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ARTICLE INFO ABSTRACT

Keywords: This paper studies the long-term energy management of a microgrid coordinating hybrid hydrogen-battery
Long-term energy management energy storage. We develop an approximate semi-empirical hydrogen storage model to accurately capture
Hydrf’ge“ the power-dependent efficiency of hydrogen storage. We introduce a prediction-free two-stage coordinated
HY‘?“d energy stoxjag‘e . optimization framework, which generates the annual state-of-charge (SoC) reference for hydrogen storage
Online convex optimization . . . . . . N .

Microgrid offline. During online operation, it updates the SoC reference online using kernel regression and makes

operation decisions based on the proposed adaptive virtual-queue-based online convex optimization (OCO)
algorithm. We innovatively incorporate penalty terms for long-term pattern tracking and expert-tracking
for step size updates. We provide theoretical proof to show that the proposed OCO algorithm achieves
a sublinear bound of dynamic regret without using prediction information. Numerical studies based on
the Elia and North China datasets show that the proposed framework significantly outperforms existing
online optimization approaches, reducing operational costs and loss of load by approximately 60% and 90%,
respectively, compared to the model predictive control method. Additionally, the introduction of long-term
reference tracking contributes to over 50% of this reduction. These benefits can be further enhanced with
optimized settings for the penalty coefficient and step size of OCO, as well as more historical references.

1. Introduction
1.1. Background and motivation

A microgrid is a self-contained electrical network with resources
including energy storage (ES), renewable energy sources (RES), and
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Nomenclature

Indices and Sets

Q;, Qp Sets for parallel learning sequence and hy-
drogen storage efficiency segment, respec-
tively

Qg, Qr Sets for historical scenarios and time period,
respectively

x, & Sets for decision variables and stochastic
parameters, respectively

i, p Indices for parallel learning sequence and
hydrogen storage efficiency segment, re-
spectively

s, t Indices for historical scenarios and time
period, respectively

Abbreviations

ES Energy storage

H-BES Hybrid hydrogen-battery energy storage

HESS Hybrid energy storage system

MPC Model predictive control

0OCO Online convex optimization

Reg Regret for OCO algorithm

RES Renewable energy sources

RMSE Root mean square error

SDP Stochastic dynamic programming

SoC State of charge

Parameters

gy B ¥ step sizes for OCO algorithm, respectively

nBe, yBd Charging and discharging efficiency of bat-
tery storage, respectively

pibe, pid Charging and discharging efficiency of hy-
drogen storage, respectively

@5, @ Dynamic weights for historical scenarios
and penalty coefficient for reference track-
ing, respectively

EB, £ Upper SoC bounds of battery and hydrogen
storage, respectively

FB, ﬁH Upper power bounds of battery and hydro-
gen storage, respectively

EB, EH Lower SoC bounds of battery and hydrogen
storage, respectively

PB Lower power bound of battery

PP, PD Lower and upper power bounds of diesel
generator, respectively

€ Self-discharge rate of battery storage

» By Slope and the intercept of piecewise linear

charging segments, respectively

cB, M, D, b Marginal discharge costs of battery and hy-
drogen storage, fuel price diesel generator,
load curtailment price, respectively

C,, D, Slope and the intercept of piecewise linear
discharging segments, respectively

0, Virtual queue for OCO algorithm

RDP, RUP Downward and upward ramping rates of
diesel generator, respectively

controllable loads, which can operate in either grid-connected or is-
land mode [1,2]. Microgrids can enhance energy resilience, promote
decarbonization, and reduce transmission system investments, but the

Decision Variables

EB, EH State of charge of battery and hydrogen
storage, respectively

he, hfl Hydrogen production and consumption,
respectively

PtB’C, PtB’G1 Charging and discharging power of battery

storage, respectively

Diesel generator power, loss of load power
and dispatched renewable power, respec-
tively

D L R
Po P B

P,H’c, P,H’d Charging and discharging power of hydro-
gen storage, respectively

z;, z? Binary variables for charging and dis-
charging segments of hydrogen storage,
respectively

volatility of RES poses challenges to short-term supply-demand bal-
ances [3,4]. Besides, seasonal variations in RES and load availability [5]
as well as extreme weather events [6] have highlighted the significance
of the long-term energy management of microgrids.

Hybrid energy storage system (HESS) [7,8] offers a promising way
to guarantee both the short-term and long-term supply—demand bal-
ance of microgrids. HESS is composed of two or more ES units with
different but complementing characteristics, such as duration and effi-
ciency. Ultra-short-duration ES, such as supercapacitor, is an essential
solution to voltage stability problems within seconds [9]. In day-ahead
or intra-day operations, batteries can effectively address the uncertain-
ties introduced by RES and load. For long-term operation, hydrogen
storage consisting of electrolyzer and fuel cell can provide efficient
solutions to seasonal energy shifting [10]. In this paper, we focus on
a typical application: hybrid hydrogen-battery energy storage (H-BES).
Given the differences in storage properties and unanticipated seasonal
uncertainties, designing an effective long-term energy management
framework for microgrids with H-BES is significant but challenging.

1.2. Literature review

Previous research mainly focuses on the short-term energy man-
agement of microgrids with H-BES. Two-stage robust optimization
is proposed in [11] for the market operation of H-BES, where the
uncertainties from RES are modeled by uncertainty sets. A two-stage
distributionally robust optimization-based coordinated scheduling of an
integrated energy system with H-BES is introduced in [12], where an
ambiguity set is employed to model the uncertainties from RES and
integrated energy loads. Two-stage stochastic energy management of
H-BES is proposed in [13], where the uncertainties from RES, load,
and prices are modeled by typical scenarios. However, these works
rely solely on offline optimization methods with predefined uncer-
tainty modeling, which may face optimality or feasibility issues in
real-time operation. This motivates the research on real-time energy
management with online optimization methods, such as the rolling-
horizon method, reinforcement learning, etc. Model predictive control
(MPC) is a widely used rolling-horizon method and multi-level MPC
controllers are developed for microgrids with hydrogen or H-BES in [5,
14]. An actor-critic deep reinforcement learning method is proposed
in [15] to address multi-timescale coordinated dispatch of microgrid
with hybrid battery and supercapacitor. MPC and approximate dynamic
programming approach are jointly utilized for multi-stage coordinated
dispatch [16], which achieves robust real-time performance through
continuously updated forecasts. However, the limitations in the afore-
mentioned works mainly lie in: (i) The short-term energy management
methods may face infeasibility issues in the long-term operation when
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considering seasonal variations RES and load. (ii) The performance of
these techniques strongly depends on the accuracy of the prediction of
uncertainties. However, the predictions are practically unavailable or
unreliable for microgrid operators.

To address the first limitation, recent studies have started to explore
the long-term energy management of microgrids, which aims to solve
the multi-time-period dispatch with non-anticipativity. Stochastic dy-
namic programming is technically sound, which can decompose the
multi-period dispatch problem into sequential single-period dispatch
problems through value function. And it is applied in [17] by learning
the value function of H-BES. However, it becomes computationally
intractable to train the value function if the storage duration spans
multiple months. A continuous spectrum splitting approach is proposed
in [18] to assign low-frequency components of variability to hydrogen
and generators, and high-frequency components to batteries for power
balance, but this approach is designed for the planning of H-BES. A
data-driven coordinated dispatch framework is proposed in [5], where
the state of charge (SoC) reference for hydrogen storage is generated
based on historical simulations. This reference is then updated and
embedded into MPC for real-time operation. However, the use of MPC
makes the entire framework dependent on forecasting.

Additionally, prediction-free online optimization methods are gain-
ing increased attention. Lyapunov optimization and online convex
optimization (OCO) are effective representatives [19]. Lyapunov op-
timization adopts a ‘“l-lookahead” pattern, where uncertainties are
observed first, followed by solving the Lyapunov drift problem [20].
It has wide applications in demand response [21], electric vehicle
charging [22], microgrid [23], etc. The long-term operational cost min-
imization of hydrogen-based building energy systems is transformed
into several single-slot subproblems using Lyapunov optimization [24].
A joint energy scheduling and trading algorithm based on Lyapunov
optimization and a double-auction mechanism is designed in [25] to
optimize the long-term energy cost of each microgrid. However, in
some cases, the uncertainties can not be observed before decision-
making and Lyapunov optimization becomes inapplicable. For instance,
storage participants bid with unknown future prices, and the prices
are cleared by the market after the bidding process [26]. Considerable
communication delay will result in the unavailability of RES and load
observations for real-time microgrid management [27]. Instead, OCO
adopts a “O-lookahead” pattern, where the decision is made before
the observation of uncertainties. And OCO has been utilized in de-
mand side management [28] and ancillary services [29] due to its
completely prediction-free and fast response nature. However, to the
best of our knowledge, no research has addressed the long-term energy
management of microgrids with H-BES within the OCO framework.
The application of OCO in the focused topic may face the following
challenges: (i) OCO is problem-dependent without a predefined math-
ematical formulation, and there is no prior experience available as a
reference for designing OCO for microgrids with H-BES. (ii) Although
recent works [30-33] have embedded inter-temporal constraints into
the OCO framework, OCO still risks falling into local optima due to
its myopic nature. (iii) OCO aims to achieve regret (Reg) that grows
sublinearly with time horizon T. However, most of the existing OCO
algorithms fail to address the sublinear bounds for dynamic Reg [31—
33] or require prediction information to improve the performance [30].
Please see Table 1 for a comprehensive comparison.

1.3. Research gap

Existing literature is summarized in Table 1. Although some works
achieve good results in the long-term energy management of microgrids
with H-BES, there are still several research gaps that have not been
adequately addressed.

(1) Most existing studies employ a simplified operational model
for hydrogen storage, using a constant energy conversion efficiency
regardless of whether the storage operates at full power capacity
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or not. However, the efficiency of hydrogen storage varies with the
charge/discharge power and follows a nonlinear function [34]. Using
a simplified model can result in sub-optimal or even infeasible solu-
tions [35]. Therefore, it is crucial to incorporate this nonlinearity into
the microgrid energy management.

(2) Current microgrid energy management either employ offline op-
timization methods (e.g., robust optimization [11], frequency-domain
method [18]) or prediction-dependent online optimization methods
(e.g., MPC [5], stochastic dynamic programming [17]). However, the
distribution and prediction information is often inaccurate or unavail-
able in practical microgrid operations. Thus, designing a prediction-free
optimization framework for microgrid energy management with H-BES
is necessary.

(3) OCO is a promising “0O-lookahead” online optimization method
originating from the fields of machine learning and control [32,33].
However, OCO lacks a global view of long-term patterns and adaptabil-
ity to the high volatility of microgrids. Hence, it is important to extend
traditional OCO methods to incorporate long-term operational patterns
and time-varying properties.

1.4. Contributions

Motivated by the research gaps, this paper proposes a prediction-
free coordinated optimization framework for long-term energy man-
agement of microgrid with H-BES while incorporating the nonlinearity
of hydrogen storage and seasonal uncertainties from RES and load.
Specifically, our contributions are threefold:

(1) Modeling: We propose an approximate semi-empirical hydro-
gen storage model using piecewise linear relaxation, which accurately
captures the power-dependent efficiency of hydrogen storage. Simu-
lations demonstrate that, compared to the constant efficiency model,
the proposed approximation model avoids both over-optimistic and
over-conservative strategies. This results in a reduction of the annual
operational cost by 10% or 36%, and a decrease in annual loss of load
by 1.94 MWh or 3.85 MWh.

(2) Solution Methodology: We introduce a prediction-free two-
stage coordinated optimization framework. In the offline stage, the
ex-post SoC references for hydrogen storage are generated by de-
terministic mixed-integer linear programming with historical and Al-
generated data on RES and load. These references help to avoid myopic
online decision-making and are incrementally updated by kernel regres-
sion with newly observed data. Subsequently, we develop an adaptive
virtual-queue-based OCO algorithm for prediction-free online decision-
making. Compared to the traditional OCO algorithm [30-33], the
proposed method innovatively incorporates a penalty term for long-
term pattern tracking and expert-tracking for step size updates. And
the proposed OCO algorithm is proven to achieve a sublinear bound of
dynamic regret.

(3) Numerical Study: We demonstrate the effectiveness of the
proposed framework using ground-truth data from Elia [36] and North
China [37]. Simulations show that introducing the long-term reference
significantly reduces operational costs and loss of load by approxi-
mately 60% and 90%, respectively. Furthermore, the introduction of
long-term reference tracking contributes to over 50% of this reduction.
These benefits can be further enhanced with optimized settings for the
penalty coefficient and step size of OCO, as well as more historical
references.

1.5. Paper organization

We organize the remainder of the paper as follows. Section 2
presents an approximate semi-empirical modeling of hydrogen stor-
age. Section 3 provides the problem formulation for long-term energy
management of the microgrid with H-BES. Section 4 introduces the
prediction-free two-stage coordinated optimization framework and the
proof of OCO performance. Section 5 describes numerical case studies
to verify the effectiveness of the proposed framework. Finally, we
conclude this paper in Section 6.
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Comparison of existing literature on long-term and short-term energy management of H-BES.

Reference Storage type & Model Long-term optimization Short-term optimization Prediction-free
[11] H-BES-Constant X Robust Optimization v (Offline)

[12] H-BES-Constant X Distributionally Robust Optimization v (Offline)

[13] H-BES-Constant X Stochastic Optimization v (Offline)

[14] H-BES-Electrochemical X MPC X

[15] Battery+Supercapacitor-Constant X Deep Reinforcement Learning X

[16] Battery+Thermal Storage-Constant X MPC+Dynamic Programming X

[17] H-BES-Constant Stochastic Dynamic Programming X

[18] H-BES-Constant Spectrum Splitting Approach v (Offline)

[5] H-BES-Constant Historical Reference MPC X

[24] H-BES-Constant X Lyapunov Optimization v (1-lookahead)
[25] Hydrogen Full Cell-Constant X Lyapunov Optimization v (1-lookahead)
[30] Not Given X OCO: Dynamic Reg O(T™!1-4-¢<cl) 0<a,c<1 v (0-lookahead)
[31] Not Given X OCO: Dynamic Reg O(T*P{), 0<c<1 v (0-lookahead)
[32] Not Given X OCO: Static Reg O(T™!1-<¢1), 0<c<1 v (0-lookahead)
[33] Not Given X OCO: Dynamic Reg O(max(T¢P,,T'~)), 0<c<1 v (0-lookahead)
This Paper H-BES-Semi-Empirical Historical&AlI-Generated Reference OCO: Dynamic Reg O(T(1 + P,)'™* + T'=¢(1 + P,)*), v (0-lookahead)

O<k<c<l1

2 Depending on the baselines used, Reg is divided into static Reg, with the baseline being a single-period optimal solution, and dynamic Reg, with the baseline being the global

optimal solution.

b p: path-length, i.e., the accumulated variation of optimal decisions; P,: function variation, i.e., the accumulated variation of constraints.
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Fig. 1. Schematic diagram of hydrogen storage system.

2. Approximate semi-empirical hydrogen energy storage model
2.1. Structure of hydrogen storage system

A hydrogen storage system is composed of several key components,
such as electrolyzers, hydrogen storage tanks, fuel cells, compressors,
and other auxiliary equipment, as illustrated in Fig. 1. Electrolyzers
convert electrical energy into chemical energy by producing hydrogen
and oxygen. This paper considers the most mature and commonly used
alkaline water electrolyzer. Hydrogen storage tanks are used to store
the produced hydrogen. Fuel cells convert the stored hydrogen back
into electricity, and we consider the typical type, proton exchange
membrane fuel cell (PEMFC). Other auxiliary equipment, including the
compressor, cooling system, and control system, is excluded from the
modeling.

2.2. Alkaline water electrolyzer model

(1) Polarization curve

The polarization curve describes the electrochemical behavior of
an electrolyzer, modeling the relationship between current and volt-
age. To account for the impact of temperature and pressure on the

thermodynamics and electrochemical process within the electrolyzer,
we combine the most used model proposed by Ulleberg [34] and
Sanchez [38]:

UE

cell =

i
+S~10g[( +§+0—2>'2+1
where the reversible voltage and cell voltage of the electrolyzer are
defined as U,,, and UcEell' Temperature and pressure are given by ¢ and

Uy + [(r1 +dy) +7y-0+d, - P]-%
] (@)

rev
P. The current and effective area of the electrode is defined as i and

A. Parameters r|, r,, d, d,, 1}, 15, t3, s are the constants which can be
learned from the experimental data.
(2) Faraday efficiency
Faraday efficiency is defined as the ratio of measured hydrogen
production to the theoretical value. For an alkaline electrolyzer, the
Faraday efficiency typically ranges from 85% to 95% and is affected
by temperature. We adopt the four-parameter Faraday efficiency model
as (2).
< (i/A)?
W=\7 T 2.7
fi1+ fr-0+(i/A)?
where Faraday efficiency is defined as ng. Parameters f,, 15, f3, f4 are
the constants which can be learned from the experimental data.
(3) Approximate charging efficiency
According to Faraday’s law, the hydrogen production rate is defined
as (3a). The charging efficiency is given by (3b).

)'(f3+f4~9) @

Mg M-i-N
he =3600. 2 U 3
2F (3a)
c. .M -LHV
gite = L LHV 5600, T2 2200 (3b)
Ptack 2F - Ueay

where h¢ is the hydrogen production rate of electrolyzer. M is the
molar mass of hydrogen. F is the Faraday’s constant, i.e., 96485 C/mol.
N is the number of cells of the stack. LHV is the lower heat value of
hydrogen, i.e., 33.33 kWh/kg.

As illustrated in Fig. 2, the blue curves from the semi-empirical
model are non-linear and power-dependent, including a peak in ef-
ficiency at around 20% of the rated power. Therefore, a constant
conversion efficiency cannot capture the variations in efficiency. To
facilitate tractable dispatch optimization, we adopt a piecewise linear
approximation for hydrogen production, depicted by red dashed lines.
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Fig. 2. Approximation of alkaline electrolyzer properties at 90°C, 10 bar: (a) hydrogen production, (b) efficiency.

2.3. PEMFC model

(1) Polarization curve

The polarization curve of PEMFC is typically modeled using the
equivalent circuit model proposed by Amphlett [39]. The cell voltage
Ufell is given by (4), which equals the open circuit voltage Eyernst
dropped by three types of irreversible losses: activation losses U, ,

ohmic losses Ugypmic > and concentration losses U, -

Ufell = Enernst — Uact — Uohmic — Ucon (4a)
1
Enernst = ﬁ [AG —AS(0 — Orer )
log(Py,)
+ R0 log(Py) + —5— ] (4b)
Uaet =ay+ay-0+az-6-1og(Co,)+ay-0-log(i) (4c)
Uohmic =1 Rohmic =i (rM AfA+ Rc) (4d)
J i
U =B-1 1- ,J == 4
con og < T ) 2 (4e)

where AG is the Gibbs free energy. AS is the entropy change. R is the
gas constant (8.314 J/(K-mol)). Py, and Py, are the partial pressures
of hydrogen and oxygen respectively. T is the reference temperature
(298.15 K). Cp, is the oxygen concentration at the surface of the
cathode catalyst. r,, is the resistivity of the electrolyte membrane. /
is the thickness of the electrolyte membrane. B is the concentration
overpotential coefficient. J and J,, are the current density and its
maximum value. a;, a,, a3, a4 are constants that can be learned from
the experimental data.

(2) Approximate discharging efficiency

According to Faraday’s law, the hydrogen consumption rate is de-
fined as (5a). The discharging efficiency is given by (5b).
M-i-N

2F
Hd _ PStack _ 2F - Ucenn

" hd.HHV ~ 3600M - HHV

where h¢ is the hydrogen consumption rate of PEMFC. HHV is the
higher heat value of hydrogen, i.e., 39.4 kWh/kg.

The blue curves from the semi-empirical model in Fig. 3 are non-
linear and power-dependent. We also adopt a piecewise linear
approximation for hydrogen consumption, depicted by red dashed
lines.

hd = 3600 - (5a)

n (5b)

2.4. Equivalent hydrogen storage model

The equivalent hydrogen storage model is presented in (6). Con-
straint (6a) defines the relationship between SoC, charge power, and
discharge power. Constraints (6b) limit the SoC of hydrogen storage
within the bounds. Constraint (6¢) guarantees ensures a sustainable
energy state for hydrogen storage over cycles. Constraints (6d)—(6f)
describe the tractable formulation of piecewise linear charging and dis-
charging functions. Constraints (6g) limit hydrogen storage’s charging
and discharging power.

Constraints: Vi € Q, Vp € Qp

H _ pH dy_ gHlL
E] = E + At(h{ — b)) — E, (6a)
—H
EM<EV<E (6b)
H H
Ey > E| (60)
_ H,c d _ H,d d
e =Y (AP + B,zC ), hd = ) (C, P + D28 ) (6d)
p p
H, H, H,d H,d
P YR, P Y (60
p 14
— d _
Zz;!t =1, Zzp’[ =1 (69)
p p
Pz <phe Pl o< phdcP) S (68)
—pTpt = pt = T pTpt? T = Tpt = T pTpt g

where 2, and Qg are the set of time and parameter segments,
respectively. PtH’C, PtH’d, and EF are decision variables for the charge
power, discharge power, and SoC of hydrogen storage. The SoC of
hydrogen storage can be measured by the hydrogen mass or as a ratio

of the rated capacity. E,H’L is the hydrogen load, such as fertilizer
—H
manufacturing and steel-making. E¥ and E  are the lower and upper

bounds of SoC. P! and P are the lower and upper bounds of power.
The lower charging power bound is set by the minimum operating
power of the electrolyzer, typically 15%-20% of the nominal power.
A, and B, are the slope and the intercept of piecewise linear charging
segments. C, and D, are the slope and the intercept of piecewise linear
discharging segments. z;,t and zg’, are binary variables for piecewise
linear function.

3. Long-term energy management of microgrid
3.1. Microgrid structure

The microgrid structure is illustrated in Fig. 4, which consists of
renewable generators (wind and solar), diesel generators, H-BES, local
loads, and connection to the main grid. Microgrid can operate in both
island mode and grid-connected mode. In this paper, we mainly focus
on the island mode operation since it presents unique challenges in
terms of long-term energy management with high reliability, which
are critical for autonomous microgrid operation. The model can be
extended to grid-connected mode by integrating grid interactions and
accounting for power exchange between the microgrid and the main
grid [40].

3.2. Problem formulation

The objective defined in (7) aims to minimize the system cost. This
cost comprises the production costs of the diesel generator, penalties for
load curtailment (island mode), and operational costs of H-BES. Con-
straints (8a) and (8b) define the power bounds and ramping bounds of
the diesel generator. Constraints (9) define the constraints for battery,
which are similar in formulation to those for hydrogen storage (6), as
both types of storage involve constraints on charging and discharging
rates, SoC, etc. However, it is important to note that the battery
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Fig. 3. Approximation of PEMFC properties at 60°C, 10 bar: (a) hydrogen consumption, (b) efficiency.
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Fig. 4. Diagram of microgrid structure.

efficiency is considered to be constant, there is no minimum charging
power limit in (9d), and the self-discharge rate should be considered
in (9a). Constraints (10) limit the load curtailment and dispatchable
RES. Constraint (11) limits the power import from the main grid.
Power balance constraint is defined as (12). The complementary con-
straints for charging and discharging of battery and hydrogen storage
are relaxed and have been removed from the model since sufficient
conditions are satisfied [41], i.e., discharging price (“4”) is greater
than the charging price (“0”). Moreover, the power flow constraints
are overlooked within the dispatch model since the microgrid network
is generally designed with high reliability and large redundancy [42].
Objective Function:

min G(x.§) = Y, (Cr+CP+CP +CfY) (72)
t€EQp
Cl = cPlar, CP = cPPPar, CB/M = (BH PPy (7b)

where ¢! and P! are the load curtailment price and load curtailment
power. ¢® and PP are the fuel price and power of diesel generator. cB
and cH are marginal discharge costs of battery and hydrogen storage.
At is the time interval.

Constraints: Vi € Q;

PP<PP <P (8)
- RDP < P? - PP < RUP (8b)
EB | = (1 - ednER + M(P< PP — PP /pBd) (9a)
EP<EP<E (9b)
Ep 2 Eg (9¢)
0< PP <P ©d)
0< PP <P (9¢)

0< PL<ét (10a)

0<pPi<ef (10b)
—G

0<PE<P, an

PE+ PR+ (P = PP + (B - P+ P = g 12)

where PP and P are the lower and upper power bounds of diesel
generator. RDP and RUP are downward and upward ramping rates
of diesel generator. PtB’C, P,B’d, and EP are decision variables for the
charge power, discharge power, and SoC of battery. #5¢ and #®4 are
the charge and discharge efficiency of battery. ¢ is the self-discharge
rate of battery. EB and EB are the lower and upper SoC bounds

of battery. P is the upper power bound of battery. £ and §tR are
the load power and available RES power with uncertainties. P} is
the dispatched RES power. The set of stochastic parameters is given
by & = {eL, &R}, The set of decision variables is given by x
{RL’I)ID’})IR’PIB’C/d’IJtH’C/d’EtB’EIH’h;:/d’Z::/d}'

The multi-time-period economic dispatch of microgrid with H-BES
(P,) is summarized in (13). Next, we present the methodology for

solving this problem.

() min G(x.$)

s.t. (6), (8)-(12) 13)

4. Prediction-free coordinated optimization framework
4.1. Motivations

Solving P1 has the following challenges:

(1) Non-anticipatively : The long-term energy management of the
microgrid typically spans more than one month or one season. Never-
theless, the forecast accuracy is acceptable only for several hours ahead.
Hence, the load power and available RES power are unanticipated in
the long-term optimization. And online optimization methods should be
adopted to decompose the long-term optimization problem into several
short-term optimization problems.

(2) Storage Dispatch Priority: Batteries with lower marginal dis-
charge costs will be given priority over hydrogen storage with higher
marginal discharge costs. We defer the complete proof to Appendix A.
The battery-prioritized strategy is feasible and economical for short-
term operation. However, this approach does not account for seasonal
variations in RES and load, which will result in a lack of pre-stored
hydrogen and load losses in long-term operations. Therefore, it is
necessary to design a “reference” with a global view to help guide
hydrogen storage actions.

(3) Convexity: The piecewise linearization will introduce noncon-
vexity to the optimization, which contradicts the overall logic of most
convex optimization methods. However, introducing a global “refer-
ence” can mitigate this challenge by pre-determining the efficiency.
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Fig. 5. Diagram of prediction-free two-stage coordinated optimization framework.

4.2. Two-stage coordinated optimization framework

We propose a two-stage coordinated optimization framework as
illustrated in Fig. 5. The proposed framework consists of both online
and offline stage optimization. The offline stage aims to generate the
ex-post SoC references for hydrogen storage using historical data on
RES and load. These references can help avoid myopic decision-making
and will be incrementally updated by kernel regression with newly ob-
served data. Subsequently, online decisions are made using an adaptive
virtual-queue-based OCO algorithm without relying on predictions.

4.3. Offline-stage optimization

Firstly, sequential sequences of scenarios, denoted as &, = {ék,, é&t IR
te Qr ={1,2,...,T},s € Q¢ = {1,2,..., N}, are generated from his-
torical data of the past few years. Additionally, to account for climate
change and enhance the diversity of references, we can also collect
references from different months and seasons. For instance, if we focus
on a seasonal dispatch problem and have historical data for 5 years,
then T = 1 season and N = 5 x 4. To enhance adaptability to extreme
weather conditions, we add extreme scenarios into the historical data
using Generative Adversarial Networks [43]. Afterward, we can solve
the deterministic mixed-integer linear programming (P2) as (14) to
generate the SoC references of hydrogen storage, i.e., EI;I* = {E:I;*},
te Qr,s € Q. ’

P,) rr;in G(xg, &)

s.t. (6), (8)-(12) a4

4.4. Online-stage optimization

(1) Data-Driven Reference Tracking

Inspired by [5], we propose a data-driven reference tracking method
to combine both the ‘lookback’ pattern from historical data and the
‘lookahead’ pattern from newly observed data. Firstly, we define &, as
the observed sequence for uncertainties from the first time slot to the
current time slot t in (15a). Additionally, & defined in (15b) repre-
sents the corresponding historical sequence for uncertainties in scenario
s. Subsequently, by checking the similarity between &, and & ,,
dynamic weights w,, are assigned to each historical scenario based

on the Gaussian kernel function and Euclidean distance, as outlined
in (15c). To account for the temporal dynamics, the Gaussian kernel
function is modified with a scaling factor t. And the optimal bandwidth
o can be found through heuristic methods such as the bisection method.
Additionally, the weights are updated in real-time dispatch instead
of using average or heuristic values. Finally, the SoC reference of
hydrogen storage is updated as (15d). This updated reference also
determines the efficiency segment of hydrogen storage, eliminating
the nonconvexity issue that arises when using convex optimization
approaches.

Eig = (&0, eheR, g8 el Ry (15a)
o = (€5, 88 R, g8 ek Ry (15b)
K.(&n,E 1) _Ulx=ylip)?
W5 = %7 K,(x, y) =e 102 (15C)
Zy:l K (Gprp» €571
N
HR _ H,*

E," = Z‘”svtEs,[r] (15d)

s=1

(2) Real-Time Corrective Dispatch

Real-time corrective dispatch (P;) is formulated in (16), which
aims to minimize the instant operational cost while tracking the SoC
reference of hydrogen storage. ¢ is the penalty coefficient to control the
SoC deviation from the reference. P; admits a compact form in (17a). f,
and g, represent the time-varying objective function and time-varying
constraints due to hydrogen storage SoC reference E,H’R and uncertain-
ties &, respectively. By leveraging the Lagrangian Relaxation, we can
obtain the optimum by (17b). 4, is the dual variables of the constraints
g (x,y) denotes the standard inner product. However, without prior
knowledge of uncertainties &, f, and g, are unknown to the online
decision-maker. Hence, we next design a VQB-OCO algorithm to solve
this issue.

(Py) min G(x,.&) + @(ER - E[PRY
T

s.t. (6), (8)-(12) (16)
rr;in fi(x,) st g(x,) <0 (17a)
x, = argmin{ £,x) + (4, £(0)) (17b)

(3) VQB-OCO Algorithm
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The key idea of VQB-OCO is to use information from past time
to approximate the current situation. The virtual queue is employed
as the substitution of unknown dual variables. Hence, we design the
update policy for the virtual queue, decisions, and weights in (18)—(20).
Finally, we can obtain the weighted average value of dispatch decision
as (21). The VQB-OCO algorithm and the overall two-stage coordinated
optimization framework are summarized in Algorithm 1

Q-1 =00+ B (81 (D14 (18)
Xip = a'rgngcin{ai,t—l Ofi-1Geop), x) + (19)
1 Bigmr { Qi L8114 ) + llx = x, oy I17)
vl
pig_re 7 it
Cir1 ={0f, 1))y Xiy =X ), pip= ——————— (20)
Z,-Ii] ﬂi,r—le_yfi"’l

N
X = 2 PisXiy @1

1=1

Remark 1 (Approximation). f,(x) is approximated using the first-order
Taylor expansion (df,_;(x,_;), x). The term 4, is substituted by a vir-
tual queue Q;, ;. The constraint function g(x) is replaced by the
clipped constraint function [g,_, (x)] .- Aregularization term |x — x;,_, |2
is added to ensure the convexity of the optimization problem and to
enhance the convergence of the algorithm.

Remark 2 (Parallel Learning). Determining the learning rate (step size)
is important yet challenging. We assign different learning rates to the
first two terms, «;, | and f;, ;. Rather than utilizing fixed or adap-
tive learning rates, we employ the expert-tracking algorithm proposed
by [44], which computes x, in parallel with various learning rates as
described in Eq. (19). The weights for each expert p; , are updated based
on their empirical performance using an exponential function, as shown
in Eq. (20).

Remark 3 (Virtual Queue Updates). Based on our previous work [45],
the dual variables of the long-term constraints remain fixed when the
optimum does not reach the constraint bounds. However, when the op-
timum reaches these bounds, the dual variables increase, representing
a penalty. The update of the virtual queue follows the same pattern as
described in Eq. (18) to limit constraint violations.

(4) Performance of VQB-OCO

OCO focuses on the performance of regret (Reg), as defined in (22),
where y, is the global optimum. Various OCO algorithms ensure that
Reg is a sublinear function of T by designing parameters and update
policy, as it implies that the algorithm performs as well as the global
optimum in hindsight as T approaches infinity. Next, we provide
parameter settings and a proof to achieve strictly sublinear dynamic
regret.

T
Reg = D [£,(x) = £,(y)] (22)
=1

Assumption 1. The functions f, and g, are convex. The feasible set X
is convex and closed, and it has a bounded diameter d(X), i.e.,

lx —yll £d(X), Vx,y € X (23)
Assumption 2. There exists a positive constant F such that

Ifi) = i< F, g0l £ F, Vi€ Qp, Vx,y€ X (24)

Assumption 3. The subgradients df,(x) and dg,(x) exist. And there
exists a positive constant G such that

lofill <G, 19g,)|l £ G, Vi € Qp, Vx,y € X (25)
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Algorithm 1: Prediction-Free Two-Stage Online Optimization
Algorithm

Stagel: Offline Optimization
Input: Historical scenarios of RES and load &;
Output: Historical reference for hydrogen storage Ef‘
for S=1to N do
Solve the deterministic MILP problems (P,)
as (14) to generate the SoC references of
hydrogen storage.
end
Stage2: Online Optimization
Input: Historical reference for hydrogen storage E? ;
Real-time observation of RES and load &,
Output: Real-Time Dispatch Decisions x;,
Step 1 -Initialization
Set Q;;, =0, x;; €X, x; = 2,111 PiiXi1s
pi1 =M+ /LG + 1)M], Vie {1,2,---,M}.
Step 2 - Reference Tracking & VQB-OCO
fort=2to T do
Update real-time SoC reference as (15);
for i = 1 to Mparallel do
Update virtual queue Q,, as (18);
Update decisions x;, as (19);
Update weights p; , as (20).
end
Calculate the dispatch decision x; as (21).
end

Theorem 1. Given Assumptions 1-3, and parameters setting as (26),
Kk €[0,c], c €(0,1), ag > 0, By > 0, and y, € (0,1/(\/2G)) are constants.
Then, we have the performance of Reg and Vio as (27).

ag2i~! b Y

M= |klogy(1+ D) +1, ¢, = ———, f, = ——, y= = (26)
t @, T

Reg=O(T (1 + P)' ™ + T'=¢(1 + P,)") 27)

Proof. The performance of the proposed OCO algorithm achieves a sim-
ilar performance with [30] which achieves O(T™{1-a=¢.c}) for dynamic
regret with the help of prediction data. And it outperforms the perfor-
mance of [31,33], achieving dynamic regret with a linear function of
P,, which is not satisfactory. Moreover, by setting xk = ¢ = 0.5, the
proposed OCO algorithm achieve the performance of O(+/T(1 + P,)),
which aligns with the performance of [44] where long term constraints
are not considered. Hence, the proposed OCO algorithm is no worse
than the existing versions. Additionally, the performance can be fur-
ther enhanced by incorporating prediction information, as explored in
related works [30,46]. We defer the complete proof to Appendix B.

5. Case studies
5.1. Set-up

The main parameters and configurations are listed in Table 2.
Specifically, the capacities of the battery and hydrogen storage are half
of the load capacity. The storage durations of the battery and hydrogen
are 2 h and 400 h, respectively. The installed capacity of renewables
is 200 kW, comprising an equal share of solar and wind. The cost
coefficients can be found in [5].

We demonstrate the effectiveness of the proposed method based on
two datasets: (1) We use the 15-minute historical data on solar, wind,
and load from 2014 to 2023 obtained from Belgium’s transmission
system operator (Elia) [36] for the baseline case study. (2) We also
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Table 2

Parameters and configuration of the test microgrid.
Parameters  Value Parameters  Value Parameters Value
Initial SoC 0.5 P 50 kW o $5/kWh
e/ 0.9 I 20MWh P 50 kw
€ 1%/month B $0.02/kWh ~ Wind Capacity 100 kW
? 50 kW oM $0.03/kWh  Solar Capacity 100 kW
ol 100 kW P $0.3/kWh  Load Capacity 100 kW

use the hourly historical data of wind and load from 1981 to 2020 in
North China [37] to demonstrate the impact of data resolution and data
quantity.

The optimization is coded in MatLab with Yalmip interface and
solved by Gurobi 11.0 solver. The programming environment is Intel
Core i9-13900HX @ 2.30 GHz with RAM 32 GB.

5.2. Offline-stage optimization

(1) Data visualization

We first show the monthly average available renewable and load
power of Elia from 2014 to 2023 in Fig. 6. It is observed that all of
them exhibit seasonal patterns. Wind power is abundant in spring and
winter but scarce in summer, while solar power is relatively high in
summer and extremely low in winter. Load power peaks in winter.
Correspondingly, the net load also peaks in winter and hits a low in
summer. Therefore, it indicates the critical role of hydrogen storage to
address the seasonal variations in renewables and load, as well as to
maintain the long-term energy balance of the microgrid.

(2) Impact of hydrogen storage efficiency model

Next, we compare the offline energy management performance in
2023 with different hydrogen models, including:

(E1): Piecewise linear model as proposed in (6), and the parameters
are fitted based on the experimental data as shown in Figs. 2 and 3.

(E2): Constant efficiency model with both the highest charging and
discharging efficiencies of 63%.

(E3): Constant efficiency model with the lowest charging and dis-
charging efficiencies, i.e., 53% and 45%, respectively.

The hydrogen storage SoC is shown in Fig. 7. Other results are
also summarized in Table 3. It is observed that using the highest
constant efficiency model results in the most optimistic performance,
with the lowest operational cost ($97,188), whereas the lowest constant
efficiency model yields the highest operational cost ($132,933) due
to the significant increase in costs of diesel generation and loss of
load. However, using a constant efficiency model can lead to feasibility
issues in practical operation, resulting in losses in either charging or
discharging power. Additionally, the optimistic strategy generated by
the highest efficiency model will introduce an additional loss of load
cost of 1.94 MWh. Considering the practical consequences, E2 and E3
will increase the total system costs by 10% and 36%, respectively,
compared to E1. This result demonstrates that the proposed model can
capture the characteristics of power-dependent efficiency and achieve
more reliable and economical performance in practice.

5.3. Online-stage optimization

(1) Reference tracking

We test the reference tracking performance in 2023 with different
methods, including:

(R1): Global optimal reference generated by deterministic multi-
period optimization with perfect foresight of uncertainty realizations.

(R2): The proposed data-driven reference tracking, trained with
2014-2022 historical data.

(R3): The proposed data-driven reference tracking, trained with
2014-2022 historical data and Al-generated data. The Al-generated
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data is produced by randomly reducing the historical solar power but
increasing the wind power by 10%-50% each quarter.

(R4-R6): Similar to the (R3) method, the Al-generated data is
produced by: - (R4): Randomly reducing both the historical solar and
wind power by 10%-50% each quarter. - (R5): Increasing the historical
solar and wind power by 10%-50% each quarter. - (R6): Using all the
Al-generated data from (R3) to (R5).

(R7): The reference generated using the average historical perfor-
mance.

The hydrogen SoC references are compared in Fig. 8, and the track-
ing performance is summarized in Table 4. The root mean square error
(RMSE) is calculated as the average difference between the generated
reference and the global optimal reference. The optimal choice of &
obtained through the bisection method is 0.098. It is observed that the
references generated by the proposed methods R2-R6 can better track
the seasonal variations of RES and load, resulting in lower RMSE com-
pared to the reference generated by R7. This is because the proposed
methods employ kernel regression to update the weights of historical
references instead of using fixed and average values. Additionally,
additional generated data inputs will increase the tracking performance
as they create new potential extreme scenarios. However, as is shown
in the performance of R6, an excessive amount of generated data can
lead to overfitting in the regression model, thereby reducing tracking
accuracy. The average computation time for a single time interval is
around 2 ms, which is acceptable even for minute-level scheduling and
control.

Furthermore, we test the reference tracking performance on the
North China dataset. The data visualization and reference tracking
performance are shown in Figs. 13 and 14 in Appendix C. Compared
with the Elia dataset, both the wind and load data exhibit less variation
across seasons and years. The maximum variations across years are 0.22
and 0.09 for wind and load, respectively, while for the Elia dataset,
they are 0.25 and 0.15 for wind and load, respectively. Specifically,
the load data in North China maintains the same shape across the
years. The optimal choice of ¢ obtained through the bisection method is
50. The proposed tracking method performs the same as the averaged
method, with an RMSE of 0.046. This is because the historical data
and historical references show significant similarity across years, caus-
ing the proposed method to select the average value when updating
weights. The above results demonstrate the benefit of using a data-
driven reference tracking method when historical uncertainties exhibit
significant variations across years. Additionally, an appropriate amount
of Al-generated data can improve adaptability to extreme weather
scenarios.

(2) Online decision-making

We test the online decision-making in 2023 with different dispatch
methods, including:

(MO): Deterministic optimization with perfect knowledge of uncer-
tainty realizations for the whole year results in the global optimum.
This method is optimistic and not applicable in practice. Hence, it only
serves as a baseline.

(M1): The proposed prediction-free coordinated approach, which
utilizes OCO for online optimization and R5 for reference tracking.

(M2): The scheduling-correction method proposed by [5], which
utilizes MPC for online optimization and R5 for reference tracking.

(M3): Online optimization by OCO without reference tracking.

(M4): Online optimization by MPC without reference tracking.

The operational performance is summarized in Table 5. It is ob-
served that the proposed method M1 outperforms the others in terms of
cost-effectiveness, achieving an optimality gap of 27% compared with
results with perfect foresight MO. This is due to its smallest loss of
load and RMSE compared to the reference. Compared with the widely-
used MPC method in the industrial application, the proposed method
reduces the annual operational cost and loss of load by 67% and
91%, respectively. Additionally, the introduction of long-term reference
accounts for 66% and 88%, respectively. This can be explained by
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Fig. 6. Data visualization on Elia dataset from 2014 to 2023: (a) monthly average load power, (b) monthly average solar power, and (c) monthly average wind power.

Table 3
Operational performance of the microgrid in 2023 using different efficiency models (Elia dataset).
Model Cost™”? > P> ar Y PP A Y aP™car Y AP™ar
($10%) (MWh) (MWh) (MWh) (MWh)
El 9.87/9.87 324.68/324.68 0.00/0.00 0.00 0.00
E2 9.81/10.78 322.19/322.19 0.00/1.94 0.00 -1.94
E3 13.29/13.29 374.33/374.19 3.85/3.85 —-0.14 0.00

Table 4
Reference tracking performance in 2023 with different reference tracking methods (Elia
dataset).

Method R1 R2 R3 R4 R5 R6 R7
RMSE - 8.41% 8.96% 8.25% 8.01% 8.33% 10.54%
Time (ms) - 0.35 1.93 1.88 2.01 6.27 0.00
Data Size (Year) - 9 45 45 45 116 9

the hydrogen SoC as shown in Fig. 9. M3 and M4 generate myopic
decisions by continuously discharging the hydrogen storage to reduce

short-term operational costs during the winter peak. They fail to charge
the hydrogen storage during the renewable-rich spring and summer,
resulting in an extremely low SoC after winter. Consequently, these
myopic decisions prevent hydrogen storage from effectively shifting
energy seasonally, leading to a substantial loss of load and low uti-
lization of RES in practice. In contrast, M1 and M2 follow the pattern
of reference while M1 has the better reference following performance
(lower RMSE) since OCO utilizes the real-time observed data. This
result demonstrates the benefit of introducing a global reference for
the online optimization method. We also apply SDP algorithm in [17]
to this problem. However, the SDP cannot converge within 24 hr due

10
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Fig. 9. Hydrogen storage SoC strategies in 2023 using different optimization methods
(Elia dataset).

to the “curse of dimensionality”. Therefore, it is infeasible to use SDP
for long-term energy management of microgrid with H-BES.
Moreover, we compare the power dispatch strategies of H-BES
and DG using M1 and M2, as shown in Fig. 10. It is observed that
M1 can better track the net load curve using only hydrogen storage
actions. In contrast, M2 keeps charging hydrogen storage and uses
DG when renewables are insufficient. This is because the OCO-based
method simultaneously tracks the previous decisions and the refer-
ence, updating the strategy based on newly observed data, which is
more adaptive to the time-varying environment. While the MPC-based
method only tracks the reference and updates the strategy based on
forecast data. Therefore, if the reference or forecast is not accurate, the
MPC-based method may struggle to achieve good performance. This
can also be explained by SoC gaps as shown in Fig. 9. Furthermore,
due to prediction errors, MPC-based online optimization may encounter
infeasibility issues, resulting in additional loss of load and penalty costs.
In contrast, the OCO-based method makes decisions based on observed

11
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Fig. 10. Comparison of power dispatch strategies in 2023 with different optimization
methods: (a) M1 and (b) M2 (Elia dataset).

data, thereby avoiding infeasibility issues. Regarding computational
efficiency, it can be seen that the OCO method has better performance
than MPC. Both methods achieve single-step optimization in tens of ms,
which is acceptable for most online optimization scenarios.

Additional tests on the North China dataset align with the above
results, showing that optimization with reference outperforms opti-
mization without reference, and OCO-based methods outperform MPC-
based methods. The results are summarized in Table C.7 and Fig. 15
in Appendix C. Compared with the case results in Elia, both M1
and M2 achieve SoC strategies with smaller gaps from MO, due to
better reference tracking performance. However, in terms of cost and
reliability performance, the North China case shows worse results. This
is because renewable energy in the North China case is solely supplied
by wind power, leading to higher generation unavailability and higher
load curtailment.

5.4. Sensitivity analysis

In this subsection, we further investigate the key impact factor of
the proposed optimization framework.

(1) Penalty Coefficient of Reference Tracking. The penalty co-
efficient represents the tradeoff between instant operational cost and
reference tracking performance. However, since this reference is esti-
mated from historical data, it may not be optimal for the current year.
We compare the cost and tracking performance in Fig. 11 when scaling
up the penalty coefficient ¢. It is observed that RMSE is monotonically
decreased with the penalty coefficient, while the operational cost ini-
tially decreases to a minimum value at ¢ = 90000 but then gradually
increases with the penalty coefficient. This suggests that improving
tracking performance does not always lead to lower operational costs.

(2) Reference and step size of OCO Algorithm. As illustrated in
Section 5.3, the reference has a critical impact on operational perfor-
mance. Table 6 summarizes the performance using M1 with different
references (i.e., fixed reference generated by R7 and updated reference
generated by R5) and different step sizes (i.e., fixed step size proposed
by [30] and step size generated by the proposed expert-tracking al-
gorithm). It is observed that compared to fixed reference, using the
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Table 5
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Operational performance of the microgrid in 2023 using different optimization methods (Elia dataset).

Method Cost ($10%) Y PP At (MWh) Y P-4t (MWh) RMSE Time (ms)
MO 9.87 324.68 0.00 0.00 25.20
M1 12.55 336.30 4.59 10.46 87.87
M2 17.38 488.46 5.19 19.70 97.77
M3 29.43 257.77 43.19 53.19 48.59
M4 38.05 457.58 48.45 52.93 51.64

Table 6
Operational performance of the microgrid in 2023 using M1 with different references and step sizes (Elia dataset).
Reference Step size Cost™” > PP A > PP A RMSE
($10% (MWh) (MWh)
Undated Fixed 12.55 336.30 4.60 10.87
paate Expert-Tracking 12.47 333.66 4.60 10.99
Fixed Fixed 12.77 336.33 5.03 9.26
X Expert-Tracking 12.61 333.58 4.87 9.26
5 6. Conclusion
x10
2 — T T T—T——T—T T 40
1.8F —%— Cost 130 This paper proposes a prediction-free coordinated optimization
2 A RMSE = framework for long-term energy management of microgrid with H-BES.
2 Lér 120 S To accurately captures the power-dependent efficiency of hydrogen
@} Lal AA A A A A 110 P storage, we propose an approximate semi-empirical hydrogen storage
’ model using piecewise linear relaxation. Moreover, to address the long-
pb—v v v Vv v v v Sy term operational patterns of renewables and load and to eliminate
SIS QQQ @Q QQQQQQQQQQ@ QQQ P dependence on predictions, we introduce a prediction-free, two-stage
TS EL PP LR PSS : s o
ORI S S U RPN NN N NN O SN coordinated optimization framework. The key idea is to generate and

Penalty Coefficient

Fig. 11. Cost and tracking performance with different penalty coefficients in 2023 (Elia
dataset).
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Fig. 12. Reliability performance of microgrid in 2023 with different renewable capacity
using M1 and M2 methods (Elia dataset).

proposed updated reference reduces operational cost by 1.09%-1.70%
and the loss of load by 5.68%-8.52%. This highlights the importance
of finding the right reference for hydrogen storage. Additionally, the
proposed step size setting decreases the operational cost by 0.67%-—
1.29% and the loss of load by 0.06%-3.16%. This is because the step
size generated by expert-tracking can better adapt to the changing cost
function and avoid heuristic settings.

(3) Sizing of Renewables. We further compare the reliability per-
formance of M1 and M2 in Fig. 12 when scaling up renewable capacity.
It is observed that the loss of load decreases with increased renewable
capacity. Moreover, M1 achieves an acceptable reliability level with
twice the renewable capacity, while M2 requires at least 4 times the
renewable capacity to meet reliability requirements. This demonstrates
the benefit of the proposed method in reducing renewable planning
costs.
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track the SoC reference of hydrogen storage using historical scenarios
and kernel regression to avoid myopic online decisions. And online
decisions are made based on the proposed VQB-OCO algorithm by
leveraging feedback control policy and newly observed data. Case
studies on Elia and North China verify that:

(1) Compared to the constant efficiency model, the proposed ap-
proximation model avoids both overly optimistic and overly conserva-
tive strategies.

(2) The proposed optimization framework outperforms existing on-
line optimization methods and achieves an acceptable gap compared to
deterministic optimization with perfect foresight of uncertainties.

(3) The SoC reference of hydrogen storage is critical to overall per-
formance. Therefore, more reliable historical or Al-generated scenarios,
along with sophisticated techniques for setting penalty coefficients, are
highly required.

(4) The OCO algorithm typically lacks a global view and is sensitive
to step size settings. Thus, it is beneficial to incorporate a penalty term
for long-term pattern tracking and expert-tracking for step size updates.

Future work will focus on addressing constraint violations and
incorporating prediction information into the OCO algorithm. We will
also apply the framework to long-term market operations.
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Appendix A. Proof of storage priority

The marginal discharge cost of battery is $10/MWh-$30/MWh,
while it is $1/kg-$2/kg ($30/MWh-$60/MWh) for hydrogen storage,
which is much higher than battery. Assume we have an optimal dis-
charge power from H-BES, which is entirely supplied by the battery,
ie, x! = P,B’d. Considering another optimum where the discharge
power is a mix from both the battery and hydrogen storage, i.e., x2 =
thB’d + (1 - p)P,H’d. From the H-BES cost of the two optima (28) and
the marginal cost & efficiency of two types of storages, we can draw
the conclusion that C"P#? > CHBES 1  This indicates that hydrogen
storage will not be actlvated unt11 the battery is fully discharged or
charged. Hence, we finish the proof.

Pr _ pP + (1-p)P, pHd (28a)
CtH BES1 _ B PtB’d At (28b)
CtH-BES,2 — (CBPP,B’d + CH(I _ p)PtH’d)At (28C)

Appendix B. Proof of bounded dynamic regret

Let {x;,} and {x,} be the sequences generated by Algorithm 1. Let
{»,} be a global optimum in the feasible set X. From f, is convex
and (25), we have:

Filxi) = fi() < <6f,(x,-’,), Xig — yt)
< Gllxy = xp 1l + <aft(xi,t)’ X1 — yx>

(29)
Gzai,t 1 2
< 5 + m”xi,t =Xl + <0fr(xi,t)’ Xig+l — y,)
For the rightmost term of (29), we have:
<aft(xi,t)’ Xit+l — y,)
= <ﬂ,-,,+|(a[g,(X,-,,_,_])]_,_)TQ,-,,, e — xi,r+1> (30)

+ <6f,(x,-,,) + ﬂi,H—l(a[gt(xi,t+])]+)TQi,rv Xit+1 — yt>

Since g, is a convex function, it is trivial to show that [g,], is also
convex; hence the first term of (30) can be relaxed:

<ﬁt+1(d[gt(xi,t+l)]+)TQiJ’ Vi — xi,t+1> 31)
< B <Qi,t’ [gr(yt)]+> = Birr1 <Qi(’)’ [gt(xi,r+l)]+>
From Lemma 1 in [47], we have:
<aft(xi,z) + Bii+10018,(x; 141 )]+)TQi,t’ Xit+1 — Yx>
1 (32)
< =y = il = = i I = g = %1%
it
Combining (20), (29)-(32), we have:
Ci(xi) = €, < o L0l = i1 = Wy = X 1)
Xy W) = o Yt it Yt it+1 (33)

+ B (Qi0), [8,0)1)
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Since the last term of (33) is non-negative, we have:
T T 2
G-a,
Z(ft(xi,t) - (y) < Z —=

2
+ 2 Ly = i1 = 1 = i IP)

=1 %t

For the first term of (34), we have:

T 2 i—
Z G @ < 2i— IGZ z p i 1G2 Tl_
2 2 &S 2l-o

t=1

By leveraging (23) and update policy (26), we have:

2 2
- xi,t” =y, = Xit+1 [I )

211

d 2 d 2
=) z ( Ny = X 17 = @+ DN Yy = X0 1l
ay2!
0 =1

2 2
+ (t+ ])C”yHl — Xit+l [I< = tC”J’r — Xit+l Il

+ 10y, = x 7 = 1y = x17)
T
1
S o g =2+ o Z((r+ 1) = 1) (d(X))?
=1
+ %2 — ,Zt ANy = ¥l
2Td(X)P,
< — A+ (T + D= D)EX))? + #
l—l a021—1

4 PX
5—2, - (d(X)’T < d(X)>

B )J + 1 € [N], such that we have:

Let iy = [5 logy(1 + 7

X_ <2,
dX) ~

Combining (35)—(37) yields:

2=l < 411+

o 2c P i
Z(f Ceig,) = £4(9)) < = (d(X)) T <1+ d(X))
G?q

=1
+ T ( 1+ LN
2(1 —=c¢) d(X)

Applying Lemma 1 in Ref. [44] to (20) and (21) yields:

r(Gd(X))*T

Zf(xt)— mm Zf(x,,)+ 1T1 » } < %
yo(c;a!(x))ZTH loe, 1

;(fr(xz) - fr(xio,r)) < f + %T In m

From p; | = (M + 1)/[i(i + 1)M], we have:

In L <In(iy(ip + 1)) < 21In(iy + 1) < 2In(| x log, (1
Pig 1

d(X)
From (20) and that f, is convex, we have

f{(xt) - f;(yf) < ft(xf) - fy(yt)

Combining (38)-(42) yields:

T r(GdX))* T
d(X) 2
G?ay

T'=¢ (1 P 2 7¢ In([x 1 1 P )
+ =0 + a0 + }’_0 n([x log, + 40X 1

Hence, we finish the proof.

Reg < —(d(X))zTC <

Appendix C. Results on North China dataset

See Fig. 15

(34

(35)

(36)

37

(38)

(39

(40)

(41D

(42)

(43
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Fig. 13. Data visualization on North China dataset: (a) monthly average wind power and (b) monthly average load power.

Table C.7
Yearly operational performance of the microgrid in North China using different optimization methods.
Method Cost ($10°) EPPAI (MWh) > P,LAI (MWh) RMSE Time (ms)
MO 5.30 411.78 80.60 0.00 24.28
M1 11.74 424.92 208.85 0.08 78.28
M2 15.49 257.52 1289.70 0.10 85.39
M3 13.35 349.87 245.83 53.19 35.46
M4 23.24 217.91 2104.74 52.93 58.31
1 1
2 Q
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Fig. 14. Hydrogen storage SoC references in 2020 using different reference tracking
methods (North China dataset).
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