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ABSTRACT

In many neural networks, different values of the parameters may result in the same
loss value. Parameter space symmetries are loss-invariant transformations that
change the model parameters. Teleportation applies such transformations to accel-
erate optimization. However, the exact mechanism behind this algorithm’s success
is not well understood. In this paper, we show that teleportation not only speeds
up optimization in the short-term, but gives overall faster time to convergence.
Additionally, teleporting to minima with different curvatures improves general-
ization, which suggests a connection between the curvature of the minimum and
generalization ability. Finally, we show that integrating teleportation into a wide
range of optimization algorithms and optimization-based meta-learning improves
convergence. Our results showcase the versatility of teleportation and demonstrate
the potential of incorporating symmetry in optimization.

1 INTRODUCTION

Given a deep neural network architecture and a dataset, there may be multiple points in the parameter
space that correspond to the same loss value. Despite having the same loss, the gradients and learn-
ing dynamics originating from these points can be very different (Kunin et al., 2021; Van Laarhoven,
2017; Grigsby et al., 2022). Parameter space symmetries, which are transformations of the parame-
ters that leave the loss function invariant, allow us to teleport between points in the parameter space
on the same level set of the loss function (Armenta et al., 2023). In particular, teleporting to a steeper
point in the loss landscape leads to faster optimization.

Despite the empirical evidence, the exact mechanism of how teleportation improves convergence
in optimizing non-convex objectives remains elusive. Previous work shows that gradient increases
momentarily after a teleportation, but could not show that this results in overall faster convergence
(Zhao et al., 2022). In this paper, we provide theoretical guarantees on the convergence rate. In
particular, we show that stochastic gradient descent (SGD) with teleportation converges to a basin
of stationary points, where every point reachable by teleportation is also stationary. We also provide
conditions under which one teleportation guarantees optimality of the entire gradient flow trajectory.

Previous applications of teleportation are limited to accelerating optimization. The second part of
this paper explores a different objective ± improving generalization. We relate properties of minima
to their generalization ability and optimize them using teleportation. We empirically verify that cer-
tain sharpness metrics are correlated with generalization (Keskar et al., 2017), although teleporting
towards flatter regions has negligible effects on the validation loss. Additionally, we hypothesize that
generalization also depends on the curvature of minima. For fully connected networks, we derive
an explicit expression for estimating curvatures and show that teleporting towards larger curvatures
improves the model’s generalizability.

To demonstrate the wide applicability of parameter space symmetry, we expand teleportation to
standard optimization algorithms beyond SGD, including momentum, AdaGrad, RMSProp, and
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Adam. Experimentally, teleportation improves the convergence speed for these algorithms. Inspired
by conditional programming and optimization-based meta-learning (Andrychowicz et al., 2016), we
also propose a meta-optimizer to learn where to move parameters in a loss level set. This approach
avoids the computation cost of optimization on group manifolds and improves upon existing meta-
learning methods that are restricted to local updates.

The convergence speedup, applications in improving generalization, and the ability to integrate with
different optimizers demonstrate the potential of improving optimization using symmetry. In sum-
mary, our main contributions are:

• theoretical guarantees that teleportation accelerates the convergence rate of SGD;

• quantifying the curvature of a minimum and evidence of its correlation with generalization;

• a teleportation-based algorithm to improve generalization;

• various optimization algorithms with integrated teleportation including momentum, Ada-
Grad, and optimization-based meta-learning.

2 RELATED WORK

Parameter space symmetry. Continuous symmetries have been identified in the parameter space
of various architectures, including homogeneous activations (Badrinarayanan et al., 2015; Du et al.,
2018), radial rescaling activations (Ganev et al., 2022), and softmax and batchnorm functions (Kunin
et al., 2021). Permutation symmetry has been linked to the structure of minima (SË imsËek et al.,
2021; Entezari et al., 2022). Quiver representation theory provides a more general framework for
symmetries in neural networks with pointwise (Armenta & Jodoin, 2021) and rescaling activations
(Ganev & Walters, 2022). A new class of nonlinear and data-dependent symmetries are identified in
(Zhao et al., 2023). Since symmetry defines transformations of parameters within a level set of the
loss function, these works are the basis of the teleportation method discussed in our paper.

Knowledge of parameter space symmetry motivates new optimization methods. One line of work
seeks algorithms that are invariant to symmetry transformations (Neyshabur et al., 2015; Meng et al.,
2019). Others search in the orbit for parameters that can be optimized faster (Armenta et al., 2023;
Zhao et al., 2022). We build on the latter by providing theoretical analysis on the improvement of
the convergence rate and by augmenting the teleportation objective to improve generalization.

Initializations and restarts. Teleportation before training changes the initialization of parame-
ters, which is known to affect the training dynamics. For example, imbalance between layers at
initialization affects the convergence of gradient flows in two-layer models (Tarmoun et al., 2021).
Different initializations, among other sources of variance, also lead to different model performance
after convergence (Dodge et al., 2020; Bouthillier et al., 2021; Ramasinghe et al., 2022). In addition
to initialization, teleportation allows changes in landscape multiple times throughout the training.

Teleportation during training re-initializes the parameters to a point with the same loss. Its effect can
resemble warm restart (Loshchilov & Hutter, 2017), which encourages parameters to move to more
stable regions by periodically increasing the learning rate. Compared to restarts, teleportation leads
to smaller temporary increase in loss and provides more control of where to move the parameters.

Sharpness of minima and generalization. The sharpness of minima has been linked to the gen-
eralization ability of models both empirically and theoretically (Hochreiter & Schmidhuber, 1997;
Keskar et al., 2017; Petzka et al., 2021; Ding et al., 2022; Zhou et al., 2020), which motivates op-
timization methods that find flatter minima (Chaudhari et al., 2017; Foret et al., 2021; Kwon et al.,
2021; Kim et al., 2022). We employ teleportation to search for flatter points along the loss level
sets. The sharpness of a minimum is often defined using properties of the Hessian of the loss func-
tion, such as the number of small eigenvalues (Keskar et al., 2017; Chaudhari et al., 2017; Sagun
et al., 2017) or the product of the top k eigenvalues (Wu et al., 2017). Alternatively, sharpness can
be characterized by the maximum loss within a neighborhood of a minimum (Keskar et al., 2017;
Foret et al., 2021; Kim et al., 2022) or approximated by the growth in the loss curve averaged over
random directions (Izmailov et al., 2018). The sharpness of minima does not always capture gener-
alization (Dinh et al., 2017) (Andriushchenko et al., 2023). Some reparametrizations do not affect
generalization but can lead to minima with different sharpness.
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The above only guarantees that there exists a single point wt for which the gradient norm will
eventually be small. In contrast, our result in equation 2 guarantees that for all points over the
orbit {g · wt : ∀g ∈ G}, the gradient norm will be small. For strictly convex loss functions,
maxg∈G∥∇L(g ·w)∥2 is non-decreasing with L(w). In this case, the value of L is smaller after T
steps of SGD with teleportation, compared to vanilla SGD (Proposition A.2).

3.2 TELEPORTATION AND NEWTON’S METHOD

Intuitively, teleportation can speed up optimization as it behaves similarly to Newton’s method. After
a teleportation that takes parameters to a critical point on a level set, the gradient descent direction is
the same as the Newton direction (Zhao et al., 2022). As a result, we can leverage the convergence
of Newton’s method to derive the convergence rate of teleportation for the deterministic setting.

Proposition 3.2 (Quadratic term in convergence rate). Let L be strictly convex and let w0 ∈ R
d.

Let

w
′ ∈ argmax

w∈Rd

1

2
∥∇L(w)∥2, s.t. L(w) = L(w0).

Let ∇2L be the Hessian of L, and λmax(∇2L(w)) be the largest eigenvalue of ∇2L(w). If
∇L(w′) ̸= 0, then there exists λ0 such that 0 ≤ λ0 ≤ λmax(∇2L(w0)), and one step of gra-
dient descent after teleportation with learning rate γ > 0 gives

w1 = w
′ − γ∇L(w′) = w

′ − γλ0∇2L(w′)−1∇L(w′). (3)

Let w′ = g0 · w0. If γ ≤ 1
λ0

, L is a µ±strongly convex L±smooth function, and the Hessian is

G±Lipschitz, then we have that

∥w1 −w
∗∥ ≤ G

2µ
∥g0 ·w0 −w

∗∥2 + |1− γλ0|
L

2µ
∥g0 ·w0 −w

∗∥.

More details about the assumptions and the proof are in Appendix B. Note that due to unknown step
size λ0, extra care is needed in establishing this convergence rate.

The above proposition shows that taking one step of teleportation and one gradient step, the result
is equal to taking a dampened Newton step (equation 3). Hence, the convergence rate has a quadrat-
ically contracting term ∥g0 · w0 − w

∗∥2, which is typical of second order methods. In particular,
setting γ = 1/λ0 we would have local quadratic convergence. In contrast, without the teleportation
step and under the same assumptions, we would have the following linear convergence

∥w1 −w
∗∥ ≤ (1− µγ) ∥w0 −w

∗∥
for γ ≤ 1

L
using gradient descent. Thus there would be no quadratically contracting term.

3.3 WHEN IS ONE TELEPORTATION ENOUGH

Despite the guaranteed improvement in convergence, teleporting before every gradient descent step
is computationally expensive. Hence we teleport only occasionally. In fact, for certain optimization
objectives, every point on the gradient flow has the largest gradient norm in its loss level set after one
teleportation (Zhao et al., 2022). In past work, this result is limited to convex quadratic functions. In
this section, we give a sufficient condition for when one teleportation results in an optimal trajectory
for general loss functions. Full proofs can be found in Appendix C.

Let V : M −→ TM be a vector field on the manifold M, where TM denotes the associated tangent
bundle. Here we consider the parameter space M = R

n, although results in this section can be
extended to optimization on other manifolds. In this case, we may write V = vi ∂

∂wi using the

component functions vi : Rn −→ R and coordinates wi.

Consider a smooth loss function L : M −→ R. Let G be a symmetry group of L, i.e. L(g · w) =
L(w) for all w ∈ M and g ∈ G. Let X be the set of all vector fields on M. Let R = ri ∂

∂wi ,

where ri = − ∂L
∂wi

, be the reverse gradient vector field. Let X⊥ = {A = ai ∂
∂wi ∈ X| ai ∈

C∞(M) and
∑

i a
i(w)ri(w) = 0, ∀w ∈ M} be the set of vector fields orthogonal to R. If G is a

Lie group, the infinitesimal action of its Lie algebra g defines a set of vector fields Xg ⊆ X⊥.
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A gradient flow is a curve γ : R −→ M where the velocity is given by the value of R, i.e. γ′(t) =
Rγ(t) for all t ∈ R. The Lie bracket [A,R] defines the derivative of R with respect to A. Flows of

A and R commute if and only if [A,R] = 0 (Theorem 9.44, Lee (2013)). That is, teleportation can
affect the convergence rate only if [A,R]L ̸= 0 for some A ∈ Xg. To simplify notation, we write
([W,R]L)(w) = 0 for a set of vector fields W ⊆ X when ([A,R]L)(w) = 0 for all A ∈ W .

We consider a gradient flow optimal if every point on the flow is a critical point of the magnitude of
gradient in its loss level set. Note that this definition does not exclude the case where points on the
flow are minimizers of the magnitude of gradient.

Definition 3.3. Let f : M −→ R,w 7→
∥

∥

∂L
∂w

∥

∥

2

2
. A point w ∈ M is optimal with respect to a set of

vector fields W ⊆ X⊥ if Af(w) = 0 for all A ∈ W . A gradient flow γ : R −→ M is optimal with
respect to W if γ(t) is optimal with respect to W for all t ∈ R.

Proposition 3.4. A point w ∈ M is optimal with respect to a set of vector fields W if and only if
([W,R]L)(w) = 0.

A sufficient condition for one teleportation to result in an optimal trajectory is that whenever the
function [A,R]L vanishes at w ∈ M, it vanishes along the entire gradient flow starting at w.

Proposition 3.5. Let W ⊆ X⊥ be a set of vector fields that are orthogonal to ∂L
∂w

. Assume that for
all w ∈ M such that ([W,R]L)(w) = 0, we have that (R[W,R]L)(w) = 0. Then the gradient
flow starting at any optimal point with respect to W is optimal with respect to W .

To help check when the assumption in Proposition 3.5 is satisfied, we provide an alternative form of
R[W,R]L(w) when [W,R]L(w) = 0.

Proposition 3.6. If at all optimal points in S = {(M ∂L
∂w

)i ∂
∂wi ∈ X| M ∈ R

n×n,MT = −M} ,

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

= 0

for all anti-symmetric matrices M ∈ R
n×n, then the gradient flow starting at an optimal point in S

is optimal in S.

From Proposition 3.6, we see that R[W,R]L(w) is not automatically 0 when [W,R]L(w) = 0.
Therefore, even if the group is big enough to have its infinitesimal actions cover the tangent space
of the level set (Xg = X⊥), one teleportation does not guarantee that the gradient flow intersects
all future level sets at optimal points. However, for loss functions that satisfy the condition in
Proposition 3.5, teleporting once optimizes the entire trajectory. This is the case, for example, when

∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj for all i, k, j, α (Proposition C.3). In particular, all quadratic

functions meet this condition.

4 TELEPORTATION FOR IMPROVING GENERALIZATION

Teleportation was originally proposed to speedup optimization. In this section, we explore the suit-
ability of teleportation for improving generalization, which is another important aspect of deep learn-
ing. We first review definitions of the sharpness of minima. Then, we introduce a novel notion of the
curvature of minima and discuss its implications on generalization. By observing how sharpness and
curvature of minima are correlated with generalization, we improve generalization by incorporating
sharpness and curvature into the objective for teleportation.

4.1 SHARPNESS OF MINIMA

Flat minima tend to generalize well (Hochreiter & Schmidhuber, 1997), typically characterized
by numerous small Hessian eigenvalues. Although Hessian-based sharpness metrics are known to
correlate well with generalization, they are expensive to compute and differentiate through. To
use sharpness as an objective in teleportation, we consider changes in the loss averaged over random
directions. Let D be a set of vectors drawn randomly from the unit sphere di ∼ {d ∈ R

n : ||d|| = 1},
and T a list of displacements tj ∈ R. Then, we have the following metric (Izmailov et al., 2018):

Sharpness: ϕ(w, T,D) =
1

|T ||D|
∑

t∈T

∑

d∈D

L(w + td). (4)
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APPENDIX

This appendix contains proofs, experiment setups, as well as additional results and discussions.
Appendix A through C contain proofs for theoretical results in Section 3. Appendix D provides
details about curves induced by symmetry and the curvature of the minimum. Appendix E discusses
possible theoretical approaches to relate curvatures and generalization. This section also contains
experiment details on computing correlations and the algorithm that uses teleportation to change cur-
vature. Appendix F describes experiment setups and different strategies of integrating teleportation
into various optimization algorithms.

The code used for our experiments is available at: https://github.com/Rose-STL-Lab/
Teleportation-Optimization.

A TELEPORTATION AND SGD

This section includes a proof for Theorem 3.1. Additionally, we discuss the theorem’s implication
when the loss function is strictly convex.

Lemma A.1 (Descent Lemma). Let L(w, ξ) be a β±smooth function. It follows that

E
[

∥∇L(w, ξ)∥2
]

≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[

inf
w

L(w, ξ)
]

). (6)

Proof. Since L(w, ξ) is smooth we have that

L(z, ξ)− L(w, ξ) ≤ ⟨∇L(w, ξ), z −w⟩+ β

2
∥z −w∥2, ∀z,w ∈ R

d. (7)

By inserting

z = w − 1

β
∇L(w, ξ)

into equation 7 we have that

L
(

w − (1/β)∇L(w, ξ), ξ
)

≤ L(w, ξ)− 1

2β
∥∇L(w, ξ)∥2. (8)

Re-arranging we have that

L(w∗, ξ)− L(w, ξ) = L(w∗, ξ)− inf
w

L(w, ξ) + inf
w

L(w, ξ)− L(w, ξ)

≤ L(w∗, ξ)− inf
w

L(w, ξ) + L
(

w − (1/β)∇L(w, ξ), ξ
)

− L(w, ξ)

equation 8

≤ L(w∗, ξ)− inf
w

L(w, ξ)− 1

2β
∥∇L(w, ξ)∥2,

where the first inequality follows because infw L(w, ξ) ≤ L(w, ξ), ∀w. Re-arranging the above
and taking expectation gives

E
[

∥∇L(w, ξ)∥2
]

≤ 2E
[

β(L(w∗, ξ)− inf
w

L(w, ξ) + L(w, ξ)− L(w∗, ξ))
]

≤ 2βE
[

L(w∗, ξ)− inf
w

L(w, ξ) + L(w, ξ)− L(w∗, ξ)
]

≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[

inf
w

L(w, ξ)
]

).

At each iteration t ∈ N
+ in SGD, we choose a group element gt ∈ G and use teleportation before

each gradient step as follows

w
t+1 = gt ·wt − η∇L(gt ·wt, ξt). (9)

Here η is a learning rate, ∇L(wt, ξt) is a gradient of L(wt, ξt) with respect to the parameters w,
and ξt ∼ D is a mini-batch of data sampled i.i.d at each iteration.
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Theorem 3.1. Let L(w, ξ) be β±smooth and let

σ2 def
= L(w∗)− E

[

inf
w

L(w, ξ)
]

.

Consider the iterates wt given by equation 1 where

gt ∈ argmax
g∈G

∥∇L(g ·wt)∥2. (10)

If η = 1
β
√
T−1

then

min
t=0,...,T−1

E

[

max
g∈G

∥∇L(g ·wt)∥2
]

≤ 2β√
T − 1

E
[

L(w0)− L(w∗)
]

+
βσ2

√
T − 1

. (11)

Proof. First note that if L(w, ξ) is β±smooth, then L(w) is also a β±smooth function, that is

L(z)− L(w)− ⟨∇L(w), z −w⟩ ≤ β

2
∥z −w∥2. (12)

Using equation 1 with z = w
t+1 and w = gt ·wt, together with equation 12 and the fact that the

group action preserves loss, we have that

L(wt+1) ≤ L(gt ·wt) +
〈

∇L(gt ·wt),wt+1 − gt ·wt
〉

+
β

2
∥wt+1 − gt ·wt∥2 (13)

= L(wt)− ηt
〈

∇L(gt ·wt),∇L(gt ·wt, ξt)
〉

+
βη2t
2

∥∇L(gt ·wt, ξt)∥2. (14)

Taking expectation conditioned on w
t, we have that

Et

[

L(wt+1)
]

≤ L(wt)− ηt∥∇L(gt ·wt)∥2 + βη2t
2

Et

[

∥∇L(gt ·wt, ξt)∥2
]

. (15)

Now since L(w, ξ) is β±smooth, from Lemma A.1 above we have that

E
[

∥∇L(w, ξ)∥2
]

≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[

inf
w

L(w, ξ)
]

) (16)

Using equation 16 with w = gt ◦wt we have that

Et

[

L(wt+1)
]

≤ L(wt)− ηt∥∇L(gt ·wt)∥2

+ β2η2t

(

L(gt ·wt)− L(w∗) + L(w∗)− E

[

inf
w

L(w, ξ)
])

. (17)

Using that L(gt ·wt) = L(wt), taking full expectation and re-arranging terms gives

ηtE
[

∥∇L(gt ·wt)∥2
]

≤ (1 + β2η2t )E
[

L(wt)− L∗]− E
[

L(wt+1)− L∗]+ β2η2t σ
2. (18)

Now we use a re-weighting trick introduced in Stich (2019). Let αt > 0 be a sequence such that

αt(1+β2η2t ) = αt−1. Consequently if α−1 = 1 then αt = (1+β2η2t )
−(t+1) . Multiplying by both

sides of equation 18 by αt thus gives

αtηtE
[

∥∇L(gt ·wt)∥2
]

≤ αt−1E
[

L(wt)− L∗]− αtE
[

L(wt+1)− L∗]+ αtβ
2η2t σ

2. (19)

Summing up from t = 0, . . . , T − 1, and using telescopic cancellation, gives

T−1
∑

t=0

αtηtE
[

∥∇L(gt ·wt)∥2
]

≤ E
[

L(w0)− L∗]+ β2σ2
T−1
∑

t=0

αtη
2
t (20)

Let A =
∑T−1

t=0 αtηt. Dividing both sides by A gives

min
t=0,...,T−1

E
[

∥∇L(gt ·wt)∥2
]

≤ 1
∑T−1

t=0 αtηt

T−1
∑

t=0

αtηt∥∇L(gt ·wt)∥2

≤ E
[

L(w0)− L∗]+ β2σ2
∑T−1

t=0 αtη
2
t

∑T−1
t=0 αtηt

. (21)
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Finally, if ηt ≡ η then

T−1
∑

t=0

αtηt = η

T−1
∑

t=0

(1 + β2η2t )
−(t+1) =

η

1 + β2η2
1− (1 + β2η2)−T

1− (1 + β2η2)−1
(22)

=
1− (1 + β2η2)−T

β2η
(23)

To bound the term with the −T power, we use that

(1 + β2η2)−T ≤ 1

2
=⇒ log(2)

log(1 + β2η2)
≤ T.

To simplify the above expression we can use

x

1 + x
≤ log(1 + x) ≤ x, for x ≥ −1,

thus
log(2)

log(1 + β2η2)
≤ 1 + β2η2

β2η2
≤ T.

Using the above we have that

T−1
∑

t=0

αtηt ≥
1

2β2η
, for T ≥ 1 + β2η2

β2η2

Using this lower bound in equation 21 gives

min
t=0,...,T−1

E
[

∥∇L(gt ·wt)∥2
]

≤ 2β2ηE
[

L(w0)− L∗]+ ηβ2σ2, for T ≥ 1 + β2η2

β2η2
.

Now note that

T ≥ 1 + β2η2

β2η2
⇔ β2η2(T − 1) ≥ 1 ⇔ η ≥ 1

β
√

(T − 1)
.

Thus finally setting η = 1
β
√
T−1

gives the result equation 2.

Proposition A.2. Assume that L : Rn −→ R is strictly convex and twice continuously differentiable.
Assume also that for any two points wa,wb ∈ R

n such that L(wa) = L(wb), there exists a g ∈ G
such that wa = g ·wb. At two points w1,w2 ∈ R

n, if maxg∈G∥∇L(g ·w1)∥2 = ∥∇L(w2)∥2, then
L(w1) ≤ L(w2).

Proof. Let S(x) = {w : L(w) = x} be the level sets of L, and X = {L(w) : w ∈ R
n}

be the image of L. Since G acts transitively on the level sets of L, maxg∈G∥∇L(g · w)∥2 =
max

w∈S(x)∥∇L(w)∥2. To simplify notation, we define a function F : X −→ R, F (x) =

max
w∈S(x)∥∇L(w)∥2. Since ∇L(w) is continuously differentiable, the directional derivative

of F is defined. Additionally, since L is continuous and its domain R
n is connected, its image

X is also connected. This means that for any w1,w2 ∈ R
n and min(L(w1),L(w2)) ≤ y ≤

max(L(w1),L(w2)), there exists a w3 ∈ R
n such that L(w3) = y.

Next, we show that F (·) is strictly increasing by contradiction.

Suppose that L(w1) < L(w2) and F (L(w1)) ≥ F (L(w2)). By the mean value theorem,
there exists a w3 such that L(w1) < L(w3) < L(w2) and the directional derivative of F
in the direction towards L(w2) is non-positive: ∂L(w2)−L(w3)F (L(w3)) ≤ 0. Let w

∗
3 ∈

argmax
w∈S(L(w3))∥∇L(w)∥2 be a point that has the largest gradient norm in S(L(w3)). Then

at w∗
3 , ∥∇L∥2 cannot increase along the gradient direction. However, this means

∇L(w∗
3) ·

∂

∂w
∥∇L(w∗

3)∥2 = ∇L(w∗
3)

TH∇L(w∗
3) ≤ 0. (24)
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Since we assumed that L is convex and L(w∗
3) is not a minimum (L(w∗

3) > L(w1)), we have
that ∇L(w∗

3) ̸= 0. Therefore, equation 24 contradicts with L being strictly convex, and we have
F (L(w1)) < F (L(w2)).

We have shown that L(w1) < L(w2) implies F (L(w1)) < F (L(w2)). Taking the contraposi-
tive and switching w1 and w2, F (L(w1)) ≤ F (L(w2)) implies L(w1) ≤ L(w2). Equivalently,
maxg∈G∥∇L(g ·w1)∥2 ≤ maxg∈G∥∇L(g ·w2)∥2 implies that L(w1) ≤ L(w2).

Finally, since

max
g∈G

∥∇L(g ·w1)∥2 = ∥∇L(w2)∥2 ≤ max
g∈G

∥∇L(g ·w2)∥2, (25)

we have L(w1) ≤ L(w2).

B TELEPORTATION AND NEWTON’S METHOD

Lemma B.1 (One step of Newton’s Method). Let f(x) be a µ±strongly convex and L±smooth func-
tion, that is, we have a global lower bound on the Hessian given by

LI ⪰ ∇2f(x) ⪰ µI, ∀x ∈ R
n. (26)

Furthermore, if the Hessian is also G±Lipschitz

∥∇2f(x)−∇2f(y)∥ ≤ G∥x− y∥ (27)

then Newton’s method

xk+1 = xk − λk∇2f(xk)−1∇f(xk)

has a mixed linear and quadratic convergence according to

∥xk+1 − x∗∥ ≤ G

2µ
∥xk − x∗∥2 + |1− λk|

L

2µ
∥xk − x∗∥. (28)

Proof.

xk+1 − x∗ = xk − x∗ − λk∇2f(xk)−1
(

∇f(xk)−∇f(x∗)
)

= xk − x∗ − λk∇2f(xk)−1

∫ 1

s=0

∇2f(xk + s(x∗ − xk))(xk − x∗)ds (Mean value theorem)

= ∇2f(xk)−1

∫ 1

s=0

(

∇2f(xk)− λk∇2f(xk + s(x∗ − xk))
)

(xk − x∗)ds

= ∇2f(xk)−1

∫ 1

s=0

(

∇2f(xk)−∇2f(xk + s(x∗ − xk))

+(1− λk)∇2f(xk + s(x∗ − xk))
)

(xk − x∗)ds

Let δk := ∥xk+1 − x∗∥. Taking norms we have that

δk+1 ≤ ∥∇2f(xk)−1∥
∫ 1

s=0

(

∥∇2f(xk)−∇2f(xk + s(x∗ − xk))∥

+|1− λk∥∥∇2f(xk + s(x∗ − xk))∥
)

δkds

equation 27+equation 26

≤ G

µ

∫ 1

s=0

s∥xk − x∗∥2ds+ |1− λk|
L

µ

∫ 1

s=0

s∥xk − x∗∥ds

=
G

2µ
∥xk − x∗∥2 + |1− λk|

L

2µ
∥xk − x∗∥.

The assumptions on for this proof can be relaxed, since we only require the Hessian is Lipschitz and
lower bounded in a µ

2L±ball around x∗.
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Proposition 3.2 (Quadratic term in convergence rate). Let L be strictly convex and let w0 ∈ R
d.

Let

w′ ∈ argmax
w∈Rd

1

2
∥∇L(w)∥2 subject to L(w) = L(w0). (29)

If ∇L(w′) ̸= 0 then there exists λ0 such that

0 ≤ λ0 ≤ λmax(∇2L(w0))

and one step of gradient descent with learning rate γ > 0 gives

w1 = w′ − γ∇L(w′)

= w′ − γλ0∇2L(w′)−1∇L(w′). (30)

Consequently, letting w′ = g0 ◦ w0, and if γ ≤ 1
λ0

then under the assumptions of Lemma B.1 we

have that

∥w1 − w∗∥ ≤ G

2µ
∥g0 ◦ w0 − x∗∥2 + |1− γλ0|

L

2µ
∥g0 ◦ w0 − w∗∥.

Proof. The Lagrangian associated to equation 29 is given by

L(w, λ) =
1

2
∥∇L(w)∥2 + λ(L(w0)− L(w)).

Taking the derivative in w and setting it to zero gives

∇wL(w, λ0) = 0 =⇒ ∇2L(w)∇L(w)− λ0∇L(w) = 0. (31)

Re-arranging we have that

∇L(w) = λ0∇2L(w)−1∇L(w).
If ∇L(w′) ̸= 0 then from the above we have that

∥∇L(w)∥2 = λ0∇L(w)⊤∇2L(w)−1∇L(w) > 0.

Since ∇2L(w)−1 is positive definite we have that ∇L(w)⊤∇2L(w)−1∇L(w) ≥ 0, and conse-
quently λ0 > 0. Finally from equation 31 we have that λ0 is an eigenvalue of ∇2L(w) and thus it
must be smaller or equal to the largest eigenvalue of ∇2L(w).

C IS ONE TELEPORTATION ENOUGH TO FIND THE OPTIMAL TRAJECTORY?

This section contains proofs for the results in Section 3.3. For readability, we repeat some of the
definitions here.

Consider the parameter space M = R
n. Let V : Rn −→ TRn be a vector field on R

n, where TRn

denotes the associated tangent bundle. We will write V = vi ∂
∂wi using the component functions

vi : Rn −→ R and coordinates wi.

Let L : M −→ R be a smooth loss function. Let G be a symmetry group of L, i.e. L(g · w) =
L(w) for all w ∈ M and g ∈ G. Let X be the set of all vector fields on M. Let R = ri ∂

∂wi ,

where ri = − ∂L
∂wi

, be the reverse gradient vector field. Let X⊥ = {A = ai ∂
∂wi ∈ X| ai ∈

C∞(M) and
∑

i a
i(w)ri(w) = 0, ∀w ∈ M} be the set of vector fields orthogonal to R. If G is a

Lie group, the infinitesimal action of its Lie algebra g defines a set of vector fields Xg ⊆ X⊥.

A gradient flow is a curve γ : R −→ M where the velocity is the value of R at each point, i.e.
γ′(t) = Rγ(t) for all t ∈ R. The Lie bracket [A,R] defines the derivative of R with respect to

A. To simplify notation, we write ([W,R]L)(w) = 0 for a set of vector fields W ⊆ X when
([A,R]L)(w) = 0 for all A ∈ W .

Proposition 3.4. A point w ∈ M is optimal in a set of vector fields W if and only if [A,R]L(w) = 0
for all A ∈ W .
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Proof. Note that AL = ai ∂L
∂wi = 0. We have

[A,R]L = ARL −RAL = A

(

ri
∂L
∂wi

)

− 0 = −A

∥

∥

∥

∥

∂L
∂w

∥

∥

∥

∥

2

2

= −Af. (32)

The result then follows from Definition 3.3.

Proposition 3.5. Let W ⊆ X⊥ be a set of vector fields that are orthogonal to the gradient of L. If
[A,R]L(w) = 0 for all A ∈ W implies that R([A,R]L)(w) = 0 for all A ∈ W , then the gradient
flow starting at an optimal point in W is optimal in W .

Proof. Consider the gradient flow γ that starts at an optimal point in W . The derivative of [A,R]L
along γ is

d

dt
[A,R]L(γ(t)) = γ′(t)([A,R]L)(γ(t)) = −R[A,R]L(γ(t)). (33)

Since γ(0) is an optimal point, [A,R]L(γ(0)) = 0 for all A ∈ W by Proposition 3.4. By assump-
tion, if [A,R]L(γ(t)) = 0 for all A ∈ W , then R([A,R]L)(γ(t)) = 0 for all A ∈ W . Therefore,
both the value and the derivative of [A,R]L stay 0 along γ. Since [A,R]L(γ(t)) = 0 for all t ∈ R,
γ is optimal in W .

To help check when Proposition 3.5 is satisfied, we provide an alternative form of R[A,R]L(w)
under the assumption that [A,R]L(w) = 0. We will use the following lemmas in the proof.

Lemma C.1. For two vectors v,w ∈ R
n, if vT

w = 0 and w ̸= 0, then there exists an anti-
symmetric matrix M ∈ R

n×n such that v = Mw.

Proof. Let w0 = [1, 0, ..., 0]T ∈ R
n. Consider a list of n− 1 anti-symmetric matrices Mi ∈ R

n×n,
where

M k
ij =







−1, if j = 1 and k = i+ 1

1, if j = i+ 1 and k = 1

0, otherwise

(34)

In matrix form, the Mi’s are

M1 =











0 −1 0 ... 0
1 0 0 ... 0
0 0 0 ... 0

...
0 0 0 ... 0











,M2 =











0 0 −1 ... 0
0 0 0 ... 0
1 0 0 ... 0

...
0 0 0 ... 0











, ...,Mn−1 =











0 0 0 ... −1
0 0 0 ... 0
0 0 0 ... 0

...
1 0 0 ... 0











.

(35)

Since Mi’s are anti-symmetric, Miw0 is orthogonal to w0. The norm of Miw0 = ei+1 is 1.
Additionally, Miw0 is orthogonal to Mjw0 for i ̸= j:

(Miw0)
T (Mjw0) = e

T
i+1ej+1 = δij . (36)

Denote w
⊥
0 = {x ∈ R

n : xT
w0 = 0} as the orthogonal complement of w0. Then Miw0 forms a

basis of w⊥
0 . Next, we extend this to an arbitrary w ∈ R

n.

Let ŵ = w

∥w∥2

. Since ŵ has norm 1, there exists an orthogonal matrix R such that ŵ = Rw0. Let

M ′
i = RMiR

T . Then M ′
i is anti-symmetric:

(RMiR
T )T = RMT

i RT = −RMiR
T . (37)

It follows that M ′
iŵ is orthogonal to ŵ. The norm of M ′

iŵ is ∥(RMiR
T )(Rw0)∥ = ∥RMiw0∥ =

∥Miw0∥ = 1. Additionally, M ′
iŵ is orthogonal to M ′

jŵ for i ̸= j:

(M ′
iŵ)T (M ′

jŵ) = (RMiR
TRw0)

T (RMjR
TRw0)

= w
T
0 R

TRMT
i RTRMjR

TRw0

= w
T
0 M

T
i Mjw0

= δij . (38)
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Therefore, M ′
iŵ spans ŵ⊥ = w

⊥. This means that any vector v ∈ w
⊥ can be written as a linear

combination of M ′
iŵ. That is, there exists k1, ..., kn ∈ R, such that v =

∑

i ki(M
′
iŵ). To find the

anti-symmetric M that takes w to v, note that

v =

(

∑

i

kiM
′
i

)

ŵ =

(

∥w∥−1
2

∑

i

kiM
′
i

)

w. (39)

Since the sum of anti-symmetric matrices is anti-symmetric, and the product of an anti-symmetric
matrix and a scalar is also anti-symmetric, ∥w∥−1

2

∑

i kiM
′
i is anti-symmetric.

Lemma C.2. Let v ∈ R
n be a nonzero vector. Then the two sets {Mv : M ∈ R

n×n,MT = −M}
and {w ∈ R

n : wT
v = 0} are equal.

Proof. Let A = {Mv : M ∈ R
n×n,MT = M−1} and B = {w ∈ R

n : wT
v = 0}. Since

(Mv)Tv = 0 for all anti-symmetric M , every element in A is in B. By Lemma C.1, every element
in B is in A. Therefore A = B.

Let S = {(M ∂L
∂w

)i ∂
∂wi ∈ X| M ∈ R

n×n,MT = −M} be the set of vector fields constructed

by multiplying the gradient by an anti-symmetric matrix. Recall that R = − ∂L
∂wi

∂
∂wi is the reverse

gradient vector field, and X⊥ = {ai ∂
∂wi |

∑

i a
i(w)∂L(w)

∂wi = 0, ∀w ∈ M} is the set of all vector
fields orthogonal to R. From Lemma C.2, we have S = X⊥. Therefore, a point w is an optimal
point in S if and only if w is an optimal point in X⊥.

We are now ready to prove the following proposition, which provides another way to check the
condition in Proposition 3.5.

Proposition 3.6. If at all optimal points in S,

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

= 0 (40)

for all anti-symmetric matrix M ∈ R
n×n, then the gradient flow starting at an optimal point in S is

optimal in S.

Proof. Expanding R[A,R]L, we have

R[A,R]L = R

(

A

(

ri
∂L
∂wi

)

− 0

)

= rk
∂

∂wk

(

aj
∂

∂wj

(

ri
∂L
∂wi

))

= rk
∂

∂wk

(

aj
(

∂ri

∂wj

∂L
∂wi

+ ri
∂

∂wj

∂L
∂wi

))

= −rk
∂

∂wk

(

aj
((

∂

∂wj

∂L
∂wi

)

∂L
∂wi

+
∂L
∂wi

∂

∂wj

∂L
∂wi

))

= −2rk
∂

∂wk

(

aj
∂2L

∂wi∂wj

∂L
∂wi

)

= −2rk
(

∂aj

∂wk

∂2L
∂wi∂wj

∂L
∂wi

+ aj
∂

∂wk

(

∂2L
∂wi∂wj

∂L
∂wi

))

= 2
∂L
∂wk

∂aj

∂wk

∂2L
∂wi∂wj

∂L
∂wi

+ 2
∂L
∂wk

aj
∂

∂wk

(

∂2L
∂wi∂wj

∂L
∂wi

)

(41)

Assume that w is an optimal point in S. By Lemma C.2, w is also an optimal point in X⊥. By

Lemma C.4 in Zhao et al. (2022), ∂L
∂w

is an eigenvector of ∂2L
∂wi∂wj . Therefore, ∂2L

∂wi∂wj
∂L
∂wi = λ ∂L

∂wj

for some λ ∈ C. Additionally, aj = M j
α

∂L
∂wα

and ∂aj

∂wk = M j
α

∂2L
∂wα∂wk . We are now ready to simplify

both terms in equation 41.
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For the first term in equation 41,

∂L
∂wk

∂aj

∂wk

∂2L
∂wi∂wj

∂L
∂wi

=
∂L
∂wk

M j
α

∂2L
∂wα∂wk

∂2L
∂wi∂wj

∂L
∂wi

= M j
α

(

∂2L
∂wα∂wk

∂L
∂wk

)(

∂2L
∂wi∂wj

∂L
∂wi

)

= M j
α

(

λ1
∂L
∂wα

)(

λ2
∂L
∂wj

)

= λ1λ2M
j
α

∂L
∂wα

∂L
∂wj

= 0 (42)

The last equality holds because M is anti-symmetric.

For the second term in equation 41,

∂L
∂wk

aj
∂

∂wk

(

∂2L
∂wi∂wj

∂L
∂wi

)

=
∂L
∂wk

aj
(

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∂2L

∂wi∂wj

∂2L
∂wk∂wi

)

=
∂L
∂wk

M j
α

∂L
∂wα

(

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∂2L

∂wi∂wj

∂2L
∂wk∂wi

)

= M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+ λ1λ2M
j
α

∂L
∂wα

∂L
∂wj

= M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

(43)

In summary,

R[A,R]L = 2M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

. (44)

Since we assumed that [A,R]L(w) = 0, when R[A,R]L(w) = 0 for all A ∈ S, the gradient flow
starting at an optimal point in S is optimal in S.

Proposition C.3. If ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj holds for all i, k, j, α, then

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi = 0 holds for all anti-symmetric matrices M ∈ R

n×n.

Proof. If ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj for all i, k, j, α, then

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,α>j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,j>α

Mα
j

∂L
∂wk

∂L
∂wj

∂3L
∂wk∂wi∂wα

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,j>α

−M j
α

∂L
∂wk

∂L
∂wj

∂3L
∂wk∂wi∂wα

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wi

(

∂L
∂wα

∂3L
∂wk∂wi∂wj

− ∂L
∂wj

∂3L
∂wk∂wi∂wα

)

= 0, (45)

where the first equality uses that the diagonal of an anti-symmetric matrix is 0, the second equality
swaps α and j in the second term, the third equality uses that M is anti-symmetric.
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Example (Quadratic function) Consider the quadratic function L(w) = 1
2w

TAw + b
T
w + c,

where A ∈ R
n×n is symmetric, b, c ∈ R

n, and w ∈ R
n. Two examples of quadratic functions are

the ellipse Le(w1, w2) =
1
2 (w

2
1 + λ2w2

2) and the Booth function Lb(w1, w2) = (w1 +2w2 − 7)2 +

(2w1+w2−5)2. Since the third derivative of L is 0, one teleportation guarantees optimal trajectory.

D GROUP ACTIONS AND CURVES ON MINIMA

D.1 GROUP ACTIONS FOR MLP

Consider a multi-layer neural network with elementwise activation function σ. The output of the
mth layer is hm = σ(Wmhm−1), where Wm ∈ R

dm×dm−1 is the weight, hm−1 ∈ R
dm−1×k is the

output of the m− 1th layer, and h0 ∈ R
d0×k is the data.

Assuming that σ (gmWm−1hm−2) is invertible, for gm ∈ GLdm−1
(R), the following transformation

is a loss-preserving group action:

gm ·Wk =







Wmσ (Wm−1hm−2)σ (gmWm−1hm−2)
−1

k = m
gmWm−1 k = m− 1
Wk k ̸∈ {m,m− 1}

(46)

Usually, the assumption does not hold (Zhao et al., 2023). Hence the above transformation may not
preserve loss or be a valid group action. Nevertheless, we observe in practice that the change in the
loss value is often small after such transformations on parameters. We therefore refer to equation
(46) as an approximate symmetry and adopt it in the teleportation algorithm. Due to the possibility
that σ (gmWm−1hm−2) is not invertible, we use pseudoinverses in implementations.

D.2 CURVATURE

The curvature of a curve γ : R −→ R
n is κ(t) = ∥T ′(t)∥

∥γ′(t)∥ , where T (t) = γ′(t)
∥γ′(t)∥ is the unit tangent

vector. The curvature can be written as a function of γ′ and γ′′ (AlÂessio, 2012; Shelekhov, 2021):

κ(t) =

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

1

2

∥γ′∥3 . (47)

D.3 THE DERIVATIVE OF CURVATURE

To compute the derivative of κ(t), we first list the derivatives of a few commonly used terms:

d

dt
∥γ′∥2 =

d

dt
(γ′

1
2
+ γ′

2
2
+ γ′

3
2
+ ...) = 2γ′

1γ
′′
1 + 2γ′

2γ
′′
2 + 2γ′

3γ
′′
3 + ... = 2γ′ · γ′′

d

dt
∥γ′′∥2 =

d

dt
(γ′′

1
2
+ γ′′

2
2
+ γ′′

3
2
+ ...) = 2γ′′

1 γ
′′′
1 + 2γ′′

2 γ
′′′
2 + 2γ′′

3 γ
′′′
3 + ... = 2γ′′ · γ′′′

d

dt
(γ′ · γ′′) =

d

dt
(γ′

1γ
′′
1 + γ′

2γ
′′
2 + γ′

3γ
′′
3 ...) = γ′

1γ
′′′
1 + γ′′

1 γ
′′
1 + ... = ∥γ′′∥2 + γ′ · γ′′′ (48)

The derivatives of the numerator and denominator of κ are:

d

dt

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

1

2 =
1

2

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]− 1

2
d

dt

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

=
1

2

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]− 1

2

[

∥γ′∥2 d

dt
∥γ′′∥2 + ∥γ′′∥2 d

dt
∥γ′∥2 − 2(γ′ · γ′′)

d

dt
(γ′ · γ′′)

]

=
1

2

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]− 1

2

[

2∥γ′∥2(γ′′ · γ′′′) + 2∥γ′′∥2(γ′ · γ′′)− 2(γ′ · γ′′)(∥γ′′∥2 + γ′ · γ′′′)
]

=
[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]− 1

2

[

∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)
]

,

(49)
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and

d

dt
∥γ′∥3 =

d

dt
(∥γ′∥2) 3

2 =
3

2
(∥γ′∥2) 1

2

d

dt
∥γ′∥2 =

3

2
(∥γ′∥2) 1

2 (2γ′ · γ′′) = 3∥γ′∥(γ′ · γ′′). (50)

Using the derivatives above, the derivative of κ is

κ′(t) =

[

d
dt

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

1

2

]

∥γ′∥3 −
[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

1

2

[

d
dt
∥γ′∥3

]

∥γ′∥6

=

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]− 1

2

[

∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)
]

∥γ′∥3

−
[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

1

2 3∥γ′∥(γ′ · γ′′)

∥γ′∥6

=

[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]− 1

2

[

∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)
]

∥γ′∥2

−
[

∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2
]

1

2 3(γ′ · γ′′)

∥γ′∥5 .

(51)

D.4 THE DERIVATIVES OF CURVES ON MINIMA

Consider the curve γM : R× R
n −→ R

n where M ∈ Lie(G) and

γM (t,w) = exp (tM) ·w. (52)

In this section, we derive γ′, γ′′, and γ′′′, which are needed to compute the curvature κ(t) and its
derivative κ′(t). We are interested in κ and κ′ at w, or equivalently, at t = 0. To find the derivatives
of γ at t = 0, we write the group action in the following form:

γ(t) =

∞
∑

n=0

f(n)

n!
tn. (53)

By the uniqueness of Taylor polynomial, the derivatives are γ(n)(0) = f(n). In the rest of this
subsection, we expand the group action to find f(n).

Consider two consecutive layers Uσ(V X) in a neural network, where U ∈ R
m×h, V ∈ R

h×n

are weights, X ∈ R
h×k is the output from the previous layer, and σ is an elementwise activation

function. Choosing G = GLh(R), one group action that leaves the output of these two layers
unchanged is:

g · (U, V,X) = (g · U, g · V, g ·X) = (Ug−1, σ−1(gσ(V X))X−1, X). (54)

Let

g = exp(tM) =

∞
∑

k=0

1

k!
(tM)k, (55)

where M ∈ Lie(G) is in the Lie algebra of G. The action of g yields

g · (U, V,X) = (U exp(−tM), σ−1(exp(tM)σ(V X))X−1, X). (56)

Next, we expand γ(t) = g · (U, V ). The Taylor expansion for g · U is

U exp(−tM) = U

∞
∑

k=0

1

k!
(−tM)k

= U − tUM +
t2

2!
UM2 − t3

3!
UM3 +O(t4). (57)
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The Taylor expansion for g · V is

σ−1(exp(tM)σ(V X))X−1

=σ−1

(( ∞
∑

k=0

1

k!
(tM)k

)

σ(V X)

)

X−1

=σ−1

(

σ(V X) +

∞
∑

k=1

1

k!
(tM)kσ(V X)

)

X−1

=



σ−1(σ(V X)) +
∞
∑

j=1

( ∞
∑

k=1

1

k!
(tM)kσ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣

∣

∣

∣

A=σ(V X)



X−1

=V +





∞
∑

j=1

( ∞
∑

k=1

1

k!
(tM)kσ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣

∣

∣

∣

A=σ(V X)



X−1, (58)

where ⊙ denotes element-wise product: (A ⊙ B)mn = AmnBmn, and the superscript ⊙ denotes
elementwise power: (A⊙j)mn = (Amn)

j . The Taylor expansion is of each element individually,
because σ is element-wise.

Since our goal is to find the first 3 derivatives of γ, we are only interested in the terms up to t3.
Letting

∞
∑

k=1

1

k!
(tM)k = tM + t2

M2

2
+ t3

M3

6
+O(t4) (59)

and considering only the j = 1, 2, 3 terms, we have

σ−1(exp(tM)σ(V X))X−1

=V +





∞
∑

j=1

(

(tM + t2
M2

2
+ t3

M3

6
)σ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣

∣

∣

∣

A=σ(V X)



X−1 +O(t4)

=V +

[

(

(tM + t2
M2

2
+ t3

M3

6
)σ(V X)

)

⊙ ∂σ−1(A)

∂A

∣

∣

∣

∣

A=σ(V X)

+

(

(tM + t2
M2

2
+ t3

M3

6
)σ(V X)

)⊙2

⊙ ∂2σ−1(A)

∂A2

∣

∣

∣

∣

A=σ(V X)

+

(

(tM + t2
M2

2
+ t3

M3

6
)σ(V X)

)⊙3

⊙ ∂3σ−1(A)

∂A3

∣

∣

∣

∣

A=σ(V X)

]

X−1 +O(t4)

=V + t

(

(Mσ(V X))⊙ 1

σ′(V X)

)

X−1

+
t2

2

(

(

M2σ(V X)
)

⊙ 1

σ′(V X)
− 2(Mσ(V X))⊙2 ⊙ σ′′(V X)

σ′(V X)3

)

X−1

+
t3

6

(

(

M3σ(V X)
)

⊙ 1

σ′(V X)
− 6(Mσ(V X))⊙ (M2σ(V X))⊙ σ′′(V X)

σ′(V X)3

+6(Mσ(V X))⊙3 ⊙ ∂3σ−1(A)

∂A3

∣

∣

∣

∣

A=σ(V X)

)

X−1

+O(t4). (60)

Matching terms in equation 57 and equation 60 with equation 53, we have the expressions for γ′,
γ′′, and γ′′′. This allows us to compute the curvature and its derivative using equation 47 and
equation 51.
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E SHARPNESS, CURVATURES, AND THEIR RELATION TO GENERALIZATION

E.1 ALTERNATIVE DEFINITIONS OF SHARPNESS

A common definition of flat minimum is based on the number of eigenvalues of the Hessian which
are small. Minimizers with a large number of large eigenvalues tend to have worse generalization
ability (Keskar et al., 2017). Let λi(H)(w) be the ith largest eigenvalue of the Hessian of the loss
function evaluated at w. We can quantify the notion of sharpness by the number of eigenvalues
larger than a threshold ε ∈ R

>0:

ϕ1(w, ε) = |{λi(H)(w) : λi > ε}| . (61)

A related sharpness metric uses the logarithm of the product of the k largest eigenvalues (Wu et al.,
2017),

ϕ2(w, k) =
k
∑

i=1

log λi(H)(w). (62)

Both metrics require computing the eigenvalues of the Hessian. As a result, optimizing on these
metrics during teleportation is prohibitively expensive. Hence, in this paper we use the average
change in loss averaged over random directions (ϕ) as objective in generalization experiments.

E.2 MORE INTUITION ON CURVATURES AND GENERALIZATION

E.2.1 EXAMPLE: CURVATURE AFFECTS AVERAGE DISPLACEMENT OF MINIMA

Consider an optimization problem with two variables w1, w2 ∈ R. Assume that the minimum is
a curve γ : R → R

2 in the two-dimensional parameter space. For a point w0 on γ, we estimate
its generalization ability by computing the expected distance between w0 and the new minimum
obtained by shifting γ.

We consider the following two curves as examples:

γ1 :R → R
2, t 7→ (t, k1t

2)

γ2 :[0, 2π] → R
2, θ 7→ (k2 cos(θ), k2 sin(θ) + k2), (63)

with k1, k2 ∈ R
̸=0. The curve γ1 is a parabola with curvature κ1 = 2k1 at w0 = (0, 0). The curve

γ2 is a circle, with curvature κ2 = 1
k2

at w0. Note that γ1 is the only polynomial approximation with

integer power (γ(t) = (t, k|t|n), n ∈ Z
+) where the curvature at w0 depends on k. When n < 1,

the value of w0 is undefined. When n = 1, the first derivative at w0 is undefined. When n > 2,
κ(w0) = 0.

Assume that a distribution shift in data causes γ to shift by a distance r, and that the direction of the
shift is chosen uniformly at random over all possible directions. Viewing from the perspective of the
curve, this is equivalent to shifting w0 by distance r.

The distance between a point w and a curve γ is

dist(w, γ) = min
w

′∈γ2

∥w′ −w∥2. (64)

Let Sr be the circle centered at the origin with radius r. The expected distance between the old
solution w0 and shifted curve is

Ew∈Sr
[dist(w, γ)] =

∫

Sr
dist(w, γ)ds
∫

Sr
ds

=

∫ 2π

0
dist((r cos θ, r sin θ), γ)rdθ

∫ 2π

0
rdθ

. (65)

In the limit of zero curvature, γ is a straight line γ(t) = (t, 0). In this case, the expected distance is

Ew∈Sr
[dist(w, γ)] =

∫ 2π

0
|r sin θ|rdθ
2πr

=
2r

π
≈ 0.637r. (66)
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