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Abstract: Agricultural productivity is frequently threatened by a range of insect pests and pathogens that cause damage to 
crops. The use of chemical insecticides for control has raised concerns due to negative environmental effects, potential risks 
to animal and human health, and the emergence of insecticide resistance. Such issues pose threats to the future crop genera- 
tions. To address these challenges, the application of biological control agents, particularly fungal insect pathogens, has 
shown promise in effectively managing crop pests and disease vectors. In recent years, significant progress has been made 
in harnessing the potential of entomopathogenic fungi (EF) for insect pest management. These advancements encompass 
the discovery and characterization of new fungal isolates, a better understanding their ecological effects in plants, integra- 
tion of fungal agents within Integrated Pest Management (IPM) strategies, and improvements in their efficacy, formulation, 
and range of applications. Efforts to overcome limitations in the use of EF under natural conditions and for large-scale 
applications have also yielded substantial advancements. Here, we provide an overview of recent successes achieved using 
EF as biocontrol agents, while also addressing their continued limitations, identifying promising areas for further research 
and challenges associated with utilizing EF. Progress in enhancing the safety and effectiveness of biocontrol methods using 
EF has led to important breakthroughs. These advancements have the potential to improve food security and safety while 
reducing adverse environmental impacts associated with pests. 
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1 Introduction 

Invertebrate insects are the largest group of animals in 
nature and pose one of the most significant threats to agricul- 
tural crops, human health, and indigenous flora and fauna. 
Economic losses caused by various insects surpass tens of 
billions of dollars worldwide each year (Oerke 2006; Savary 
et al. 2019; Douglas 2018). Factors such as climate change 
and rapid globalization contribute to the increasing coloniza- 
tion and occurrences of insect pests (Deutsch et al. 2018; 
Maxmen 2013). While chemical insecticides are commonly 
used for insect control, the long-term and overuse have led 
to detrimental effects on the environment and human (Wang 
et al. 2022a). These chemicals also extend to detrimental 
impacts on non-target organisms and natural enemies of pests 
(Desneux et al. 2007; Siviter et al. 2021; Zattara & Aizen 
2021). Additionally, excessive use of chemical pesticides has 

led to the development of resistant insect populations, neces- 
sitating the development for potent alternatives (Bendis & 
Relyea 2016). Therefore, there is a need to explore effective 
alternatives to chemical insecticides for pest control in crop 
production and beyond (Wilson et al. 2013). 
Entomopathogenic fungi (EF), which are naturally 

occurring and abundant, play important roles in regulating 
insect populations in the environment (Islam et al. 2021), 
and therefore have the potential to be effective alternatives 
to chemical pesticides with fewer environmental risks. 
Some countries have already developed certain EF as bio- 
control agents for pests (Peng et al. 2021; Senthil Kumar 
et al. 2022). Recent advancements in technology, formula- 
tion, life-history, and applications, have revealed not only 
high potency in their ability to infect and kill insect pests, 
but also a range of beneficial effects on the microecologi- 
cal environment of plants (Quesada-Moraga 2020; Yerukala 
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et al. 2022). EF can also enhance integrated pest manage- 
ment (IPM) by synergistically acting with natural enemies 
of pests and promoting plant growth (Quesada-Moraga 
2020; Quesada-Moraga et al. 2023a). These discoveries 
expand our understanding of EF and offer new insights for 
their use in insect and disease management in agriculture, 
forestry, and other applications, providing a plant-based 
approach to biological pest control. 
Recent findings in the field of EF have resulted in sig- 

nificant progress towards developing these organisms as 
sustainable and environmentally friendly agents. Studies 
have focused on discovering new fungal strains (Gutierrez 
et al. 2019; Zhao et al. 2023), understanding their ecologi- 
cal benefits with plants, and developing formulation and 
best application practices (Quesada-Moraga et al. 2023a). 
In addition, research has elucidated the important aspects of 
the mechanisms of EF-insect infection (Hong et al. 2023; 
Ortiz-Urquiza & Keyhani 2013), including strategies for 
improvement and integration with other pest control meth- 
ods (Meirelles et al. 2023; Gu et al. 2023). Efforts have 
also been made to enhance production methods (Sala et al. 
2023; Lopes et al. 2019) and utilize genetic engineering and 
mutant isolation for strain improvement (Wang & Wang 
2017; Lovett & St Leger 2018). These research endeavors 
have significantly contributed to a better understanding of 
the function and application of fungal pesticides. 
Despite the advancements in research, there are still 

limitations and challenges associated with the use of EF in 
pest control. These limitations include stability, susceptibil- 
ity to environmental stresses, efficiency in the field, ability 
and cost to mass produce, quality control and contamina- 
tion of commercialized products, and field application chal- 
lenges (Whipps & Lumsden 2001; Lacey et al. 2015). For 
example, one limitation is the relative low resistance of EF 
to environmental factors such as UV radiation (Braga et al. 
2015). EF also have specific requirements for humidity lev- 
els (typically > 50%) and temperature ranges (best between 
20–30 °C), which can limit their viability and effective- 
ness in natural conditions (Quesada-Moraga et al. 2023b). 
Additionally, the host range of some EF can be limited, with 
different strains showing significant variation in their effec- 
tiveness against different insect species. In the case of some 
Hypocreales, their host range can be narrow and restricted 
(Du et al. 2023), however, Beauveria and Metarhizium sp. 
which represent the two main commercialized genera typi- 
cally have broad host ranges. Overall, these factors have 
collectively hindered large-scale applications of EF and 
increased the overall cost of implementation, although the 
demand of “green” alternatives and the compatibility of EF 
with organic farming practices is beginning to offset many 
of these previous impediments (Islam et al. 2021). Efforts 
are ongoing to address some of these challenges and develop 
strategies to improve the stability, efficiency, and field appli- 
cation of EF in pest management. 

2 The potentials of entomopathogenic 
fungi as biological control agents 

2.1 Natural occurrence and potential 
applications of entomopathogenic fungi 

Entomopathogenic fungi are diverse and can be found in 
various environments worldwide. Over 1,000 species from 
approximately 100 different genera have been identified, 
distributed within the phyla Ascomycota, Basidiomycota, 
Glomeromycota, Oomycota, and Zygomycota (Vega et al. 
2012; Barra-Bucarei et al. 2019). Among these, more 
than 750 species are known to be pathogenic to insects 
(Rabindra & Ramanujam 2007). Some recent studies have 
tested new isolates of fungal entomopathogens for control 
of specific insect pests. For example, Cladosporium sp. has 
been tested against the longhorn beetle, Osphranteria coe- 
rulescencs (Farrokhzadeh et al. 2024), M. indicum against 
Busoniomimus manjunathi (Senthil Kumar et al. 2023) and 
B. bassiana against Diaphorina citri (Cisneros et al. 2022). 
However, less than 5% of EF have been developed into 
around 170 commercial products, and amongst those that 
have been commercialized, most belong to the Beauveria, 
Metarhizium, and Isaria genera (Du et al. 2023; Nawaz et al. 
2022; de Faria & Wraight 2007) (i. g., M. anisopliae, B. 
bassiana and I. fumosorosea; Table 1). In particular, B. bassi- 
ana, B. brongniartii, M. anisopliae, and M. acridum within 
the Hypocreales, Cordycipitaceae, have been extensively 
studied and widely used for pest control (Ortiz-Urquiza & 
Keyhani 2016; Mascarin & Jaronski 2016; Zimmermann 
2007a). These species, known for their ease of cultivation, 
high virulence, and broad spectrum of activities, popular 
choices for pest control in agriculture and forestry, targeting 
insects including Spodoptera littoralis, Rhynchophorus fer- 
rugineus and Chaetoptelius vestitus. 
Metarhizium sp. have a long history of use in agricultural 

pest control and have the ability to parasitize over 900 spe- 
cies of insects, as well as mites and ticks (Nawaz et al. 2022; 
Zimmermann 2007b). The wide range of insecticidal abili- 
ties has made Metarhizium a valuable tool in IPM strategies. 
Numerous studies have demonstrated its effectiveness against 
various pests in agriculture and forestry, such as Oxycarenus 
hyalinipennis, Sogatella furcifera and Nilaparvata lugens 
(Shaukat et al. 2023; Wang et al. 2022b; Peng et al. 2020b). 
As research in biopesticides progresses, Metarhizium and 
its applications are expected to play increasingly important 
roles in sustainable pest management practices in agriculture 
and forestry. 
Aside from Beauveria and Metarhizium species, Isaria 

fumosorosea is a widely used entomopathogenic fungus 
known for its efficacy against more than 40 species of insects 
across eight orders (Zimmermann 2008). It has shown high 
virulence against piercing-sucking insects like aphids and 
whiteflies (Ghulam et al. 2018; Hussein et al. 2016). Other 
Ascomycete entomopathogens, such as Verticillium lecanii 
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Table 1. The entomopathogenic fungi M. anisopliae, B. bassiana and I. fumosorosea used for the control of various insect pests. 
F: field, L: laboratory, PH: polyhouse, SM: semi-field, GH: glasshouse, GRH: greenhouse. 

Entomopathogenic 
fungi Fungal isolate Target insect Exp. condition References 

 
 
 
 
 
 
M. anisopliae 

M. anisopliae NA-01299 B. tabaci nymph PH / F (Sain et al. 2021) 
M. anisopliae Ma41/Ma22 S. frugiperda larvae L (Cruz-Avalos et al. 2019) 
M. anisopliae Ma-002/003 D. neivai adult L / SM (Martínez et al. 2022) 
M. anisopliae Ma-M2 O. hyalinipennis nymph L (Shaukat et al. 2023) 
M. anisopliae ARSEF 925 A. glabripennis adult L (Clifton et al. 2020) 
M. anisopliae CEP591 L. botrana larvae and adult L / F (Aguilera-Sammaritano 

et al. 2021) 
M. anisopliae CQMa421 F. occidentalis adult L / F (Li et al. 2021) 
M. anisopliae CQMa421 Rice Planthopper F (Peng et al. 2020b) 
M. anisopliae CQMa421 C. medinalis F (Hong et al. 2017) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
B. bassiana 

B. bassiana JEF-158/484 R. ferrugineus larvae L (Yang et al. 2023) 
B. bassiana EABb 07/06-Rf R. ferrugineus adult L / SF (Dembilio et al. 2018) 
B. bassiana EABb 04/01-Tip S. littoralis larvae L (Sánchez-Rodríguez et al. 

2018) 
B. bassiana EABb 90/2-Dm D. maroccanus adult L (Valverde-Garcia et al. 

2018) 
B. bassiana ACP18001/18002 D. citri F (Cisneros et al. 2022) 
B. bassiana Bb9 S. frugiperda larvae L (Cruz-Avalos et al. 2018) 
B. bassiana Bea111 D. fovealis larvae L / GRH (Amatuzzi et al. 2018) 
B. bassiana Bb-0018/0025 D. neivai adult L / S (Martínez et al. 2021) 
B. bassiana B12: MT610917 A. gossypii adult L (Mseddi et al. 2022) 
B. bassiana GHA B. tabaci nymph GH (Bohatá et al. 2024) 
B. bassiana ARSEF 6444 GHA A. glabripennis adult L (Clifton et al. 2020) 
B. bassiana MT-4511 B. tabaci nymph PH / F (Sain et al. 2021) 
B. bassiana CFCC81428 C. lapathi L. larvae L / F (Niu et al. 2022) 
B. bassiana FUM 01 O. coerulescens larvae & 

adult 
L (Mohammadyani et al. 

2016) 
B. bassiana Bea111 D. fovealis larvae L (Baja et al. 2020) 
B. bassiana GHA P. chrysocephala adult L (Price et al. 2024) 
B. bassiana FIN1-B B. tabaci pupae L (Topuz et al. 2016) 
- T. cinnabarinus adult L - 
B. bassiana Bb03 A. stephensi adult L (Blanford et al. 2012) 
B. bassiana IGE3 S. nonagrioides larvae L / F (Mantzoukas et al. 2020) 

 
 
 
I. fumosorosea 

I. fumosorosea Ifu13a A. gossypii and J. formo- 
sana adult 

L (Ghulam et al. 2018) 

I. fumosorosea CCM 8367 L. decemlineata larvae L (Hussein et al. 2016) 
I. fumosorosea PFR 97 B. tabaci nymph GH (Bohatá et al. 2024) 
I. fumosorosea PF49 C. curvignathus adult L (Jessica et al. 2019) 
I. fumosorosea Ag. Stefanos S. nonagrioides larvae L / F (Mantzoukas et al. 2020) 
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(Ghaffari et al. 2017), Nomuraea rileyi (Zhang et al. 2022), 
and Aschersonia spp (Zhang et al. 2017), have also been uti- 
lized in commercial pest control attempts including targeting 
insects such as Planococcus citri, Spodoptera frugiperda and 
Bemisia tabaci. These examples highlight the wide range of 
hosts targeted by EF and their effectiveness in specific pests, 
making them valuable contributors to sustainable pest man- 
agement in agriculture. 

 
2.2 Beneficial effects of entomopathogenic fungi 

on plant 
Certain entomopathogenic fungi, particularly Beauveria 
and Metarhizium sp., have been found to positively impact 
plant growth and enhance plant resistance to both abiotic and 
biotic factors, including plant pathogens (Quesada-Moraga 
et al. 2022, 2023a; Vega et al. 2009). Fungal colonization 
of plant roots (rhizosphere) and other structures, with M. 
anisopliae and B. bassiana, has been shown to direct impact 
plant growth in various beneficial aspects (González-Pérez 
et al. 2022). B. bassiana and M. brunneum have been shown 
to regulate plant “immune”-related hormonal synthesis and 
thereby affect the growth of Triticum aestivum (González- 
Guzmán et al. 2022). M. anisopliae demonstrates a selective 
attachment to the root of test plants in soil, resulting in a 
significant increase in root hair density and length, as well 
as an earlier onset of root hair growth (Sasan & Bidochka 
2012). The colonization of EF in the rhizosphere is an impor- 
tant aspect of their biology, impacting soil health, nutrient 
transfer, persistence, and potential insect control (Qiao et al. 
2023; Quesada-Moraga et al. 2022, 2023a) (Fig. 1). 
As mentioned, in addition to such rhizosphere com- 

petence, both Metarhizium and Beauveria can establish 
epiphytic or endophytic associations with various plants, 
including maize, arabidopsis, and rice. These associations 
have shown to positively affect plant health and provide pro- 
tection against herbivorous insects (Quesada-Moraga et al. 
2022; Rondot & Reineke 2017). The endophytic presence 
of B. bassiana in melon even affects pollinator behavior by 
modifying the host plant’s flowering phenology and floral 
volatile profile (González-Mas et al. 2023). As part of this 
interaction, colonization by EF can also induce the produc- 
tion of secondary metabolites both plants and fungi, which 
can impact plant growth (Quesada-Moraga et al. 2022; 
González-Pérez et al. 2022; Quesada-Moraga et al. 2023a) 
(Fig. 1). Furthermore, priming Cucurbits with M. brunneum 
has been found to significantly affect the survival and fitness 
of Spodoptera littoralis, indicating an interaction between 
host resistance and fungal colonization (García-Espinoza 
et al. 2023). These findings highlight the potential of fungal- 
plant interaction to contribute to pest control through meta- 
bolic perspective. 
Entomopathogenic fungi have also been shown to induce 

plant resistances to various diseases, such as gray mold 
(Sui et al. 2023). Fungal entomopathogen-plant interac- 
tions can reduce or slow down pathogen damage, potentially 

 

 
 
Fig. 1. The important ecological roles of entomopathogenic 
fungi and their potential to provide beneficial effects on plant 
growth and enhance resistance. 

 

 
through mechanisms like nutrient competition and ecologi- 
cal niche competition (e.g., Beauveria against Rhizoctonia 
solani, Lecanicillium spp against powdery mildew) (Ownley 
et al. 2010). Leveraging the endophytic nature of EF can 
help overcome challenges faced by traditional application 
methods (Yerukala et al. 2022). For example, tomato plant 
inoculated with Metarhizium brunneum, showed increased 
resistance to spider mites (Rasool et al. 2023), while tomato 
plants inoculated with B. bassiana exhibited increased resis- 
tance to gray mold caused by B. cinerea (Sui et al. 2023). 
These findings suggest that the presence or inoculation of EF 
can enhance plant growth, stimulate the production of defen- 
sive compounds, and confer resistance to pests and diseases, 
thus promoting plant health and protection (Fig. 1). 
The promotion of plant growth by EF is the result of 

interactions of various factors, including improved nutrient 
and water uptake, stimulation of plant defenses, induction 
of resistance to biotic and abiotic stressors, and antagonisms 
plant pathogens through an endophytic and mycorrhiza-like 
relationship (García-Espinoza et al. 2023; Quesada-Moraga 
et al. 2023a) (Fig. 1). However, it is important to note that 
many of these associations appear to be temporary, which 
can impact the long-term efficacy of plant inoculations with 
EF. There are still significant gaps in our understanding of 
how these associations occur and persist. To fully harness the 
potential of EF in biological control, future research should 
focus on elucidating the mechanisms that mediate interac- 
tions between EF and plants. 

 
2.3 Utilization of entomopathogenic fungi as 

biopesticides for pest management 
Entomopathogenic fungi play a unique role in the biologi- 
cal control of pests as they can infect insects by penetrat- 
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Fig. 2. The insect pests after M. anisopliae infection at different stages and typical processes of fungal infection to host insect. A, the 
egg of rice planthopper N. lugens after M. anisopliae infection. B, the larva of P. guttata after M. anisopliae infection. C, the pupa of 
S. frugiperda after M. anisopliae infection. D, the adult of L. migratoria after M. anisopliae infection. E, the infection cycle of entomo- 
pathogenic fungi is completed under mainly four stages, including attachment and penetration, proliferation and disease in host body, 
and diffusion from host insect’s body. 
 

 
ing their cuticle (Du et al. 2023). This makes them effective 
against a wide range of pests (Fig. 2 and Table S1), including 
sap-sucking insects, e.g., N. lugens and B. tabaci (Peng et al. 
2021; Topuz et al. 2016). For most entomopathogenic fungi 
there are two modes of infection: namely cuticular, where the 
fungal spore penetrates the insect’s exoskeleton, and per os 
infection, where the fungus infects gut after being ingested 
(Zhang et al. 2011; Ortiz-Urquiza & Keyhani 2013). During 
cuticular infection, the fungal conidium attaches, germi- 
nates, and the growing hyphae subsequently penetrate the 
host exoskeleton (Fig. 2E). Once inside the insect, the fungal 
cells overcome the host immune system, proliferate within 
the insect body and tissues, and ultimately kill the host, spor- 
ulating on the cadaver (Fig. 2). 
While entomopathogenic fungi have shown promise in 

laboratory conditions for infecting insect pests, their transla- 
tion to field use has yielded mixed results (Table 1 and Table 
S1). Some specific isolates of EF, such as M. anisopliae tar- 
geting Nilaparvata lugens, Cnaphalocrocis medinalis, Chilo 
suppressalis and Frankliniella occidentalis (Li et al. 2021; 
Peng et al. 2021), M. acridum targeting Locusta migratoria 

(Hu & Xia 2019), and B. bassiana targeting Cryptorhynchus 
lapathi (Niu et al. 2022), have been successfully employed 
as biological agents for pest control in greenhouse and field 
conditions. However, the virulence of different fungal spe- 
cies and even different strains within the same species can 
vary significantly (Table S1). Among the fungi studied (Table 
S1 and Fig. 3A), B. bassiana and M. anisopliae has one of 
the broadest infection spectra, capable of infecting a wide 
range of insect species, including Hemiptera, Lepidoptera, 
Thysanoptera, Orthoptera, Coleoptera, and others (Fig. 3). 
While laboratory studies have reported the infection of 
important insect pests like A. gossypii adults and L. decem- 
lineata larvae, data on the effectiveness of these fungi in field 
conditions remains limited (Ghulam et al. 2018; Hussein 
et al. 2016). 
Entomopathogenic fungi (e.g., M. anisopliae), have 

also demonstrated the ability to infect various develop- 
mental stages of target insect hosts, including eggs, larvae 
or nymphs, pupae, and adults (Fig. 2A–2D). The feeding 
behavior of the target insect can impact the efficacy of con- 
trol measures. For example, the below-ground feeding hab- 
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Fig. 3. The major entomopathogenic fungi commonly used for 
controlling insect pests (Order: family) under different application 
conditions. A, the five of commonly used entomopathogenic fungi 
for pest control, including M. anisopliae, B. bassiana, I. fumoso- 
rosea, L. lecacnii and P. lilacinum. B, the major tested scenarios 
for the use of entomopathogenic fungi in insect infection include 
various conditions and applications, including laboratory, green- 
house and field conditions. 

 
 
its of Adoryphorus couloni make above-ground insecticide 
applications ineffective. However, the use of Metarhizium 
fungi in the soil has been found to reduce larval infestation 
and improve pasture productivity (Berg et al. 2014). These 
findings are significant as they offer an opportunity to target 
soil-borne insects that are difficult to control using chemical 
insecticides. Furthermore, the limited development of insect 
immunity to these fungi further underscores their potential as 

effective tools in pest management (Dubovskiy et al. 2013; 
Hong et al. 2023; Pedrini et al. 2015). 
Entomopathogenic fungi have evolved complex infec- 

tion strategies to overcome insect resistance as seen in 
experiments examining the infection of mosquitoes (Wei 
et al. 2017). In addition to agricultural pests, research sug- 
gests that fungal biopesticides can be effectively used for the 
control of populations of mosquitoes, including Anopheles, 
which have developed resistance to chemical pesticides 
(Farenhorst et al. 2009). By not only killing the target, but 
also contributing to reducing the likelihood of resistance for- 
mation to any chemical pesticide, EF offer a valuable tool for 
sustainable and effective pest control, particularly in the case 
of disease vectors like mosquitoes (Blanford et al. 2012; Qin 
et al. 2023). Furthermore, fungal biopesticides can also be 
to target agricultural pests, e.g., Spodoptera frugiperda vari- 
eties which have developed resistances to various chemical 
pesticides (Gu et al. 2023). Importantly, the development of 
insect resistance to EF appears to be limited, with no defined 
reports of resistance occurring due to their application (Gao 
et al. 2017). However, it is essential to continue monitoring 
and researching their efficacy and potential resistance devel- 
opment to ensure their long-term effectiveness. 
In addition to naturally occurring strains, genetically 

engineered fungal strains have demonstrated high patho- 
genicity and significant potential in targeting chemical- 
resistant mosquito populations and the pathogens they carry 
(Lovett et al. 2019). More broadly, a range of approaches 
at genetic improvement of EF exploiting a variety of insect 
targets have been employed (Fan et al. 2012; Ortiz-Urquiza 
et al. 2015). These strategies for improving EF strains offer 
promising solutions for combating not only agricultural 
pests, but also the spread of vector diseases of both plants 
and animals (e.g., tick and mosquito-borne regarding the lat- 
ter). Furthermore, EF have the ability to proliferate in natural 
environments, providing long-term pest control and con- 
tributing to the reduction of chemical insecticide resistance 
(Islam et al. 2021). 

 
2.4 Entomopathogenic fungi contributing to IPM 

practices 
The viability of EF strains can maintain and even enhanced 
in response to deleterious environmental factors through for- 
mulation, soil application, or treatment of seeds and plant 
(Quesada-Moraga 2020; Quesada-Moraga et al. 2023a). In 
addition, combining EF with other control methods, ranging 
from other biological agents such as parasitoids to low doses 
of chemical pesticides, can enhance its effectiveness in tar- 
geting pests (Jaber & Ownley 2018; Gu et al. 2023). These 
approaches can help overcome limitations associated with 
traditional fungal insecticides in practical applications. Thus, 
integrating biological control agents with other pest manage- 
ment strategies, has shown significant promise (Tang et al. 
2019; Salem et al. 2023). Studies have shown that adding 
low doses of chemical pesticides, e.g., nitenpyram, dinotefu- 
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ran, pyriproxyfen and thiamethoxam to fungal preparations 
enhances the effectiveness of M. anisopliae against pests 
like Aphis gossypii and rice planthopper (Nawaz et al. 2022; 
Tang et al. 2019). In the case of mosquitoes, B. bassiana 
can expedite the mosquito mortality when interacting with 
the mosquito intestinal microbiota (Wei et al. 2017). These 
findings highlight the potential of leveraging the interactions 
between EF and other factors, such as the host microbiome, 
to enhance biocontrol strategies. 
Utilizing a combination of interventions with differ- 

ent modes of action is gaining attention as a management 
strategy (Farenhorst et al. 2010). As mentioned, another 
approach involves using predatory and parasitic insects that 
can carry and transmit EF to regulate pest populations (de 
Bekker et al. 2021; Kryukov et al. 2018a). For instance, the 
parasitoid Hyposoter didymator can be used in conjunction 
with endophytic entomopathogenic Ascomycetes for con- 
trolling Spodoptera littoralis in a multitrophic system with 
melon plants (García-Espinoza et al. 2024). Studies have 
demonstrated that the simultaneous use of natural enemies 
and pathogenic fungi can have synergistic effects on pests 
Aedes aegypti and Myzus persicae (Alkhaibari et al. 2018; 
Mohammed & Hatcher 2017). When EF pose a risk (albeit 
substantially lower than chemical pesticides) to beneficial 
insects or natural enemies of the target pest, considerable 
biological control effects can still be achieved by staggering 
the application time of the two agents (Rashki et al. 2009; 
Wakil et al. 2017). The combined application of EF and natu- 
ral enemies, along with careful risk assessment and strate- 
gic planning, holds promise for effective pest control within 
IPM framework. 
The compatibility and synergistic application of EF with 

other control agents is becoming increasingly important 
(Quesada-Moraga et al. 2022; Tavoosi Ajvad et al. 2020). 
Factors such as the specific species involved, the timing of 
application, and environmental conditions can influence the 
outcomes of these interactions. Further research is needed 
to gain a better understanding of the dynamics and potential 
conflicts between EF and other control methods, as well as to 
identify optimal strategies for their combined use. 
 
 
3 The limitations of entomopathogenic 

fungi as biological control agents 

3.1 Abiotic factors impact the efficacy of 
entomopathogenic fungi 

The insecticidal effect of fungal biocontrol agents is influ- 
enced by various environmental stress factors, with tem- 
perature and humidity being key factors (Peng et al. 2020a; 
Barra-Bucarei et al. 2019). Relative high humidity (> 50%) 
is crucial for the germination of fungal spores, their invasion 
into insect hosts, and the subsequent formation of spores 
necessary for successful mycosis (Quesada-Moraga et al. 
2023b). Different temperatures have a significant impact 

on the fitness of fungal biocontrol agents. For example, M. 
acridum exhibits greater fitness at temperatures above 27 °C, 
while the B. bassiana is better adapted to the temperature 
range of 10–25 °C (Valverde-Garcia et al. 2018). In addi- 
tion, an optimal temperature range of 18–30 °C is typically 
required for infection fungal biocontrol agents, as it influ- 
ences their growth rate, nutrient utilization efficiency, and 
ability to evade the insect immune system (Kryukov et al. 
2018b). 
Furthermore, the exposure to UV irradiation in the 

environment can have detrimental effects on the survival 
and efficacy of biocontrol agents, including fungal biopes- 
ticides (Tong & Feng 2022). For instance, the germination 
rate of M. rileyi isolates decreased to below 40% after 3 h 
exposure to UV-B radiation (Licona-Juárez et al. 2023). 
The UV-B radiation also significantly affected the viru- 
lence of the M. brunneum against C. capitata adults, with 
the effect being dependent on the exposure time rather than 
the fungal dosage (Fernández-Bravo et al. 2017). Although 
irradiation led to a significant loss of conidial viability in 
three isolates of B. bassiana, their virulence was not signifi- 
cantly affected compared to non-irradiated treatments when 
exposed to 6 hours before or after the inoculation of C. capi- 
tata (Fernández-Bravo et al. 2023). Therefore, it is important 
to consider the response of fungal biocontrol agent in terms 
of virulence and conidial susceptibility to UV-B radiation 
when selecting environmentally competent isolates, regard- 
less of the results obtained from in vitro assays on conidial 
germination. 
The type of media used to produce M. anisopliae conidia 

can also have an impact on its virulence (Maldonado-Blanco 
et al. 2014). For instance, when cultured in casein amino acid 
medium, M. anisopliae exhibits significantly higher mortal- 
ity rates against Aedes aegypti larvae compared to conidia 
harvested from unamended media (Maldonado-Blanco et al. 
2014). The culture media can further influence the produc- 
tion of insect toxins and the resulting conidia (Fan et al. 2015; 
Ortiz-Urquiza et al. 2013). Understanding these factors and 
their interactions is crucial for optimizing the efficacy of EF 
in pest management strategies. Ongoing research aiming 
to further enhance the resistance and overall performance 
of biological control agents, addressing the limitations and 
improving their effectiveness in practical applications is 
warranted. 
 
3.2 Possible risks posed by entomopathogenic 

fungi to non-target organisms 
The application of fungal biocontrol agents like EF in agri- 
cultural fields can potentially expose to non-target organisms 
to these pathogenic microorganisms, leading to various lev- 
els of infection, lethality, or sub-lethality (Roy & Pell 2000; 
Matos Franco et al. 2022). Although these effects are far 
lower with EF as compared to chemical pesticides, it is cru- 
cial to consider both direct and indirect effects on non-target 
organisms (Mullié et al. 2021). Therefore, before using bio- 
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pesticidal microorganisms, they are typically tested against 
beneficial species (e.g., natural enemies of pests such as par- 
asitoid wasps) and species closely related to the non-target. 
Experiments conducted on foraging bee larva, Hippodamia 
convergens using B. bassiana, M. anisopliae, and P. fumoso- 
roseus, have shown potential negative effects on their sur- 
vival (Goettel et al. 2021). 
The effects of EF on parasitic natural enemies can mani- 

fest in various ways in some cases, including resulting in 
mortality, altering development, e.g., eclosion rates of pupae, 
and impacting the ability of the parasitoid to successfully 
infect target hosts (Yan et al. 2023). For example, the pres- 
ence of M. brunneum on melon plants significantly increased 
the parasitism rate of Spodoptera littoralis by parasitoid 
wasps (Miranda-Fuentes et al. 2021). This suggests a posi- 
tive effect of M. anisopliae on enhancing the effectiveness of 
natural enemies in controlling pest populations. However, B. 
bassiana, has been reported to exhibit selective insecticidal 
effects and mild to moderate toxicity to the Eastern honey- 
bee, Apis cerana, whereas Nomuraea rileyi was found to be 
harmless to A. cerana (Challa et al. 2019). 
The dispersal of entomopathogenic fungi through wind 

and rain during the sporulation period can also have effects 
on non-target organisms. Although rare, such dispersal can 
reduce the survival of exposed social wasp workers on their 
natal colonies, impair the reproductive ability of foundresses, 
and induce the removal of exposed brood, ultimately leading 
to premature colony failure (Lacey et al. 2015; Maute et al. 
2017). Considering environmental factors, both in terms of 
agricultural yield and the selective toxicity to non-target 
organisms, is crucial when using fungal pesticides in the 
field (Cappa et al. 2024). It is important to take a holistic 
approach when assessing the effects of pesticides on non-tar- 
get organisms (Skrzecz et al. 2024). To ensure the safety of 
apiculture, fungal candidate strains with low pathogenicity 
to bees can be considered. An example of such a strain is the 
locust-specific mycopathogen, M. acridum. By considering 
these factors and conducting comprehensive evaluations, we 
can gather important information for assessing the environ- 
mental safety of entomopathogenic fungi. 

 
3.3 Challenges associated with the practical 

applications in entomopathogenic fungi 
The application of fungal insecticides in practical production 
poses significant challenges (Jaronski & Mascarin 2017). 
To enhance the effectiveness and competitiveness of EF as 
biocontrol agents, several limitations need to be addressed, 
including cost-benefit analyses, toxicology and registration 
(Whipps & Lumsden 2001). Compared to chemical insec- 
ticides, fungal insecticides have a longer reaction time, i.e., 
require a longer time to kill the target insect, which can be 
a disadvantage, especially when dealing with large-scale 
insect infestations (Fang et al. 2012). This increases the risk 
of economic losses and may hinder the adoption of biologi- 

cal control agents in certain situations (Bamisile et al. 2021). 
For example, in Kenya, although there is a considerable 
number of registered biopesticide products, the demand and 
local supply of these products remains low. Farmers per- 
ceive biopesticides as slow in terms of effectiveness, and 
cost is also a concern (Constantine et al. 2020). Therefore, 
optimizing the efficacy and developing strategies to reduce 
the time required for effective control are crucial areas for 
improvement. 
The insecticidal effects of EF can also be influenced by 

the host plant/crop examined. Different plant species may 
affect the efficacy of fungal biocontrol agents against insect 
pests (Tian et al. 2016; Ocampo-Hernández et al. 2019). For 
example, when whiteflies were exposed to Isaria fumoso- 
rosea at concentrations ≤ 5 × 106 conidia/ml, the mortality 
rate of whiteflies reared on bean and tomatoes had a shorter 
median lethal time (LT50) of 4 to 5 days, which was sig- 
nificantly higher compared to whiteflies reared on cucum- 
ber and eggplant (5 to 7 days) (Tian et al. 2016). Similarly, 
Bactericera cockerelli nymphs maintained on tomato were 
more susceptible to B. bassiana than nymphs maintained 
on potato or chili peppers (Ocampo-Hernández et al. 2019). 
These variations in effectiveness can be attributed to factors 
such as the plant surface composition, the presence of natu- 
ral defense mechanisms, and variations in insect physiology 
when feeding on the plant. It is important to consider these 
factors when designing pest management strategies using 
fungal biocontrol agents. 
The stability and shelf life of fungal formulations pres- 

ent additional concerns. It is crucial to ensure the viability 
and efficacy of EF during storage and transportation for their 
practical application (Ayala-Zermeño et al. 2023; Mascarin 
et al. 2016). Contamination of commercial products is also a 
major issue that can lead to a lack of confidence among end 
users. The handling and storage conditions of microsclero- 
tia (MS) produced by certain Metarhizium species can affect 
their survival, germination, and conidia yield (Yousef-Yousef 
et al. 2022). Research efforts should focus on developing 
more stable formulations that maintain the virulence of the 
fungi over extended periods, while ensuring stringent quality 
control, particularly in relation to contamination issues. 
Furthermore, there are important gaps in our knowledge 

about the infection process of EF on pests, the mechanisms of 
action of fungal toxins, and the epidemiological mechanisms 
of insect epidemics. In-depth research in these areas can pro- 
vide valuable insights into the development of more targeted 
and efficient biocontrol strategies. The actual impact of EF 
in the field can be influenced by various factors, including 
environmental conditions, interactions with other organisms, 
and the complexity of natural ecosystems (Leite et al. 2022). 
Therefore, it is essential to conduct field assessments under 
conditions that closely resemble larger-scale applications to 
gain a more comprehensive understanding of the effects of 
these biocontrol agents. 
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4 Summary 

Entomopathogenic fungi exhibit dual characteristics of pre- 
venting plant disease and prompting plant health, while also 
serving as effective agents in pest control. Future studies 
should aim towards more fully exploiting the multiple func- 
tions of EF, thereby further contributing to plant protection 
and the sustainable development of agriculture. EF are also 
often compatible with other biocontrol agents. When com- 
bined with other approaches, their application can result in 
important synergistic effects in controlling plant diseases 
and insect pests. Moreover, EF are considered “green” and 
compatible with organic farming practices. By exploring the 
potential of EF in conjunction with other pest management 
approaches, we can harness their benefits and develop com- 
prehensive strategies to address agricultural challenges. This 
approach holds great promise for achieving sustainable and 
environmentally friendly agricultural practices. Continued 
research and innovation in this area will enable us to bet- 
ter understand the complexities of EF and maximize their 
potential for enhancing plant health and agricultural sustain- 
ability. Although there may be challenges in use EF, such as 
formulating and applying them effectively, ongoing research 
is continually advancing our understanding in this field. This 
integrated approach would enhance the overall effectiveness 
of pest management strategies, leading to more sustainable 
and environmentally friendly agricultural practices. 
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