


Dataset Samples Aligned Scenario Source

More Than a Feeling [7] 6.5k ✕ Tabletop Robot

Feeling of Success [6] 9.3k ✕ Tabletop Robot

VisGel [35] 12k ✕ Tabletop Robot

SSVTP [28] 4.6k ✓ Tabletop Robot

ObjectFolder 1.0 [16] – ✓ Object Synthetic

ObjectFolder 2.0 [17] – ✓ Object Synthetic

ObjectFolder Real [18] 3.7k ✕ Object Robot

Burka et al. [5] 1.1k ✕ Sub-scene Human

Touch and Go [56] 13.9k ✕ Sub-scene Human

YCB-Slide∗ [52] - ✓ Object Human

Touching a NeRF [63] 1.2k ✓ Object Robot

TaRF (Ours) 19.3k ✓ Full scene Human

Table 1. Dataset comparison. We present the number of real

visual-tactile pairs and whether such pairs are visually aligned,

i.e., whether the visual image includes an occlusion-free view of

the touched surface. ∗YCB-Slide has real-world touch probes but

synthetic images rendered with CAD models of YCB objects on a

white background [9].

lab setting and have collected touch from real scenes [5, 56].

However, existing datasets lack aligned visual and tactile in-

formation, since the touch sensor and the person (or robot)

that holds it often occlude large portions of the visual scene

(Fig. 2). These datasets also contain only a sparse set of

touch signals for each scene, and it is not clear how the sam-

pled touch signals relate to each other in 3D.

In this work, we present a simple and low-cost procedure

to capture quasi-dense, scene-level, and spatially-aligned

visual and touch data (Fig. 1). We call the resulting scene

representation a tactile-augmented radiance field (TaRF).

We remove the need for robotic collection by leveraging

a 3D scene representation (a NeRF [39]) to synthesize a

view of the surface being touched, which results in spatially

aligned visual-tactile data (Fig. 2). We collect this data by

mounting a touch sensor to a camera with commonly avail-

able materials (Fig. 3). To calibrate the pair of sensors, we

take advantage of the fact that popular vision-based touch

sensors [25, 26, 32, 48] are built on ordinary cameras. The

relative pose between the vision and tactile sensors can thus

be estimated using traditional methods from multi-view ge-

ometry, such as camera resectioning [20].

We use this procedure to collect a large real-world

dataset of aligned visual-tactile data. With this dataset, we

train a diffusion model [45, 51] to estimate touch at loca-

tions not directly probed by a sensor. In contrast to the re-

cent work of Zhong et al. [63], which also estimates touch

from 3D NeRF geometry, we create scene-scale reconstruc-

tions, we do not require robotic proprioception, and we use

diffusion models [51]. This enables us to obtain tactile data

at a much larger scale, and with considerably more diver-

sity. Unlike previous visual-tactile diffusion work [57], we

condition the model on spatially aligned visual and depth

information, enhancing the generated samples’ quality and

their usefulness in downstream applications. After training,

the diffusion model can be used to predict tactile informa-

OF 2.0 [17] VisGel [35] OF Real [18] SSVTP [28] TG [56] TaRF (Ours)

Figure 2. Visual-tactile examples. In contrast to the visual-tactile

data captured in previous work, our approach allows us to sample

unobstructed images that are spatially aligned with the touch sig-

nal, from arbitrary 3D viewpoints using a NeRF.

tion for novel positions in the scene. Analogous to quasi-

dense stereo methods [15, 33], the diffusion model effec-

tively propagates sparse touch samples, obtained by prob-

ing, to other visually and structurally similar regions of the

scene.

We evaluate our visual-tactile model’s ability to accu-

rately perform cross-modal translation using a variety of

quality metrics. We also apply it to several downstream

tasks, including localizing a touch within a scene and un-

derstanding material properties of the touched area. Our

experiments suggest:

• Touch signals can be localized in 3D space by exploiting

multi-view geometry constraints between sight and touch.

• Estimated touch measurements from novel views are not

only qualitatively accurate, but also beneficial on down-

stream tasks.

• Cross-modal prediction models can accurately estimate

touch from sight for natural scenes.

• Visually-acquired 3D scene geometry improves cross-

modal prediction.

2. Related Work

Visual-tactile datasets. Previous work has either used

simulators [16, 17] or robotic arms [6, 8, 18, 35, 63] for

data generation. Our work is closely related to that of Zhong

et al. [63], which uses a NeRF and captured touch data to

generate a tactile field for several small objects. They use

the proprioception of an expensive robot to spatially align

vision and touch. In contrast, we leverage the properties of

the tactile sensor and novel view synthesis to use commonly

available material (a smartphone and a selfie stick) to align

vision and touch. This enables the collection of a larger,

scene-level, and more diverse dataset, on which we train a

higher-capacity diffusion model (rather than a conditional

GAN). Like several previous works [5, 56], we also collect

scene-level data. In contrast to them, we spatially align the

signals by registering them in a unified 3D representation,

thereby increasing the prediction power of the visual-tactile

generative model.

Capturing multimodal 3D scenes. Our work is related

to methods that capture 3D visual reconstructions of spaces
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r(m)

Dataset 0.001 0.005 0.01 0.05 0.1

Chance 3.55 6.82 10.25 18.26 21.33
Real 12.10 22.93 32.10 50.30 57.15
Real + Est. 14.92 26.69 36.17 53.62 60.61

Table 4. Quantitative results on 3D tactile localization. We

evaluate using mean Average Precision (mAP) as a metric. Train-

ing the contrastive model on our dataset of visually aligned real

samples together with estimated samples from new locations in

the scene results in the highest performance.

The results, presented in Table 4, demonstrate the perfor-

mance benefit of employing both real and synthetic tactile

pairs. Combining synthetic tactile images with the original

pairs achieves highest performance on all distance thresh-

olds. Overall, this indicates that touch measurements from

novel views are not only qualitatively accurate, but also ben-

eficial for this downstream task.

5.4. Downstream Task II: Material Classification

We investigate the efficacy of our visual-tactile dataset for

understanding material properties, focusing on the task of

material classification. We follow the formulation by Yang

et al. [56], which consists of three subtasks: (i) material

classification, requiring the distinction of materials among

20 possible classes; (ii) softness classification, a binary

problem dividing materials as either hard or soft; and (iii)

hardness classification, which requires the classification of

materials as either rough or smooth.

We follow the same experimental procedure of [56]: we

pretrain a contrastive model on a dataset and perform linear

probing on the sub-tasks’ training set. Our experiments only

vary the pretraining dataset, leaving all architectural choices

and hyperparameters the same. We compare against four

baselines. A random classifier (chance); the ObjectFolder

2.0 dataset [17]; the VisGel dataset [35]; and the Touch

and Go dataset [56]. Note that the touch sensor used in the

test data (GelSight) differs from the one used in our dataset

(DIGIT). Therefore, we use for pretraining a combination

of our dataset and Touch and Go. To ensure a fair compar-

ison, we also compare to the combination of each dataset

and Touch and Go.

The findings from this evaluation, as shown in Table 5,

suggest that our data improves the effectiveness of the con-

trastive pretraining objective, even though our data is from

a different distribution. Moreover, we find that adding esti-

mated touch probes for pretraining results in a higher per-

formance on all the three tasks, especially the smoothness

classification. This indicates that not only does our dataset

covers a wide range of materials but also our diffusion

model captures the distinguishable and useful patterns of

different materials.

Dataset Material
Hard/

Soft

Rough/

Smooth

Chance 18.6 66.1 56.3
ObjectFolder 2.0 [17] 36.2 72.0 69.0
VisGel [35] 39.1 69.4 70.4

Touch and Go [56] 54.7 77.3 79.4
+ ObjectFolder 2.0 [17] 54.6 87.3 84.8
+ VisGel [35] 53.1 86.7 83.6
+ Ours∗ (Real) 57.6 88.4 81.7
+ Ours∗ (Real + Estimated) 59.0 88.7 86.1

Table 5. Material classification. We show the downstream

material recognition accuracy of models pre-trained on different

datasets. The final rows show the performance when combining

different datasets with Touch and Go [56]. ∗ The task-specific

training and testing datasets for this task are collected with a Gel-

Sight sensor. We note that our data comes from a different distri-

bution, since it is collected with a DIGIT sensor [32].

6. Conclusion

In this work, we present the TaRF, a scene representation

that brings vision and touch into a shared 3D space. This

representation enables the generation of touch probes for

novel scene locations. To build this representation, we col-

lect the largest dataset of spatially aligned vision and touch

probes.We study the utility of both the representation and

the dataset in a series of qualitative and quantitative experi-

ments and on two downstream tasks: 3D touch localization

and material recognition. Overall, our work makes the first

step towards giving current scene representation techniques

an understanding of not only how things look, but also how

they feel. This capability could be critical in several applica-

tions ranging from robotics to the creation of virtual worlds

that look and feel like the real world.

Limitations. Since the touch sensor is based on a highly

zoomed-in camera, small (centimeter-scale) errors in SfM

or visual-tactile registration can lead to misalignments of

several pixels between the views of the NeRF and the touch

samples, which can be seen in our TaRFs. Another limita-

tion of the proposed representation is the assumption that

the scene’s coarse-scale structure does not change when it

is touched, an assumption that may be violated for some

inelastic surfaces.
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