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Abstract

The proliferation of inflammatory or mislead-
ing “fake” news content has become increas-
ingly common in recent years. Simultaneously,
it has become easier than ever to use AI tools
to generate photorealistic images depicting any
scene imaginable. Combining these two—AI-
generated fake news content—is particularly
potent and dangerous. To combat the spread
of AI-generated fake news, we propose the Mi-
RAGeNews Dataset, a dataset of 12,500 high-
quality real and AI-generated image-caption
pairs from state-of-the-art generators. We find
that our dataset poses a significant challenge to
humans (60% F-1) and state-of-the-art multi-
modal LLMs (< 24% F-1). Using our dataset,
we train a multi-modal detector (MiRAGe) that
improves by +5.1% F-1 over state-of-the-art
baselines on image-caption pairs from out-of-
domain image generators and news publishers.
We release our code and data to aid future work
on detecting AI-generated content.1

1 Introduction

Diffusion models (Ho et al., 2020) have shown
remarkable advancements in generating hyper-
realistic images. Particularly, models like Midjour-
ney can produce images that even graduate CS stu-
dents cannot distinguish (Sec 2.3). This capability
has profound implications, especially with regard
to the dissemination of disinformation. Recently,
there has been a noticeable surge in AI-generated
news images on social media (Metz and Hsu, 2024).
When coupled with the proficiency of large lan-
guage models (LLMs) in generating grammatically
and contextually appropriate captions, the potential
for AI-driven disinformation campaigns becomes
an increasingly critical concern.

Recent work on detecting AI-generated images
has shown impressive performance on images gen-
erated by models such as Stable Diffusion (Rom-

1https://github.com/nosna/miragenews
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Figure 1: Multimodal fake news with hyperrealistic
generated images from Midjourney poses a significant
challenge for both state-of-the-art MLLMs (< 24% F-1)
and humans (60% F-1). Our detectors achieve over 98%
F-1 on in-domain (ID) data and can generalize on out-
of-domain (OOD) data from unseen news publishers
and image generators (85% F-1)

bach et al., 2022), Glide (Nichol et al., 2022), and
DALL-E 2 (Ramesh et al., 2022). However, these
images are not always realistic and are often eas-
ily distinguishable by humans due to their obvious
anomalies. Since the datasets used in previous
works do not accurately represent the current chal-
lenge posed by state-of-the-art (SOTA) diffusion-
based models, there is an evident need for a chal-
lenging dataset comprising realistic AI-generated
news images and captions that provide the research
community with a foundation to develop and test
new detection methods.

In this work, we present the MiRAGeNews
Dataset, a dataset of real and fully generated news
image-caption pairs with 12,500 generated images
and corresponding captions from SOTA generators
as training and validation sets. To evaluate detec-
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tors’ out-of-domain robustness, we also create a
test set of 2,500 image-caption pairs from various
unseen image generators and news publishers.

Using this data, we train MiRAGe, a multimodal
detector that fuses an image detector and a text de-
tector, both of which are ensembles of a black-box
linear model and an interpretable concept bottle-
neck model. We show that MiRAGe exhibits better
out-of-distribution (OOD) robustness compared to
previous state-of-the-art detectors and MLLMs.

2 MiRAGeNews Dataset

2.1 Dataset Creation
Real Images and Captions. To create our data,
we first sample 6,500 New York Times image and
caption pairs from TARA (Fu et al., 2022) as our
“real” news subset. We select TARA for this due to
the presence of specific information on the location
and time of the news events in the captions. This ge-
ographical and temporal information helps provide
extra constraints to the model during generation.

Fake Caption Generation. To simulate in-
stances of real-world disinformation, we explicitly
prompt GPT-4 (OpenAI, 2024) to take a real cap-
tion and "generate fictional captions that could be
considered harmful or misleading". We also ask it
to incorporate all named entities from the original
caption to ensure the generated caption does not
stray too far from the original.

Fake Image Generation. We choose Midjour-
ney V5.2 as the image generator, considering its
hyper-realistic generations and relatively lenient
moderation.2 To generate fake images, we use fake
captions from GPT-4 as prompts with additional
keywords to restrict the photo style. We also in-
clude the aspect ratio of the corresponding real im-
ages in the prompt to reflect the realistic property
of news images.3

2.2 Task Design
Our detection task is designed to simulate the real-
world scenario where news on social media is often
presented as an image-caption pair. The detector
needs to determine if both the image and caption
are real (label 0) or if both are generated (label 1).

2Other image generators have stricter rules with regard to
the generation of harmful imagery (i.e., fabricated events of
public figures or graphic crime scenes).

3Midjourney prompt: "{caption} News photo style –ar
width:height –style raw".

Figure 2: Example of MiRAGeNews dataset generation.
We use GPT-4 to generate a misleading caption, which
is then used by Midjourney to generate the image.

To evaluate the detector’s generalization abil-
ity, we also collect 250 image-caption pairs each
from BBC and CNN4 to simulate the domain gaps
of news content from different news publishers.
We follow the same process to generate fake cap-
tions and use unseen generative models, DALL-E 3
and Stable Diffusion XL (SDXL), to generate Out-
of-Domain (OOD) fake images. We apply every
combination of unseen news and image generators
to obtain four OOD datasets: BBC + DALL-E 3,
CNN + DALL-E 3, BBC + SDXL, and CNN +
SDXL. With the addition of 500 in-domain real or
fake image-caption pairs, we construct our test set
with 5 small datasets, totaling 2,500 image pairs.

2.3 Human Evaluation
To evaluate human detection capability on our
dataset, we recruited 112 students who are taking
a graduate-level NLP course with extra credit as
compensation. Each student is randomly assigned
20 image caption pairs and is asked to separately
determine if the image is generated and if the cap-
tion is generated. Each pair in our survey was given
to three participants, and we used a majority vote
to determine the final prediction by humans.

Our evaluation results aligned with our hypothe-
sis that humans are not good at this detection task:
they detected only 60.3% of the generated images
and 53.5% of the generated captions. The well-
educated participants are representative of a high-

4https://www.kaggle.com/datasets/szymonjanowski/internet-
articles-data-with-users-engagement
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Figure 3: Overview of our MiRAGe detector for multimodal AI-generated news detection, which combines
MiRAGe-Img with MiRAGe-Txt. MiRAGe-Img trains a linear layer on the outputs from the image linear model
and Object-Class Concept Bottleneck Model (CBM), while MiRAGe-Txt trains a linear layer on the outputs from
the text linear model and Text Bottleneck Model (TBM). Outputs from two models can be either early fused or late
fused to make the final prediction on the image-caption pair.

performing subpopulation yet performing approx-
imately equally with random guessing, which im-
plies that these realistic fake news stories are fully
capable of fooling humans, and we need models
that can assist in this task to combat disinformation.

3 Detectors
Baselines. We compare our detectors against re-
cent baselines in three different settings: Image-
only, Text-only, and Multimodal detection. For
image-only, we compare to DE-FAKE (Sha et al.,
2023), DIRE (Wang et al., 2023), and KNN (Ojha
et al., 2023). For text-only, we compare with the
Text Bottleneck Model (TBM) (Ludan et al., 2023),
and for Multimodal, we compare with HAMMER
(Shao et al., 2024). We also test simple linear mod-
els in each modality and benchmark state-of-the-art
MLLMs on the image-only and multimodal detec-
tion tasks. See Appendix A for a more detailed
discussion on each of the detectors tested.

MiRAGe-Img trains a linear layer on top of the
outputs from two models: (1) a linear model trained
using EVA-CLIP (Sun et al., 2023) image embed-
dings and (2) an Object-Class Concept Bottleneck
Model (CBM) containing 300 object-class clas-
sifiers trained on crops of different objects from
Owl V2 (Minderer et al., 2024). The interpretable
Object-Class CBM focuses on regional anomalies,
while the linear model captures the global features.

MiRAGe-Txt trains a linear layer on top of the
outputs from two models: (1) a linear model that is
trained using CLIP text embeddings (Radford et al.,

Figure 4: (a) Early Fusion detector uses both image and
text features together for classification while (b) Late
Fusion detector uses outputs from previously trained
unimodal detectors.

2021) and (2) a Text Bottleneck Model (Ludan
et al., 2023) that extracts 18 textual concepts in the
caption. Similar to MiRAGe-Img, we incorporate
the interpretable concept-based approach to capture
the auxiliary signals that the linear models missed.

MiRAGe fuses MiRAGe-Img and MiRAGe-Txt
together for multimodal generated news detection.
We apply two fusion techniques as illustrated in
Figure 4: Early Fusion involves concatenating the
outputs from MiRAGe-Img and MiRAGe-Txt be-
fore training a linear layer for classification, while
Late Fusion computes a final prediction from the
outputs of these two models with no extra training.

We train all models until the evaluation loss
plateaus and apply the classification threshold that
gives the highest evaluation accuracy in testing. As
for our design decisions, we conducted a detailed
ablation study for each part of the MiRAGe de-
tector in Appendix B. Due to the results of these
ablations, we chose the late fusion model as our
final MiRAGe detector.
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Figure 5: We see that MiRAGe-Img outperforms exist-
ing image-only detectors in both in-domain (ID) and
out-of-domain (OOD). ZS and FT are short for Zero-
Shot and Fine-Tuned, respectively

4 Results

4.1 Image-only
As shown in Figure 5, the MiRAGe-Img model
demonstrates better in-domain (ID) performance
and out-of-domain (OOD) generalization ability
than our baselines. We find that zero-shot DIRE
struggles on all datasets, most likely due to the
major domain shift from training data (bedroom
images) to testing data (news images). While the
models fine-tuned on ID data have substantially
lower performance on DALL-E, we are surprised
to find that DIRE FT has a higher average F-1 on
SDXL (70.5%) than Midjourney (64.4%). One rea-
sonable speculation could be a similar base model
shared by two generators, which is reflected in sim-
ilar reconstruction errors. Our model shows that
using the Object-Class CBM along with the linear
model helps improve OOD robustness.

4.2 Text-only
As shown in Table 1, MiRAGe-Txt outperforms
baselines in both ID captions rewritten from New
York Times news and OOD captions from unseen
news publishers (BBC and CNN).

4.3 Multimodal
In the multimodal setting with both images and cap-
tions, our MiRAGe detector exhibits better OOD
robustness than our baselines (see Figure 6). Both
state-of-the-art MLLMs (GPT-4o and Gemini 1.5)
struggle on ID data. We further find that the low
F1 attribute to extremely low recall (fake accuracy)
as shown in Table 2. However, GPT-4o’s surpris-
ing performance on DALL-E makes us speculate
it might be trained with DALL-E images and that

Figure 6: We see that MiRAGe outperforms existing
image-text detectors in out-of-domain settings. ZS and
FT are short for Zero-Shot and Fine-Tuned, respectively.

MLLMs’ zero-shot performance heavily varies de-
pending on the training data distribution. While
utilizing additional signals from semantic inconsis-
tency between images and texts helps HAMMER
generalize on OOD data, MiRAGe, which fuses
MiRAGe-Img and MiRAGe-Txt, has shown better
OOD performance overall (see Appendix B).

5 Related Work

Multimodal Fake News Datasets. There are
many datasets for detecting generated images
(Wang et al., 2020; He et al., 2021; Zhu et al., 2023)
and generated text (Dugan et al., 2024; Li et al.,
2024; Wang et al., 2024). However, there are rela-
tively few publicly available datasets for detecting
generated image-text pairs—especially in the news
domain. The Twitter MediaEval dataset (Boididou
et al., 2014) contains a corpus of 17,000 tweets on
two events with 514 real or fake images. Weibo (Jin
et al., 2017) collects real and rumor news posts that
are verified by the authoritative debunking system
with mostly real images. FakeNewsNet (Shu et al.,
2020) collects real and fake news from Politifact
and GossipCop and contains 17,214 human-written
news articles with images and 1,986 fake news arti-
cles with images. The more recent DGM4 dataset
(Shao et al., 2023) offers 230k news samples with
image and text, which contain 77k pristine pairs
and 152k manipulated pairs from small regional
manipulations on image and/or text. While previ-
ous datasets offer the foundation of multi-modal
fake news, our dataset aims to address the more
dangerous forms of fake news, namely the ones
that have convincingly deceptive visuals fully gen-
erated by diffusion models.
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Generated Image Detection. Many previous
works have explored different methods for effec-
tive fake news detection (Wang et al., 2018; Khattar
et al., 2019; Singhal et al., 2019). Stemming from
detecting GAN-generated images (Gragnaniello
et al., 2021; Wang et al., 2020), many methods have
been proposed to detect diffusion-based generation.
DE-FAKE (Sha et al., 2023) uses BLIP to generate
a caption for every image, then combines both fea-
tures to predict. DIRE (Wang et al., 2023) analyzes
the reconstruction error during denoising. Ojha
et al. (2023) computes the distance between the
testing image and the training set and uses KNN to
predict real vs. fake. Compared to these black-box
methods, our proposed object-class CBM offers a
new perspective on interpretable generated image
detectors. Moreover, with the addition of generated
fake captions, our dataset lays the groundwork for
more creative future works.

6 Conclusion

In this paper, we introduce MiRAGeNews, a
dataset designed to facilitate the development
and benchmarking of detection methods for AI-
generated news. Our dataset is the first of its kind
to include high-quality images from modern gen-
erators along with misleading or harmful captions,
and our results highlight the significant challenges
faced by humans and current state-of-the-art mul-
timodal language models in detecting such news
content. We show that classifiers trained on our
data achieve high accuracy on the most difficult-to-
detect images while still showing strong general-
ization performance on out-of-domain generators
and news sources.

7 Limitations

In the design of the testing set with OOD data,
while both our real images and fake images are
OOD, it is not truly OOD for captions. We use the
same procedure to prompt GPT-4 when generat-
ing, and the domain shift, if any, will come from
the real captions of unseen news publishers. Our
experiments would be more comprehensive if we
finetune GPT-4o and Gemini 1.5 on our dataset.
However, training with images that contain public
figures and faces would violate the Term of Service,
thus making our dataset mostly unavailable. Also,
since our real news dataset is mostly from the New
York Times, all of our real and fake captions are
English only, making it a monolingual dataset. Al-

though it is possible to machine translate the entire
dataset, we would leave this to future work.

8 Ethics Statement

Since most of the fake images from our dataset
are generated from misleading or harmful captions,
and Midjourney’s moderation system is not perfect,
some generations might be considered to be unsafe.
Although the real captions that GPT -4 used during
the generation are dated, it is still very likely that
the generated caption can stand alone as a source
of disinformation about current events.
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NYT+MJ (ID) BBC+DALL-E CNN+DALL-E BBC+SDXL CNN+SDXL OOD-AVG
Acc F1 AP Acc F1 AP Acc F1 AP Acc F1 AP Acc F1 AP Acc F1 AP

Im
ag

e

GPT-4o ZS 51.6 6.2 100 93.0 92.7 97.4 96.2 96.2 96.4 67.2 52.9 93.9 78.2 73.5 93.8 83.7 78.8 95.4
Gemini 1.5 ZS 48.0 12.2 39.1 75.9 75.0 91.7 83.8 85.6 93.4 47.7 22.3 67.6 45.4 30.1 76.6 63.2 53.3 82.3

DE-FAKE ZS 61.4 42.0 35.6 63.8 66.4 58.8 61.6 66.6 50.5 69.4 73.0 60.1 67.4 73.0 63.4 65.6 69.8 58.2
FT 87.6 86.8 33.7 44.6 56.7 47.7 44.6 54.7 40.2 52.6 65.1 63.8 55.0 66.1 56.6 49.2 60.7 52.1

DIRE ZS 50.0 3.8 54.0 48.6 9.2 52.1 48.2 10.4 48.9 48.4 8.5 48.7 48.0 9.7 49.0 48.3 9.5 49.7
FT 57.8 64.4 56.0 48.8 53.8 56.9 48.0 51.3 50.7 62.4 69.8 73.2 64.6 71.3 68.3 56.0 61.6 62.3

KNN ZS 73.8 76.5 69.4 43.2 57.1 45.9 53.8 65.8 52.2 57.2 67.8 54.3 51.0 64.9 50.6 51.3 63.9 50.8
MiRAGe-I FT 98.0 98.0 99.9 77.6 75.0 88.4 74.6 73.8 84.4 78.4 76.1 87.7 77.6 77.6 83.0 77.1 75.6 85.9

Te
xt

Linear (SB) FT 81.8 81.8 91.0 68.8 75.3 85.2 70.0 75.9 87.1 69.4 75.6 86.2
Linear (CL) FT 81.8 80.5 90.2 68.4 74.8 84.4 77.6 80.3 90.9 73.0 77.6 87.7
TBM FT 74.0 71.4 78.1 68.8 68.7 72.1 76.2 76.8 75.2 72.5 72.8 73.7
MiRAGe-T FT 83.2 81.9 91.0 72.6 77.0 85.2 78.4 80.9 92.0 75.5 79.0 88.6

Im
ag

e+
Te

xt GPT-4o ZS 51.8 7.0 100 90.1 89.0 100 92.8 92.2 100 62.7 40.4 100 70.7 58.2 100 79.1 70.0 100
Gemini 1.5 ZS 56.4 24.4 94.6 78.9 76.4 87.2 81.2 80.2 85.1 64.2 51.8 79.2 69.1 62.4 79.4 73.4 67.7 82.7

HAMMER ZS 39.0 11.6 37.2 49.2 22.6 48.7 45.2 21.7 42.9 51.0 27.3 51.4 48.8 30.4 47.5 48.6 25.5 47.6
FT 99.4 99.4 100 77.2 73.0 86.2 78.8 74.8 89.4 85.0 83.7 93.4 88.2 87.4 96.2 82.3 79.7 91.3

MiRAGe FT 98.4 98.4 99.9 85.4 86.0 94.1 79.6 81.0 90.4 86.0 86.7 95.9 83.8 85.5 94.7 83.7 84.8 93.8

Table 1: The Accuracy, F-1 score, and Average Precision (AP) of all detectors across MiRAGeNews test sets.
Note that AP for GPT-4o and Gemini 1.5 are just precision and not comparable to other models. ZS, FT, SB, and CL
stand for zero-shot, fine-tuned, SentenceBert, and CLIP, respectively. We leave SDXL columns blank in Text-only
detectors since they share the same textual data as the DALL-E columns. We see that zero-shot models struggle on
in-domain data, while fine-tuned models achieve strong in-domain performance and respectable generalization on
OOD sections. See Figure 5 and 6 for graphical highlights from this table.

NYT+MJ (ID) BBC+DALL-E CNN+DALL-E BBC+SDXL CNN+SDXL OOD-AVG
Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake

Im
ag

e

GPT-4o ZS 100.0 3.2 97.6 88.4 96.4 96.0 97.6 36.8 96.0 60.4 96.9 70.4
Gemini 1.5 ZS 88.8 7.2 88.4 63.4 88.6 79.0 82.0 13.4 72.0 18.8 82.8 43.7

De-Fake ZS 94.8 28.0 56.0 71.6 46.8 76.4 56.0 82.8 46.8 88.0 51.4 79.7
FT 94.0 81.2 16.8 72.4 22.4 66.8 16.8 88.4 22.4 87.6 19.6 78.8

DIRE ZS 98.0 2.0 92.0 5.2 90.4 6.0 92.0 4.8 90.4 5.6 91.2 5.4
FT 39.2 76.4 38.0 59.6 41.2 54.8 38.0 86.8 41.2 88.0 39.6 72.3

KNN ZS 62.4 85.2 10.8 75.6 18.8 88.8 24.4 90.0 11.2 90.8 16.3 86.3
MiRAGe-I FT 98.8 97.2 88.0 67.2 77.6 71.6 88.0 68.8 77.6 77.6 82.8 71.3

Te
xt

SBERT FT 82.0 81.6 42.4 95.2 45.6 94.4 44.0 94.8
CLIP FT 88.4 75.2 42.8 94.0 64.0 91.2 53.4 92.6
TBM FT 83.2 64.8 69.2 68.4 73.6 78.8 71.4 73.6
MiRAGe-T FT 90.4 76.0 53.6 91.6 65.2 91.6 59.4 91.6

Im
ag

e
+

Te
xt GPT-4o ZS 100.0 3.6 100.0 80.2 100.0 85.5 100.0 25.3 100.0 41.1 100.0 58.0

Gemini 1.5 ZS 98.8 14.0 89.8 68.0 86.6 75.8 89.9 38.5 86.8 51.4 88.3 58.4

HAMMER ZS 70.0 8.0 83.6 14.8 75.2 15.2 83.6 18.4 75.2 22.4 79.4 17.7
FT 99.6 99.2 92.8 61.6 94.8 62.8 92.8 77.2 94.8 81.6 93.8 70.8

MiRAGe FT 98.4 98.4 80.8 90.0 72.0 87.2 80.8 91.2 72.0 95.6 76.4 91.0

Table 2: Class-wise accuracy (%) of all detectors across datasets. "Real" and "Fake" columns represent the
accuracy of the real and fake/generated classes, respectively. We leave SDXL columns blank in Text-only detectors
since they share the same textual data as the DALL-E columns. We find that MLLMs are great at recognizing real
images, especially with additional textual information. We also find that our model is much better at detecting
generated image-caption pairs than other models
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A Model Implementation Details

A.1 Image-only Detector

Linear Model. For our linear model, we use a
frozen EVA-CLIP ViT encoder from BLIP to em-
bed our images and add a linear layer with Sigmoid
activation to project down to the output dimension.

Object Class CBM. Concept Bottleneck Models
(CBM) (Koh et al., 2020; Yang et al., 2023) have
been shown to improve generalizability in image
classification tasks. Extending this approach with
the intuition that anomalies in generated images are
often regional and object-based (i.e., merged fin-
gers, curved buildings), we choose common object
classes as the concepts.

We first utilize OwlV2 to detect and crop out the
objects in both real and fake images. These crops
are organized into a dataset of 300 object classes,
each containing real or fake crops of the object.
We then train a linear model to detect fake objects
within each object class.

To create a list of concept scores for each image
as a bottleneck, with each detected object class,
we use the corresponding classifier to predict each
instance of the object class and keep the maximum
prediction score. With undetected object classes
having a prediction score of 0, we map any input
image to 300 concept scores. Lastly, we train a
linear model as the bottleneck predictor and only
use the 300 concept scores to predict a given image.

MiRAGe-Img ensembles the linear model and Ob-
ject Class CBM. Our experiments on Object Class
CBM show that, although having lower overall ac-
curacy, it learns to detect fake images much better
than the linear model (+14.2% Fake Accuracy). In-
corporating the strengths of both models, we com-
pute the prediction score from the linear model as
an extra concept score and concatenate it with the
original 300 concept scores. This model achieves
state-of-the-art performance in our testing set.

A.2 Text-only Detectors

Linear Model. Similar to the linear model for
images, we add a linear layer with sigmoid acti-
vation on top of a frozen pre-trained text encoder.
We explored various text encoders and surprisingly
found that the CLIP encoder performed better than
Sentence BERT (Reimers and Gurevych, 2019).
TBM (Text Bottleneck Model). harnesses the
power of LLM to automatically extract distinguish-
ing concept features from the text. We adopt this

Model Task Method Summary

DE-FAKE
(Sha et al., 2023)

Image Uses BLIP to caption
images and uses extra
text feats. to detect

DIRE
(Wang et al., 2023)

Image Computes image recon-
struction error during
diffusion and denoising

KNN
(Ojha et al., 2023)

Image Maps real and fake img.
to feat. space and uses
the closest image to pre-
dict

Linear (EVA-CLIP)
(Sun et al., 2023)

Image Uses EVA-CLIP to en-
code images and trains
a linear model

Obj-Class CBM Image Trains one classifier per
object class, and pre-
dicts w/ outputs

Linear (SBERT)
(Reimers and
Gurevych, 2019)

Text Uses SentenceBERT to
encode captions and
trains a linear model

Linear (CLIP)
(Radford et al., 2021)

Text Uses CLIP to encode
captions and trains a lin-
ear model

TBM
(Ludan et al., 2023)

Text Prompts LLM to dis-
cover textual concepts
and trains a linear layer

HAMMER
(Shao et al., 2023)

Image
+ Text

Designs a Manipula-
tion Aware Contrastive
Learning Loss to cap-
ture the semantic incon-
sistency between im-
ages and text.

Table 3: Summaries of detectors used in our image-only
and text-only detection.

method and iteratively extract 18 diverse concepts
from our captions after filtering. We then train a
linear layer as a bottleneck predictor to map the
concept scores to final predictions.
MiRAGe-Txt ensembles the linear model and Text
CBM. Our experiments on Text CBM show a simi-
lar pattern: while it has lower overall accuracy, it
is better at detecting real captions than the linear
model (+10% Fake ACC). We ensemble these two
models by adding a prediction score from the linear
model as an extra concept score to the bottleneck
and training another linear layer on top for binary
classification.

A.3 Multimodal Detectors

In this multimodal task, MiRAGe combines out-
puts from MiRAGe-Img and MiRAGe-Txt to pre-
dict if an image-caption pair is real or generated.
We explored both early fusion and later fusion ap-
proaches:
Early Fusion. In this approach, we concatenate
both image and text features from a given pair and
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train a linear model to predict. This method allows
the model to use information from both modalities
in conjunction to make predictions.
Late Fusion. In this approach, we first utilize
the image-only and caption-only models to make
corresponding predictions. We take the average of
the logits from these two models with a sigmoid
activation to make a single prediction of the pair.

B Ablation Study

As shown in Table 4, all components of the Mi-
RAGe detector are essential for their performance.
We find that the linear models perform better than
the concept bottleneck models, and early fusion
performs slightly worse than late fusion.

We further investigate the class-wise accuracy
for each component as shown in Table 5. We find
that the linear model is better at recognizing real im-
ages, while Obj-CBM is better at detecting fake im-
ages. We also see that the linear model is better at
detecting fake captions, while TBM is better at rec-
ognizing real captions. This finding gives us some
idea as to why the ensemble methods (MiRAGe-
Img and MiRAGe-Txt) perform better than their
individual components.

While CBMs always underperform linear mod-
els, they help them in the lower-performant class
without affecting the higher-performant class when
ensembling in our MiRAGe detector. However,
the tradeoff is that ensembling an interpretable
method with a black-box method takes away the
interpretability.

C Human Study Details

We recruited 112 graduate students enrolled in a
CS class with extra credits as compensation, and
each participant was randomly assigned 20 image-
caption pairs to annotate. They are asked to deter-
mine whether the image is generated and whether
the caption raises their suspicions of fake news, as
shown in Figure 9. Each image-caption pair in the
survey dataset is shown to three participants, and
the majority of the votes determine the human’s
judgment. Note that if a participant thinks either
the image or the caption is generated, the final de-
cision of the news would be “generated”.

The results show an overall accuracy of 71.4%,
F-1 score of 60.4% and precision of 89%. More-
over, humans are much better at recognizing real
news (97% real acc.) than detecting generated news
(45.8% fake acc.). The Krippendorff’s Alpha from

337 (24.2%)

254 (18.2%)

227 (16.3%)

162 (11.6%)

159 (11.4%)

116 (8.3%)

Unreadable Text
4.5%
Camera Angle
5.5%
Body Parts
8.3%

Fingers
11.4%

Face
11.6%

Spatial Relation
16.3%

Texture
24.2%

Object Shapes
18.2%

Generated Image Anomalies

Figure 7: Annotated generated image anomalies from
human study

216 (28.2%)

209 (27.3%)

180 (23.5%)

161 (21.0%)

Contradicts Facts
21.0%

Generic Statement
23.5%

Biased Language
28.2%

Unlikely Action
27.3%

Generated Caption Anomalies

Figure 8: Annotated generated caption anomalies from
human study

the annotations is 0.22, which shows a low agree-
ment among the participants and implies that it is
difficult for humans to consistently detect gener-
ated news. These results further reflects the danger
of such hyperrealistic generated news.

The participants are also asked to provide the
reasons why they think a given image or caption is
generated. We provide a list of common anomalies
found in generated images and captions to choose
from as shown in Table 6. For the generated images
that the participants correctly classified, the top
clues humans are using are Texture (24.2%), Object
Shapes (18.2%), and Spatial Relation (16.3%) as
shown in Figure 7. Similarly, the top clues for
generated captions are Biased Language (28.2%)
and Unlikely Action (27.3%) as shown in Figure 8.

D Examples

In Figure 10 we show examples from the MiRA-
GeNews dataset from different image generators.
We see that Midjourney produces images that are
much more difficult to detect than other similar
generators. Combined with the lack of moderation,
we feel that this generator is the most important to
cover in a dataset such as ours.
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NYT+MJ (ID) BBC+DALL-E CNN+DALL-E BBC+SDXL CNN+SDXL OOD-AVG
Acc F1 AP Acc F1 AP Acc F1 AP Acc F1 AP Acc F1 AP Acc F1 AP

Im
ag

e MiRAGe-I 98.0 98.0 99.9 77.6 75.0 88.4 74.6 73.8 84.4 78.4 76.1 87.7 77.6 77.6 83.0 77.1 75.6 85.9
(-CBM) 97.6 97.6 99.9 70.4 63.0 84.2 66.6 62.3 75.1 77.2 73.7 87.3 74.2 73.2 81.2 72.1 68.1 82.0
(-Linear) 94.2 94.2 98.1 66.6 70.3 82.8 72.0 74.4 84.6 65.6 69.2 74.9 65.0 65.8 73.8 67.3 69.9 79.0

Te
xt MiRAGe-T 83.2 81.9 91.0 72.6 77.0 85.2 78.4 80.9 92.0 75.5 79.0 88.6

(-TBM) 81.8 80.5 90.2 68.4 74.8 84.4 77.6 80.3 90.9 73.0 77.6 87.7
(-Linear) 74.0 71.4 78.1 68.8 68.7 72.1 76.2 76.8 75.2 72.5 72.8 73.7

Im
g+

Tx
t MiRAGe 98.4 98.4 99.9 85.4 86.0 94.1 79.6 81.0 90.4 86.0 86.7 95.9 83.8 85.5 94.7 83.7 84.8 93.8

(-Late Fusion) 98.4 98.4 99.9 80.6 78.4 92.7 79.4 78.0 89.3 83.2 81.8 93.9 85.8 85.8 93.4 82.3 81.0 92.3
(-CBMs) 99.0 99.0 99.9 81.4 81.9 90.6 72.4 73.8 82.5 85.0 85.9 94.7 80.8 83.1 91.8 79.9 81.2 89.9
(-Linears) 94.6 94.6 98.8 71.0 74.4 84.4 74.0 76.8 84.8 69.8 73.1 77.5 75.2 78.1 79.5 72.5 75.6 81.6

Table 4: The Accuracy, F-1 score, and Average Precision (AP) for ablation study on MiRAGe-Img, MiRAGe-
Txt, and MiRAGe. We find that while all components of the MiRAGe model are central to its high performance,
the linear models perform better than the concept bottleneck models, and early fusion performs slightly worse than
late fusion.

NYT+MJ (ID) BBC+DALL-E CNN+DALL-E BBC+SDXL CNN+SDXL OOD-AVG
Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake

Im
ag

e MiRAGe-I 98.8 97.2 88.0 67.2 77.6 71.6 88.0 68.8 77.6 77.6 82.8 71.3
(-CBM) 98.8 96.4 90.4 50.4 78.0 55.2 90.4 64.0 78.0 70.4 84.2 60.0
(-Linear) 94.8 93.6 54.0 79.2 62.8 81.2 54.0 77.2 62.8 67.2 58.4 76.2

Te
xt MiRAGe-T 90.4 76.0 53.6 91.6 65.2 91.6 59.4 91.6

(-TBM) 88.4 75.2 42.8 94.0 64.0 91.2 53.4 92.6
(-Linear) 83.2 64.8 69.2 68.4 73.6 78.8 71.4 73.6

Im
g+

Tx
t MiRAGe 98.4 98.4 80.8 90.0 72.0 87.2 80.8 91.2 72.0 95.6 76.4 91.0

(-Late Fusion) 99.6 97.2 90.8 70.4 85.6 73.2 90.8 75.6 85.6 86.0 88.2 76.3
(-CBMs) 98.8 99.2 78.4 84.4 67.2 77.6 78.4 91.6 67.2 94.4 72.8 87.0
(-Linears) 95.2 94.0 57.6 84.4 62.0 86.0 57.6 82.0 62.0 88.4 59.8 85.2

Table 5: Class-wised accuracy for ablation study on MiRAGe-Img, MiRAGe-Txt, and MiRAGe. "Real" and
"Fake" columns represent the accuracy of the real and fake/generated classes, respectively. EF and LF stand for
Early Fusion and Late Fusion, respectively. We leave SDXL columns blank in Text-only detectors since they share
the same textual data as the DALL-E columns. We find that linear models and CBMs are good at classifying
different classes. We also find that different fusion techniques lead to different strengths of the models
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Anomaly Detail Description

Im
ag

e

Texture Unrealistically perfect and
smooth texture

Object Shapes Irregular shape or composition
of objects

Spatial Relation Illogical or impossible spatial
relation of objects or people

Face Unnatural facial features or ex-
pressions

Fingers Incorrect number of fingers or
twisted or merged fingers

Body Parts Extra or missing body parts or
merged or deformed body parts

Camera Angle Irregular or impossible camera
angle

Unreadable Text Unreadable or misspelled text

C
ap

tio
n

Biased Language Uses suspiciously biased or ex-
aggerated language

Unlikely Action Has action that is unlikely or im-
possible to be performed by the
subject

Generic Statement Uses generic statement that
lacks necessary details

Contradicts Facts Contradicts with known facts or
events

Table 6: Anomalies choices provided in the human
study. Participants can choose more than one reason.

Figure 9: The user interface of the human study where
each participant is given a pair of news images and
caption and asked to determine whether they are real or
generated
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Glide DALLE2 DALLE3 SDXL Midjourney

Figure 10: Comparison of different image generators across examples from the MiRAGeNews dataset. We see
that modern generators such as Midjourney produce high-quality images that are difficult to distinguish from real
images.
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