
GoMAvatar: Efficient Animatable Human Modeling from Monocular Video

Using Gaussians-on-Mesh

Jing Wen Xiaoming Zhao Zhongzheng Ren Alexander G. Schwing Shenlong Wang

University of Illinois Urbana-Champaign

{jw116, xz23, zr5, aschwing, shenlong}@illinois.edu

https://wenj.github.io/GoMAvatar/

&
&

Single Video Gaussians-on-Mesh Animatable Real-time Explicit Geometry

43FPS

t

Figure 1. GoMAvatar takes a monocular RGB video (left) as input to establish an explicit and accurate 4D representation of a dynamic

human. It can render efficiently at novel views and poses with state-of-the-art quality. Additionally, it is extremely compact (3.63 MB per

subject), efficient (43 FPS), and seamlessly compatible with the graphics pipeline such as OpenGL.

Abstract

We introduce GoMAvatar, a novel approach for real-

time, memory-efficient, high-quality animatable human

modeling. GoMAvatar takes as input a single monocular

video to create a digital avatar capable of re-articulation

in new poses and real-time rendering from novel view-

points, while seamlessly integrating with rasterization-

based graphics pipelines. Central to our method is the

Gaussians-on-Mesh (GoM) representation, a hybrid 3D

model combining rendering quality and speed of Gaussian

splatting with geometry modeling and compatibility of de-

formable meshes. We assess GoMAvatar on ZJU-MoCap,

PeopleSnapshot, and various YouTube videos. GoMA-

vatar matches or surpasses current monocular human mod-

eling algorithms in rendering quality and significantly out-

performs them in computational efficiency (43 FPS) while

being memory-efficient (3.63 MB per subject).

1. Introduction

High-fidelity, animatable digital avatar modeling is crucial

for various applications such as movie making, healthcare,

AR/VR, and simulation. Conventional approaches carried

out in Motion Capture (MoCap) studios are slow, expensive,

and cumbersome, due to costly wearable devices [42, 52]

and intricate multi-view camera systems [28, 74]. Hence, to

enable widespread personal use, affordable methods which

only rely on monocular RGB videos for creating digital

avatars are much desired.

Reconstruction of digital humans from monocular

videos has been studied intensively recently [16, 25, 64,

70, 81]. The key lies in choosing a suitable 3D represen-

tation, flexible for articulation, efficient for rendering and

storage, and capable of modeling high-quality geometry and

appearance all while being easily integrated into graphics

pipelines. Despite various proposals, no animated 3D rep-

resentation has met all these needs. Neural fields based

avatars [16, 27, 70, 81] offer photorealism, but they are

challenging to articulate and lack explicit geometry, mak-

ing them less compatible with game engines. Mesh-based

methods [58] excel in articulation and rendering but fall

short in modeling topological changes and high-quality ap-

pearance. Point-based methods [88] are limited by incom-

plete topology and surface geometry. Recent successes of

Gaussian splatting in neural rendering motivate extensions
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to free-form dynamic scenes [73], but a knowledge gap ex-

ists in how to leverage Gaussians for articulatable humans.

Besides, the lack of explicit surface modeling of Gaussian

splats hinders their broader use in digital avatar modeling.

To address these challenges, we present GoMAvatar, a

novel digital avatar modeling framework. GoMAvatar op-

erates on a single monocular video and yields an articulated

character that encodes high-fidelity appearance and geom-

etry. It is both articulable and memory-efficient, render-

ing in real-time (see Fig. 1). Central to the framework is

a novel articulated human representation, which we refer

to as Gaussians-on-Mesh (GoM) (Sec. 3.1). GoM com-

bines rendering quality and speed of Gaussian splatting

with geometry modeling and compatibility of deformable

meshes. Specifically, GoM employs Gaussian splats for

rendering, offering flexibility in modeling rich appearances

and enabling real-time performance (Sec. 3.2). GoM uti-

lizes a skeleton-driven deformable mesh, enabling the cre-

ation of compact, topologically complete digital avatars,

while easing mesh articulation through forward kinematics

(Sec. 3.3). Crucially, to integrate both representations, we

attach a Gaussian to each mesh face. This method differs

from traditional mesh techniques that rely on texturing or

vertex coloring to enhance rendering. It also differs from

standard freeform Gaussian splats, thereby better regulariz-

ing Gaussians for novel poses. Furthermore, to tackle view

dependency, we factorize the final RGB color into a pseudo

albedo map rendering and a pseudo shading map prediction.

This entire representation can be inferred from a single in-

put video without additional training data (Sec. 3.5). We

find this dual representation to balance performance and ef-

ficiency effectively. Importantly, the entire animation and

rendering of GoM are fully compatible with graphics en-

gines, such as OpenGL.

We conducted extensive experiments on the ZJU-MoCap

data [54], PeopleSnapshot [1] and YouTube videos. Go-

MAvatar matches or surpasses the rendering quality of

the best monocular human modeling algorithms (GoMA-

vatar reaches 30.37 dB PSNR in novel view synthesis and

30.31 dB PSNR in novel pose synthesis). Meanwhile, it

is faster than competing algorithms, reaching a rendering

speed of 43 FPS on an NVIDIA A100 GPU and remains

compact in memory, only costing 3.63 MB per subject

(Fig. 2). To summarize, our main contributions are:

• We introduce the Gaussians-on-Mesh representation for

efficient, high-fidelity articulated human reconstruction

from a single video, combining Gaussian splats with de-

formable meshes for real-time, free-viewpoint rendering.

• We design a unique differentiable shading module for

view dependency, splitting color into a pseudo albedo

map from Gaussian splatting and a pseudo shading map

derived from the normal map.

Figure 2. Our approach is simultaneously faster (represented

by x coordinates of circle centers , smaller is better), memory-

efficient (represented by circle size, smaller is better), and renders

at a higher quality (represented by y coordinates of circle centers,

higher is better). The horizontal brown line denotes our PSNR.

2. Related Work

Representations for novel view synthesis. Several rep-

resentations have been proposed for the task of novel view

synthesis, such as light fields [3, 17, 36], layered representa-

tions [61, 62, 71, 90], voxels [41, 63], and meshes [18, 23].

Recently, several works also demonstrated the effective-

ness of an implicit representation, i.e., a neural network,

for a scene [12, 47, 51]. Further, neural radiance fields

(NeRFs) [49] utilize a volume rendering equation [29] to

optimize the implicit representation, yielding high-quality

view synthesis. Follow-up works further improve and

demonstrate compelling rendering results [4–6, 46, 57, 67,

82]. Meanwhile, other works use volume rendering equa-

tions to optimize more explicit representations [7, 50, 80],

largely accelerating the optimization procedure. Point-

based rendering (e.g., Gaussian splatting [30, 45, 72]) has

recently been adopted for fast rendering. It models the

scenes as a set of 3D Gaussians, each equipped with ro-

tation, scale, and appearance-related features, and raster-

izes by projecting the 3D Gaussians to the 2D image plane.

To model dynamic scenes, [45, 72] further extend the 3D

Gaussians, adding a time dependency. To regularize the 3D

Gaussians through time, [45] adds physically-based priors

during training, and [72] uses a neural network to predict

the deformation of Gaussians. Our approach is inspired

by the recent progress of point-based rendering to facili-

tate fast rendering. More concretely, we also use Gaussian

splatting for rendering. However, different from previous

approaches, we propose the Gaussians-on-Mesh represen-

tation that combines 3D Gaussians with a mesh representa-

tion. By doing so, we obtain fast rendering speed as well as

regularized deformation of 3D Gaussians.

Human modeling. Early works to model humans rely on

templates, e.g., SCAPE [2] and SMPL [43]. Later, [56,

59, 60, 86] utilize (pixel-aligned) image features to re-

construct human geometry and appearance from a single
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image. However, such human modeling is not animat-

able. ARCH [19, 76] and S3 [77] incorporate reanima-

tion capabilities but they fall short in delivering high-quality

rendering. Recently, efforts on human geometry model-

ing exploit implicit representations [10, 11, 24, 48, 66].

Their use of 3D scans also limits their application. To

address this limitation, human modeling from videos has

received a lot of attention from the community: many

prior efforts utilize implicit representations and differen-

tiable renderers for either non-animatable [54] or animat-

able [16, 22, 25, 37, 39, 53, 55, 64, 69, 70, 75, 81, 83, 89]

scene-specific human modeling while other efforts focus on

scene-agnostic modeling [9, 14, 21, 31, 34, 35, 56, 85, 87].

In this study, our approach focuses on scene-specific mod-

eling following prior works. Different from the common

pure implicit representations, we utilize an explicit repre-

sentation termed Gaussians-on-Mesh. The explicit canoni-

cal geometry enables us to apply well-defined forward kine-

matics, such as linear blend skinning, to transform from the

canonical space to the observation space. In contrast, meth-

ods using implicit representations can only perform map-

ping in a backward manner, i.e., from the observation space

to the canonical space, which is inherently ill-posed and am-

biguous.

Real-time rendering of animatable human modeling.

The key to real-time rendering in our approach is the co-

design of an explicit geometry representation and rasteri-

zation: Gaussian splatting and mesh rasterization are faster

than volume rendering in general. This principle has been

explored by prior efforts to accelerate the rendering of

general-purpose NeRFs. Representative approaches pro-

pose to either bake [20, 78, 79] or cache [15] the trained

implicit representation. Another line of work exploits mesh-

based rasterization to boost the inference speed [13, 38, 78].

Inspired by the success, concurrent works explore efficient

NeRF rendering for humans [16, 58]. Note, [58] firstly

trains a NeRF representation and then bakes it into a mesh

for real-time rendering. However, the second baking stage

is shown to harm the rendering quality. In contrast, the pro-

posed Gaussians-on-Mesh representation is trained end-to-

end, achieving a superior quality-speed trade-off.

3. Gaussians-on-Mesh (GoM)

In the following, we present the Gaussians-on-Mesh (GoM)

representation, how to render it, and its articulation. The

goal of the proposed representation is to combine the ben-

efits of both Gaussian splatting and meshes while alleviat-

ing some of their individual shortcomings. Concretely, by

using Gaussian splatting, we attain a high-quality real-time

rendering capability, achieving 43 FPS. By utilizing a mesh,

we conduct effective articulation in a forward manner while

also regularizing the underlying geometry.

Overview. Given a monocular video capturing a human

GoM
o

µj ,,Σj

j,1
p
o

∆j,2

j,0
p
o

∆j,1

p
o
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Figure 3. Gaussians-on-Mesh (GoM). We learn Gaussians in the

local coordinates of each triangle and transform them to the world

coordinate based on the triangle’s shape. We initialize the rotation

rθ,j ∈ so(3) to zeros and scale sθ,j ∈ R
3 to ones so that we start

with a Gaussian that’s thin along the normal axis of the triangle.

Meanwhile, the projection of the ellipsoid {x : (x−µj)
T
Σ

−1

j (x−
µj) = 1} on the triangle recovers the Steiner ellipse. See Sec. 3.1

and the appendix for details.

subject of interest, we aim to learn a canonical Gaussians-

on-Mesh representation GoMc
θ such that we can render that

human in real-time given any camera intrinsics K 2 R
3×3,

extrinsics E 2 SE(3), and a human pose P . Note, here and

below, parameters θ indicate that the corresponding func-

tion or variable is learnable and superscript c indicates the

canonical pose space. To render, we first articulate GoMc
θ

to the observation space to obtain

GoMo = Articulatorθ (GoMc
θ, P ) , (1)

where GoMo denotes the Gaussians-on-Mesh representa-

tion in the observation space. To obtain a rendering with

resolution H åW , we formulate a neural renderer to yield

the human appearance I 2 R
H×W×3 and the alpha mask

M 2 R
H×W×1. Formally,

(I,M) = Rendererθ (K,E,GoMo) . (2)

The final rendering is obtained from a classical alpha-

composition based on I and M . We will first discuss

the details of the Gaussians-on-Mesh human representation

in Sec. 3.1 and the rendering pipeline in Sec. 3.2. Then we

introduce how to articulate the Gaussians-on-Mesh repre-

sentation in Sec. 3.3.

3.1. Gaussians-on-Mesh Representation

The core of our approach is the Gaussians-on-Mesh (GoM)

representation in the canonical space. The design of the rep-

resentation is motivated by the following two key considera-

tions: 1) GoM can be rendered efficiently through Gaussian

splatting [30] which eliminates the need of dense samples

along rays used in volume rendering; 2) By attaching Gaus-

sians to a mesh, we effectively adapt the shapes of Gaus-

sians to different human poses and enable regularization.
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Formally, our canonical Gaussians-on-Mesh representa-

tion is specified via a collection of points and faces with

associated attributes:

GoMc
θ , {{vcθ,i}

V
i=1

, {fθ,j}
F
j=1

}. (3)

Here, {vc
θ,i}

V
i=1

and {fθ,j}
F
j=1

represent V vertices and F

triangle faces along with their related attributes respectively.

We further define a vertex as

vcθ,i = (pcθ,i, wi), (4)

where pc
θ,i 2 R

3 is the vertex coordinate and wi 2 R
J refers

to the linear blend skinning weights with respect to J joints.

We define the face as

fθ,j = (rθ,j , sθ,j , cθ,j , {∆j,k}
3

k=1
). (5)

rθ,j 2 so(3) and sθ,j 2 R
3 define the rotation and scale

of the local Gaussian associated with a face. Further,

cθ,j 2 R
3 is the color vector. {∆j,k}

3

k=1
are the in-

dices of the three vertices belonging to the j-th face, where

∆j,k 2 {1, . . . , V }. Note that we associate Gaussian pa-

rameters with faces. We will delve into the derivation of the

Gaussian distributions in the world coordinates for render-

ing in the following section.

3.2. Rendering

In contrast to directly computing the final color as done by

prior monocular human rendering works [70, 81], render-

ing of the Gaussians-on-Mesh representation decomposes

the RGB image I into the pseudo albedo map IGS and the

pseudo shading map S, i.e., the final image I is given by

I = IGS · S. (6)

Here, IGS is rendered by Gaussian splatting and S is pre-

dicted from the normal map obtained from mesh rasteriza-

tion. We find this combination of Gaussian splatting and

mesh rasterization to better capture view-dependent shad-

ing effects than each individual approach while retaining

efficiency. We use ‘pseudo’ because the decomposition is

not perfect. Even though, we will show that the pseudo

shading map encodes lighting effects to some extent.

We emphasize that rendering operates on the GoM rep-

resentation in the observation space (see Eq. (2)), i.e., on

GoMo , {{(poi , wi)}
V
i=1

, {(rθ,j , sθ,j , cθ,j)}
F
j=1

}. (7)

Note, the only difference between GoMo and GoMc
θ defined

in Eq. (3) is the use of observation space vertex coordinates

poi . Sec. 3.3 will provide more details about how to compute

poi from the vertex coordinates in canonical space pc
θ,i.

In greater detail, Gaussian splatting is used to render the

pseudo albedo map IGS, specified in Eq. (6), and the sub-

ject mask M , specified in Eq. (2). To obtain the pseudo

shading map S, specified in Eq. (6), we use the normal

map Nmesh obtained via standard mesh rasterization. Dur-

ing training, we also use the subject mask Mmesh which is

obtained through the SoftRasterizer [40]. We now discuss

the computation of IGS and S.

Pseudo albedo map IGS rendering. We render IGS and

M with Gaussian splatting given F Gaussians in the world

coordinate system {Gj , N (µj ,Σj)}
F
j=1

and the corre-

sponding colors {cθ,j}
F
j=1

which are defined in Eq. (5). F

indicates the number of faces.

Importantly, different from the original 3D Gaussian

splatting that directly learns Gaussian parameters within

the world coordinate system, we acquire these parame-

ters within the local coordinate frame of each triangle

face. Subsequently, we transform these local Gaussians

into the world coordinate system, taking into account the

deformations of the individual faces. This distinctive for-

mulation allows our Gaussian representation to dynami-

cally adapt to the varying shapes of triangles, which can

change across different human poses due to articulation.

Concretely, given a face and its local parameters fθ,j =
(rθ,j , sθ,j , cθ,j , {∆j,k}

3

k=1
), the mean µj of a Gaussian in

world coordinates is the centroid of the face, i.e.,

µj =
1

3

3
X

k=1

po∆j,k
. (8)

po
∆j,k

is the coordinate of the triangle’s vertex. The Gaus-

sian’s covariance is

Σj = Aj(RjSjS
T
j R

T
j )A

T
j . (9)

Rj and Sj are the matrices encoding rotation rθ,j and scale

sθ,j . Aj is the transformation matrix from local coordinates

to world coordinates which is a function of the face vertices,

i.e., Aj = T ({po
∆j,k

}3k=1
). We provide a detailed deriva-

tion of Aj in the supplementary material. Through Eq. (8)

and (9), Gaussians are dynamically adapted to the shapes of

triangles of different human poses.

Pseudo shading map S prediction. For view-dependent

shading effects, we predict the pseudo shading map from

the mesh rasterized normal map Nmesh via

R
H×W×1 3 S = Shadingθ (γ(Nmesh)) . (10)

Here γ(·) denotes the positional encoding [49]. Shadingθ

is a 1 å 1 convolutional network that maps each pixel to a

scaling factor.

3.3. Articulation

Different from NeRF-based approaches [16, 70, 81] that

require the ill-posed backward mapping from observation
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space to canonical space, our articulation follows the mesh’s

forward articulation, i.e., from canonical space to observa-

tion space, taking advantage of our Gaussians-on-Mesh rep-

resentation.

The goal of the articulator defined in Eq. (1) is to obtain

the Gaussians-on-Mesh representation in observation space,

i.e., GoMo (see Eq. (7)), given the canonical representation

GoMc
θ and a human pose P . Note, we only transform pc

θ,i

to poi as all the other attributes are shared.

To transform, linear blend skinning (LBS) is applied

to warp the vertices to the observation space. For pose-

dependent non-rigid motion, we utilize a non-rigid motion

module to deform the canonical vertices before applying

LBS. We refer to the space after non-rigid deformation as

‘the non-rigidly transformed canonical space’.

Linear blend skinning. We adhere to the standard linear

blend skinning for the transformation of vertices from the

non-rigidly transformed canonical space into the observa-

tion space as R3 3 po
i =

LBS (pnr
i , wi, P ) =

PJ

j=1
w

j
i (R

p
jp

nr
i + t

p
j )

PJ

k=1
wk

i

. (11)

In this equation, the human pose P = {(Rp
j , t

p
j )}

J
j=1

is rep-

resented by the rotations and translations of J joints. Each

vertex is associated with LBS weights denoted as wi. And

pnr
i represents the coordinates in the non-rigidly transformed

canonical space, which we will elaborate on next.

Non-rigid deformation. To transform to the non-rigidly

transformed canonical space, we model a pose-dependent

non-rigid deformation before LBS. Specifically, we predict

an offset and add it to the i-th canonical vertex, i.e.,

pnr
i = pcθ,i + NRDeformerθ

�

γ(pcθ,i), P
�

. (12)

NRDeformer refers to an MLP network. γ(·) denotes the

sinusoidal positional encoding [49].

3.4. Pose Refinement

Human poses are typically estimated from the image and

hence often inaccurate. Therefore, we follow Human-

NeRF [70] to add a pose refinement module that learns to

correct the estimated poses. Specifically, given a human

pose P̂ = {(R̂p
j , t

p
j )}

J
j=1

estimated from a video frame, we

predict a correction to the joint rotations via

{ξj}
J
j=1

= PoseRefinerθ

ã

{R̂p
j}

J
j=1

;

. (13)

where ξj 2 SO(3). We obtain the updated pose P =

{(Rp
j , t

p
j )}

J
j=1

= {(R̂p
j · ξj , t

p
j )}

J
j=1

, which is used

in Eq. (11) and (12).

It’s important to note that pose refinement occurs only

during novel view synthesis and the training stage to com-

pensate for the inaccuracies in pose estimation from the

videos. It is not needed for animation.

3.5. Training

We supervise the predicted RGB image I and subject mask

M with ground-truth Igt and Mgt. Our overall loss is

L = LI + αlpipsLlpips + αMLM + αregLreg. (14)

Here, α∗ are weights for losses. LI and LM are the L1 loss

on the RGB images and subject masks respectively. Llpips

is the LPIPS loss [84] between predicted RGB image I and

ground-truth Igt. We add additional regularization on the

underlying mesh via Lreg =

Lmask + αlapLlap + αnormalLnormal + αcolorLcolor. (15)

Lmask = kMmesh � Mgtk is the regularization on the mesh

silhouette. Llap = 1

N

PN

i=1
kδik

2 is the Laplacian smooth-

ing loss, where δi is the Laplacian coordinate of the i-th ver-

tex. Lnormal is the normal consistency loss that maximizes

the cosine similarity of adjacent face normals. Similar to

the normal consistency, we apply a color smoothness loss

denoted as Lcolor, which penalizes the differences in colors

between two adjacent faces.

We initialize the vertices and faces with SMPL [43]. We

initialize the rθ,j and sθ,j in Eq. (5) to zeros and ones re-

spectively so that we start with a thin Gaussian whose vari-

ance in the face normal axis is small. Meanwhile, the pro-

jection of the ellipsoid {x : (x � µj)
T
Σ

−1

j (x � µj) = 1}
on the triangle recovers the Steiner ellipse (see Fig. 3). To

enhance the details, we upsample the canonical GoMc
θ us-

ing GoM subdivision during training. We first subdivide

the underlying mesh by introducing new vertices at the cen-

ter of each edge, followed by replacing each face with four

smaller faces. The properties of each face, as described in

Eq. (5), are duplicated across the newly generated faces.

4. Experiments

We evaluate GoMAvatar on the ZJU-MoCap dataset [54],

the PeopleSnapshot dataset [1] and on YouTube videos,

comparing with state-of-the-art human avatar modeling

methods from monocular videos. We showcase our

method’s rendering quality under novel views and poses,

as well as its speed and geometry.

4.1. Experimental setup

Datasets. We validate our proposed approach on ZJU-

MoCap [54] data, PeopleSnapshot [1] data and Youtube

videos. ZJU-MoCap: The ZJU-MoCap dataset provides

a comprehensive multi-camera, multi-subject benchmark

for human rendering evaluation. It has 9 dynamic human

videos captured by 21 synchronized cameras. In our paper,

to ensure a fair comparison, we adhere to the training/test

split in MonoHuman [81] and follow their monocular video

human rendering setting. We validate our approach on six
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Novel view synthesis Novel pose synthesis Inference

time (ms) #
Memory

(MB) #PSNR " SSIM " LPIPS* # PSNR " SSIM " LPIPS* #

Neural Body [54] 28.72 0.9611 52.25 28.54 0.9604 53.91 212.3 16.76

HumanNeRF [70] 29.61 0.9625 38.45 29.74 0.9655 34.79 1776.7 245.73

NeuMan [27] 28.96 0.9479 60.74 28.75 0.9406 62.35 3412.5 2.27

MonoHuman [81] 30.26 0.9692 30.92 30.05 0.9684 31.51 5970.0 280.67

Ours 30.37 0.9689 32.53 30.34 0.9688 32.39 23.2 3.63

Table 1. Quantitative results on ZJU-MoCap dataset. Our results generally provide the best (or second best) quality across both novel

view and novel pose rendering while being the fastest and having the second smallest parameter size. ( best, second best)

CD # NC "

Neural Body [54] 5.1473 0.4985

HumanNeRF [70] 2.8029 0.5039

MonoHuman [81] 2.6303 0.5205

Ours 2.8364 0.6201

Table 2. Geometry quality evaluation. Our approach provides

the best normal consistency across all methods, and MonoHuman

achieves best quality in surface geometry. ( best, second best)

Novel view synthesis Inference

time (ms) #PSNR " SSIM " LPIPS #

Anim-NeRF [8] 28.89 0.9682 0.0206 217.00

InstantAvatar [26] 28.61 0.9698 0.0242 71.26

Ours 30.68 0.9767 0.0213 25.82

Table 3. Quantitative results on PeopleSnapshot dataset. Our

approach provides the best results regarding PSNR and SSIM

while being the fastest in inference. ( best, second best)

subjects (377, 386, 387, 392, 393, and 394) in the dataset.

For each subject, the first 4/5 frames from Camera 0 are

used for training. We use the corresponding frames in the

remaining cameras to evaluate novel view synthesis, and

the last 1/5 frames from all views to evaluate novel pose

synthesis. PeopleSnapshot: The PeopleSnapshot dataset

provides monocular videos where humans rotate in front

of the cameras. We follow the evaluation protocol in In-

stantAvatar [26] to validate our approach. We report results

averaged on four subjects (f3c, f4c, m3c, and m4c) and re-

fine the test poses. Youtube videos: We qualitatively vali-

date our approach on Youtube dancing videos used in Hu-

manNeRF [70]. We generate the subject masks with Medi-

aPipe [44], and the SMPL poses with PARE [33].

Baselines. We compare with state-of-the-art approaches

for single-video articulated human capturing algorithms, in-

cluding NeuralBody [54], HumanNeRF [70], NeuMan [27],

MonoHuman [81], Anim-NeRF [8] and InstantAvatar [26].

Similar to our method, these methods take as input a single

video and 3D skeleton and output an articulated neural hu-

man representation, that can facilitate both novel view and

novel pose synthesis.

Evaluation metrics. We report PSNR, SSIM and LPIPS or

LPIPS* (= LPIPS å 1000) for novel view synthesis and

novel pose synthesis. To compare the geometry, we report

Chamfer Distance (CD) and the Normal Consistency (NC)

following the protocol in ARAH [69]. For normal consis-

tency, we compute 1� L2 distance between normals for 1)

each vertex in the ground-truth mesh; and 2) its closest ver-

tex in the predicted mesh. We also benchmark the inference

speed in milliseconds (ms) / frame on an NVIDIA A100

GPU and the memory cost (the size of parameters used in

inference).

4.2. Quantitative results

Tab. 1 presents our results on ZJU-MoCap data follow-

ing MonoHuman’s split. In terms of perceptual per-

formance, our approach achieves PSNR/SSIM/LPIPS*

of 30.37/0.9689/32.53 on novel view synthesis and

30.34/0.9688/32.39 on novel pose synthesis, which is on

par with the top-performing competitive methods MonoHu-

man. Notably, in terms of inference time, our approach

achieves a rendering speed of 23.2ms/frame (43 FPS),

which is 257å faster than MonoHuman, 76å faster than

HumanNeRF, and more than 9å faster than any competing

algorithm. These results indicate that our proposed method

enables real-time articulated neural human rendering from a

single video. Meanwhile, our approach is memory-efficient

(3.63 MB parameters), which is smaller than all competitive

methods except NeuMan [27].

We also evaluate the Chamfer distance and the nor-

mal consistency between predicted geometry and pseudo

ground-truth geometry in Tab. 2. Note that the pseudo

ground-truths are generated from NeuS [68] on all view-

points and are then filtered, following ARAH [69]. Our ap-

proach significantly outperforms NeRF-based approaches

in terms of normal consistency, which indicates that our

approach can learn meaningful geometry. Note that our

Chamfer distance is slightly worse than HumanNeRF and

MonoHuman. It is possibly due to the use of 3D Gaussians,

which have thickness in the surface normal direction. The

rendered mask is larger than the actual mesh’s silhouette.

Hence, our meshes are a bit smaller than the ‘real’ meshes.

Following InstantAvatar’s split, we evaluate our ap-

proach on four subjects in PeopleSnapshot dataset in Tab. 3.

Our approach achieves the PSNR/SSIM/LPIPS/inference

time of 30.68/0.9767/0.0213/25.82ms, significantly out-

performing InstantAvatar’s 28.61/0.9698/0.0242/71.26ms.

Compared to Anim-NeRF’s PSNR/SSIM/LPIPS of

28.89/0.9682/0.0206, our PSNR and SSIM are significantly
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(a) Ground truth (b) Neural Body (c) HumanNeRF (d) MonoHuman (e) GoMAvatar (ours)

Figure 4. Qualitative comparison to state-of-the-arts. In each pair, we render the RGB image and normal map. The normal map is

rendered from the extracted mesh. We show that our approach can produce realistic details in both rendered images and geometry, while

other approaches struggle to generate a smooth mesh.

(a) Reference (b) HumanNeRF (c) MonoHuman (d) Ours

Figure 5. Qualitative results on YouTube videos. The first image

is the reference image. We compare novel view synthesis in the

first row and novel pose synthesis in the second row.

better, while LPIPS is on par. Also, Anim-NeRF renders

at a speed of 217ms/frame on an Nvidia A100, while ours

achieves 25.82ms/frame, being 8.4å faster.

4.3. Qualitative results

Novel view synthesis. We provide a qualitative compar-

ison with NeuralBody, HumanNeRF and MonoHuman on

rendered images and normal maps in Fig. 4. The nor-

mal maps are rendered from the extracted meshes. As can

be seen from the figure, our approach captures fine de-

tails, such as facial features and wrinkles, and avoids the

“ghost effect” and “floaters” observed in HumanNeRF’s

and MonoHuman’s output (see the armpit of the second sub-

ject in HumanNeRF’s rendering and floaters around Mono-

Human’s rendering). The ghost effect typically occurs when

two body parts come too close, an artifact due to Human-

NeRF’s and MonoHuman’s voxel-based inverse blend skin-

(a) Target pose (b) HumanNeRF (c) MonoHuman (d) Ours

Figure 6. Novel pose synthesis. Poses are from using poses gen-

erated from MDM [65].

ning. Specifically, limited by the resolution of the LBS

weights, the free space is affected by two unrelated body

parts and thus obtains a large foreground score. The floaters

are typical volume rendering artifacts as in other NeRF rep-

resentations. In contrast, our approach uses explicit geom-

etry and thus does not suffer from both issues. We addi-

tionally test our approach on YouTube dancing videos in the

first row of Fig. 5. Note that the human poses and masks are

predicted and thus inaccurate. However, our method still

renders novel views well, while HumanNeRF and Mono-

Human suffer from imperfect masks and produce floaters.

Novel pose synthesis. We render novel poses generated

from MDM [65], as depicted in Fig. 6. Remarkably, our ap-

proach performs effectively even in extremely challenging

poses characterized by self-penetration, such as sitting. In

contrast, both HumanNeRF and MonoHuman lack the capa-

bility to handle such self-penetration, due to the voxel-based

inverse blend skinning (see the incomplete left hands). We

validate our approach on novel view synthesis using an in-

the-wild YouTube video, as illustrated in the second row

of Fig. 5. Specifically, when rendering the avatar in a leg-

crossing pose, both HumanNeRF and MonoHuman fail to

produce accurate results, whereas our approach success-

fully renders the pose with fidelity.
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Gaussians Mesh PSNR " SSIM " LPIPS* #

X å 30.06 0.9673 34.13

å X 28.93 0.9615 38.11

X X 30.36 0.9690 33.28

Table 4. Ablations on scene representation for novel view syn-

thesis. Gaussians-on-Mesh achieves the best results.

4.4. Ablation studies

Canonical representation. We conduct ablation studies

on the Gaussians-on-Mesh (GoM) representation and 3D

Gaussians or meshes alone, as summarized in Tab. 4. In the

3D Gaussians experiment, we only use Gaussian splatting

for rendering, and supervise the rendered image and sub-

ject mask during training. We initialize the Gaussians’ cen-

troids as the vertices of the canonical T-pose SMPL mesh

and directly learn their centroids, rotations and scales in the

world coordinates, which differs from the triangle’s local

coordinates used in our approach. We also compare with

just using a mesh: We initialize using the canonical SMPL

mesh and attach the pseudo-albedo colors to the vertices.

We render the RGB image and subject mask with mesh ras-

terization [40]. We supervise the rendered image and sub-

ject mask and apply all regularizations in Eq. (15). We also

utilize the color decomposition in Eq. (6).

We find 3D Gaussians alone suffer from overfitting:

without geometry regularization, Gaussians are too flexible

and achieve similar rendering quality on training images,

while the outputs are undesirable during inference. When

using only the mesh, optimization is a known challenge.

In contrast, GoM alleviates these issues and combines the

strengths of both representations. GoM produces the high-

est rendering quality among the three representations.

Local Gaussians vs. world Gaussians. We compare three

choices of attaching Gaussians to the mesh: 1) World

Gaussians: We associate the Gaussian’s centroid with the

face’s centroid (Eq. (8)). However, we directly learn the rθ,j
and sθ,j in the world coordinates, i.e., Σj = RjSjS

T
j , R

T
j ,

where Rj and Sj are the matrix encodings of rθ,j and sθ,j ;

2) Local fixed Gaussians: We follow Eqs. (8) and (9) to

compute a Gaussian’s mean and covariance in the world co-

ordinates. However, rθ,j and sθ,j are fixed so that the vari-

ance in the normal axis is small. Meanwhile, the projection

of the ellipsoid {x : (x � µj)
T
Σ

−1

j (x � µj) = 1} on the

triangle recovers the Steiner ellipse. 3) Local Gaussians:

We use Eqs. (8) and (9) to transform the Gaussians and rθ,j
and sθ,j are free variables.

We show the comparison in the top section of Tab. 5. In

terms of rendering quality, world Gaussians and local Gaus-

sians achieve similar performance. But world Gaussians

tend to enlarge the scales instead of stretching the faces, so

the geometry is worse. Local fixed Gaussians can produce

equally good geometry, but lose rendering flexibility.

Shading Module. As shown in the middle section of Tab. 5,

PSNR ↑ SSIM ↑ LPIPS* ↓ CD ↓ NC ↑

World Gaussians 30.34 0.9689 33.99 4.3941 0.6223

Local Fixed Gaussians 30.27 0.9685 34.11 3.0898 0.6247

Local Flex. Gaussians 30.36 0.9690 33.28 3.0728 0.6366

w/o Shading 30.13 0.9684 32.07 3.0177 0.6360

w/ Shading 30.36 0.9690 33.28 3.0728 0.6366

w/o Subdivision 30.36 0.9690 33.28 3.0728 0.6366

w/ Subdivision 30.37 0.9689 32.53 2.8364 0.6201

Table 5. Ablation Studies. Top section: locally deformed Gaus-

sians help improve both geometry and rendering quality. Middle

section: our proposed shading module enhances rendering quality.

Bottom section: subdivision significantly improves geometry.

(a) Pseudo shading map (b) Rendered image

Figure 7. Pseudo shading map. We visualize the pseudo shading

map and the rendered image for reference. Our approach learns

view-dependent shading effects as seen in the highlighted regions.

The pseudo shading map is normalized for better visualization.

without the shading module in Eq. (6)—that is, by directly

using IGS as the RGB prediction—our model achieves a

PSNR of 30.13. However, with the shading module in-

cluded, the PSNR increases to 30.36. We also visualize the

pseudo shading map, demonstrating that our shading mod-

ule learns lighting effects, as illustrated in Fig. 7.

GoM subdivision. We show in the bottom section of Tab. 5

that GoM subdivision enhances the LPIPS* from 33.28 to

32.53 and reduces the Chamfer distance from 3.0728 to

2.8364. Importantly, the geometry significantly improves

with a more fine-grained mesh. Note, this increases infer-

ence time to 23.2ms per frame from 17.5ms.

5. Conclusion
We introduce GoMAvatar, a framework designed for ren-

dering high-fidelity, free-viewpoint images of a human per-

former, using a single input video. At the core of our

method is the Gaussians-on-Mesh representation. Paired

with forward articulation and neural rendering, our method

renders quickly while being memory efficient. Notably, the

method handles in-the-wild videos well.
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