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Synopsis  Single-cell RNA sequencing (scRNAseq) is a powerful tool to describe cell types in multicellular organisms across
the animal kingdom. In standard scRNAseq analysis pipelines, clusters of cells with similar transcriptional signatures are given
cell type labels based on marker genes that infer specialized known characteristics. Since these analyses are designed for model
organisms, such as humans and mice, problems arise when attempting to label cell types of distantly related, non-model species
that have unique or divergent cell types. Consequently, this leads to limited discovery of novel species-specific cell types and
potential mis-annotation of cell types in non-model species while using scRNAseq. To address this problem, we discuss recently
published approaches that help annotate scRNAseq clusters for any non-model organism. We first suggest that annotating with
an evolutionary context of cell lineages will aid in the discovery of novel cell types and provide a marker-free approach to
compare cell types across distantly related species. Secondly, machine learning has greatly improved bioinformatic analyses, so
we highlight some open-source programs that use reference-free approaches to annotate cell clusters. Lastly, we propose the
use of unannotated genes as potential cell markers for non-model organisms, as many do not have fully annotated genomes
and these data are often disregarded. Improving single-cell annotations will aid the discovery of novel cell types and enhance
our understanding of non-model organisms at a cellular level. By unifying approaches to annotate cell types in non-model
organisms, we can increase the confidence of cell annotation label transfer and the flexibility to discover novel cell types.

Background: Defining cell types through
scRNAseq

What is a cell type?

Cells are the basic building blocks of living organisms
and the diversity of cells is vast across the animal king-
dom with a wide range of functions and phenotypes.
Categorizing cells with similar structures and functions
into cell types is fundamental to answer key questions
in organismal biology, as this shapes our perception
and interpretation of how organisms function. Char-
acterizing particular cell groupings reduces the com-
plexity of understanding the cellular compositions of
multicellular animals (Arendt 2008), however, the def-
inition of a cell type is subjective and does not fol-
low a unified nomenclature across taxa (Domcke and
Shendure 2023). Traditionally, cell types have been de-
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scribed as cells with “hard-wired” characteristics that
create specific morphological features corresponding to
a particular tissue type (Arendt et al. 2016). However,
more recent interpretations of cell types factor in spa-
tial locations within the tissue and molecular aspects
that further define cellular function (Wagner, Regev,
and Yosef 2016). Consequently, there are continuous
discussions on differentiating “cell type” to “cell state”
terms due to the complex continuum of cellular char-
acteristics throughout cell developmental trajectories
(Trapnell 2015; Domcke and Shendure 2023). Amidst
the complexity of defining a cell type, profiling tran-
scriptomes of individual cells, referred to as single-cell
RNA sequencing (scRNAseq), has greatly improved our
definition of cell types from a molecular perspective
across taxa and has enabled discoveries that were pre-
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viously limited by bulk RNA sequencing. Further dis-
cussions must be continued to delineate novel cell types
through scRNAseq in both model and non-model or-
ganisms.

Traditional approaches to determine cell types

Cell type discovery can be determined through vari-
ous approaches that vary in cost and throughput. Cell
types are most commonly determined morphologically
through approaches such as microscopy (e.g., electron
microscopy, high resolution light microscopy) on whole
tissue samples (e.g, histology) and cell cultures (Zeng
2022). For example, novel cell types and confirmation
of known cell morphologies have been described in the
Pacific oyster, Crassostrea gigas, through cell cultures
and imaging with light microscopy (Potts et al. 2020).
However, immortal cell culture lines are not always fea-
sible for all non-model organisms, as difficulties arise in
troubleshooting appropriate media and maintaining to-
tal viable cell populations for long periods (Roger et al.
2021). Flow cytometry is also a useful tool to describe
cell types, as cells can be analyzed by shape, granularity,
and size, in addition to specific fluorescence stains that
are targets for particular cell characteristics. For exam-
ple, flow cytometry has been shown to isolate multiple
different cell types in human systems (Cossarizza et al.
2021) and novel cell types in non-model marine inver-
tebrates (Snyder et al. 2020). These approaches are foun-
dational to characterize cell types; however, limitations
exist, as these methods alone cannot infer functionality,
developmental stages, or trajectories of cells within an
organism.

Single-cell RNAseq as a tool to determine cell
types

Beyond morphological methods, cell types have been
classified and discovered through molecular approaches
such as scRNAseq and single-nucleus RNA sequencing
(snRNAseq). These approaches use transcriptomic pro-
files of individual cells or nuclei, respectively, to group
similar cells by gene expression on a nearest neigh-
bor graph. These high-dimensional cell groupings (i.e.,
cell clusters) can then be visualized in low-dimensional
projections such as Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) or
t-distributed Stochastic Neighbor Embedding (t-SNE)
(Clarke et al. 2021). Marker genes are then derived
by determining genes with significantly higher expres-
sion in a specific cluster compared to the other clusters.
These analyses are typically performed with programs
such as Seurat (Hao et al. 2024), Scanpy (Wolf, Angerer,
and Theis 2018), or MetaCell (Baran et al. 2019). From
these sets of marker genes, cell cluster annotations can
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be identified. This is one of the most difficult tasks in
scRNAseq data analysis, as it relies on the integration of
prior biological knowledge of known cell types with the
current data in a reproducible and analytical manner.
In model systems, cell type annotation is typically per-
formed through the combination of automatic anno-
tation programs from predefined databases, and man-
ual annotation and validation by experts (reviewed in
Clarke et al. 2021). Marker-based annotation methods
match known marker genes to a query dataset to man-
ually transfer cell annotation labels. Databases such as
Cell Ontology (Diehl et al. 2016), PanglaoDB (Franzén,
Gan, and Bjorkegren 2019), and Cell Marker 2.0 (Hu
et al. 2023), are a few resources for manual annotation
of cell types by gene markers of model organisms with
similar tissue types to humans or mice. Computational
programs such as Azimuth (Hao et al. 2021), SingleCell-
Net (Tan and Cahan 2019), OnClass (Wang et al. 2021),
and CellTypist (Xu et al. 2023), can annotate cell types
automatically; however, they require a curated database
that are typically derived from model organisms. Cell
type annotation can also be derived from known gene
functions through Gene Ontology (The Gene Ontology
Consortium 2018) or Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa 2008) to understand ex-
pressed pathways to hypothesize potential cell types.
However, this approach requires a large amount of man-
ual labor, knowledge of specific cell functional charac-
teristics, and complete functionally annotated genomes,
which are common limiting factors for non-model or-
ganisms.

Cell types have also been further described through
multimodal approaches paired with scRNAseq, such as
single-cell epigenomics (e.g., Single-cell sequencing as-
say for transposase-accessible chromatin (scATACseq),
single-cell DNA methylation), and spatial transcrip-
tomics (Zeng 2022). Assay for transposase-accessible
chromatin using sequencing (ATACseq) is an approach
to fragment open regions of chromatin with Tn5 trans-
posases to understand chromatin dynamics and acces-
sible regions of DNA for transcription (Buenrostro et
al. 2013). This approach has been adapted for use at a
single-cell level, which has enabled researchers to un-
derstand how gene regulation through chromatin dy-
namics can infer cell types (Cusanovich et al. 2018).
When paired with scRNAseq, scATACseq is a power-
ful tool to understand the trajectory of cell types and
key regulatory factors that dictate different cell types or
states (Ranzoni et al. 2021). Spatial transcriptomics has
also been a useful tool to spatially locate cell types in
tissues defined by scRNAseq data (Longo et al. 2021).
For example, paired scRNAseq and spatial transcrip-
tomic data on mouse brains have allowed a deeper un-
derstanding of cell types corresponding to specific brain
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regions and also help to determine critical transcription
factors that characterize differential brain cell types (Yao
et al. 2023). Therefore, the scRNAseq revolution has
brought new tools that can enhance our understand-
ing of cell types in combination with other modalities
in multicellular organisms.

The power of single-cell sequencing for
non-model organisms

Recent developments within scRNAseq have advanced
our understanding of the range of cell types present in
organisms based on transcriptional diversity. In model
systems such as humans and mice, researchers have
characterized diverse cell types in multiple organ and
tissue types (Tabula Sapiens Consortiums et al. 2022).
With an ever-increasing availability of diverse scR-
NAseq datasets, comparisons can now be made across
species to understand the evolution of specific cell types.
For example, seven different vertebrate species single-
cell atlases were compared to understand the evolution
of immune cells and molecules across taxa (Jiao et al.
2024). This comparative analysis across high- to low-
level vertebrates identified conserved and unique gene
markers of both adaptive and innate immune cells, al-
lowing for a fundamental insight into the variability
of immune cells across species levels (Jiao et al. 2024).
Within non-model invertebrate species, scRNAseq is
quickly developing into a powerful tool for identifying
novel cell types and characterization of gene expression
of specific cell types. For example, within the Caridean
shrimp, Marsupenaeus japonicus, single-cell expression
of hemocytes has allowed the discovery of six sub-
populations of hemocytes, increasing the resolution of
the previously determined two subpopulations defined
morphologically by flow cytometry (Koiwai et al. 2021).
In the soft coral, Xenia sp., authors traced the develop-
mental lineage of algal hosting cells through scRNAseq,
providing key insight into the mechanisms for coral en-
dosymbiosis uptake and loss (Hu et al. 2020). Transcrip-
tomes of single nuclei isolated from Atlantic salmon
(Salmo salar L.) livers infected with a common bacterial
pathogen Aeromonas salomonicida, has allowed us to
understand how metabolic remodeling of immune and
non-immune cells occurs during pathogenic infection
of this important fisheries species (Taylor et al. 2022).
Additionally, the authors note that the mammalian hep-
atic cell marker genes did not translate well to S. salar
cell markers, therefore outlining the need for better
cell marker annotation resources for non-model organ-
isms (Taylor et al. 2022). Single-cell RNA sequencing is
a promising and powerful tool for biologists that will
complement traditional cell biology approaches; how-
ever, careful consideration must be taken while analyz-

ing and interpreting this data type for non-model or-
ganisms.

Current limitations in single-cell sequencing
for determining cell types in non-model
organisms

As scRNAseq is a quickly developing technology that
was initially designed for model organisms, we must un-
derstand the limitations of this technology while apply-
ing it to non-model organisms to be confident in our in-
terpretations. A thorough review by Alfieri et al. (2022)
highlights the laboratory challenges of scRNAseq cell
capture and library preparation on cells derived from
non-model organisms, as they present significant chal-
lenges that model organisms (i.e., mammalian) cells do
not face. On the computational side, even more chal-
lenges are presented due to the lack of genomic re-
sources and knowledge of cell types beyond mammals.
High-quality genomic references are not always avail-
able for non-model organisms, leading to poor align-
ment or annotations during data analysis and limit-
ing the resolution of any molecular analysis (Cleves et
al. 2020). Additionally, there is not always a straight-
forward way to translate cell markers from model or-
ganisms to non-model organisms especially when one-
to-one orthologs do not exist between distantly related
species (Nehrt et al. 2011). Ortholog matching to deter-
mine cell markers between model and non-model or-
ganisms is possible with programs such as OrthoFinder
(Emms and Kelly 2019); however, these have limitations
and must be used with caution. Orthology inference can
be challenging as distantly related species have few one-
to-one ortholog comparisons due to variations in gene
lengths, rapidly evolving orthogs (Steenwyk et al. 2023),
and incomplete genome annotations. Therefore, alter-
native approaches must be additionally used to validate
cell types in non-model organisms, which will enable
the discovery of novel species-specific cell types and
fully utilize the power of scRNAseq on non-model or-
ganisms.

In the remainder of this perspective, we will discuss
new methods to increase the confidence of cell type an-
notations in non-model organisms through scRNAseq.
We highlight the potential ways to enhance the discov-
ery of new cell types for non-model organisms by dis-
cussing approaches that do not solely rely on genomic
annotation resources (Fig. 1). We will discuss topics re-
lating to (i) sequence and lineage-based clustering of
cell types across species, (ii) the use of deep learning and
artificial intelligence (AI) for cell type classification, and
(iii) dark genes as candidate cell markers for non-model
organisms.
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Alternative approaches for non-model organisms

Sequence and lineage based
grouping of cell types across species

Deep learning and artificial intelligence
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Fig. | Summarizing the current challenges and alternative approaches for annotating single-cell RNAseq derived cell types in non-model

organisms. This figure was made in BioRender.com.

Alternative approaches to type cell
clusters

Cell typing through species comparisons

With the increase of available scRNAseq datasets, inte-
gration across species has become a useful approach to
not only identify cell types, but also to understand the
evolution of species-specific cell types (Song et al. 2023).
Mapping single-cell transcriptomes across a variety of
taxa is inherently challenging, as (i) many distantly re-
lated species do not have one-to-one orthologs due to
frequent gene losses and acquisitions over evolutionary
history (Nehrt et al. 2011), (ii) marker gene expression
similarity is low between taxa, as gene regulation most
likely varies from species to species, and (iii) technical
batch effects due to sequencing of different single-cell
platforms may cause biases between while cell types are
captured (Tarashansky et al. 2021). However, new com-
putational methods are being developed to resolve these
issues and increase the confidence of comparing single-
cell atlases between species.

Programs such as SAMap (Self- Assembling Manifold
mapping) can align similar cell types across species and
tissue types from scRNAseq datasets (Tarashansky et
al. 2021). SAMap can overcome many of these chal-
lenges by accounting for the complexities of gene evolu-
tion by aligning atlases at both a gene (i.e., marker) and
cell (i.e., transcriptome) level. In brief, SAMap uses or-
tholog information to select conserved genes between

datasets that will serve as anchors for downstream
dataset alignment. Once the high-dimensional gene ex-
pression data are reduced to a lower-dimensional space,
mutual nearest neighbors (MNNs) between cells in
different datasets can be identified. MNNs are pairs
of cells from different datasets that are each other’s
nearest neighbors in the reduced space, helping to es-
tablish correspondences between datasets. Using the
MNNs, SAMap then constructs a joint representa-
tion of the cells from the different datasets, resulting
in a combined manifold that aligns similar cell types
across species. Through these methods, SAMap en-
ables various analyses, including the identification of
conserved cell type families across species, examina-
tion of paralog substitution events, and the study of
single-cell evolutionary processes (Tarashansky et al.
2021).

SAMap has been applied on multiple non-model
species to further annotate cell atlases. For example,
SAMap has helped to annotate novel cell clusters of the
freshwater sponge Spongilla lacustris, which provided
information to distinguish secretory neuroid cells, in-
dicating a sophisticated communication system orga-
nized around the sponge’s digestive chambers (Musser
et al. 2021). These findings suggest that the communi-
cation system in sponges uses conserved gene sets that
became part of the pre- and post-synapse in the ner-
vous systems of more complex animals, supporting the
hypothesis that sensory cells and myocytes may have

20z AInr 9z uo sasn jwelly jo Ayssealun Aq GZ0S1L.22/Z1 1 8edl/qol/g60 L 0L /10p/a[01le-80UBAPE/qOl/WOoD dNno"ojwapeoe//:sdiy wolj papeojumoq



Improving scRNAseq annotations in non-model organisms

evolved from shared ancestral cell types in early meta-
zoans (Musser et al. 2021). In axolotls (Ambystoma mex-
icanum), SAMap was used to compare single cell tran-
scriptomes of five vertebrate species to determine the
presence of apical-ectodermal-ridge cells that are cru-
cial for limb development and regeneration. This cross-
species comparison determined that A. mexicanum do
not have apical-ectodermal-ridge cells, but do have cells
that perform similar roles in limb regeneration, finally
settling the debate of apical-ectodermal-ridge cells in
this species (Zhong et al. 2023). Tools such as SAMap
will be powerful to annotate cell types in non-model
species and to understand cell type diversity across taxa.
SAMap is publicly available to use here: https://github.
com/atarashansky/SAMap.

An alternative method to annotating cell clusters is
through a marker-free phylogenetic approach that clas-
sifies cells by topology. Topology elucidates the evo-
lutionary history of cell types while comparing mul-
tispecies single-cell datasets, where interior nodes de-
pict ancestral cell types, and exterior node tips de-
pict species-specific cell types (Mah and Dunn 2024).
The authors indicate that the principal components of
single-cell gene expression data can classify or group
cell type clades without the use of cell marker genes,
thus resolving the issue of using model organism gene
markers on non-model organisms (Mah and Dunn
2024). To briefly understand this approach, scRNAseq
datasets are integrated, then a Principal Component
Analysis (PCA) is performed on the integrated matrix
to reduce dimensionality and identify the most signif-
icant features. Phylogenetic trees are then constructed
for each PC range using the continuous maximum like-
lihood method (contml) and evaluated using bootstrap
analysis to determine robustness. To identify the best
tree a jumble analysis is performed that reflects the ro-
bustness of the nodes. Then “average” cells can be cre-
ated by averaging the PCA values for each cell type.
These averaged cells are used to construct a new tree
to provide a more generalized view of cell type evo-
lution (Mah and Dunn 2024). A similar concept has
been applied to the scRNAseq cell atlas of the mouse
nervous system to categorize neural and neuronal cells,
then further subclasses of neuron cells (Zeng 2022).
This transcriptomic cell type taxonomy allows the au-
thors to determine key genes that are responsible for
each taxonomic branch, enabling further insight into
the main cell marker genes for each subclass of neu-
rons (Zeng 2022). Therefore, utilizing a marker-free
phylogenetic approach may be an alternative method
to classify cell types, determine novel cell markers from
these cell clade classifications, and understand the evo-
lutionary lineages of cell types in non-model organ-

isms. Code to replicate this analysis can be found here:
https://github.com/dunnlab/cellphylo.

These cross-species approaches are just two examples
of how we can transfer cell type labels conservatively,
which still allows for discovering new cell types and
does not necessarily require complete functionally an-
notated genomes. Approaches that incorporate the evo-
lutionary history of cell types will be critical in classify-
ing cell types within non-model organisms and provide
further insight on the discovery of novel and species-
specific cell types.

Cell typing with machine learning

Machine learning methods are increasingly used to an-
alyze highly complex genomic data (Wang et al. 2023).
Deep learning is a type of machine learning that uses
multilayer deep neural networks (DNN) and allows the
modeling of highly complex data, such as cell clustering,
to improve predictions of clusters or associations. These
predictions are possible due to the ability of the DNN
to learn patterns of special associations from train-
ing data (Eraslan et al. 2019). Multiple deep learning
approaches have been tested on single-cell transcrip-
tomic data, showing promising results for classifying
cell types. However, overfitting the noisy nature of scR-
NAseq data remains a problem (Le et al. 2022). Many
machine learning tools for single-cell data use DNN
models with annotated training sets to classify and an-
notate cell clusters (Premkumar et al. 2024). While these
approaches can be useful for model systems, this ap-
proach limits the discovery of novel cell types by ex-
cluding cell clusters that are not present in the training
dataset. We will discuss the most recent approaches that
have been developed to tackle this problem and could be
applied to non-model systems.

Meta-learning is a deep learning concept that uses
neural networks to learn patterns from training data
and then apply that learning while classifying new data
with similar characteristics (Hospedales et al. 2022).
This method can be applied to scRNAseq data to train
the algorithm with a mix of well-annotated model or-
ganism cell types and partially annotated non-model
organism cell types. This concept increases the confi-
dence of the annotation of non-model organism cell
types and allows for new cell type discovery. MARS, is
one example of a tool using a meta-learning machine
learning approach that can be used to annotate known
and unknown cell types in heterogeneous scRNAseq
datasets (Brbi¢ et al. 2020). MARS utilizes annotated
and unannotated scRNAseq transcriptomes as inputs
for meta-data created by using DNN. This approach al-
lows the identification of similar cell types to be em-
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bedded close to each other, while different cell types are
further apart. MARS has been used to identify concur-
rent and novel cell types across tissue types and over
time series experiments (Brbic et al. 2020). For example,
MARS has been implemented on Drosophila single-cell
transcriptomes to understand the role of various neuron
types throughout development. Through the MARS ap-
proach, signals of specific neuronal expression during
development were identified to specific adult-stage sen-
sory responses (McLaughlin etal. 2021). MARS is an ex-
cellent machine learning tool to integrate multispecies
datasets to transfer cell type labels without excluding
novel cell types. Code to run MARS can be found here:
https://github.com/snap-stanford/mars.

Another example of a machine learning approach is
SigPrimedNet, an artificial neural network that can an-
notate known cell types in addition to identifying un-
known cell types (Gundogdu et al. 2023). SigPrimed-
Net integrates domain-specific insights based on KEGG
identifiers to the neural network to overcome the con-
straints associated with traditional supervised clus-
tering methods. Additionally, SigPrimedNet produces
low-false positive rates on unknown cell-type annota-
tions through an anomaly detection method. This is the
first supervised approach that uses domain-informed
gene-to-gene interaction based on KEGG pathways
through sparse neural networks to determine unknown
cell types (Gundogdu et al. 2023). One drawback of
this program is that the network building and training
is based on KEGG annotations that are often missing
for non-model organism data sets, limiting the use of
this tool to only well annotated genomes. However, Sig-
PrimedNet is still a powerful tool for non-model organ-
isms with annotated genomes, as it includes unknown
cell types into cell identification approaches. SigPrimed-
Net can be run with the following open access code here:
https://github.com/babelomics/sigprimednet.

Identifying cell types is still a large problem in the
single-cell community, as highly dimensional and vari-
able data can be difficult to tease apart in order to
form meaningful biological interpretations. Here, we
provided a few of the most recent machine learning
approaches that can accelerate the cell type discovery
process. These technologies alone cannot confidently
declare a new cell type and traditional methods must
be used to validate. However, machine learning models
could help guide research focus on potentially interest-
ing and novel cell types as shown from the examples ear-
lier. As the community moves forward, advanced com-
putational approaches like deep learning may provide
unbiased ways of discovering novel cell types in non-
model organisms.

K. H.Wong et al.

Dark genes as cell markers

The concept of “dark genes” in non-model organisms
has risen due to the consistent lack of functional an-
notation in transcriptomic studies. Dark genes can be
defined as genes with no functional annotation yet are
differentially expressed under specific conditions of an
organism, leaving large gaps while interpreting gene
expression results (Cleves et al. 2020). Although dark
genes have been described at a bulk transcriptomic
level, a similar concept can be applied to scRNAseq
data. Typically, only genes with known functions are
reported as cell markers due to the associated func-
tionality with that specific cell type. Additionally, pre-
vious studies cross-annotate cell types based on simi-
lar gene functions across datasets, thus excluding po-
tential strong cell markers that are dark genes. Discard-
ing dark genes as cell markers limits the interpretabil-
ity of cell type annotations and the discovery of novel
species-specific cell types. For example, in the sponge
Amphimedon queenslandica, only three major cell types
were identified through scRNAseq based on marker
gene annotations and relating to known function, thus
limiting the discovery of cell subtypes or other cell types
(Sebé-Pedros et al. 2018). In the ctenophore Mnemiop-
sis leidyi, many of the cell clusters were not annotated
due to the lack of annotation on most marker genes.
Even with the clusters that were annotated, the authors
had low-confidence as some cell markers did not cor-
respond to known tissue types in ctenophores. For ex-
ample, one of the cluster marker genes was striated-
type myosin II, which is a smooth muscle cell marker.
However, M. leidyi lacks this type of tissue, therefore
transferring annotation of cell markers from distantly
related species could potentially lead to the misidentifi-
cation of cell types (Sebé-Pedros et al. 2018). This out-
lines the importance of finding alternative methods to
infer cell types through marker genes with no annota-
tions to avoid erroneous annotations of cell clusters and
characterize novel cell types.

As annotating genes with no known function is a
challenging task, we suggest two main approaches for
validating dark genes as cell markers (i) flow cytometry
to sort potentially novel cell types and (ii) in situ hy-
bridization or spatial transcriptomics to visually locate
the cells in the animal tissue to infer potential function.
Flow cytometry can be used to sort cells based on size,
shape, and fluorescence to phenotype cell types before
single-cell sequencing, or for validation. For example,
breast cancer tumor cells were tagged with monoclonal
antibodies and sorted with fluorescence-activated cell
sorting (FACS) before bulk RNA sequencing to under-
stand transcriptional profiles (Porter et al. 2020). In
non-model systems, similar techniques can be applied
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to dark genes associated with novel cell types. We could
develop fluorescent probes to target dark gene markers
(i.e., fluorescence in situ hybridization RNA probes) and
sort-tagged populations through FACS. This sorted cell
population could then be imaged to confirm the effi-
cacy and confidence of the specificity of the dark gene
cell marker for a unique cell type. This has been proven
to be useful in isolating human enteric nervous system
cells by creating a custom gene probe panel and sort-
ing through FACS (Windster et al. 2023). Therefore, cell
population specific sorting through FACS to validate
scRNAseq dark gene cell markers will be a powerful tool
and prove novel insights into cellular subtypes or devel-
opmental stages.

In most single-cell studies, fluorescence RNA in situ
hybridization (FISH) is a standard in visualizing de-
scribed genes. In the soft coral Xenia sp., algal host-
ing cells were visualized with FISH probing for LePin,
a gene suggested to be selective for Symbiodiniaceae,
the common endosymbiont of cnidarians (Hu et al.
2020). FISH could be an essential approach to charac-
terize cell types in non-model systems by using dark
genes as probes for specific cell types derived from scR-
NAseq analyses. This method allows spatial localiza-
tion and provides tissue-specific context to a specific
set of cells that might help elucidate their cell type
annotations. The integration of scRNAseq with spa-
tial transcriptomics has been recently used to under-
stand the distribution of cell types and cell-cell com-
munication, thus providing important biological con-
text to the cells defined by scRNAseq clusters (Longo
etal. 2021). Therefore, spatially resolved scRNAseq cell
type clusters could be further annotated by the visu-
alization of dark gene markers in tandem with spatial
transcriptomics.

Conclusion and future directions

As the use of scRNAseq on non-model systems contin-
ues to enhance our understanding of cells, it is impor-
tant to have a consensus with our approaches to rigor-
ously annotate cell types without the exclusion of novel
cell type discovery. In this perspective, we provided a
few alternative approaches to aid researchers in cell type
annotations. By utilizing reference-free approaches, we
can fully utilize scRNAseq data by describing cell types
not necessarily associated with model systems. As this
is a quickly developing field, we expect that there will
be more approaches available that can be included in
further discussion. Moving forward, we propose further
questions that will continue this discussion and where
we anticipate further research to be directed:

(1) Can we create a database of gene and ortholog cell
markers for non-model organisms?

(2) How can we consolidate all the bioinformatic
pipelines used for cell type annotations?

(3) Can we develop a rigorous pipeline to accurately
annotate cell types through scRNAseq and other ap-
proaches with a community consensus?

With these considerations and questions in mind, we
hope to provide the non-model cell biology community
with resources and ideas to enhance the scRNAseq cell
cluster annotation process to increase cell type discov-
ery and confidence in annotation labels.
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