makers in SSA.
Thus, in this paper, we use the term “decision makers” to refer to the sample of students
who participated in this experiment and the stakeholders whose perspectives they may
represent. Figure 1 outlines the methods used to integrate elicited decision makers’ aversion
to inequality into an electricity system planning model. Table 2 details each variable and
parameter used in our methods.

ff tt

α

Figure 1. Summary of methods used to integrate decision makers’ aversion to inequality into an

electricity system planning model.

A discrete choice experiment is an experiment designed to infer the preferences of
decision makers based on the choices they make from hypothetical alternatives, which
consist of different attributes or characteristics. A choice set is the collection of alternatives
a decision maker must select from. We define the variables used in our methods in Table 2.
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Table 2. Description of variables and parameters used in methods.

Symbol Description Units

a Indicator for map A -

α Equality preference parameter -

b Indicator for map B -

B Budget USD/year

c choice outcome -

C Set of choice outcomes -

CT,L Annualized cost for low-voltage
transmission line

USD/km-year

CT,H Annualized cost for high-voltage
transmission line

USD/km-year

Ck
F Annualized fixed cost for generation

technology k
USD/MW-year

Ck
V Variable cost for generation

technology k
USD/MWh

di,j
Length of transmission line from

node i to node j
km

E Set of possible transmission edges -

fi,j
Average annual power flow from

node i to node j
MWh

gi Total generation in node i MWh

gi,k Generation by technology k in node i MWh

Gi,k
Capacity of generation technology k

installed at node i
MW

pi Population at node i ppl

p
Vector of total population in all nodes

i in I
-

P(a > b)
Probability of choosing Map A

over Map B
-

ρi
Per-capita electricity consumption

in node i
MWh/ppl 1

s Scale factor for utility functions -

U Utility function -

vi,j
L and vi,j

H
Indicator for high- or low-voltage
transmission line between nodes

i and j
-

xi Electricity consumption at node i MWh

x
Vector of electricity consumption in

all nodes i in I
-

yc Set of choice outcomes -
1 In the experiment, participants were shown per-capita electricity consumption in units of kWh/ppl in each node.

2.1. MEA Model

We generated the decision makers’ choice set using the Maximize Energy Access
(MEA) model. The MEA model is a benefit-maximization model that develops a country’s
electrification plan by maximizing the utility of a stakeholder, U (Equation (1)). The stake-
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holder’s utility for a graphic location is assumed to be a function of the per-capita electricity
consumption and population and is represented using an iso-elastic utility function.

U(x, p)max = ∑
i∈I

u(xi, pi) = ∑
i∈I

pi

(

ρ
1−α

i − 1
)

1 − α
(1)

where xi is the electricity consumption at node i in the given country, pi is the population
at node i, and ρi is the per-capita electricity consumption at node i. We use an equality
parameter, α, which ranges from zero to one, to model stakeholders’ preferences for equality.
In economics literature, this term is referred to as the inequality aversion parameter with
regard to income [25]. Thus, in the utility function expressed in Equation (1), α represents
a stakeholder’s aversion to inequality (i.e., their preference for equality). An alpha value
closer to zero indicates a linear aversion to inequality, i.e., a decision maker perceives equal
value from increased electricity consumption, regardless of whether a node had a lower
or higher initial level of consumption. On the other hand, an alpha closer to one indicates
that the decision maker perceives more value from increased electricity consumption in
nodes with lower initial consumption values and less value from increased electricity
consumption in nodes with higher initial consumption values [20]. The country was broken
down into nodes that represent locations where electricity would be consumed.

Equations (2)–(4) represent key constraints of the MEA electricity generation capacity
optimization model. Equation (2) ensures that the fixed and variable costs associated
with generation and transmission infrastructure are within a specified budget constraint,
which we fixed at USD 15 million for this paper. Equation (3) is an energy balance for
the electricity system to ensure that electricity generated at a node, transmitted from a
node, and transmitted to another node balances with the electricity consumed in that node.
Equation (4) ensures that the sum of each generator’s capacity at a node constrains the total
generation at a node.

∑(i,j)∈E

(

CT,Ldi,jv
L
i,j + CT,Hdi,jv

H
i,j

)

+ ∑i ∈I, k ∈K

(

CF
k Gi,k + CV

k gi,k

)

≤ B (2)

xi ≤ gi + ∑
(j,i)∈E

f j,i − ∑
(i,j)∈E

fi,j ∀ i ∈ I, (i, j) ∈ E (3)

gi ≤ ∑
i ∈I, k ∈K

gi,k ∀ i ∈ I, k ∈ K (4)

For further documentation on the MEA model, and the full set of the constraints,
refer to [20]. We used the MEA model to generate a series of maps (i.e., optimal electricity
system plans) corresponding to different values of inequality aversion, alpha (ranging
from low inequality aversion, 0.1, to high inequality aversion, 0.9), for use in the discrete
choice experiment. We used Liberia as our case study for electricity system planning in
low-access countries in sub-Saharan Africa in this experiment due to the country’s low
electrification rate (currently 28%) [26], and the ease of seeing differences in generation
allocation decisions in the survey. We set the budget constraint at USD 15 million based on
data from Liberia’s energy sector [27] and on existing literature that performed sensitivity
analysis on various budget levels for the country’s electrification [20].

Having determined the optimal electricity system plan using the MEA model, we
used the carbon emissions factors found in Table 3 to determine the total carbon emissions
from each electricity system plan.
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Table 3. Carbon emission factors for generation sources used in MEA model.

Generation Source
Carbon Emissions Factor

(gCO2eq/kWh)
Water Consumption Factor

(L/MWh)
Source

Hydro 7 4491 Klein & Whalley [28]

PV (Photovoltaic)-
Diesel Minigrid

413 11.5 Sovacool, [29]; Klein & Whalley [28]

Solar Home System 41 23 Schloemer et al., [30]

Oil 768 1893 Klein & Whalley [28]

2.2. Discrete Choice Experiment

In the discrete choice experiment, we generated nine maps corresponding to the nine
alpha values and then had experimental participants make pairwise comparisons between
these electrification plans, yielding X choice sets (9-choose-2). The values of alpha were
hidden from decision makers to estimate each decision maker’s true preference for equality
since the literature indicates that there tends to be some difference between individuals’
stated preference and their true preference [31].

Figure 2 shows an example of the pairwise comparison decision makers had to make
in the survey. In the introduction to the survey, we explained the difference between an
electricity system plan that provides more individuals with baseline access to electricity
consumption (i.e., Tier 1) and one that increases electricity consumption via the usage of
higher-end appliances (i.e., Tier 3) in nodes with higher population densities. Table 4 shows
the per-capita consumption of electricity associated with each tier according to [32].

Table 4. Tiers of electricity access and corresponding per-capita consumption.

Level of Access
Consumption per Capita per Year

(kWh/person/year)
Appliances Electrified

Tier 1 8 Light bulbs, radio, phone charging

Tier 3 167 Tier 1 + Washing machine, air cooler, food processor

Figure 2a shows the population density at each node in the country. Figure 2b,c show
examples of two maps serving as a choice set presented to each decision maker. Consistent
with the literature on preference elicitation, the introductory section of the survey explained
key concepts about the electricity planning maps and contained knowledge check questions
to ensure that decision makers understood the choices provided [33]. Prior to deploying
the survey, we issued the survey to test users (consisting of students, faculty, and non-
academics), whom we interviewed to ensure that the attributes in each choice set and
information in the survey were shown in a manner that allowed a user to understand how
to make choices based on the attributes and information provided in the survey. Based
on existing literature on the stated preference elicitation, we included “rational check”
questions in the survey, in which one map corresponded to a remarkably higher inequality
aversion, alpha value (i.e., it clearly dominated the other map), to determine if decision
makers were consistent in their responses [34].

We determined that a discrete choice experiment would be appropriate for our study
because its use of hypothetical alternatives allows researchers to replicate scenarios in which
decision makers would have to engage with tradeoffs based on the defining attributes and
characteristics of each alternative [35]. Generally, discrete choice models are suitable for
experiments in which the outcome variable can have a countable number of values (i.e., a
discrete variable) [36]. Since decision makers in the energy sector often make choices from a
discrete set of alternatives (e.g., whether to invest in a power plant or not), a discrete choice
experiment would be useful in eliciting the underlying preferences guiding their decision
making. While the preference for equality variable, α, is continuous by definition, the
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choice that a decision maker has to consider regarding electricity infrastructure is discrete
in nature (e.g., the choice to build a thermal power plant versus a solar photovoltaic
(PV) mini-grid). Thus, by observing the choices of decision makers in the discrete choice
experiment, we can determine how their preferences impact technology deployment in
electricity system planning.

One limitation of discrete choice experiments is that by using hypothetical alternatives
instead of real-world options, the choices that decision makers make may not be useful for
modeling their behavior in a real-world scenario. As a result, in this paper, we address this
limitation by using the MEA model, which uses real-world economic and power systems
data and constraints, to create alternatives that are technically and economically feasible
in a given country. As displayed in Figure 2, our experiment required decision makers to
choose from a given Map A or Map B.

 

tt

(a) 

(b) (c) 

Figure 2. In each survey question, we showed a (a) population density map, and two maps (b,c),

referred to as “a given Map A and Map B” in this paper, to the decision maker, as shown in the figure.

The respondent had to choose between the two maps (b,c), which were generated from the MEA

model using two distinct values of alpha. The table in the bottom-left corner of each map shows the

population that would have access to Tier 1 or Tier 3 level of electricity consumption.
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2.3. Statistical Estimation of Preference Parameter

Given the selections made in each choice set (i.e., the choice outcome of either Map A
or Map B), we recovered each decision maker’s preference for equality using a statistical
estimation model. The estimation model, binary logit model, determines the inequality
aversion parameter value (i.e., alpha) that maximizes the Bernoulli likelihood. A binary
logit model is a regression model that has a binary dependent variable, in this case, the
decision maker’s choice between Map A and Map B. We used a binary logit model because
the decision makers in our experiment will be choosing between two maps—a binary choice,
which can be described by a Bernoulli probability distribution. A key assumption for the
binary logit model is that the utility that a decision maker derives from each alternative
(i.e., Map A and Map B) is independent of each other. More specifically, the aspects of
the decision maker’s utility for one option that is unobserved are independent of the
unobserved factors for the other option [36].

Thus, for a given set of binary choice outcomes, maximizing the Bernoulli log-
likelihood function estimates the choice probability that was likely used to generate the set
of choice outcomes. Equation (5) shows the overall objective function used to determine
the estimate of a decision maker’s preference for equality (i.e., alpha).

max : log

(

36

∏
c=1

P(a > b)yc × (1 − P(a > b))1−yc

)

(5)

Given the optimal choice probability derived from maximizing the log-likelihood
function, we estimate the true alpha used to make the set of choice outcomes for a given
decision maker. Since choice probability, expressed in Equation (6), is a function of alpha
by means of the utility function, we are able to determine the value of alpha that was most
likely used to generate the set of choice outcomes (i.e., yc).

P(a > b) =
eu(xa , pa)−u(xb , pb)

(

1 + eu(xa , pa)−u(xb , pb)
) =

eu(xa , pa)

eu(xa , pa) + eu(xb , pb)
(6)

2.4. Text Aggregation Method

We also identify factors feeding into the decisions maker’s choices using a simple
text aggregation on the qualitative question: “What is the most important factor in your
decisions about which power system to build?” The initial level of processing involved
simplifying each statement to a set of the most important words by removing punctuation;
making all characters lowercase; correcting spelling errors; and removing common, mean-
ingless words. Removed words include articles, prepositions, being verbs, and conjunctions;
additionally, words that are common in context were removed, such as “electricity”, “en-
ergy”, or “power”. Among the remaining words, those in a list of important words, such
as “equality”, “access”, “equity”, “renewable”, and “population”, were first prioritized. If
these were absent, the longest words were prioritized. The majority of responses were thus
analyzed. The remaining responses were analyzed based on a heuristic connecting common
phrases with related priorities; for example, responses about “maximizing” the “number of
people” with electricity were categorized with “access”. The premise of this categorization
was that responses seeking a larger “number” or “amount” of people with electricity were
categorized with access, while those seeking a “more” “equally” “distributed” system were
categorized with equality. If a response did not fulfill any of these criteria, as was the case
for two to three responses in each dataset, the most important word(s) were manually
deduced. All responses were manually checked against their selected words to ensure
reasonability. The aggregated list of words from all essays was sorted by frequency and by
categorization with their respective responses for analysis.
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2.5. Uncertainty Analysis

Finally, we account for uncertainty in our statistical estimation process using a boot-
strapping process. Bootstrapping is a process of deriving the variance of a parameter
estimated by developing a simulation dataset, which is created by sampling values of
the input parameters with replacements. In our experiment, we reconstructed each re-
spondent’s choice dataset by sampling with the replacement 36 times (i.e., the number
of choices each respondent made) and then repeated the process 1000 times to quantify
the uncertainty of the statistical estimation process more robustly. Due to computational
constraints, we limited our repetitions to 1000, which allowed for sufficient variability
given our question sample size of 36.

2.6. Limitations

To integrate the elicited preferences from decision makers into the electricity planning
model, we made some key assumptions. In discrete choice theory, one can decompose the
utility of a decision maker into observed and unobserved factors. Given that in the MEA
model, we use an iso-elastic utility function for the decision maker, we assume that the
iso-elastic utility function adequately captures the behavior of our decision makers, such
that those unobserved factors are random and uncorrelated [36]. Also, by using the binary
logit model, we inherently assume that the utility that a decision maker derives from each
alternative (i.e., Map A and Map B) is independent of one another, and that the unobserved
factors in the utility function are identically distributed. The literature on discrete choice
models indicates that the independence assumption underlying the logit model tends to be
inconsistent when dealing with substitution choices [36]. Since our experiment does not
require decision makers to make a choice in place of another (i.e., substitution), the use of
the logit model is appropriate in this case.

In addition to resource and time constraints, of the approximately 110 students who
participated in this study, only 54 participants fully completed the survey for the experiment
in a coherent manner. As such, there is a need to incentivize experiment participants to
complete the study in a coherent manner in future iterations of this study.

Also, since we did not collect specific nationality data in the experiment, we were not
able to group the sample by country of origin. Thus, future work would need to sample
decision makers enrolled in institutions in developing countries to understand how their
preferences may differ from their counterparts in US institutions. Such work may infer the
influence of different education systems on preferences for equality among decision makers.

Furthermore, the electricity system planning model used (i.e., the MEA model) did
not consider an entirely solar PV mini-grid as an electricity supply option. While the
literature on cost analysis of solar PV mini-grids in sub-Saharan Africa suggests that energy
storage technology for solar mini-grids may be too expensive to allow mini-grid operators
to recover costs in some countries [34], future work ought to consider increasing the array
of electricity supply options in system planning models [18,37,38].

3. Results and Discussion

In this section, we present our results for recovering a decision maker’s preference
for energy equality and how integrating these preferences into electrification planning
in low-income/developing countries impacts the electrification plan. First, we show the
results of the discrete choice experiment, specifically the distribution of preferences for
equality and corresponding electricity system plans. Then, we discuss the results of the
simple text aggregation on the qualitative data collected from the experiment. Lastly, we
provide the results of our bootstrapping uncertainty analysis.

3.1. Elicited Preferences and Electricity System Plans

In total, 54 participants responded to the survey, 94% of which were engineering
graduate students. Using the statistical estimation model, we estimated each decision
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maker’s alpha value. Figure 3 shows the distribution of alpha values recovered from the
discrete choice experiment.

Figure 3. Distribution of alpha values recovered from discrete choice experiment. An alpha value

closer to zero indicates that a decision maker perceives equal value from increased electricity con-

sumption, regardless of whether a node had a lower or higher initial level of consumption. An

alpha closer to one indicates that the decision maker perceives more value from increased electricity

consumption in nodes with lower initial consumption values and less value from increased electricity

consumption in nodes with higher initial consumption.

We observed that our sample had relatively high preferences for equality. Specifically,
we had an average alpha value of 0.81 and a median value of 0.91. It is important to note
that since the recovered alpha values were not normally distributed, we showed the median
as a summary statistic in addition to the mean. The sample had a standard deviation of
0.21 (variance was 0.04). The range of alpha recovered was 0.34 to 0.99. Given the mean
of 0.81 and the standard deviation, it is evident that the sample is relatively left-skewed
(toward 0.99). The relatively high value of the average preference for equality is consistent
with the literature on inequality aversion, which suggests that decision makers in developed
countries tend to have a lower inequality aversion (or higher equality preferences) than their
counterparts from developing countries [11]. In Section 3.4, we delve into the correlation
between demographics and the recovered preferences for equality.

The estimated preferences for equality were fed back into the electricity system plan-
ning model to determine how they might influence the optimal electricity system plan. In
Figure 4, we show the system plans corresponding to the minimum, 10th percentile, 25th
percentile, 50th percentile, median, and maximum of the estimated alpha values (i.e., 0.34,
0.5, 0.6, 0.81, 0.91, and 0.99, respectively). As a reference point, we show the electricity
system plan corresponding to the lowest value of alpha (i.e., 0.1) in Figure 4a, which is
the equivalent of a least-cost electrification plan (since the decision maker would have a
linear aversion to inequality). In Figure 4b–g, we observe that all decision makers diverged
from the least-cost electrification plan. Table 5 shows the range in per-capita electricity
consumption for each value of alpha represented in Figure 4. Our finding contributes to the
literature on electricity system planning because it shows that energy decision makers may
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tend to deviate from least-cost electrification plans based on preferences. As such, there is a
need for a paradigm shift from least-cost models to models that combine decision science
with optimization in its methods such as that proposed here.

 

Figure 4. Distribution summary of optimal electricity system plan corresponding to estimated alpha

(α) values of (a) α = 0.1 (least-cost equivalent), (b) α = 0.34 (minimum), (c) α = 0.5 (10th percentile,

n = 1), (d) α = 0.60 (25th percentile, n = 13), (e) α = 0.81 (50th percentile, n = 8), (f) α = 0.91 (median,

n = 5), and (g) α = 0.99 (maximum). We note that subplots (f,g) look similar following rounding of the

per-capita electricity consumption in each node to two decimal places. This signifies that a decision

maker does not need to have the maximum preference for equality to electrify the entire country.

In the results illustrated in Figure 4, we observe an increased deployment of PV-diesel
mini-grids in rural parts of the country (i.e., remote areas farther from the urban hub
electrified by hydro generation). The increased use of diesel increased per-MWh carbon
emissions from the electricity system. In Section 3.2, we discuss the specific demand and
carbon emissions impact resulting from these electricity system plans.
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Table 5. Minimum and maximum per-capita electricity consumption for each map generated using

the alpha values from Figure 4.

Alpha Value
Minimum–Maximum per-Capita Electricity

Consumption (kWh/pp)

0.1 0–439

0.34 0–211

0.5 0–167

0.6 0–133

0.81 0–133

0.91 33–67

0.99 33–67

3.2. Impact Evaluation

Given the various generation systems being deployed in the electricity system plans,
we evaluated the impact of these preference-based electricity systems on total electricity
demand/consumption, water consumption intensity, and carbon emissions intensity. One
of our major findings was that while the total electricity demand and water consumption
intensity of the electricity system decreased, the total carbon emissions intensity increased
with increasing preference for equality. In Figure 5, we show the trends in total demand,
water intensity, and carbon emission intensity for alpha values 0.34 (minimum alpha
recovered), 0.5 (10th percentile), 0.6 (25th percentile), 0.81 (mean), 0.91 (median), and
0.99 (maximum). In Figure 5a, we observe that the total consumption of electricity in the
country decreases from 0.34 to 0.6, stabilizes from 0.6 to 0.81, and then declines from 0.81 to
0.91. Due to the MEA model being a mixed-integer program, in all three trends in Figure 5,
there is no difference in values from an alpha value of 0.91 to 0.99. Based on the trend in
Figure 5a, we find that between the decision maker with an alpha value of 0.34 and that
with a value of 0.91, there will be a two-times decrease in total electricity consumed in the
country. However, the lower difference in alpha between 0.5 and 0.81 suggests that decision
makers with such preferences for equality would plan systems with the same national
consumption of electricity but distributed differently (per Figure 4). Hence, the concept of
distribution justice will also be key to such decision makers as they would essentially be
deciding where each electron would be consumed and by whom.

In Figure 5b, we see that the water consumption intensity between alpha values of
0.81 and 0.91 decreases by about 1.5 times, whereas there is a less-than-5% difference in
water intensity between alpha values of 0.34 and 0.81. The initial drop in water intensity
from 0.34 to 0.5 is due to the removal of the oil plant (water intensity factor of 1893 L/MWh)
as the preference for equality increases. Given that in place of the oil plant, the node is
being powered by a hydro plant via the transmission line, water intensity drops because
the singular hydro plant serves more nodes, and therefore it is serving more demand than
that for the oil plant (i.e., the use of water is now serving more demand and thus driving
down the intensity).

In Figure 5c, we observe that the carbon emissions intensity between alpha values of
0.81 and 0.91 increases by fourfold. The increased carbon emissions are primarily driven by
the increased deployment of PV-diesel mini-grids to serve rural nodes where electricity con-
sumption is lower than in their urban counterparts. This finding is particularly relevant to
the conversation of just transitions in sub-Saharan Africa because we show that in the case
of Liberia, a carbon-emissions-minimizing electricity system significantly diverges from the
most distributionally just electricity system. Moreover, given the apparent differences in
preference elasticities in carbon emissions and electricity consumption, future research may
consider examining those elasticities (i.e., how incremental changes in electricity consump-
tion change carbon emissions) by using a larger sample size to determine exactly where
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tradeoffs would occur. Thus, future work would need to consider the tradeoffs that decision
makers may make between preferences for equality and aversion to carbon emissions.

α

ff

Figure 5. We observe that (a) total electricity consumption and (b) water intensity generally decrease

with increasing values of alpha, whereas (c) carbon emissions increase with increasing values of

alpha (α). Here, alpha represents the recovered equality preference of the decision maker.

3.3. Results of Text Aggregation

Additionally, we performed a simple text aggregation on the decision makers’ re-
sponses to determine which factors influenced their choice outcomes. Figure 6 shows the
word cloud illustrating the text analysis. We found that most decision makers tended to
choose maps that would provide the most access to electricity consumption in the country.
Given that a higher amount of access corresponds to a higher preference in equality, the text
aggregation qualitatively validates the high preference for equality (with a median alpha
of 0.91) identified in our experiment. The relatively high preference for equality observed
in our results aligns with the existing literature on equality preferences. In a study of the
relationship between risk aversion, intertemporal substitution, and inequality aversion
regarding climate change, researchers found that respondents from developed countries
had relatively high preferences for equality [39]. As such, our future work would comprise
replicating this experiment in a country in sub-Saharan Africa to determine how their
preferences for equality compare with those of their counterparts from the United States,
and how those preferences may result in a different optimal capacity expansion plan.
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Figure 6. A word cloud that shows the most frequently used factors by decision makers when

choosing between electricity system plans in our experiment.

3.4. Demographic Breakdown of Results

We further inspected the demographic breakdown of our results to explore how
identity may have influenced decision makers’ preferences for equality. The relatively
high preference for equality observed in our results may be due to the demographic of
people we sampled for this experiment. Approximately 94% of the decision makers (i.e.,
experiment participants) in our sample were engineering graduate students. To reiterate,
we acknowledge that they are not representative of African decision makers in SSA’s
energy sector. However, our work contributes to the literature by providing a framework
for researchers to elicit preferences among stakeholders and to integrate those preferences
into electricity planning models. Further, the perspectives of these engineering graduate
students in a private university in the United States may provide insights into preferences
of decision makers from developed countries who make investment allocation decisions
for SSA’s energy sector, like the World Bank.

As illustrated in Figure 7a, we observed similar preferences between decision makers
who were citizens of the United States and those who were of other nationalities. However,
there was a wider range of alpha among non-US citizens, with a minimum alpha of 0.34, a
median of 0.81, and a maximum of 0.99 as compared to US citizens who had a minimum
alpha of 0.43, a median of 0.93, and a maximum of 0.99. While about 60% of our sample



Sustainability 2023, 15, 16351 17 of 21

were non-US citizens, it must be noted that their enrollment in an engineering graduate
program at a private institution may indicate a tendency to maximize social benefit from
infrastructure development.

 

Figure 7. Results from our sample indicate that (a) non-US citizens (n = 32; median = 0.81) had

preferences for equality similar to those of US citizens (n = 21; median = 0.93) on average. Also,

(b) female (n = 21; median = 0.98) decision makers have higher preferences for equality than their

male counterparts (n = 31; median = 0.86).

Given that the existing literature suggests that female decision makers tend to be
more focused on the welfare of their community than their male counterparts in decision-
making [40–42], we decided to compare preferences for equality between male and female
decision makers. Of all decision makers, 60% were male participants and 40% were female
participants. In Figure 7b, we observed that female decision makers had a median alpha
value of 0.97, while their male counterparts had a lower median alpha value of 0.87. It
must also be noted that there was a wider range in preferences among female decision
makers than those of males, with female decision makers having a range of 0.66 (alpha
variance = 0.05) and male decision makers having a range of 0.57 (alpha variance = 0.04).
We note that there was one respondent who identified as non-binary, but we exclude their
response from Figure 7 due to the small sample size. Since these results are an aggregation
of the point estimate of each decision maker’s preference for equality, we evaluate the
uncertainty associated with the statistical estimation process in Section 3.5.

3.5. Uncertainty Analysis

To determine the uncertainty associated with our statistical estimation model, we
performed a bootstrapping analysis using the choice sets of each decision maker in the
experiment. In Figure 8, we show the results of our bootstrapping, which was carried out
by sampling choice sets with replacements 36 times to reconstruct the original dataset, and
then repeating the process 1000 times. Each box plot in the figure represents an individual
survey respondent’s bootstrapped preference for equality. Their original survey responses
were sampled with replacements 36 times to construct the bootstrapped dataset, on which
the statistical estimation process was performed to obtain the alpha value. This process
was repeated 1000 times for each individual, and the range of recovered alpha on each
bootstrapped dataset is visualized in Figure 8. For some individuals, the uncertainty range
on their recovered alpha values shows that they have a dominantly high preference for
equality. However, some individuals, typically those with lower equality preferences,
demonstrate a large uncertainty range. The uncertainty likely comes from the individual
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not displaying a strong transitive preference for a certain level of equality. For example,
suppose the following maps have decreasing equality (i.e., decreasing alpha values) in the
following order: Map A1 > Map B1 > Map A2 > Map B2. If Student 1 chose Map A2 over
Map B1 in Question 1 of the survey, and then chose Map A1 over Map B1 in Question 2,
then Student 1 did not have a strong transitive preference for equality, since their choice in
Question 1 indicates a lower preference for equality (Map A2 over B1), but then they chose
Map A1 over Map B1, which corresponds to a higher preference for equality.

Figure 8. Uncertainty analysis of parameter recovery model. In this boxplot, we observe that the

individual mean alpha values in this bootstrapping analysis (1000 runs) correspond to the relatively

high median equality preference (alpha value) observed in Figure 2.
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4. Conclusions

In this paper, we determined how to integrate elicited preferences for equality from
decision makers into an electricity system planning model. Our specific contribution is
highlighting how to elicit decision-maker preferences and then integrate these preferences
into electrification and infrastructure deployment models. There is evidence that the mixed-
methods approach (e.g., engaging stakeholders and quantitative analysis) is important to
developing successful implementation and deployment strategies for electrification [43].
Our framework can assist with tackling the energy deficiency in countries within the African
continent [22] through engaging with stakeholders to identify how their preferences for
equality can impact the deployment of centralized and decentralized infrastructure within
a country. This is very important in places that are currently working to expand their
electricity infrastructure and have large levels of unmet energy demand [41].

Using a discrete choice experiment, we demonstrated that higher preferences for
equality would require an increased deployment of decentralized systems, specifically
PV-diesel hybrid mini-grids. The increased carbon emissions from the use of diesel for
electricity generation suggests that there may be tradeoffs between preferences for equality
and aversion to carbon emissions that decision makers may consider when planning
electricity infrastructure. As such, future work ought to incorporate an aversion to carbon
emissions in the utility function specification to further examine how these tradeoffs are
being made by decision makers. Additionally, we found that female decision makers have
higher preferences for equality than their male counterparts when making infrastructure
investment decisions. Our finding regarding the role gender may play in preferences for
equality further validates efforts to achieve gender parity and increase inclusivity among
decision makers in the energy sector.

By integrating these elicited preferences into an electricity system planning model,
we have demonstrated that future research regarding electrification in sub-Saharan Africa
needs to move beyond the least-cost paradigm and explore how preferences among decision
makers (and the values underlying these preferences) may influence the electrification
pathway of countries in the sub-continent. This is crucial for thinking through how decision
makers will electrify the residential sector, as well as productive uses of energy, such
as agriculture [42]. Without understanding how decision-maker preferences influence
infrastructure deployment, there is the risk that certain communities will be left out of the
energy transition, and inequalities will widen during the development process [43].
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