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Abstract: Agricultural productivity is frequently threatened by a range of insect pests and pathogens that cause damage to
crops. The use of chemical insecticides for control has raised concerns due to negative environmental effects, potential risks
to animal and human health, and the emergence of insecticide resistance. Such issues pose threats to the future crop genera-
tions. To address these challenges, the application of biological control agents, particularly fungal insect pathogens, has
shown promise in effectively managing crop pests and disease vectors. In recent years, significant progress has been made
in harnessing the potential of entomopathogenic fungi (EF) for insect pest management. These advancements encompass
the discovery and characterization of new fungal isolates, a better understanding their ecological effects in plants, integra-
tion of fungal agents within Integrated Pest Management (IPM) strategies, and improvements in their efficacy, formulation,
and range of applications. Efforts to overcome limitations in the use of EF under natural conditions and for large-scale
applications have also yielded substantial advancements. Here, we provide an overview of recent successes achieved using
EF as biocontrol agents, while also addressing their continued limitations, identifying promising areas for further research
and challenges associated with utilizing EF. Progress in enhancing the safety and effectiveness of biocontrol methods using
EF has led to important breakthroughs. These advancements have the potential to improve food security and safety while
reducing adverse environmental impacts associated with pests.
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1 Introduction

Invertebrate insects are the largest group of animals in
nature and pose one of the most significant threats to agricul-
tural crops, human health, and indigenous flora and fauna.
Economic losses caused by various insects surpass tens of
billions of dollars worldwide each year (Oerke 2006; Savary
et al. 2019; Douglas 2018). Factors such as climate change
and rapid globalization contribute to the increasing coloniza-
tion and occurrences of insect pests (Deutsch et al. 2018;
Maxmen 2013). While chemical insecticides are commonly
used for insect control, the long-term and overuse have led
to detrimental effects on the environment and human (Wang
et al. 2022a). These chemicals also extend to detrimental
impacts on non-target organisms and natural enemies of pests
(Desneux et al. 2007; Siviter et al. 2021; Zattara & Aizen
2021). Additionally, excessive use of chemical pesticides has
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led to the development of resistant insect populations, neces-
sitating the development for potent alternatives (Bendis &
Relyea 2016). Therefore, there is a need to explore effective
alternatives to chemical insecticides for pest control in crop
production and beyond (Wilson et al. 2013).
Entomopathogenic fungi (EF), which are naturally
occurring and abundant, play important roles in regulating
insect populations in the environment (Islam et al. 2021),
and therefore have the potential to be effective alternatives
to chemical pesticides with fewer environmental risks.
Some countries have already developed certain EF as bio-
control agents for pests (Peng et al. 2021; Senthil Kumar
et al. 2022). Recent advancements in technology, formula-
tion, life-history, and applications, have revealed not only
high potency in their ability to infect and kill insect pests,
but also a range of beneficial effects on the microecologi-
cal environment of plants (Quesada-Moraga 2020; Yerukala
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et al. 2022). EF can also enhance integrated pest manage-
ment (IPM) by synergistically acting with natural enemies
of pests and promoting plant growth (Quesada-Moraga
2020; Quesada-Moraga et al. 2023a). These discoveries
expand our understanding of EF and offer new insights for
their use in insect and disease management in agriculture,
forestry, and other applications, providing a plant-based
approach to biological pest control.

Recent findings in the field of EF have resulted in sig-
nificant progress towards developing these organisms as
sustainable and environmentally friendly agents. Studies
have focused on discovering new fungal strains (Gutierrez
et al. 2019; Zhao et al. 2023), understanding their ecologi-
cal benefits with plants, and developing formulation and
best application practices (Quesada-Moraga et al. 2023a).
In addition, research has elucidated the important aspects of
the mechanisms of EF-insect infection (Hong et al. 2023;
Ortiz-Urquiza & Keyhani 2013), including strategies for
improvement and integration with other pest control meth-
ods (Meirelles et al. 2023; Gu et al. 2023). Efforts have
also been made to enhance production methods (Sala et al.
2023; Lopes et al. 2019) and utilize genetic engineering and
mutant isolation for strain improvement (Wang & Wang
2017; Lovett & St Leger 2018). These research endeavors
have significantly contributed to a better understanding of
the function and application of fungal pesticides.

Despite the advancements in research, there are still
limitations and challenges associated with the use of EF in
pest control. These limitations include stability, susceptibil-
ity to environmental stresses, efficiency in the field, ability
and cost to mass produce, quality control and contamina-
tion of commercialized products, and field application chal-
lenges (Whipps & Lumsden 2001; Lacey et al. 2015). For
example, one limitation is the relative low resistance of EF
to environmental factors such as UV radiation (Braga et al.
2015). EF also have specific requirements for humidity lev-
els (typically > 50%) and temperature ranges (best between
20-30 °C), which can limit their viability and effective-
ness in natural conditions (Quesada-Moraga et al. 2023b).
Additionally, the host range of some EF can be limited, with
different strains showing significant variation in their effec-
tiveness against different insect species. In the case of some
Hypocreales, their host range can be narrow and restricted
(Du et al. 2023), however, Beauveria and Metarhizium sp.
which represent the two main commercialized genera typi-
cally have broad host ranges. Overall, these factors have
collectively hindered large-scale applications of EF and
increased the overall cost of implementation, although the
demand of “green” alternatives and the compatibility of EF
with organic farming practices is beginning to offset many
of these previous impediments (Islam et al. 2021). Efforts
are ongoing to address some of these challenges and develop
strategies to improve the stability, efficiency, and field appli-
cation of EF in pest management.

2 The potentials of entomopathogenic

fungi as biological control agents
2.1 Natural occurrence and potential
applications of entomopathogenic fungi
Entomopathogenic fungi are diverse and can be found in
various environments worldwide. Over 1,000 species from
approximately 100 different genera have been identified,
distributed within the phyla Ascomycota, Basidiomycota,
Glomeromycota, Oomycota, and Zygomycota (Vega et al.
2012; Barra-Bucarei et al. 2019). Among these, more
than 750 species are known to be pathogenic to insects
(Rabindra & Ramanujam 2007). Some recent studies have
tested new isolates of fungal entomopathogens for control
of specific insect pests. For example, Cladosporium sp. has
been tested against the longhorn beetle, Osphranteria coe-
rulescencs (Farrokhzadeh et al. 2024), M. indicum against
Busoniomimus manjunathi (Senthil Kumar et al. 2023) and
B. bassiana against Diaphorina citri (Cisneros et al. 2022).
However, less than 5% of EF have been developed into
around 170 commercial products, and amongst those that
have been commercialized, most belong to the Beauveria,
Metarhizium, and Isaria genera (Du et al. 2023; Nawaz et al.
2022; de Faria & Wraight 2007) (i. g., M. anisopliae, B.
bassiana and I. fumosorosea; Table 1). In particular, B. bassi-
ana, B. brongniartii, M. anisopliae, and M. acridum within
the Hypocreales, Cordycipitaceae, have been extensively
studied and widely used for pest control (Ortiz-Urquiza &
Keyhani 2016; Mascarin & Jaronski 2016; Zimmermann
2007a). These species, known for their ease of cultivation,
high virulence, and broad spectrum of activities, popular
choices for pest control in agriculture and forestry, targeting
insects including Spodoptera littoralis, Rhynchophorus fer-
rugineus and Chaetoptelius vestitus.

Metarhizium sp. have a long history of use in agricultural
pest control and have the ability to parasitize over 900 spe-
cies of insects, as well as mites and ticks (Nawaz et al. 2022;
Zimmermann 2007b). The wide range of insecticidal abili-
ties has made Metarhizium a valuable tool in IPM strategies.
Numerous studies have demonstrated its effectiveness against
various pests in agriculture and forestry, such as Oxycarenus
hyalinipennis, Sogatella furcifera and Nilaparvata lugens
(Shaukat et al. 2023; Wang et al. 2022b; Peng et al. 2020b).
As research in biopesticides progresses, Metarhizium and
its applications are expected to play increasingly important
roles in sustainable pest management practices in agriculture
and forestry.

Aside from Beauveria and Metarhizium species, Isaria
fumosorosea is a widely used entomopathogenic fungus
known for its efficacy against more than 40 species of insects
across eight orders (Zimmermann 2008). It has shown high
virulence against piercing-sucking insects like aphids and
whiteflies (Ghulam et al. 2018; Hussein et al. 2016). Other
Ascomycete entomopathogens, such as Verticillium lecanii
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Table 1. The entomopathogenic fungi M. anisopliae, B. bassiana and . fumosorosea used for the control of various insect pests.
F: field, L: laboratory, PH: polyhouse, SM: semi-field, GH: glasshouse, GRH: greenhouse.

}Ellll:ltgimopathogenic Fungal isolate Target insect Exp. condition | References
M. anisopliae NA-01299 B. tabaci nymph PH/F (Sain et al. 2021)
M. anisopliae Ma41/Ma22 S. frugiperda larvae L (Cruz-Avalos et al. 2019)
M. anisopliae Ma-002/003 D. neivai adult L/SM (Martinez et al. 2022)
M. anisopliae Ma-M2 O. hyalinipennis nymph L (Shaukat et al. 2023)
M. anisopliae M. anisopliae ARSEF 925 A. glabripennis adult L (Clifton et al. 2020)
M. anisopliae CEP591 L. botrana larvae and adult | L/F (Aguilera-Sammaritano
et al. 2021)
M. anisopliae CQMa421 F. occidentalis adult L/F (Lietal. 2021)
M. anisopliae CQMa421 Rice Planthopper F (Peng et al. 2020b)
M. anisopliae CQMa421 C. medinalis F (Hong et al. 2017)
B. bassiana JEF-158/484 R. ferrugineus larvae L (Yangetal. 2023)
B. bassiana EABb 07/06-Rf R. ferrugineus adult L/SF (Dembilio et al. 2018)
B. bassiana EABb 04/01-Tip S. littoralis larvae L (Sénchez-Rodriguez et al.
2018)
B. bassiana EABb 90/2-Dm D. maroccanus adult L (Valverde-Garcia et al.
2018)
B. bassiana ACP18001/18002 D. citri F (Cisneros et al. 2022)
B. bassiana Bb9 S. frugiperda larvae L (Cruz-Avalos et al. 2018)
B. bassiana Bealll D. fovealis larvae L/GRH (Amatuzzi et al. 2018)
B. bassiana Bb-0018/0025 D. neivai adult L/S (Martinez et al. 2021)
B. bassiana B12: MT610917 A. gossypii adult L (Mseddi et al. 2022)
B. bassiana B. bassiana GHA B. tabaci nymph GH (Bohat4 et al. 2024)
B. bassiana ARSEF 6444 GHA | A. glabripennis adult L (Clifton et al. 2020)
B. bassiana MT-4511 B. tabaci nymph PH/F (Sain et al. 2021)
B. bassiana CFCC81428 C. lapathi L. larvae L/F (Niu et al. 2022)
B. bassiana FUM 01 O. coerulescens larvae & L (Mohammadyani et al.
adult 2016)
B. bassiana Bealll D. fovealis larvae L (Baja et al. 2020)
B. bassiana GHA P. chrysocephala adult L (Price et al. 2024)
B. bassiana FIN1-B B. tabaci pupae L (Topuz et al. 2016)
- T. cinnabarinus adult L -
B. bassiana Bb03 A. stephensi adult L (Blanford et al. 2012)
B. bassiana 1GE3 S. nonagrioides larvae L/F (Mantzoukas et al. 2020)
1. fumosorosea Iful3a A. gossypii and J. formo- L (Ghulam et al. 2018)
sana adult
] 1. fumosorosea CCM 8367 L. decemlineata larvae L (Hussein et al. 2016)
[ fumosorosea 1. fumosorosea PFR 97 B. tabaci nymph GH (Bohata et al. 2024)
1. fumosorosea PF49 C. curvignathus adult L (Jessica et al. 2019)
1. fumosorosea Ag. Stefanos S. nonagrioides larvae L/F (Mantzoukas et al. 2020)
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(Ghaffari et al. 2017), Nomuraea rileyi (Zhang et al. 2022),
and Aschersonia spp (Zhang et al. 2017), have also been uti-
lized in commercial pest control attempts including targeting
insects such as Planococcus citri, Spodoptera frugiperda and
Bemisia tabaci. These examples highlight the wide range of
hosts targeted by EF and their effectiveness in specific pests,
making them valuable contributors to sustainable pest man-
agement in agriculture.

2.2 Beneficial effects of entomopathogenic fungi
on plant

Certain entomopathogenic fungi, particularly Beauveria
and Metarhizium sp., have been found to positively impact
plant growth and enhance plant resistance to both abiotic and
biotic factors, including plant pathogens (Quesada-Moraga
et al. 2022, 2023a; Vega et al. 2009). Fungal colonization
of plant roots (rhizosphere) and other structures, with M.
anisopliae and B. bassiana, has been shown to direct impact
plant growth in various beneficial aspects (Gonzalez-Pérez
et al. 2022). B. bassiana and M. brunneum have been shown
to regulate plant “immune”-related hormonal synthesis and
thereby affect the growth of Triticum aestivum (Gonzalez-
Guzméan et al. 2022). M. anisopliae demonstrates a selective
attachment to the root of test plants in soil, resulting in a
significant increase in root hair density and length, as well
as an earlier onset of root hair growth (Sasan & Bidochka
2012). The colonization of EF in the rhizosphere is an impor-
tant aspect of their biology, impacting soil health, nutrient
transfer, persistence, and potential insect control (Qiao et al.
2023; Quesada-Moraga et al. 2022, 2023a) (Fig. 1).

As mentioned, in addition to such rhizosphere com-
petence, both Metarhizium and Beauveria can establish
epiphytic or endophytic associations with various plants,
including maize, arabidopsis, and rice. These associations
have shown to positively affect plant health and provide pro-
tection against herbivorous insects (Quesada-Moraga et al.
2022; Rondot & Reineke 2017). The endophytic presence
of B. bassiana in melon even affects pollinator behavior by
modifying the host plant’s flowering phenology and floral
volatile profile (Gonzalez-Mas et al. 2023). As part of this
interaction, colonization by EF can also induce the produc-
tion of secondary metabolites both plants and fungi, which
can impact plant growth (Quesada-Moraga et al. 2022;
Gonzalez-Pérez et al. 2022; Quesada-Moraga et al. 2023a)
(Fig. 1). Furthermore, priming Cucurbits with M. brunneum
has been found to significantly affect the survival and fitness
of Spodoptera littoralis, indicating an interaction between
host resistance and fungal colonization (Garcia-Espinoza
et al. 2023). These findings highlight the potential of fungal-
plant interaction to contribute to pest control through meta-
bolic perspective.

Entomopathogenic fungi have also been shown to induce
plant resistances to various diseases, such as gray mold
(Sui et al. 2023). Fungal entomopathogen-plant interac-
tions can reduce or slow down pathogen damage, potentially

Benefits to plants
Epiphytes
* Nutrient utilization

+ Element cycling
& .
' * Resistance to stresses

Endophytes
* Growth promotion

Fig. 1. The important ecological roles of entomopathogenic
fungi and their potential to provide beneficial effects on plant
growth and enhance resistance.

through mechanisms like nutrient competition and ecologi-
cal niche competition (e.g., Beauveria against Rhizoctonia
solani, Lecanicillium spp against powdery mildew) (Ownley
et al. 2010). Leveraging the endophytic nature of EF can
help overcome challenges faced by traditional application
methods (Yerukala et al. 2022). For example, tomato plant
inoculated with Metarhizium brunneum, showed increased
resistance to spider mites (Rasool et al. 2023), while tomato
plants inoculated with B. bassiana exhibited increased resis-
tance to gray mold caused by B. cinerea (Sui et al. 2023).
These findings suggest that the presence or inoculation of EF
can enhance plant growth, stimulate the production of defen-
sive compounds, and confer resistance to pests and diseases,
thus promoting plant health and protection (Fig. 1).

The promotion of plant growth by EF is the result of
interactions of various factors, including improved nutrient
and water uptake, stimulation of plant defenses, induction
of resistance to biotic and abiotic stressors, and antagonisms
plant pathogens through an endophytic and mycorrhiza-like
relationship (Garcia-Espinoza et al. 2023; Quesada-Moraga
et al. 2023a) (Fig. 1). However, it is important to note that
many of these associations appear to be temporary, which
can impact the long-term efficacy of plant inoculations with
EF. There are still significant gaps in our understanding of
how these associations occur and persist. To fully harness the
potential of EF in biological control, future research should
focus on elucidating the mechanisms that mediate interac-
tions between EF and plants.

2.3 Utilization of entomopathogenic fungi as
biopesticides for pest management

Entomopathogenic fungi play a unique role in the biologi-

cal control of pests as they can infect insects by penetrat-
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Fig. 2. The insect pests after M. anisopliae infection at different stages and typical processes of fungal infection to host insect. A, the
egg of rice planthopper N. lugens after M. anisopliae infection. B, the larva of P. guttata after M. anisopliae infection. C, the pupa of
S. frugiperda after M. anisopliae infection. D, the adult of L. migratoria after M. anisopliae infection. E, the infection cycle of entomo-
pathogenic fungi is completed under mainly four stages, including attachment and penetration, proliferation and disease in host body,

and diffusion from host insect’s body.

ing their cuticle (Du et al. 2023). This makes them effective
against a wide range of pests (Fig. 2 and Table S1), including
sap-sucking insects, e.g., N. lugens and B. tabaci (Peng et al.
2021; Topuz et al. 2016). For most entomopathogenic fungi
there are two modes of infection: namely cuticular, where the
fungal spore penetrates the insect’s exoskeleton, and per os
infection, where the fungus infects gut after being ingested
(Zhang et al. 2011; Ortiz-Urquiza & Keyhani 2013). During
cuticular infection, the fungal conidium attaches, germi-
nates, and the growing hyphae subsequently penetrate the
host exoskeleton (Fig. 2E). Once inside the insect, the fungal
cells overcome the host immune system, proliferate within
the insect body and tissues, and ultimately kill the host, spor-
ulating on the cadaver (Fig. 2).

While entomopathogenic fungi have shown promise in
laboratory conditions for infecting insect pests, their transla-
tion to field use has yielded mixed results (Table 1 and Table
S1). Some specific isolates of EF, such as M. anisopliae tar-
geting Nilaparvata lugens, Cnaphalocrocis medinalis, Chilo
suppressalis and Frankliniella occidentalis (Li et al. 2021;
Peng et al. 2021), M. acridum targeting Locusta migratoria

(Hu & Xia 2019), and B. bassiana targeting Cryptorhynchus
lapathi (Niu et al. 2022), have been successfully employed
as biological agents for pest control in greenhouse and field
conditions. However, the virulence of different fungal spe-
cies and even different strains within the same species can
vary significantly (Table S1). Among the fungi studied (Table
S1 and Fig. 3A), B. bassiana and M. anisopliae has one of
the broadest infection spectra, capable of infecting a wide
range of insect species, including Hemiptera, Lepidoptera,
Thysanoptera, Orthoptera, Coleoptera, and others (Fig. 3).
While laboratory studies have reported the infection of
important insect pests like 4. gossypii adults and L. decem-
lineata larvae, data on the effectiveness of these fungi in field
conditions remains limited (Ghulam et al. 2018; Hussein
et al. 2016).

Entomopathogenic fungi (e.g., M. anisopliae), have
also demonstrated the ability to infect various develop-
mental stages of target insect hosts, including eggs, larvae
or nymphs, pupae, and adults (Fig. 2A-2D). The feeding
behavior of the target insect can impact the efficacy of con-
trol measures. For example, the below-ground feeding hab-
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Fig. 3. The major entomopathogenic fungi commonly used for
controlling insect pests (Order: family) under different application
conditions. A, the five of commonly used entomopathogenic fungi
for pest control, including M. anisopliae, B. bassiana, I. fumoso-
rosea, L. lecacnii and P. lilacinum. B, the major tested scenarios
for the use of entomopathogenic fungi in insect infection include
various conditions and applications, including laboratory, green-
house and field conditions.

its of Adoryphorus couloni make above-ground insecticide
applications ineffective. However, the use of Metarhizium
fungi in the soil has been found to reduce larval infestation
and improve pasture productivity (Berg et al. 2014). These
findings are significant as they offer an opportunity to target
soil-borne insects that are difficult to control using chemical
insecticides. Furthermore, the limited development of insect
immunity to these fungi further underscores their potential as

effective tools in pest management (Dubovskiy et al. 2013;
Hong et al. 2023; Pedrini et al. 2015).

Entomopathogenic fungi have evolved complex infec-
tion strategies to overcome insect resistance as seen in
experiments examining the infection of mosquitoes (Wei
et al. 2017). In addition to agricultural pests, research sug-
gests that fungal biopesticides can be effectively used for the
control of populations of mosquitoes, including Anopheles,
which have developed resistance to chemical pesticides
(Farenhorst et al. 2009). By not only killing the target, but
also contributing to reducing the likelihood of resistance for-
mation to any chemical pesticide, EF offer a valuable tool for
sustainable and effective pest control, particularly in the case
of disease vectors like mosquitoes (Blanford et al. 2012; Qin
et al. 2023). Furthermore, fungal biopesticides can also be
to target agricultural pests, e.g., Spodoptera frugiperda vari-
eties which have developed resistances to various chemical
pesticides (Gu et al. 2023). Importantly, the development of
insect resistance to EF appears to be limited, with no defined
reports of resistance occurring due to their application (Gao
et al. 2017). However, it is essential to continue monitoring
and researching their efficacy and potential resistance devel-
opment to ensure their long-term effectiveness.

In addition to naturally occurring strains, genetically
engineered fungal strains have demonstrated high patho-
genicity and significant potential in targeting chemical-
resistant mosquito populations and the pathogens they carry
(Lovett et al. 2019). More broadly, a range of approaches
at genetic improvement of EF exploiting a variety of insect
targets have been employed (Fan et al. 2012; Ortiz-Urquiza
et al. 2015). These strategies for improving EF strains offer
promising solutions for combating not only agricultural
pests, but also the spread of vector diseases of both plants
and animals (e.g., tick and mosquito-borne regarding the lat-
ter). Furthermore, EF have the ability to proliferate in natural
environments, providing long-term pest control and con-
tributing to the reduction of chemical insecticide resistance
(Islam et al. 2021).

2.4 Entomopathogenic fungi contributing to IPM
practices

The viability of EF strains can maintain and even enhanced
in response to deleterious environmental factors through for-
mulation, soil application, or treatment of seeds and plant
(Quesada-Moraga 2020; Quesada-Moraga et al. 2023a). In
addition, combining EF with other control methods, ranging
from other biological agents such as parasitoids to low doses
of chemical pesticides, can enhance its effectiveness in tar-
geting pests (Jaber & Ownley 2018; Gu et al. 2023). These
approaches can help overcome limitations associated with
traditional fungal insecticides in practical applications. Thus,
integrating biological control agents with other pest manage-
ment strategies, has shown significant promise (Tang et al.
2019; Salem et al. 2023). Studies have shown that adding
low doses of chemical pesticides, e.g., nitenpyram, dinotefu-



ran, pyriproxyfen and thiamethoxam to fungal preparations
enhances the effectiveness of M. anisopliae against pests
like Aphis gossypii and rice planthopper (Nawaz et al. 2022;
Tang et al. 2019). In the case of mosquitoes, B. bassiana
can expedite the mosquito mortality when interacting with
the mosquito intestinal microbiota (Wei et al. 2017). These
findings highlight the potential of leveraging the interactions
between EF and other factors, such as the host microbiome,
to enhance biocontrol strategies.

Utilizing a combination of interventions with differ-
ent modes of action is gaining attention as a management
strategy (Farenhorst et al. 2010). As mentioned, another
approach involves using predatory and parasitic insects that
can carry and transmit EF to regulate pest populations (de
Bekker et al. 2021; Kryukov et al. 2018a). For instance, the
parasitoid Hyposoter didymator can be used in conjunction
with endophytic entomopathogenic Ascomycetes for con-
trolling Spodoptera littoralis in a multitrophic system with
melon plants (Garcia-Espinoza et al. 2024). Studies have
demonstrated that the simultaneous use of natural enemies
and pathogenic fungi can have synergistic effects on pests
Aedes aegypti and Myzus persicae (Alkhaibari et al. 2018;
Mohammed & Hatcher 2017). When EF pose a risk (albeit
substantially lower than chemical pesticides) to beneficial
insects or natural enemies of the target pest, considerable
biological control effects can still be achieved by staggering
the application time of the two agents (Rashki et al. 2009;
Wakil et al. 2017). The combined application of EF and natu-
ral enemies, along with careful risk assessment and strate-
gic planning, holds promise for effective pest control within
IPM framework.

The compatibility and synergistic application of EF with
other control agents is becoming increasingly important
(Quesada-Moraga et al. 2022; Tavoosi Ajvad et al. 2020).
Factors such as the specific species involved, the timing of
application, and environmental conditions can influence the
outcomes of these interactions. Further research is needed
to gain a better understanding of the dynamics and potential
conflicts between EF and other control methods, as well as to
identify optimal strategies for their combined use.

3 The limitations of entomopathogenic
fungi as biological control agents

3.1 Abiotic factors impact the efficacy of
entomopathogenic fungi

The insecticidal effect of fungal biocontrol agents is influ-
enced by various environmental stress factors, with tem-
perature and humidity being key factors (Peng et al. 2020a;
Barra-Bucarei et al. 2019). Relative high humidity (> 50%)
is crucial for the germination of fungal spores, their invasion
into insect hosts, and the subsequent formation of spores
necessary for successful mycosis (Quesada-Moraga et al.
2023b). Different temperatures have a significant impact

803

Entomopathogenic fungi as biocontrol agents

on the fitness of fungal biocontrol agents. For example, M.
acridum exhibits greater fitness at temperatures above 27 °C,
while the B. bassiana is better adapted to the temperature
range of 10-25 °C (Valverde-Garcia et al. 2018). In addi-
tion, an optimal temperature range of 18-30 °C is typically
required for infection fungal biocontrol agents, as it influ-
ences their growth rate, nutrient utilization efficiency, and
ability to evade the insect immune system (Kryukov et al.
2018Db).

Furthermore, the exposure to UV irradiation in the
environment can have detrimental effects on the survival
and efficacy of biocontrol agents, including fungal biopes-
ticides (Tong & Feng 2022). For instance, the germination
rate of M. rileyi isolates decreased to below 40% after 3 h
exposure to UV-B radiation (Licona-Juarez et al. 2023).
The UV-B radiation also significantly affected the viru-
lence of the M. brunneum against C. capitata adults, with
the effect being dependent on the exposure time rather than
the fungal dosage (Fernandez-Bravo et al. 2017). Although
irradiation led to a significant loss of conidial viability in
three isolates of B. bassiana, their virulence was not signifi-
cantly affected compared to non-irradiated treatments when
exposed to 6 hours before or after the inoculation of C. capi-
tata (Fernandez-Bravo et al. 2023). Therefore, it is important
to consider the response of fungal biocontrol agent in terms
of virulence and conidial susceptibility to UV-B radiation
when selecting environmentally competent isolates, regard-
less of the results obtained from in vitro assays on conidial
germination.

The type of media used to produce M. anisopliae conidia
can also have an impact on its virulence (Maldonado-Blanco
et al. 2014). For instance, when cultured in casein amino acid
medium, M. anisopliae exhibits significantly higher mortal-
ity rates against Aedes aegypti larvae compared to conidia
harvested from unamended media (Maldonado-Blanco et al.
2014). The culture media can further influence the produc-
tion of insect toxins and the resulting conidia (Fan et al. 2015;
Ortiz-Urquiza et al. 2013). Understanding these factors and
their interactions is crucial for optimizing the efficacy of EF
in pest management strategies. Ongoing research aiming
to further enhance the resistance and overall performance
of biological control agents, addressing the limitations and
improving their effectiveness in practical applications is
warranted.

3.2 Possible risks posed by entomopathogenic
fungi to non-target organisms

The application of fungal biocontrol agents like EF in agri-
cultural fields can potentially expose to non-target organisms
to these pathogenic microorganisms, leading to various lev-
els of infection, lethality, or sub-lethality (Roy & Pell 2000;
Matos Franco et al. 2022). Although these effects are far
lower with EF as compared to chemical pesticides, it is cru-
cial to consider both direct and indirect effects on non-target
organisms (Mullié et al. 2021). Therefore, before using bio-
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pesticidal microorganisms, they are typically tested against
beneficial species (e.g., natural enemies of pests such as par-
asitoid wasps) and species closely related to the non-target.
Experiments conducted on foraging bee larva, Hippodamia
convergens using B. bassiana, M. anisopliae, and P. fumoso-
roseus, have shown potential negative effects on their sur-
vival (Goettel et al. 2021).

The effects of EF on parasitic natural enemies can mani-
fest in various ways in some cases, including resulting in
mortality, altering development, e.g., eclosion rates of pupae,
and impacting the ability of the parasitoid to successfully
infect target hosts (Yan et al. 2023). For example, the pres-
ence of M. brunneum on melon plants significantly increased
the parasitism rate of Spodoptera littoralis by parasitoid
wasps (Miranda-Fuentes et al. 2021). This suggests a posi-
tive effect of M. anisopliae on enhancing the effectiveness of
natural enemies in controlling pest populations. However, B.
bassiana, has been reported to exhibit selective insecticidal
effects and mild to moderate toxicity to the Eastern honey-
bee, Apis cerana, whereas Nomuraea rileyi was found to be
harmless to A. cerana (Challa et al. 2019).

The dispersal of entomopathogenic fungi through wind
and rain during the sporulation period can also have effects
on non-target organisms. Although rare, such dispersal can
reduce the survival of exposed social wasp workers on their
natal colonies, impair the reproductive ability of foundresses,
and induce the removal of exposed brood, ultimately leading
to premature colony failure (Lacey et al. 2015; Maute et al.
2017). Considering environmental factors, both in terms of
agricultural yield and the selective toxicity to non-target
organisms, is crucial when using fungal pesticides in the
field (Cappa et al. 2024). It is important to take a holistic
approach when assessing the effects of pesticides on non-tar-
get organisms (Skrzecz et al. 2024). To ensure the safety of
apiculture, fungal candidate strains with low pathogenicity
to bees can be considered. An example of such a strain is the
locust-specific mycopathogen, M. acridum. By considering
these factors and conducting comprehensive evaluations, we
can gather important information for assessing the environ-
mental safety of entomopathogenic fungi.

3.3 Challenges associated with the practical
applications in entomopathogenic fungi
The application of fungal insecticides in practical production
poses significant challenges (Jaronski & Mascarin 2017).
To enhance the effectiveness and competitiveness of EF as
biocontrol agents, several limitations need to be addressed,
including cost-benefit analyses, toxicology and registration
(Whipps & Lumsden 2001). Compared to chemical insec-
ticides, fungal insecticides have a longer reaction time, i.c.,
require a longer time to kill the target insect, which can be
a disadvantage, especially when dealing with large-scale
insect infestations (Fang et al. 2012). This increases the risk
of economic losses and may hinder the adoption of biologi-

cal control agents in certain situations (Bamisile et al. 2021).
For example, in Kenya, although there is a considerable
number of registered biopesticide products, the demand and
local supply of these products remains low. Farmers per-
ceive biopesticides as slow in terms of effectiveness, and
cost is also a concern (Constantine et al. 2020). Therefore,
optimizing the efficacy and developing strategies to reduce
the time required for effective control are crucial areas for
improvement.

The insecticidal effects of EF can also be influenced by
the host plant/crop examined. Different plant species may
affect the efficacy of fungal biocontrol agents against insect
pests (Tian et al. 2016; Ocampo-Hernandez et al. 2019). For
example, when whiteflies were exposed to Isaria fumoso-
rosea at concentrations < 5 x 10¢ conidia/ml, the mortality
rate of whiteflies reared on bean and tomatoes had a shorter
median lethal time (LTs0) of 4 to 5 days, which was sig-
nificantly higher compared to whiteflies reared on cucum-
ber and eggplant (5 to 7 days) (Tian et al. 2016). Similarly,
Bactericera cockerelli nymphs maintained on tomato were
more susceptible to B. bassiana than nymphs maintained
on potato or chili peppers (Ocampo-Hernandez et al. 2019).
These variations in effectiveness can be attributed to factors
such as the plant surface composition, the presence of natu-
ral defense mechanisms, and variations in insect physiology
when feeding on the plant. It is important to consider these
factors when designing pest management strategies using
fungal biocontrol agents.

The stability and shelf life of fungal formulations pres-
ent additional concerns. It is crucial to ensure the viability
and efficacy of EF during storage and transportation for their
practical application (Ayala-Zermefio et al. 2023; Mascarin
et al. 2016). Contamination of commercial products is also a
major issue that can lead to a lack of confidence among end
users. The handling and storage conditions of microsclero-
tia (MS) produced by certain Metarhizium species can affect
their survival, germination, and conidia yield (Yousef-Yousef
et al. 2022). Research efforts should focus on developing
more stable formulations that maintain the virulence of the
fungi over extended periods, while ensuring stringent quality
control, particularly in relation to contamination issues.

Furthermore, there are important gaps in our knowledge
about the infection process of EF on pests, the mechanisms of
action of fungal toxins, and the epidemiological mechanisms
of insect epidemics. In-depth research in these areas can pro-
vide valuable insights into the development of more targeted
and efficient biocontrol strategies. The actual impact of EF
in the field can be influenced by various factors, including
environmental conditions, interactions with other organisms,
and the complexity of natural ecosystems (Leite et al. 2022).
Therefore, it is essential to conduct field assessments under
conditions that closely resemble larger-scale applications to
gain a more comprehensive understanding of the effects of
these biocontrol agents.



4 Summary

Entomopathogenic fungi exhibit dual characteristics of pre-
venting plant disease and prompting plant health, while also
serving as effective agents in pest control. Future studies
should aim towards more fully exploiting the multiple func-
tions of EF, thereby further contributing to plant protection
and the sustainable development of agriculture. EF are also
often compatible with other biocontrol agents. When com-
bined with other approaches, their application can result in
important synergistic effects in controlling plant diseases
and insect pests. Moreover, EF are considered “green” and
compatible with organic farming practices. By exploring the
potential of EF in conjunction with other pest management
approaches, we can harness their benefits and develop com-
prehensive strategies to address agricultural challenges. This
approach holds great promise for achieving sustainable and
environmentally friendly agricultural practices. Continued
research and innovation in this area will enable us to bet-
ter understand the complexities of EF and maximize their
potential for enhancing plant health and agricultural sustain-
ability. Although there may be challenges in use EF, such as
formulating and applying them effectively, ongoing research
is continually advancing our understanding in this field. This
integrated approach would enhance the overall effectiveness
of pest management strategies, leading to more sustainable
and environmentally friendly agricultural practices.
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