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Figure 1. Video2Game takes an input video of an arbitrary scene and automatically transforms it into a real-time, interactive, realistic and
browser-compatible environment. The users can freely explore the environment and interact with the objects in the scene.

Abstract

Creating high-quality and interactive virtual environ-
ments, such as games and simulators, often involves com-
plex and costly manual modeling processes. In this paper,
we present Video2Game, a novel approach that automati-
cally converts videos of real-world scenes into realistic and
interactive game environments. At the heart of our sys-
tem are three core components: (i) a neural radiance fields
(NeRF) module that effectively captures the geometry and
visual appearance of the scene, (ii) a mesh module that dis-
tills the knowledge from NeRF for faster rendering; and (iii)
a physics module that models the interactions and physical
dynamics among the objects. By following the carefully de-
signed pipeline, one can construct an interactable and ac-
tionable digital replica of the real world. We benchmark our
system on both indoor and large-scale outdoor scenes. We
show that we can not only produce highly-realistic render-
ings in real-time, but also build interactive games on top.

1. Introduction

Crafting a visually compelling and interactive environment
is crucial for immersive experiences in various domains,

such as video games, virtual reality applications, and self-
driving simulators. This process, however, is complex and
expensive. It demands the skills of experts in the field and
the use of professional software development tools [21, 24].
For instance, Grand Theft Auto V [23], known for its in-
tricately detailed environment, was one of the most expen-
sive video games ever developed, with a budget over $265
million primarily for asset creation. Similarly, the develop-
ment of the CARLA autonomous driving simulator [19] in-
volves a multidisciplinary team of 3D artists, programmers,
and engineers to meticulously craft and texture the virtual
cityscapes, creating its lifelike environments.

An appealing alternative to extensive manual modelling
is creating environments directly from the real world. For
instance, photogrammetry, a technique for constructing dig-
ital replicas of objects or scenes from overlapping real-
world photographs, has been utilized for environment cre-
ation [52, 53]. Success stories also span various games
and simulators. However, most use cases are limited
to creating object assets and necessitate significant post-
processing, such as material creation, texturing, and geom-
etry fixes [66]. People thus turns to neural radiance fields
(NeRFs) [46], as it offers a more promising approach to
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Figure 2. Overview of Video2Game: Given multiple posed images from a single video as input, we first construct a large-scale NeRF
model that is realistic and possesses high-quality surface geometry. We then transform this NeRF model into a mesh representation with
corresponding rigid-body dynamics to enable interactions. We utilize UV-mapped neural texture, which is both expressive and compatible
with game engines. Finally, we obtain an interactive virtual environment that virtual actors can interact with, can respond to user control,
and deliver high-resolution rendering from novel camera perspectives — all in real-time.

modeling large scenes. With careful design [13, 22, 39, 48,
61], NeRF is able to render free-viewpoint, photo-realistic
images efficiently. However, crafting an interactive environ-
ment entails more than just creating a visually high-fidelity
digital twin; it also involves building a physically plau-
sible, immersive, real-time and importantly, interactive
world tailored to user experiences. Furthermore, we expect
such a virtual world to be compatible with real-time inter-
action interfaces such as common game engines. Despite
its promise, the use of NeRF to create interactive environ-
ments from real-world videos remains largely unexplored.

In this paper, we introduce Video2Game, a novel ap-
proach to automatically converting a video of a scene into a
realistic and interactive virtual environment. Given a video
as input, we first construct a NeRF that can effectively cap-
ture the geometric and visual information of a large-scale,
unbounded) scene. Then we distill the NeRF into a game
engine-compatible, neural textured mesh. This significantly
improves the rendering efficiency while maintains the over-
all quality. To model the interactions among the objects,
we further decompose the scene into individual actionable
entities and equip them with respective physics model. Fi-
nally, we import our automatically generated assets into a
WebGL-based game engine and create a playable game.
The resulting virtual environment is photo-realistic, inter-
active, and runs in real-time. See Fig. 1 for demonstration.
In summary, our key contributions are:

* A novel 3D modeling algorithm for real-time, free-
viewpoint rendering and physical simulation, surpassing
state-of-the-art NeRF baking methods with added rigid-
body physics for enhanced simulation.

e An automated game-creation framework to transform a
scene video into an interactive, realistic environment,
compatible with current game engines.

2. Related Works

Given a single video, we aim to create a real-time, interac-
tive game where the agents (e.g., the character, the car) can
navigate and explore the reconstructed digital world, inter-
act with objects in the scene (e.g., collision and manipulate
objects), and achieve their respective tasks (e.g., collecting
coins, shooting targets). We draw inspirations from multi-
ple areas and combine the best of all. In this section, we
will briefly review those closely related areas which forms
the foundation of our work.

Novel view synthesis (NVS): Our work builds upon the
success of novel view synthesis [14, 25, 35, 62], which
is crucial for our game since it enables the agents to
move freely and view the reconstructed world seamlessly
from various perspectives. Among all these approaches
[26, 60, 68, 85, 86], we exploit neural radiance field (NeRF)
[46] as our underlying representation. NeRF has emerged as
one of the most promising tools in NVS since its introduc-
tion [49-51], and has great performance across a wide range
of scenarios [36, 56, 75, 81]. For instance, it can be easily
extended to handle various challenging real-world scenar-
ios such as learning from noisy camera poses [38, 70], re-
flectance modeling for photo-realistic relighting [69, 83],
and real-time rendering [16, 39, 55, 65, 76]. In this work,
we combine recent advances in NeRF with physics mod-
eling to build an immersive digital world from one single
video, moving from passive NVS to our complete solution
for embodied world modeling where agents can actively ex-
plore and interact with the scene.

Controllable video generation: Using different control
signals to manipulate the output of a visual model has gar-
nered great interest in the community. This has had a pro-
found impact on content creation [57, 58], digital editing
[11, 34], and simulation [30, 31, 40]. One could also lever-
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age large foundation models to control video content using
text [57, 58]. However, they lack fine-grained and real-time
control over the generated content. Alternatively, training
(conditional) generative models for each scene enables bet-
ter disentanglement of dynamics (e.g., foreground vs. back-
ground) and supports better control. For instance, one can
represent a self-driving scene [31] or a Pacman game [30] as
latent codes and generate video frames based on control in-
puts with a neural network. One can also learn to control the
players within tennis games [44, 45, 79, 80]. Our work falls
under the second line of research, where the model takes
user control signals (e.g., a keystroke from the keyboard)
as input and responds by rendering a new scene. However,
instead of focusing on a specific scene (e.g., tennis games),
we have developed a pipeline that allows the creation of
a playable environment from a single video of a generic
scene. Additionally, we model everything in 3D, which
enables us to effectively capture not only view-dependent
appearance but also physical interactions among rigid-body
equipped objects. Importantly, we adopt a neural represen-
tation compatible with graphics engines, enabling users to
play the entire game in their browser at an interactive rate.
Data-driven simulation: Building a realistic simulation
environment has been a longstanding challenge. [19, 29,
67, 71]. While it’s promising, we come close to mirror the
real world only in recent years [10, 15, 42, 43, 59, 74, 75].
The key insight of these work is to build models by lever-
aging real-world data. Our work closely aligns with this
line of research on building high-fidelity simulators from
real-world data, with a few key differences. First, exist-
ing works mainly focus on offline training and evaluation
[10, 43, 74, 75], whereas our system runs at an interactive
rate and allows for online, real-time control. Second, some
existing works[4 1, 43, 72, 87] need additional data modality
like LiDAR point clouds for geometry reconstruction, but
RGB video is all we need. Third, most photo-realistic sim-
ulators don’t model physical interactions. However, we sup-
ports various physics modeling and allows agents to interact
with the environment. Last, existing simulators are typi-
cally resource-intensive , while our system is lightweight
and can be easily accessible in common engines.

3. Video2Game

Given a sequence of images or a video of a scene, our goal
is to construct an interactable and actionable digital twin,
upon which we can build real-time, interactive games or re-
alistic (sensor) simulators. Based on the observations that
prevalent approaches to constructing digital replica mainly
focus on visual appearance and ignore the underlying phys-
ical interactions, we carefully design our system such that
it can not only produce high-quality rendering across view-
points, but also support the modeling of physical actions
(e.g., navigation, collision, manipulation, etc). At the heart

Figure 3. Visualization of automatically computed collision ge-
ometry: Sphere collider (green), box collider (yellow), convex
polygon collider (purple) and trimesh collider (red).

of our systems is a compositional implicit-explicit 3D rep-
resentation that is effective and efficient for both sensor and
physics simulation. By decomposing the world into indi-
vidual entities, we can better model and manipulate their
physical properties (e.g., specularity, mass, friction), and
simulate the outcomes of interactions more effectively.

We start by introducing a NeRF model that can effec-
tively capture the geometric and visual information of a
large-scale, unbounded scene (Sec. 3.1). Next, we present
an approach to convert the NeRF into a game-engine com-
patible mesh with neural texture maps, significantly im-
proving the rendering efficiency while maintaining the qual-
ity (Sec. 3.2). To enable physical interactions, we further
decompose the scene into individual actionable entities and
equip them with respective physics models (Sec. 3.3). Fi-
nally, we describe how we integrate our interactive environ-
ment into a WebGL-based game engine, allowing users to
play and interact with the virtual world in real time on their
personal browser. Fig. 2 provides an overview of our pro-
posed framework.

3.1. Large-scale NeRF

Preliminaries: Instant-NGP [48] is a notable variant of
NeRF, which represents the radiance field with a combi-
nation of spatial hash-based voxels and neural networks:
c,0 = Fy(x,d;®) = MLPy(It(x,®),d). Given a 3D
point x € R? and a camera direction d € R? as in-
put, Instant-NGP first interpolate the point feature It (x, @)
from the adjacent voxel features ®. Then the point feature
and the camera direction are fed into a light-weight multi-
layer perception (MLP) to predict the color ¢ € R? and den-
sity o € RT. To render the scene appearance, we first cast a
ray r(t) = o+td from the camera center o through the pixel
center in direction d, and sample a set of 3D points {x;}
along the ray. We then query their respective color {c;}
and density {o;} and obtain the color of the pixel through
alpha-composition: Cerp(r) = Y, w;c;. Similarly, the
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Figure 4. Qualitative comparisons among NeRF models. The rendering quality of our base NeRF is superior to baselines, and with
leveraging monocular cues, we substantially improve rendered geometry compared to other baselines. This significantly facilitates NeRF
baking in subsequent stages. Here we consider depths measured by LiDAR point cloud in KITTI-360 and compute normals based on it.

expected depth can be computed by: Dnerr(r) = >, wit;.
Here, w; indicates the blending weight that is derived from
the densities {o; }. We refer the readers to [46] for more de-
tails. To learn the voxel features ¢ and the MLP weights 6,
we compute the difference between the ground truth color
and the rendered color: Ligh = > ||Car(r) — Crerr(r)||3-
Large-scale NeRF:  While Instant-NGP [48] has shown
promising results on densely observed and bounded scenes,
its performance starts to degrade when extending to
sparsely-captured, large-scale, unbounded environments.
To mitigate these issues, we propose several enhancements:

c,0,s,n = Fy(x,d; ) = MLPy(It(Ct(x),P),d). (1)

First of all, we exploit the contraction function Ct(x) [12]
to map the unbounded coordinates into a bounded region.
In addition to radiance and density, we predict the seman-
tics s and the surface normal n of the 3D points, guided with
2D priors to better regularize the scene geometry. Further-
more, we divide large-scale scenes into several blocks [63]
to capture the fine-grained details. We now describe these
enhancements in more details.

Depth: High-quality geometry is critical for model-
ing physical interactions. Inspired by MonoSDF [78], we
leverage off-the-shelf monocular depth estimators [20, 27]
to guide and improve the underlying geometry. We first
predict the depth of the scene from rendered RGB im-
ages. Then we minimize the discrepancy between the
rendered depth and the predicted depth via Lgepm =
>, [[(aDnerr(r) + b) — Dimono(T)[|3, where a and b are the
scale and shift that aligns the two distribution [54].

Surface normals:  Similar to depth, we encourage the
normal estimated from NeRF to be consistent with the nor-
mal predicted by the off-the-shelf estimator [20, 27]. The
normal of a 3D point x; can be either analytically derived

from the estimated density n; = (1 — HVV";i“), or pre-
dicted by the MLP header as in Eq. 1. We could aggre-
gate them via volume render: N(r) = > w;n,. Em-

pirically we find that adopting both normals and promot-
ing their mutual consistency works the best, since the MLP
header offers more flexibility. We thus employ Lyoma =

||lep(r) - NmonO(r)Hg + ||lep(r) - Ndensity(r)H%-

Semantics:  We also predict semantic logits for each sam-
pled 3D points with our MLP. This helps us capture the cor-
relation between semantics and geometry [36, 84]. We ren-
der the semantic map with volume rendering Snerp(r) =
>; W;s; and compute the cross-entropy with that of a 2D
segmentation model Leemantics = CE (Smono; SNeRF) -

Regularization: = We additionally adopt two regulariza-
tion terms. To reduce floaters in the scene, for each ran-
domly sampled 3D point x, we penalize its density by
Ly, = > 1 —exp(—ao(x)), where o« > 0 [77]. For each
sky pixel (which we derived from the semantic MLP), we
encourage its depth DNeRp(rSky) to be as far as possible.
The loss is defined as: Lyy = >y eXp(—Dnerr(r™Y)).

Blocking: Capitalizing on a single Instant-NGP to cover
an extraordinarily large scene such as KITTI-360 [37]
would often lead to inferior results. We thus adopt a strat-
egy akin to BlockNeRF [63] where we divided the whole
scene into numerous blocks and model each region with a
separate Instant-NGP. Adjacent regions maintain substan-
tial overlaps to ensure smooth transition.

Learning: We jointly optimize the voxel feature ® and
the MLP weights 6 by minimizing the following loss:

LE:;}F = Ergb + Enormal + ‘Csemantics + Edepth + Esky + Esp (2)

3.2. NeRF Baking

We aim to create a digital replica that users (or agents)
can freely explore and act upon in real time. Although
our large-scale NeRF effectively renders high-quality im-
ages and geometry, its efficiency is limited by the compu-
tational costs associated with sampling 3D points. The un-
derlying volume density representation further complicates

4581



KITTI-360

Method Representation

Gardenvase

Interactive Compatibility

PSNR{ SSIM{ LPIPS| PSNR{ SSIM{ LPIPS| Realtime Rigid-body physics Scene decomposition
InstantNGP [48] 2746 0853 0165 2590 0757  0.191 X X X
Nerfacto [64] Volume 2320 0763 0238 2216 0517 0283 X X X
Video2Game 27.62 0871 0131 2657 0815  0.143 X X X
Gauss. Spl. [28] Points 1785 0615 0428 2750 0858  0.099 v X X
MobileNeRF [16] 19.67 0.627 0452 2280 0505  0.365 v X X
BakedSDF* [76] Mesh 2237 0757 0302 2268 0514 0369 v v X
Video2Game 2335 0765 0246 2281 0508  0.363 v v v

Table 1. Quantitative results on novel view synthesis and interactive compatibility analysis. Video2Game produces better or compa-
rable results across scenes, suggesting the effectiveness of our NeRF and mesh model. The performance improves the most when tackling
unbounded, large-scale scenes in KITTI-360. We note that existing NeRFs cannot reach the interactive rate required for real-time games.
While point-based rendering significantly improves the speed, it does not support rigid body physics. BakedSDF [76] represents the whole
scene with one single mesh, thus does not support object-level interactions.

the problem. For instance, it’s unclear how to define phys-
ical interaction with such a representation (e.g., defining
collision). The representation is also not compatible with
common graphics engines. While recent software, such as
the NeRFStudio Blender plugin and LumaAl Unreal add-
on, has made some strides, their interaction capabilities and
scene geometry quality are still not optimal for real-time
user engagement, especially when the scene is large and
the observations are relatively sparse. To overcome these
challenges, we draw inspiration from recent NeRF meshing
advancements and present a novel NeRF baking framework
that efficiently transforms our NeRF representation into a
game-engine compatible mesh. As we will show in Sec. 4,
this conversion greatly enhances rendering efficiency while
preserving quality and facilitates physical interactions.

Mesh representation:  Our mesh M = (V,F, T) com-
prises vertices V. € RIVI*3, faces F € NIFIX3 and a UV
neural texture map T € RH*W>6_ Following [65], we
store the base color in the first three dimension of T, and
encode the specular feature in the rest. The initial mesh
topology are obtained by marching cubes in the NeRF den-
sity field. We further prune the invisible faces. conduct
mesh decimation and edge length regularization. The UV
coordinate of each vertex is calculated via xatlas [7].

Rendering: We leverage differentiable renderers [33] to
render our mesh into RGB images Cg and depth maps Dg.
Specifically, we first rasterize the mesh into screen space
and obtain the UV coordinate for each pixel . Then we
sample the corresponding texture feature T; = [B;; S;] and
feed it into our customized shader. Finally, the shader com-
putes the sum of the view-independent base color B; and
the view-dependent MLP MLP§™er(S; d;):

Cr = B; + MLP{™1(S,, d;).
The MLP is lightweight and can be baked in GLSL.

Learning:  We train the shader MLP MLP{*" and the
neural texture map T by minimizing the color difference

3)

between the mesh and the ground truth, and the geometry
difference between the mesh and the NeRF model:

L3 =" ||Cr(r) = Car(r)|| + [ Dr(r) — Dyere(r)]. (4)

Anti-aliasing: Common differentiable rasterizers only
take the center of each pixel into account. This may lead
to aliasing in the learned texture map. To resolve this issue,
we randomly perturb the optical center of the camera by 0.5
pixels along each axis at every training step. This ensure all
the regions within a pixel get rasterized.

Relationship to existing work: Our approach is closely
related to recent work on NeRF meshing [16, 55, 65, 76],
but there exist key differences. While MobileNeRF [16]
also adopts an explicit mesh with neural textures, they
mainly capitalize on planar primitives. The quality of the
reconstructed mesh is thus inferior. BakedSDF [76] of-
fers excellent runtime and rendering quality, but their vertex
coloring approach has limited resolution for large scenes.
NeRF2Mesh [65] lacks depth distillation and doesn’t adopt
contraction space for unbounded scenes. They also have a
sophisticated multi-stage training and multi-resolution re-
finement process. Finally, MeRF [55], though efficient, still
relies on volume-rendering.

3.3. Representation for Physical Interaction

Our mesh model facilitates efficient novel-view rendering
in real time and allows for basic rigid-body physical inter-
actions. For example, the explicit mesh structure permits an
agent to “stand” on the ground. Nevertheless, beyond nav-
igation, an agent should be capable of performing various
actions including collision and manipulation. Furthermore,
a scene comprises not only the background but also inter-
actable foreground objects, each possessing unique phys-
ical properties. For instance, a street-bound car is much
heavier than a flower vase. When struck by another object,
a car may barely move but the vase may fall and shatter.



To enhance physical interaction realism, we decompose the
scene into discrete, actionable entities, each endowed with
specific physical characteristics (e.g., mass, friction). This
approach, in conjunction with rigid-body physics, allows
for the effective simulation that adheres to physical laws.

Scene decomposition:  Directly editing and decompos-
ing a mesh is extremely difficult due to topology change.
Fortunately, neural fields are inherently compositional in
3D. By identifying the objects each spatial region belongs
to, we can use neural fields to guide the decomposition of
the mesh. Specifically, we sample a 3D point x; within each
voxel ¢ and determine its semantic category either through
the predicted semantic logits s; or by verifying whether the
point is within a specified bounding box. The process is re-
peated for all voxels to segment the entire scene. Then, for
each object, we perform NeRF meshing individually, setting
the density of the remaining areas to zero. The intersec-
tions between objects are automatically resolved by march-
ing cube. Finally, we initialize the neural texture of these
new, individual meshes from the original mesh model. For
newly created faces, we employ nearest neighbor inpainting
on the neural texture map, which empirically yields satis-
factory results. Fig. 1 shows an example where a vase is
separated from a table. The middle of the table is original
occluded yet we are able to maintain high-quality rendering.

Physical parameters reasoning: The next step is to
equip decomposed individual meshes with various physics-
related attributes so that we can effectively model and sim-
ulate their physical dynamics. In this work, we focus on
rigid body physics, where each entity ¢ is represented by
a collision geometry col;, mass m;, and friction parameters
fi- We support fours types of collision geometry with differ-
ent levels of complexity and efficiency: box, sphere, convex
polygon, and triangle mesh. Depending on the object and
the task of interest, one can select the most suitable collision
check for them. For other physical parameters (e.g. mass,
friction), one can either set them manually or query large
language models (LLMs) for an estimation.

Physical interactions:  Rigid body dynamics, while sim-
ple, can support a variety of interactions. With the collision
check, an user/agent can easily navigate through the envi-
ronment while respecting the geometry of the scene. The
agents will no longer be stuck in a road or cut through a
wall. It also allows the agent to interact with the objects in
the scene. For instance, one can push the objects towards
the location of interest. The object movement will be deter-
mined by its mass and other physical properties such as the
friction. We can also manipulate the objects by adopting a
magnet grasper, following AI2-Thor [32]. This opens the
avenue towards automatic creation of realistic, interactive
virtual environment for robot learning.

3.4. Interactive Environment

We deploy our interactive environment within a real-time,
browser-based game engine. We manage the underlying
logic and assets using Sketchbook [3], a Game Engine
based on Three.js that leverages WebGL [4] for rendering.
This combination ensures high efficiency while offering the
flexibility and sophistication required for intricate render-
ing tasks. It also allows us to easily integrate content from
different scenes together. We have further extended Sketch-
book’s capabilities by implementing a GLSL-based shader
[2]. This enables real-time computation of our MLP-based
specular shader during deployment. For physics simula-
tion, we use Cannon.js [1], which assures realism and ef-
ficiency in the motion within our interactive environment.
It supports not only rigid body dynamics but also more so-
phisticated modeling techniques. For example, we can pre-
compute the fracturing effect for dynamic objects. Upon
experiencing a significant force, these objects are realisti-
cally simulated by the real-time physics engine, which han-
dles the interactions between the fractured pieces and the
rest of the scene, such as their falling and settling on the
ground. Besides browser-based engine, the virtual environ-
ments from Video2Game pipeline could be also integrated
into both Blender [ 1 7] and Unreal engines [21] (see Fig. 6).

4. Experiments

We begin by presenting our experimental setup, followed by
a comparison of our model with state-of-the-art approaches.
Next, we conduct an extensive analysis of our model’s dis-
tinctive features and design choices. Then we demonstrate
how we constructed a web browser-compatible game capa-
ble of delivering a smooth interactive experience exceed-
ing 100 frames per second (FPS), all derived from a single
video source. Finally, we showcase the capabilities of our
model in robot simulation through two demonstrations.

4.1. Setup

Dataset:  We evaluate the effectiveness of Video2Game
across three distinct scenes in various scenarios, includ-
ing “Gardenvase” [12], an outdoor object-centric scene;
the KITTI-360 dataset [37], a large-scale self-driving scene
with a sequence that forms a closed loop, suitable for car-
racing and Temple Run-like games; and finally, an indoor
scene from the VR-NeRF [73] dataset, showcasing the po-
tential for robot simulations.

Metrics:  To evaluate the quality of the rendered im-
ages, we adopt PSNR, SSIM, and LPIPS [82]. For geome-
try reconstruction, we evaluate with LiDAR point cloud in
KITTI-360 dataset. Root mean square deviation (RMSE),
mean absolute error (MAE), and outlier rate are applied to
measure the disparity existing in estimated geometry.

Our model: For NeRF, we adopt hashgrid encoding [47]
and two-layer MLP for each header. For textured mesh,
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Figure 5. Qualitative comparisons among mesh models. We compare our mesh rendering method with others in Garden scene [12].

Blender

Unreal

Figure 6. Video2Game in Blender and Unreal Engine.

Method Outlier-%] RMSE| MAE|
Instant-NGP [48] 22.89 4.300 1.577
Nerfacto [64] 50.95 8.007 2.863
Gauss. Spl. [28] 91.08 11.768  8.797
BakedSDF* (offline) [76] 43.78 5.936 2.509
Video2Game (Our NeRF) 13.23 3.028 1.041

Table 2. Quantitative evaluation on NeRF geometry. Our NeRF
renders significantly more accurate depth compared with the base-
lines. The unit is meter and the outlier threshold is 1.5 meters.

Volume Rendering ‘ Mesh Rastization

Method PSNRt SSIMf LPIPS| PSNRf SSIMt LPIPS|

Vanilla NGP 27.46 0.853 0.165 22.54 0.716 0.350
+ Regularization terms 27.52 0.861 0.157 22.97 0.732 0.303
+ Monocular cues 27.62 0.871 0.131 23.35 0.765 0.246

Table 3. Ablation studies on KITTI-360.

we conduct marching cubes on the NeRF and post-process
it to a fixed precision. We set the texture image size to
4096x4096. For GLSL shader, we design a light-weight
two-layer MLP, which enables efficient real-time rendering.
For KITTI-360 (see Sec. 3.1), we divide the whole scene
into 16 blocks and create a skydome mesh for the sky.

Baselines: To evaluate the visual and geometry quality
of our model, we compare against SOTA approaches in
neural rendering and neural reconstruction. Instant-NGP
[48] is a NeRF-based method that exploits multi-resolution

hashing encoding. Nerfacto [64] extends the classic NeRF
with learnable volumetric sampling and appearance embed-
ding. 3D Gaussian Splatting [28] leverages 3D Gaus-
sians and achieves fast training and rendering. MobileN-
eRF [16] adopts a hybrid NeRF-mesh representation. It can
be baked into a texture map and enable real-time rendering.
BakedSDF [76] adopts a volume-surface scene representa-
tion. It models view-dependent appearance efficiently by
baking spherical Gaussians into the mesh.

4.2. Experimental results

Novel view synthesis: Tab. 1 shows the rendering perfor-
mance and interactive compatibility of our model against
the baselines on KITTI-360 [37] and Gardenvase [12]. Our
NeRF achieves superior performance when compared to
state-of-the-art neural volume render approaches across dif-
ferent scenes. Though [28] performs best in Gardenvase,
it fails to handle the sparse camera settings in KITTI-360,
where it learns bad 3D orientations of Gaussians. Our baked
mesh outperforms other mesh rendering baselines signifi-
cantly in KITTI-360 and performs similarly in Gardenvase
as shown in Fig. 5. Additionally, our pipeline has the high-
est interactive compatibility among all baselines.
Geometry reconstruction: Our model performs signifi-
cantly better than the baseline regarding geometry accuracy
(see Tab. 2). We provide some qualitative results in Fig.
4, demonstrating that our model can generate high-quality
depth maps and surface normals, whereas those produced
by the baselines contain more noise.

Ablation study: To understand the contribution of each
component in our model, we begin with the basic Instant-
NGP [48] and sequentially reintroduce other components.
The results in Tab. 3 show that our regularization and
monocular cues improve the quality of both volume render-
ing in NeRF and mesh rasterization. Additionally, we do
observe a decline in rendering performance when convert-
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ing NeRF into game engine-compatible meshes.

4.3. Video2Game

We have shown our approach’s effectiveness in rendering
quality and reconstruction accuracy across various setups.
Next, we demonstrate the construction of a web browser-
compatible game enabling player control and interaction
with the environment at over 100 FPS.

Data preparation: We build our environments based on
videos in Gardenvase [12], KITTI-360 [37] and VR-NeRF
[73] mentioned in Sec. 4.1, using our proposed approach.
The outcomes include executable environments with mesh
geometry, materials, and rigid-body physics, all encoded in
GLB and texture files.

Game engine: We build our game based on several key
components in our game engine mentioned in Sec. 3.4. By
leveraging them, our game generates a highly realistic vi-
sual rendering as well as physical interactions (see Fig. 1)
and runs smoothly at an interactive rate across various plat-
forms, browsers, and hardware setups (see Tab. 4). As for
other game engines (see Fig. 6), in Blender [17] we show-
case the compatibility of our exported assets with other
game engines. For Unreal [21], we further demonstrate a
real-time game demo where a humanoid robot can freely
interact within the Gardenvase scene, such as standing on
the table and kicking off the central vase. These prove the
compatibility of our proposed pipeline.

Interactive game features: Movement in games: Agents
can navigate the area freely within the virtual environment
where their actions follow real-world physics and are con-
strained by collision models. Shooting game: For realistic
shooting physics, we calculated the rigid-body collision dy-
namics for both the central vase and the surrounding scene
(see Fig. 3), separated using mesh semantic filtering. We
used a box collider for the vase and convex polygon collid-
ers for the background. The player shoots footballs with a
sphere collider at the vase on the table, causing it to fly off
and fall to the ground (see Fig. 1). Temple-Run like game:
The agent collects coins while running in the KITTI Loop
composed of four streets in KITTI-360. Obstructive chairs
on the road can be smashed thanks to pre-computed fracture
animations. The agent can also drive and push roadside ve-
hicles existing in the scene forward by crashing into them.
This interactivity is achieved through rigid-body dynamics
simulation and collision modeling.

Robot simulation: We demonstrate the potential of lever-
aging Video2Game for robot simulation using the VRNeRF
dataset. We reconstruct the scene and segment simulatable
rigid-body objects (e.g., the fruit bowl on the table). We
show two demos in Fig. 7: a Stretch Robot pushing the
bowl off the table and a Fetch Robot performing pick-and-
place actions. We employ PyBullet [18] to simulate the un-
derlying physics with the help of corresponding collision

Platform FPS (hz) CPU-Usage (%) GPU-Usage (%)

Mac M1 Pro Mac OS, Chrome 102 34 70
Intel Core i9 + NV 4060 Windows, Edge 240 6 74
AMD 5950 + NV 3090 Linux, Chrome 144 20 40

Table 4. Runtime Analysis. Our interactive environment can run
in real-time across various hardware setup and various platforms.
User actions may slightly vary, which could lead to minor varia-
tions in runtime.

e

,;l

push fall

Figure 7. Robot simulation in VRNeRF [73] dataset. We
demonstrate the possibility of conducting robot learning in our vir-
tual environments using Stretch Robot [6] and Fetch Robot [5].

models. Since real-time grasping simulation is challenging,
following existing robot simulation frameworks [8, 9, 32],
objects near the Fetch gripper are automatically picked up.
This demonstrates our model’s ability to convert a real-time
video stream into a virtual environment, allowing robots to
rehearse before acting in the real environment.

5. Conclusion

We present a novel approach to converting real-world video
footage into playable, real-time, and interactive game envi-
ronments. Specifically, we combine the potential of NeRF
modeling with physics modeling and integrate them into
modern game engines. Our approach enables any indi-
vidual to transform their surroundings into an interactive
digital environment, unlocking exciting possibilities for 3D
content creation, with promising implications for future ad-
vancements in digital game design and robot simulation.
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