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ABSTRACT

This paper analyzes the economic withholding behavior of energy
storage that exercises market power in real-time electricity markets.
The arbitrage problem for storage considers a general price sensitiv-
ity model to quantify market power. We apply a stochastic dynamic
programming model to calculate the marginal state of charge (SoC)
value function as the opportunity cost, which can be used as the
benchmark for bids. Furthermore, we derive the formulation of
the market power economic withholding upper bound in a similar
recursive way, which shows the maximum difference between the
bids under the assumptions of exercising and not exercising market
power. We prove that this bound is only based on the future peak
and current price expectations, regardless of the price sensitivity
model and distribution type of price uncertainty. We validate our
results in simulation under both linear and nonlinear price sensi-
tivity models, based on the real-time price data from the New York
Independent System Operator.
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1 INTRODUCTION

Sustainable energy technologies, including utility-scale renewable
generation, distributed resources, and electrification solutions, of-
fer a viable pathway to achieving Net Zero by 2050 [19]. However,
these systems also introduce new challenges in maintaining the
balance between electricity demand and supply, particularly at high
temporal resolutions. Energy storage systems, especially battery en-
ergy storage systems, provide a robust solution to these challenges,
delivering almost instantaneous response and energy provision
on a temporal scale. Consequently, there has been an exponential
increase in energy storage capacity in the US in the past few years,
particularly in regions with substantial renewable penetration, such
as CAISO and ERCOT [30]. Initially, frequency regulation was the
most profitable application for energy storage. However, the regula-
tion market is relatively shallow compared to the rapidly expanding
energy storage capacity. For instance, the average requirements for
regulation up and down in CAISO are less than 1GW, whereas the
installed battery storage capacity exceeded 7GW as of 2023 [8, 14].
Consequently, the focus of most energy storage systems is shifting
towards the energy market to capitalize on price arbitrage oppor-
tunities [29]. Given the central role of the energy market in the
power sector, it’s crucial to explore how energy storage influences
market dynamics.

In the US, private electricity producers, who are profit-oriented
strategic agents, own more than 95% of large-scale energy storage
systems [30]. In CAISO, battery energy storage makes up over 7.6%
of the total nameplate capacity [26]. With such a substantial share,
the market power of energy storage is significant and demands
attention. Energy storage systems have a distinct cost structure
that differentiates them from conventional generators. The primary
costs associated with energy storage include the electricity cost
for charging and the degradation cost from cycling, both of which
present challenges in accurate quantification [32]. Moreover, energy
storage faces unique opportunity costs due to its finite capacity.
Discharging at lower prices can result in lost opportunities to capi-
talize on higher future prices, and similarly, charging during peak
prices can preclude taking advantage of lower future rates [33].
This opportunity cost is further compounded by the uncertainty of
future price fluctuations. Consequently, monitoring and mitigating
the market power of energy storage, typically achieved through
cost-based methods for conventional generators, becomes particu-
larly complex and challenging [28]. This complexity necessitates
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innovative approaches to effectively oversee and regulate the mar-
ket power of energy storage, ensuring it to positively contribute to
the energy market’s efficiency and stability.

We propose a comprehensive analysis method of energy storage
economic bids in the energy market, considering the unique cost
principles and market power of energy storage systems. The main
contributions of this paper are follows:

e This paper proposes a market power examination frame-
work for energy storage based on dynamic programming. In
economic bidding, wherein energy storage systems submit
quantity-price pair bids to the market operator, this frame-
work compares the optimal economic bids of energy storage
when exercising market power against those not exercising
market power.

e We introduce a formal theorem that defines the bounds of
economic withholding by energy storage, accounting for sce-
narios both with and without price uncertainty. This theorem
clarifies that the maximum difference between bids made
with and without exercising market power depends only on
the expected future peak price and the current price, unaf-
fected by the model of price sensitivity or the uncertainty in
price distribution. This theorem provides a robust theoretical
foundation for monitoring energy storage’s market power
within the energy market.

e We validate our result using historical data from the New
York Independent System Operator. The different bidding
strategies and arbitrage processes are compared under dif-
ferent price sensitivity models and market power realization.
The result also shows the revenue difference caused by gaps
between actual price sensitivity and predicted price sensitiv-
ity.

We organize the remainder of the paper as follows. Section 2
provides context of our research question and reviews related liter-
ature. Section 3 describes the energy storage arbitrage formulation,
market price, and storage bidding models. Section 4 and 5 present
theoretical results for energy storage exercising market power and
simulations with real-world price data. Section 6 concludes this

paper.

2 BACKGROUND AND RELATED WORK
2.1 Energy Storage Energy Market Participation

The participation of utility-scale energy storage in the wholesale
electricity market has gained significant attention, primarily due
to its potential to enhance grid reliability and integrate renewable
energy sources more effectively. The Federal Energy Regulatory
Commission (FERC) issued Order 841 [15] to facilitate energy stor-
age participation in wholesale electricity markets. In the US, en-
ergy storage systems can participate in energy markets primarily
through two methods: self-scheduling and economic bids.
Self-scheduling enables energy storage operators to set their gen-
eration or consumption levels in advance, typically in the day-ahead
market, though submissions can also occur in the real-time mar-
ket. This strategy involves committing to produce or use energy
irrespective of market price fluctuations, guided by predetermined
operational targets or contracts. On the other hand, economic bids
play a crucial role especially in the real-time market [5]. While
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operators initially place bids in the day-ahead market for prelimi-
nary scheduling, the real-time market is where they actively adjust
their bids in response to actual supply and demand. This two-stage
settlement process enables operators to finely tune their opera-
tions, in response to the dynamic nature of real-time pricing, to
optimize their economic returns. While energy storage can submit
economic bids and/or self-schedule in the real-time market, this
analysis primarily focuses on economic bids due to their strategic
role in managing state of charge (SoC) under price uncertainty [4].
Self-schedule bids make energy storage act as price-takers, offering
their capacity irrespective of spot prices and consequently losing
the advantage of their flexibility. This results in almost no or only
a small amount of their capacity are bidding as self-schedule [7].

Numerous studies have explored optimal storage control and
bidding strategies within the context of energy markets. Some stud-
ies focus on the self-scheduling method, with many acknowledging
the influence of market prices under a price-maker setting [2, 21].
This consideration is crucial because self-scheduling lacks the flexi-
bility to respond to real-time price fluctuations. In contrast, other
research focuses on economic bidding strategies. However, many
of these studies adopt a price-taker perspective [1, 10, 23, 31], of-
ten undermining the potential for energy storage operations to
influence market prices actively. Addressing this gap, our paper
investigates the optimal economic bidding strategies of energy stor-
age under price uncertainty, considering the potential of market
price influence.

2.2 Energy Storage Market Power

Market power is traditionally defined as the ability to profitably
alter prices away from competitive levels [22]. In the context of
electricity markets and the public sector, this concept has a crucial
significance due to its direct impact on energy access and social wel-
fare [3]. Unlike conventional generators, which typically exercise
market power through capacity withholding or strategic bidding,
energy storage systems introduce a new dimension to market power
dynamics due to their operational flexibility and the associated op-
portunity costs of charging and discharging [13, 27]. This unique
capability allows them to arbitrage market price fluctuations in a
way that conventional generators cannot, requiring a comprehen-
sive understanding of and efficient approach to monitoring their
market influence.

Previous work investigating energy storage market power has
primarily focused on bi-level modeling with market power consider-
ations [4, 9, 25, 34]. Our research introduces a different perspective
by examining the bidding behavior of energy storage systems when
exercising market power and analyzing the specific characteristics
of these bids. This approach provides insights on the strategic bid-
ding behavior of energy storage systems and its implications for
market prices and overall market health.

With the rapid increase in installed energy storage capacity and
the rise of strategic behavior, mitigating market power in energy
storage has become a pivotal challenge in market design [36]. Tra-
ditional research on market power monitoring, primarily focused
on conventional generators, has primarily utilized fuel cost and
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heat rate curve parameters as the basis for monitoring [28]. How-
ever, the unique operational dynamics and cost principles of energy
storage require reconsidering these traditional approaches.

In the US, market power monitoring and mitigation are addressed
through two primary approaches. The structural approach, which
focuses on the market’s design and rules, includes mechanisms like
offer caps. On the other hand, the conduct and impact approach
analyzes the behavior of market participants and the resulting mar-
ket outcomes. Both approaches fundamentally rely on accurately
estimating the marginal cost of generation resources [16].

However, energy storage systems present unique challenges for
market power monitoring. Unlike conventional generators, energy
storage must consider the aforementioned opportunity costs asso-
ciated with charging and discharging, adding layers of complexity
to cost estimation and bidding strategies. Previous studies have
illuminated the impact of energy storage market power on both
storage owner profits and broader social welfare [12, 25]. This pa-
per introduces a theorem crucial for energy storage market power
monitoring, highlighting that bid differences depend mainly on
expected future and current prices. This insight offers an efficient
approach to addressing energy storage challenges in market power
analysis.

3 FORMULATION AND PRELIMINARIES
3.1 Energy Storage Arbitrage Model

We formulate the problem of energy storage (ES) real-time market
arbitrage, assuming prices are influenced by ES activities, as a multi-
period scheduling problem spanning the time horizon {1, 2, ..., T}.

T
max »" [(pe = bi)Ae (pe be) = epr] + Vr(er) (12)
pebe i3
where the first summation term is the operation revenue, with the
control decision variables p; and b; referring to the discharged and
charged energy over period t respectively. At (pt, br) is the electric-
ity price in real-time market, which is formulated as a function
of the storage operation. c is the marginal discharge cost which
represents the ES operation and maintenance cost and degradation
cost. V(er) is the terminal value function of the end SoC e, which
reflects the future value of remaining energy in storage.

Remark 1. Electricity price in real-time market. The actual
electricity price in real-time markets is formulated during a se-
quential market clearing process, where a single-interval or multi-
interval economic dispatch problem is solved. Single-interval pric-
ing mechanism was quite prevalent in early electricity markets,
where only the current period economic dispatch problem is con-
sidered in each time step. Its convenience contributes to its wide
application in many electricity markets, especially in smaller or
simpler market. Multi-interval pricing mechanism, such as rolling-
window dispatch model, gradually became more popular as it allows
for more efficient dispatch especially to meet high ramping require-
ments [11, 17, 18]. It has been applied in New York Independent
System Operator (NYISO) and California ISO (CAISO) [6, 20]. In
this paper, we use a general function to model the single-interval
real-time pricing mechanism, which will be elaborated in Definition
1. Here we use price-maker energy storage (PM-ES) to refer to the
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storage that exercises market power during the bidding process,
and use price-taker energy storage (PT-ES) to refer to the storage
without considering their impacts on real-time price. We assume
that both the PT-ES and the PM-ES can have access to real-time
price forecasts A;. The difference is that PT-ES doesn’t perceive
itself as having the market power to influence the price. So in the
arbitrage model for PT-ES, the At ( Pt br) can be simply replaced by
the predicted value A;. In contrast, PM-ES is characterized by the
clear understanding and quantification of the impact of its operation
on real-time price as a function of its operation it (pt, br).

The arbitrage problem is subject to the following constraints:

er —er—1=—pr/n+ben (1b)
0<p <P0<p <P (1c)
pr=0ifA; <0 (1d)
0<e <E (1e)

where Eq. (1b) represents the SoC evolution with one-way efficiency
1. Eq. (1c) models the upper and lower bounds of the charging
and discharging energy over period t. Eq. (1d) is the relaxed form
of the non-simultaneous constraint for charging and discharging
operations. Eq. (1e) models the upper and lower bounds of the SoC
level.

3.2 Market Price Model

For each time period ¢, the system operator clears the real-time
market to form the real-time price based on the current generation
and load at a time and then moves the the next time period. A
mapping relationship between ES operation and real-time price
can be established since only the current conditions matter in the
single-period sequential dispatch problem.

Definition 1. Price Sensitivity Model. For simplicity, here we
use an aggregated function h(-) to represent the influence of ES
operations on the real-time price.

Ae(pebe) = Ay + h(pe — by) (2

where h(-) is a continuous function which satisfies the following
properties:

1) zero at origin, i.e. h(0) = 0. It refers to the A; as the benchmark
price uninfluenced by the storage operation.

2) decreasing, i.e. h’(-) < 0. This property aligns with our intu-
ition that an increasing cost will be paid for the ES to buy each
additional unit, and a decreasing revenue can be obtained for the
ES to sell each additional unit.

3) xh(x) is concave, which is to guarantee the concavity of the
subsequent single-period optimization problem in Subsection 3.3.
According to Eq. (1a), the revenues can be calculated through (p; —
be)[Ar + h(ps — br)]. So, this requirement is to ensure the revenue
function is concave.

Example 1. Linear Function. To be more specific, we will further
consider the following linear function. It is trivial to prove that it
satisfies all three properties mentioned above.

h(ps — br) = —a1(pr — by) (3a)

The linear price sensitivity model is utilized to illustrate the effect
of a single energy storage operator’s actions on market clearing
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prices, which is a conventional intuitive model corresponds well to
the economic clearing process in the real-time market.

Remark 2. Linear Price Sensitivity Model. This price model
corresponds to the traditional quadratic cost function for thermal
power generation, with %al as the quadratic coefficient. It has been
applied or verified in some papers studying the market power of
traditional generators [24] or wind turbines [35]. Assuming that the
market participants only include one PM-ES and generators, with all
generators modeled as an aggregated one without upper and lower
bounds (to ensure the feasibility of the clearing problem). Then,
the real-time price can be derived as the function of ES operation
from the power balance constraint to meet the current period’s net
demand.

Example 2. Nonlinear Function. The impact of storage opera-
tion on real-time pricing cannot be fully captured by linear func-
tions, thus we introduce a cubic price sensitivity model. Higher-
order sensitivity functions more accurately captures market dynam-
ics, particularly under conditions requiring rapid ramping capabili-
ties. The cubic model is used to represent the significant influence
that flexible and rapid-response resources, like battery energy stor-
age systems, have on price formation in real-time market:

h(ps = by) = —az(pr — br)® (3b)

3.3 Storage Bidding Model

Motivated by the dynamic programming algorithm, the PM-ES
arbitrage problem can be formulated as an iterative single-stage
optimization problem:

VPM(er-1) = gm;}xmt +h(pr = be)1(pr = be) = cpr + VM (er) (4a)
Ut

subject to
(1b) - (1e) (4b)

where VtPM(et) refers to the value function that reflects the op-
portunity value of the remaining SoC e; at the end of the time
period-t. The superscript PM indicates the perspective of the ES as
a price-maker. Eq. (4a) is a generalized form, designed to incorpo-
rate varying degrees of price sensitivity knowledge, from perfect
information to energy storage operators’ private estimates, which
accommodates the realistic scenarios of imperfect information faced
by energy storage operators.

Proposition 1. Storage bidding model for PM-ES. We design
the bids according to the marginal charging value and marginal
discharging cost of the calculated opportunity value functions:

A 7]

BN = = (VM e+ b)) = eMe)  Ga)

A d 1
PPM = —(cpr — VPM(er—1 = pe/n)) = c+ —ofM(er)  (5b)
op: n

where BfM and ﬁfM are the charging and discharging bid for PM-
ES respectively. vfM (e¢) is the derivative of the storage opportunity
value function VtP M(e,) in Eq. (4a).

We design the bids according to the marginal cost from both
physical and opportunity perspectives. In Eq. (4a), —cp; refers to
the physical cost while VtPM(et) refers to the opportunity cost. By
calculating the derivative of both the two terms, we can formulate
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the strategic bids as Eq. (5a) and Eq. (5b) shows. The formulation
of VtPM(e;) will be discussed in Section 4. The detailed proof is
included in Appendix A.

Corollary 1. Storage bidding model for PT-ES. The arbitrage
problem for PT-ES can be formulated similarly just by specifying

h(pe — by) = 0.
VT (er-1) = max Ae(pr = be) —cpr +VE T (er) (6a)
Ut

subject to
(1b) - (1e) (6b)

Based on the opportunity value function VtP T(e;), the bids strategy
can be designed in the same way with PM-ES:

BT = nof T (er) (7a)

A 1
PP =c+ Eva(et) (7b)

4 MAIN RESULTS

In this section, we define the bounds of market power economic
withholding by energy storage, which clarifies the maximum dif-
ference between bids made with and without exercising market
power. This definition is based only on the future peak and current
price expectations, regardless of the price sensitivity model and
uncertainty distribution.

Theorem 1. Market power economic withholding bound. The
upper bound of ES economic withholding is determined exclusively
by the expected current real-time price, E[A;], and the expected
peak real-time price in the future, E[iffil; sT]]’ such that:

oM er) - of T(er) < BIATS 1= om-EBlld/m  ®

where the market power economic withholding upper bound is for-
mulated as the maximum difference between the opportunity value
functions when assuming the exercise of market power, UEM(et),
versus not exercising market power, UfT(et)A This bound takes
into account the uncertainty in bidding processes and models the
real-time price as a time-varying, stage-wise independent process,
At-

To prove Theorem 1, we firstly discuss the cases under the deter-
ministic price model, which includes Lemma 1, Lemma 2, Lemma 3,
and Corollary 2. First, we give the specific update progress of mar-
ginal value function for both PT-ES and PM-ES, and economic
withholding bound in a recursive way. Corollary 2 concludes the
market power economic withholding upper bound under the deter-
ministic price model. Then we will prove Theorem 1 under price
uncertainty based on Lemma 4-7, which extends the deterministic
cases to incorporate price uncertainty. The arbitrage problem is
restated in Lemma 4 based on stochastic dynamic programming.
Lemma 5 and 6 derives the analytical marginal value function up-
date assuming the price follows a probability distribution function.
Lemma 7 derives the economic withholding bound as the difference
between marginal value function in Lemma 5 and Lemma 6, which
will finish the proof of Theorem 1.

Remark 3. Withholding bound for bids. According to Subsec-
tion 3.3, it is trivial to prove that the actual difference in charging
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(discharging) bids with and without exercising market power cor-
responds to a linear relationship with the difference in marginal
value function in Theorem 1:

BIM BT = pofM(er) — of T (er)] (9a)

A . 1
M- BT = ;[UfM(et) — o (er)] (%b)

Remark 4. Distribution-free withholding bound. The market
power economic withholding bound in Theorem 1 depends solely
on the expected current price and expected peak price in the future
time period, and remains unaffected by the particular distribution
type of the price uncertainty model.

Remark 4 shows that although the price uncertainty may lead to
potential economic capacity withholding no matter whether stor-
age exercises market power, it won’t exacerbate the bid difference
between the two scenarios. That means even when the storage
hopes to exercise its market power in real-time markets, its bid
must be within a specific range compared to the price-taker one.
And since the expectation of real-time prices is approximately the
day-ahead price, Theorem 1 makes sense in that we can use the
day-ahead price as the bound for storage to exercise market power
economic withholding.

Remark 5. Model-free withholding bound. Theorem 1 holds
consistently, irrespective of the specific price sensitivity model,
denoted as h(-), that is selected.

In addition to the provided analytical proof framework and the
forthcoming detailed proofs including Lemma 1-7 and Corollary 2,
here we give an intuitive explanation of Remark 5. Just assume the
real-time price is so sensitive to the operation of storage that the
derivative of h(p; — b;) at zero is approximate infinite:

lim h'(Ax) = - 10
i (A = e e

which means no matter what the initial price is, the actual real-time
price will go infinitely up or infinitely down with just minor storage
operation:

lim A (ps,0) = — 10b
pm +(p1,0) = —o0 (10b)
All)ltn_l)olt(o» by) = oo (10c)

where the storage with the price sensitivity knowledge wouldn’t
charge no matter how low the initial price is, and wouldn’t dis-
charge no matter how high the initial price is. Considering the
discharging bid is always greater than the charging bid, here only
discharging bid is considered to derive the maximum difference be-
tween price-maker and price-taker. Given that the discharging bid
is a reference value, when the price falls below the discharging bid,
the storage will not discharge. Therefore, to guarantee the storage
will not discharge in any cases, the discharging bid can be set as
the expected peak price in the future. That is why in Theorem 1,
price sensitivity function h(-) disappears.

Lemma 1. Marginal value function for PT-ES. By sampling
e; among [0, E], the derivative of value function for PT-ES can be
calculated on a recursive computation framework stepping from
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the known terminal marginal value function v?T(eT):

UET(B +Pp) ifA < a}(e)
Ae/n ifa}(e) <At < a?(e)

or T (e) = {oFT(e) ifa(e) <Ar <ad(e)  (11)
Ar—o)n ifad(e) < At < aj(e)
UET(E—P/I]) if Ay > a;l(e)

where rxtl (e) = va(e+Pn)r], af(e) = UfT(e)r], a?(e) = va(e)/q+c,
a?(e) = UET(e—P/U)/rHc are parameter functions related to storage
SoC e. We omit the subscript t — 1 in e;_; for simplicity. For proofs
of Lemma 1, please refer to [33].

Lemma 2. Marginal value function for PM-ES. Applying the
same approach in Lemma 1, we can calculate the derivative of the
value function for PM-ES on a recursive computation framework:

o™ (e + Pn) if 4 < Bl(e)

[Ae +h(=b") = b*H' (=b")1/n if B} (e) < A¢ < B} (e)
oy (e) = {0PM(e) if BZ(e) < Ar < B3 (e)

[Ae +h(p*) +p*H (p*) = cln  if Bj(e) < A < Bi(e)

ufM(e—P/ry) if Ay > ﬁf(e)

(12a)

where f!(e) = o™ (e + Pp)n — h(=P) + Ph’ (=P), B2(e) = oM (e)n,
Bi(e) = oM (e)/n+c, B} (e) = oM(e = P/n)/n—h(P) = PR (P) +¢
are parameter functions related to storage SoC e. The solution of
b* € (0,P) and p* € (0,P) can be derived based on first-order
conditions as following equations respectively:

A + h(=b*) = b* K (=b*) = oPM(e + b n)n (12b)
A+ h(p) +p* R (p*) —c=oM(e—p*/mn  (12¢)

Comparing the results of Lemma 1 and Lemma 2, the formula-
tion of marginal value function under the assumptions of whether
exercising market power or not differs in the second and fourth
cases. An intuitive interpretation is that assuming the PT-ES and
PM-ES share the same marginal value function at period ¢, i.e.
ufM(et) = UfT(et) for all e; € [0, E], when A; satisfies the second
case in Lemma 1, the marginal value function for storage not ex-
ercising market power is only based on the current price. Since
ﬁtl (e) < a; (e), ﬁ?(e) = a?(e), the storage exercising market power
also lies in the second case of Eq. (12a). Considering the sensitivity
price model, the real-time price will be influenced by the actual
charging power b*. As for B} (e) < a; (e), it can be explained that
when A; = atl (e), the storage not exercising market power decides
to fully charge. While the storage exercising market power realizes
that its charging behavior will increase price and finally decrease
its overall revenues, so it still decides to partially charge, or in other
words, to conduct economic withholding. The fourth discharging
case shares a similar logic to the second one. For detailed proofs of
Lemma 2, please refer to Appendix B.

Lemma 3. Economic withholding bound formulation. Assum-
ing that for each e € [0, E] at period-¢, there exist an upper bound
0;(e) which satisfies:

o, (e) — v} T (e) < 0;(e) (13)
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then 6;_1(e) can be updated in an recursive way to guarantee
vfl_wl(e) - Ufirl(e) < 0;_1(e) for each e € [0, E]:

Qt(€+P7]) if Ay < )/}(3)
opM(e) = Ae/n iy} (e) < A < yi(e)
0r—1(e) = 1 6;(e) if y?(e) <A < y?(e) (14)
0 otherwise
0:(e — P/n) if Ay > yf(e)

where 6;_1(e) can be formulated according to vfM(e) and vfM(e).
vt (e) = oM (e + Pp)y — h(=P) + PR’ (=P), y;(e) = min{o; (e)n,
v, L(e)n}, v} (e) = max{o;M(e+Pn)n—h(~P) + P’ (=P), 0} " (e)},
vi(e) = min{oP (e)n,0T(e)n). y(e) = oFT(e - P/y)/n +c are
parameter functions related to storage SoC e.

Assuming that the arbitrage models for both PT-ES and PM-ES
share the same terminal value function V7 (er), we can get the ter-
minal period bound 67 (e) = 0. Thus we can get all the withholding
upper bound at any time period using backward calculation. The
detailed proof is included in Appendix C.

Corollary 2. Market power economic withholding bound
under deterministic price model. When we consider the deter-
ministic price model A;, the market power economic withholding
bound is:

oPM(e,) — 0P T(e;) < (Affj‘;g] —on-A/n (15)

peak
where A[t<rsT]

(¢, T].

This corollary is trivial to show based on Lemma 3, which shows
the maximum 6; (e) must lie in the second case in Eq. (14). Then
the maximum marginal value function can be formulated according
to Lemma 2:

max{of™(e;)} < max{[A; +h(p*) +p*H (p*) - cln}

Kk (16)
< (Al[)tezfsT] —on

is the peak price in the future time period during

Now, we consider a more general and realistic scenario by intro-

ducing price uncertainty and extending Lemma 1, Lemma 2 and
Lemma 3 in general. We apply stochastic dynamic programming in
the arbitrage model and add probability terms in the formulation
of the marginal value function.
Lemma 4. Storage bidding model considering price uncer-
tainty. By assuming the real-time price model as a time-varying
stage-wise independent process At the arbitrage problem for PM-ES
exercising market power can be formulated as stochastic dynamic
programming:

O™M (e-1ldy) = ;H%X{ [Ae +h(pr = be)] (pr — br)

(17a)
—cpe +VM(er)}
VM (er-1) = BIQP] (er-1141)] (17b)
subject to
(1b) - (1€) (17¢)
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the arbitrage model for PT-ES not exercising market power is:

Q)71 (er-lde) = max de(pr = be) —epe + V7 (er) - (189)

Yt
ViZi(er-1) = EIQ/T (er-1ldr)] (18b)

subject to

(1b) - (1e) (18¢)
Note that the expectation also holds after taking the derivative:
o7 (e) = Elg; ™ (elArn)] (192)
0" (e) =Elg; " (eldrsn)] (19b)

which means we can calculate va(e) and UfM(e) under a similar
recursive framework with Lemma 1 and Lemma 2.

Lemma 5. Marginal value function for PT-ES under price
uncertainty. The marginal value function for PT-ES under price
uncertainty can be calculated from the price probability density
function f; and cumulative distribution function F; recursively:

oFT (e) = 0¥ (e + Pn)F;(at} ()

1 af(e)
+ —/ uf;(u)du
N Jal(e)

+0; () [Fr(a(e)) = Fe(af (e))] (20)

aj(e)
+17/3 ) (w =) fy(w)dw

+0" (e = P/n)[1 - Fy(al(e))]

where atl (e), a? (e), a? (e), a?(e), af (e) are the same parameter func-
tions with Lemma 1. For detailed proofs of Lemma 5, please refer
to [33].

Lemma 6. Marginal value function for PM-ES under price
uncertainty. The marginal value function for PM-ES under price
uncertainty can be calculated from the price distribution function
f+ and F; recursively:

oPM (e) = o)™ (e + Pn)Fr (B} (e))

2

1 ﬁt(e) .
o1 / [+ (b () — b () (=b" ()1 fy (w)du
nJBi(e)

+0tM(e) [Fr (B3 (e)) — Fr (BE(e))]

Bi(e)
+1 //33(6) [w—c+h(p*(w) +p" (WK (p" (W) fr (w)dw
t
+oM(e = P/n)[1 - Fi (B (e))]

(21a)
where ﬁ} (e), ﬁ? (e), ﬁ? (e), ﬁ?(e), ﬁf (e) are the same parameter func-
tions with Lemma 2. b*(u) € (0, P) and p*(w) € (0, P) refer to the
mapping relationship between b*, p* and u, w, as b* € (0, P) and
p* € (0, P) are the solutions to the following equations with u and
w as parameters respectively:

u+h(=b*) = b*H (=b*) = o"M(e + b*p)n (21b)
w+h(p*) +p*H (p*) —c=oM(e=p*/my  (210)

Lemma 7. Market power economic withholding bound for-
mulation considering price uncertainty. When considering
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price uncertainty, the market power economic withholding bound
0; can be calculated from the distribution function f; and F;:

0:-1(e) = O (e + P Fe(y} (e))
Yi(e)
UPM e)—u u u
+/W (0P () — u/nl i (w)d -
+0:()[Fe (v (e)) = F(y3(e))]
+0:(e = P/)[1 - Fr(y; (€))]

where ytl (e), yf (e), y?(e), y?(e), y?(e) are the same parameter func-
tions with Lemma 3. It is trivial to prove that the maximum 6; (e)
corresponds with the second term:

max{6; (e)} < max{E[¢'™(e) - 1/7]}

< B 1= n = EBLA/n

which concludes the proof of Theorem 1.

(23)

5 SIMULATION RESULTS

We use the historical real-time price data from the New York In-
dependent System Operator (NYISO) as the initially uninfluenced
electricity price. We set the basic storage parameters: the storage
capacity E = 0.2 MW, identical charging and discharging one-way
efficiency n = 0.9, power rating P = 0.1 MW (2-hour duration). All
simulations and plots are conducted in Matlab.

5.1 Storage bidding and arbitrage process

We consider three settings in this study to demonstrate the en-
ergy storage bidding strategy considering market power based on
marginal value function.

o Price taker. Storage takes itself as a price-taker and wouldn’t
exercise market power. It just applies the initially uninflu-
enced electricity price in its arbitrage model to generate bids
according to Eq. (20).

e Linear price sensitivity model. Storage approximates the
impact of storage operation on real-time price through a
linear model: A; = A; —a; (pr —bt). By quantifying its market
power, it strategically designs its bids according to Eq. (21a)-
(21¢).

o Cubic price sensitivity model. Storage approximates the
impact of storage operation on real-time price through a cu-
bic model which satisfies the three requirements mentioned
in Definition 1: j.t = At —a2(pr — b:)3. It exercises market
power when designing bids according to Eq. (21a)-(21c).

We first demonstrate the impact of market power assumption in
the storage valuation and arbitrage process. Figure 1 shows the mar-
ginal value of different SoC levels under the above three settings. Al-
though these value curves exhibit the same monotonically decreas-
ing trend, the storage that exercises market power tends to smooth
its value curve, which means there exist less sharp drop than the
price-taker. It can be explained by the marginal value function for-
mulations for price-maker and price-taker in Lemma 1 and Lemma 2.
We first assume that at time ¢-period, price-maker and price-taker
share the same marginal value function, ie. UfM(e) = ufT(e) for
all e € [0, E], as is shown in Figure 2. The black line refers to the
same marginal value function at time t-period. The red line and
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Figure 1: Marginal value for different SoCs at hour 7
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Figure 2: Schematic diagram of the marginal value function
for price-maker and price-taker under same initial condi-
tions

the blue line refer to the marginal value functions for PM-ES and
PT-ES at time ¢ — 1 respectively. etc and e? are two crucial spots
satisfying vt(etc)r] = A; and Ut(eP)/q + ¢ = A; respectively. It can
be seen that when e < etc, the blue line consist two parts: the part
with the same slope as the initial v; (e), and the part with 0 slope.
The red line also consist two parts: the part with the same slope
as the initial v;(e), and the part with gentle slope compared with
vt (e). From a global perspective, there exist more 0-slope parts in
blue line, leading to more sharp drops compared with the red line.
Such theoretical discussion corresponds with the simulation results
in Figure 1.

Considering storage can design its charging and discharging
bids by multiplying a constant on the opportunity value function
as shwon in Eq. (5a),(5b) and Eq. (7a),(7b), we only compare oppor-
tunity value functions in the following discussion. The arbitrage
process based on the above bidding strategy is shown in Figure 3
and Figure 4, with the corresponding electricity price. The results
align with our intuition that storage that exercises market power
tends to conduct additional withholding when other price-taker
storage decides to charge or discharge fully. When the price is high,
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the storage discharging behavior will cause the price to drop, lead-
ing to a preference for less discharge. Similarly, when the price is
low, the storage charging behavior will increase the price, in turn
leading to less charging operation.
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Figure 3: Storage arbitrage operation under linear price sen-
sitivity model
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Figure 4: Storage arbitrage operation under cubic price sensi-
tivity model

We calculate the market power economic withholding bound
0;(er) according to Eq. (22) and compare it with the actual difference
of bids made with and without exercising market power, as is shown
in Figure 5. The results validate our formulation of 6;(e;). Note
that 0; (e;) is always non-negative even if the bid made without
market power does exceed the bid made with market power. That
is because we only care about the excess portion when defining the
upper bound.

5.2 Sensitivity Analysis

The effects of different coefficients in the linear price sensitivity
model on storage arbitrage behavior are shown in Figure 6. The
parameters of each price sensitivity model are 0, 0.001, 0.005, 0.01
and 0.02. As the parameter a; increases, the impact of storage
operations on real-time electricity prices becomes more significant,
and it is also more likely to lead to additional withholding for energy
storage.
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Figure 7: Revenue under gaps between actual price sensitivity
and predicted price sensitivity

Meanwhile, we also provide a comparative analysis showing
the storage arbitrage profit probing different actual market price
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sensitivities and the sensitivity assumed by the storage participant,
which means a gap exists between the self-predicted price sensitiv-
ity parameter and the actual parameter. Under such circumstances,
the storage cannot earn as much revenue as expected when design-
ing bids. The whole simulation is conducted under the linear price
sensitivity assumption with different a1, ranging from 0 to 0.008.
Figure 7 shows the revenue ratio under different predicted and
actual parameters. The x-axis represents the actual price sensitivity
parameter, while the y-axis represents the sensitivity parameter
predicted by the price-maker. The z-axis represents the normalized
revenues under different pairs of actual and predicted parameters.
The storage gains the most revenue when both parameters are zero,
which means storage operation will not influence the real-time
price, and storage is aware of this fact. In general, the entire graph
exhibits the shape of a ridge formed by the points when the pre-
dicted parameter equals the actual parameter. That means with a
fixed actual price sensitivity, When the predicted parameter devi-
ates from the actual one, the revenue will decrease, regardless of
whether the deviation is positive or negative. With a perfect price
sensitivity quantification, our price-maker algorithm can indeed
obtain higher market profits.

6 CONCLUSION

In this study, we proposed an analytical energy storage market
power examination framework through dynamic programming. By
comparing the different strategic bids made with and without exer-
cising market power, we introduce the upper bound of economic
withholding caused by market power based on the price expecta-
tion. This bound stands regardless of the model of price sensitivity
and uncertainty in price distribution. We validate our proposed
algorithm on numerical experiments based on data from NYISO.
Both linear and nonlinear price sensitivity models are tested. Fur-
thermore, we analyze the impact of the accuracy of price sensitivity
parameter prediction by calculating the overall revenues under
different settings.
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A PROOF OF PROPOSITION 1
First, we consider the charging bids, where b; > 0, p; = 0. By
factoring the marginal charging revenues in Eq. (4a)
VN (er-1) 3
oby
The bids can be derived by assuming b; — 0. Then according to

the first and second assumptions of function A(-) in Definition 1,
h(—b;) — 0. Then we can get

At = h(=bs) + beh' (=br) +notM(er)  (24)

i 1) 25
b,lglo 3—bt t+ ’70t M(er) (25)

Then we can define the charging bid as
BM = pof™ (er) (26)

The discharging bid can be calculated in a similar way, by fac-
toring the marginal discharging cost in Eq. (4a)

VM (er-1) 1
— e = A+ h(pr) + peh (pr) —c = —oM(er)  (27)
opy n
Assuming p; — 0, then we can get
aVEM (e, _ 1
lim M =Ar—c— —U?M(et) (28)
b —0 opt n
We can define the discharging bid as
N 1
PFM =c+ EvtM(et) (29)

B PROOF OF LEMMA 2

We restate the single-period economic scheduling problem for stor-
age arbitrage based on dynamic programming as follows:

VM (er-1) —maxmt+h<pt—b:)](pt—bt)—cpt +VPM(er) (30a)

subjects to:

er —er—1 = —pe/n+bey: (pr) (30b)
0 < p; < P:(011,012) (30c)

0< by <P:(013,014) (30d)

pr=0if A <0 (30¢)

0<e <E (30f)

where yi; is the dual variable associated with the SoC evolution con-
straint Eq. (30b). 01, 042, 013, 014 are the complementary slackness
variables associated with the upper bound constraints of charging
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or discharging power rate. We use the first-order optimal condition
to calculate the derivative of th_Nll(et,l) as:

0 ab
or (er-1) = [2¢ + h(pe - b»](% o
’ ’ abt
+peh (pr - bt) +b h (pe - bt)ae (31)
apt 38;
B Caet_ et) der_1

According to Karush-Kuhn-Tucker (KKT) conditions and non-
simultaneous charging and discharging constraint Eq. (30e), the
solutions have to satisfy the following equations:

pe = oM (er) (32a)
/11 +p[h’(pt)+h(pt) —C—/lt/l]+0'[1 —o0p2=0 (32b)
_At + bthl(—bt) - h(—bt) + N + 043 — Opa = 0 (32C)
Then we can conclude the following results:
P ifA <vtM(e+P17)17
pr=1p* else (33a)
0 ifd > ofM(e)p
P 1f)Lt>UtM(e—P/r])/17+c
by ={b* else (33b)

0 ifA <ofM(e)/n+e

where b* € (0, P) and p* € (0, P) are the solutions to the following
equations respectively:

A+ h(=b*) = b*H' (=b*) = oPM(e + b*n)p (33¢)
A +h(p") +p"H (p7) —c=oM(e=p"/my (33d)
Accordingly, we can get the partial derivative expressions:
0 if (30c) bindi
B o, W6wbinng o
e n—-n5% if (30c) not binding
ab 0 (30d) binding
a_et {l"— -1 if (30d) not bindin (34b)
n o n 8
der 1 if (30c) and (30d) binding
e b, 19p o (34c)
e 1+n5¢ = 5% if (30c) or (30d) not binding

By replacing the decision variables and partial derivative expres-
sions given by Eq. (33a) and Eq. (34a) in Eq. (31), we obtain the
formulation of vfM(e) in five cases:

Case 1: by = P,p; = 0. Storage charges at full power rate P
so that the constraints Eq. (30c) and Eq. (30d) are binding. This
case happens when the price is quite low which satisfies 1; <

PM(e + Pp)n — h(~P) + Ph’ (—-P). Hence ‘g;‘ = %IL' = ,% =
Then we can get the marginal value function:
vt 1(e) = U (e + Pn) (35a)

Case 2: 0 < b; < P,p; =0. Storage charges partially when the
price is moderately low that v M(e + Pp)n — h(=P) + PH' (-P) <
A < UFM(E)I]. Then the constraints Eq. (30c) is not binding. Hence
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% =1+7p aabe, , %pet = 0. Then we can get the marginal value
function:

072 (e) = [Ae + h(=b") = b"H (=b")] /n (35b)

Case 3: p; = b; = 0. Storage doesn’t charge or discharge so the

constraints Eq. (30c) and Eq. (30d) are binding. This case happens
when the price is similar to the current marginal value function
UfM(e)q <A < vtM(e)/r]+c Hence ap‘ = aal;’ =0, aaecf = 1. Then
we can get the marginal value functlon

oPM () = o} M(e)

Case 4: p; = 0,0 < by < P. Storage discharges partially when
the price is moderately high that v M(e)/r] +c <A £ UPM(e -

P/n)/n — h(P) — Ph’(P) + c. Then the constraints Eq. (30c) is not
de; 1 9pr 9b,

de n oe’ de
marginal value function:
oY1 (e) = [ + h(p") +p*H (p") — cln

Case 5: by = 0,p; = P. Storage discharges at full power rate
P so that the constraints Eq. (30c) and Eq. (30d) are binding. This
case happens when the price is quite high which satisfies A; >

(35¢)

binding. Hence = 0. Then we can get the

(35d)

PM(e—P/r])/q h(P) — PR’ (P) + c. Hence ap, = aal;’ =0, % =1
Then we can get the marginal value functlon
oY (e) =0} (e = P/n) (35¢)

Then we finish the proofs of Lemma 2.

C PROOF OF LEMMA 3

To calculate the maximum difference between Eq. (11) and Eq. (12a),
the most intuitive way is to list all the 25 situations and calculate
the difference, respectively. For simplicity, we only analyze the
cases where the J; is greater than 0 here since the upper bound
only cares about the maximum term.

Case 1: PM-ES lies in the first case, where A; < utM(e +Pn)n —
2a1P. Then we can calculate the difference as follows:

(e) - v (e) = DEM(E + Pn) - 0 (e)
< vtM(e + Pn) — vtT(e + Pn)
< 0;(e+Pn)

(36)

Case 2: PM-ES lies in the second case, while PT-ES lies in
the first or second case, where vtM(e + Py)np — 2a9P < Ay <
mln{vtM(e)ly, T(e)r]} Then we can calculate the difference as
follows:

M(e) =0yt (e) < [Ar +h(=b") = b* (=b")] /5 = Ae/n
= [h(=b") = b"H' (=b")]/n

= [0/™ (e +b"nn = 241/

< o;™M(e) = A/n

(37)

Case 3: PT-ES lies in the fifth case, where 1; > va(e —P/n)/n+c.

Then we can calculate the difference as follows:
M(e) =01ty (e) = o™ (e) =0} (e = P/1)
<o;M(e~P/n)—ov; (e~ P/n)
< 0:(e-P/n)

(38)
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Case 4: PM-ES lies in the second or third case, while PT-ES lies
in the third or fourth case, where max{vfM(e + Pn)n — h(-P) +
PK (-P), va(e)n} <At < min{vfM(e)n, van}. Then, we can cal-
culate the difference as follows
iy (e) =0t () < o () — of
< 0s(e)

Then we finish the proofs of Lemma 3.

L0 (39)
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