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Abstract—In the past decade, Deep Neural Networks (DNNs)
achieved state-of-the-art performance in a broad range of prob-
lems, spanning from object classification and action recognition
to smart building and healthcare. The flexibility that makes DNNs
such a pervasive technology comes at a price: the computational
requirements preclude their deployment on most of the resource-
constrained edge devices available today to solve real-time and
real-world tasks. This paper introduces a novel approach to
address this challenge by combining the concept of predefined
sparsity with Split Computing (SC) and Early Exit (EE). In
particular, SC aims at splitting a DNN with a part of it deployed
on an edge device and the rest on a remote server. Instead, EE
allows the system to stop using the remote server and rely solely
on the edge device’s computation if the answer is already good
enough. Specifically, how to apply such a predefined sparsity to a
SC and EE paradigm has never been studied. This paper studies
this problem and shows how predefined sparsity significantly
reduces the computational, storage, and energy burdens during
the training and inference phases, regardless of the hardware
platform. This makes it a valuable approach for enhancing the
performance of SC and EE applications. Experimental results
showcase reductions exceeding 4 x in storage and computational
complexity without compromising performance. The source code
is available at https://github.com/intelligolabs/sparsity_sc_ee.

Index Terms—Split Computing, Early Exit, Deep Neural Net-
works, Predefined Sparsity, Edge Devices.

I. INTRODUCTION

Remarkable improvements in areas like computer vision,
speech recognition, and autonomous systems are significantly
supported thanks to the rise of Deep Neural Networks
(DNNs) [1], [2]. At the same time, over the last decade,
DNNs have grown significantly in size and complexity; some
now have millions or even billions of trainable parameters [3].
However, these powerful models have a significant drawback:
they demand substantial computational resources and storage,
making deploying them directly on edge devices impractical.
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Figure 1. Difference between our approach of predefined sparsity applied to
SC and EE, against the state-of-the-art pruning and quantization.

Nowadays, the most commonly used approach is to
train huge DNNs in server computing settings using high-
performance hardware accelerators like Graphical Processing
Units (GPUs) [4], and Tensor Processing Units (TPUs) [5].
Then, once trained, the DNN model is used for inference,
a less computationally expensive activity that, in the case of
real-time and real-world problems, is often performed on edge
devices, and more in general on embedded systems [6].

Motivations for this paper: As a result, a significant
amount of research effort has been directed toward improving
embedded technologies. This focus has enabled the devel-
opment of real-time solutions for a wide range of real-
world complex applications. In this regard, hardware-specific
(e.g., edge TPUs) and Micro-Controller Unit (MCU)-based
embedded systems have earned a lot of attention, primarily
due to their low power requirements and high performance,
and secondarily for their maintainability, adaptability, and
reliability [7].

In particular, the importance of model reduction techniques
for accelerating DNNs is widely acknowledged nowadays,
aiming to optimize their performance [8]. These approaches
focus on reducing the number of trainable parameters within
a DNN, resulting in substantial advantages across various as-
pects: computational resources needed, storage requirements,
and energy consumption. Since efficiency is paramount, im-
provements in this area are crucial if we aim to deploy DNNs



on edge devices for solving real-world applications [9].

At the same time, current state-of-the-art approaches for
efficient edge computing rely on advanced Machine Learning
(ML) paradigms, such as SC and EE [10], [11], [12], [13],
[14]. In particular, SC, where a DNN is intelligently split
with a part of it deployed on an edge device, and the rest
on a remote server, and EE, where the model is built with
multiple “exits” across the layers and each exit can produce
the model output, represents the state-of-the-art framework
for structuring distributed deep learning applications [15].
These approaches allow DNNs to be leveraged for latency-
sensitive applications in scenarios where deploying the entire
DNN remotely is impractical due to limited local computation
bandwidth, and also locally since DNN would require higher
memory requirements than those available on the edge device.
They combine local and remote computing advantages, leading
to lower latency and, more importantly, drastically reducing
the required transmission bandwidth.

Innovations in this paper: Figure 1 exemplifies the
proposal of this paper, where we explore the application of
predefined sparsity as a model reduction method within the
context of SC and EE. We aim to showcase how, in the
context of SC and EE, predefined sparsity can significantly
reduce computational demands, storage requirements, and
energy consumption compared to state-of-the-art approaches.
Furthermore, regardless of the underlying implementation plat-
form, our approach yields advantages for both the training and
inference stages.

In particular, our pipeline is exemplified by the flow
presented in Figure 2. Our strategy for producing sparsity
involves defining a preset set of sparse neuron connections
before the training process, i.e., we eliminate a specified
set of connections inside the neural network, and we keep
this configuration constant throughout both the training and
inference phases. Specifically, we apply this strategy within
an SC and EE scenario, illustrating how predefined sparsity
can enhance performance in applications operating within this
context.

As a killer application where this proposal can bring real
benefits, consider a common smart manufacturing setting, such
as a real-time quality control system on a production line. The
edge devices need to assess whether a product has a defect on
time and catch all the defective ones. It can base its decision
on the inference provided by the early exit strategy, which is
fairly accurate but not as accurate as the inference produced by
the full DNN. As such, it will move the defective product to
a buffer on the side of the line while the remote device runs
the remaining layers of the DNN. Once the remote device
completes the inference, a worker or a conveyor belt system
can reintroduce the falsely marked non-defective products
inside the production line.

In summary, the main contributions of this paper are:

o A strategy for implementing predefined sparsity, where a
predefined set of sparse neuron connections is established
before training and remains constant throughout training
and inference.

e Our approach involves the removal of specific connec-
tions within the neural network, reducing computational
and storage complexity during inference and throughout
the training process.

o We apply this methodology in an SC and EE scenario,
demonstrating its potential to further enhance application
performance within this context.

The rest of the paper is organized as follows. Section II
presents background information. Our proposal’s details are
outlined in Section III, followed by experiments in Section I'V.
Finally, conclusions are drawn in Section V.

II. RELATED WORK

This section provides an overview of i) DNNs sparsity
methods, and ii) distributed deep learning applications with
a specific focus on SC and EE.

A. Deep Neural Networks (DNNs) sparsity

While numerous methods concerning sparse DNNs can be
found in the literature [16], [17], [18], most of these do not
reduce the computation and storage complexity associated
with training, but only with inference.

An example is the dropout. This technique is used to prevent
overfitting. It randomly drops some neurons out (i.e., ignoring)
during each training iteration. This helps the network learn
more robust and generalized features, as it can’t rely too much
on any one neuron [19]. Due to lack of space, and since it is
only a related topic, refer to [20] for more details.

There are other approaches, such as pruning and trimming
methods, that process the trained DNN to generate a sparse
DNN for inference. For example, in [21], the authors observe
that a large fraction of the computations performed by DNNs
are intrinsically ineffectual as they involve a multiplication
where one of the inputs is zero. This observation motivates
“Cnvlutin”, a value-based approach that eliminates most of
the ineffectual operations. Furthermore, in [22], the authors
present an algorithm that prunes (specifies) a trained network
layer-wise, removing connections at each layer by solving a
convex optimization program. This program seeks a sparse set
of weights at each layer, keeping the layer inputs and outputs
consistent with the originally trained model.

As mentioned in Section I, other methods aim to reduce the
complexity of performing inference on a trained DNN. These
methods encompass techniques like quantization [16] and
compression [23]. It’s important to note that all these methods
primarily target reducing complexity in the inference models
rather than significantly simplifying the training process.

One approach that strives to minimize complexity in both
training and inference involves using neural networks with
structured weight matrices that are not necessarily sparse [24].

Lastly, it’s worth mentioning that several authors have
recently introduced the concept of predefined sparse neural
networks [25]. This surge in research activity is motivated by
the recognition that specialized hardware is typically required
to run large and complex neural networks effectively.
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Figure 2. Starting from a DNN M(-), we first apply the predefined sparsity, and then we train the network. After the training stage, we split the network
following the SC and EE paradigm. As a result, the final architecture is not so computationally intensive, doesn’t require huge storage spaces, and has less

energy consumption, all without compromising the overall performance.

In this article, we leverage the previously mentioned pre-
defined sparsity. Specifically, our approach offers two key
benefits. Firstly, it is hardware agnostic. This is in contrast
to quantization, which relies on specific hardware capabilities.
Secondly, it allows us to streamline our model before the
training begins. This differs from pruning, which tackles
complexity reduction after training. As a result, our model
has a smaller footprint on the GPU right from the start of
training.

Our work goes a step further. While default sparsity has
been explored previously, we are the first to investigate its
advantages within the context of SC and EE. This exploration
aims to unlock even greater efficiency for applications that
utilize this technique.

B. Distributed deep learning

We focus on architectures operating through a DNN model
M(+), whose task is to produce the inference output y from
an input . We can identify three major types of architectures
used for distributed deep learning applications in the litera-
ture: Local-only Computing (LoC), Remote-only Computing
(RoC), and SC.

Local-only Computing (LoC): Under this policy, the
entire computation is performed on the sensing devices. There-
fore, the edge device entirely executes the function M(z). Its
advantage lies in offering low latency due to the proximity
of the computing element to the sensor [7]. However, it
may not be compatible with DNN-based architectures that
demand robust hardware capabilities. Usually, simpler DNN
models M () that use specific architectures (e.g., depth-wise
separable convolutions) are used to build lightweight networks,
such as MobileNetV3 [26].

Besides designing lightweight neural models, in the last
few years, great progress has been made in the area of
DNN compression. Compression techniques, such as network
pruning and quantization [27], or knowledge distillation [28]

achieve a more efficient representation of one or more layers
of the neural network, but with a possible quality degradation.

Remote-only Computing (RoC): The input x is trans-
ferred through the communication network and then is pro-
cessed at the remote system through the function M (z). This
architecture preserves full accuracy considering the higher
power budget of the remote system, but it leads to high latency
and bandwidth consumption due to the input transfer.

Split Computing (SC): A typical SC scenario is dis-
cussed in [10], where the authors show that neither LoC nor
RoC approaches are optimal, and a split configuration is an
ideal solution. The SC paradigm divides the DNN model into a
head, executed by the local sensing device, and a tail, executed
by the remote system. It combines the advantages of both LoC
and RoC thanks to the lower latency and, more importantly,
drastically reduces the required transmission bandwidth by
compressing the input to be sent x through the use of an
autoencoder [29]. We define the encoder and decoder models
as z; = F(z) and T = G(%;), which are executed at the edge,
and remotely, respectively. The distance d(x,T) defines the
performance of the encoding-decoding process.

One of the earliest works on SC is the study by Kang et
al. [30], in which the authors show that the initial layers of a
DNN are the most suitable candidates for partitioning, as they
optimize both latency and energy consumption. Additionally,
latency reduction is usually achieved through quantization,
as explored in [31], and the utilization of lossy compression
techniques prior to data transmission, as investigated in [32]. In
addition to lossy compression techniques, in [33], the authors
also explore lossless techniques to encode intermediate results
without modifying the ML model. Instead, the concept of
employing autoencoders to compress the data further to be
transferred is discussed in various studies, such as [34].

The prevalent methods for identifying potential splitting
points have evolved from architecture-based techniques to
more refined neuron-based methods. Within the domain of



architecture-based approaches, in [12], the authors state that
candidate split locations are where the size of the DNN layers
decreases: the rationale is that compressing information by
autoencoders, where compression would still occur due to
the shrinking of the architecture, certainly seems reasonable.
In [13] and [14], the authors show that not only the ar-
chitecture of the layers but also the saliency of individual
layers is a crucial factor when deciding where to split. A
neuron’s saliency is determined by its gradient in relation to
the accurate decision. Consequently, optimal splitting points
should be strategically positioned following layers housing a
concentration of impactful neurons to preserve the information
flowing until then.

At the same time, current state-of-the-art approaches in dif-
ferent ML applications rely on advanced learning procedures,
such as the Multi-Task Learning (MTL) [35]. In particular,
MTL is a paradigm in which multiple related tasks are jointly
learned to improve the generalizability of a model by using
shared knowledge across different aspects of the input. As a
result, in [36], the authors propose, for the first time ever, how
to partition multi-tasking DNN to be deployed within a SC
framework. With this design, the authors can handle multiple
tasks concurrently instead of the current focus on Single-Task
Learning (STL) in SC, and through MTL, they increase task
performance, overcoming the challenge of preserving only the
performance of the main task.

Early Exit (EE): This scenario adds an early exiting
branch to a standard SC architecture. Formally, we can define
B;,i=1...N (with N = L, and L is the number of layers
of the DNN) as the branch model that takes as input z; and
produces an estimate of the desired output y. In practice, the
EE architecture is a modification of an existing neural network,
adding one or more classification branches where, before the
computation of all network’s layers, the confidence of the
intermediate result is checked to be enough to be considered
the final result [37].

EE architecture can be exploited in a distributed deep learn-
ing application where the intermediate result can be directly
transmitted, as in local computing, or refined at the remote
side, as in SC. In this scenario, the level of transmission traffic
depends on the input, thus varying stochastically. Therefore,
the interdependencies between computation and communica-
tion cannot be analytically modeled, and real experiments are
needed to validate a given implementation.

In this paper, we’re not looking to develop a new method
for finding the best layers in a DNN to use SC or the most
efficient way to put EE into action. We aim to explore and
show how the predefined sparsity can improve these existing
frameworks. Thus, instead of comparing our work to SC and
EE methods, we see it as a way to make them even better,
investigating how sparsity can add benefits on top of what SC
and EE already offer.

III. METHOD

To understand the core concepts of our research, let us
delve into the mathematical background. These concepts were

initially presented in [25].
Let us take a (L + 1)-layer MultiLayer Perceptron (MLP),
described collectively by the following neuronal configuration:

Npet = (No, ..., Ni—1, Ny,...,NL) ,

where N; represents the number of nodes in the ¢-th layer. We
use the convention that layer ¢ is to the right of layer 7 — 1.
Given L junctions between layers, with junction ¢ connecting
the V;_1 nodes of its left layer ¢ — 1 with the IV; nodes of its
right layer <.

We can define predefined sparsity as simply not having all
N;_1-N; edges (or weights) present in junction ¢. Furthermore,
we can define structured predefined sparsity so that for a given
junction ¢, each node in its left layer has fixed out-degree, i.e.,
d¢"" € N connections to its right layer, and each node in its
right layer has fixed in-degree, i.e., d:" € N connections from
its left layer.

In particular, a MLP have d¢“! = N; and d" = N;_; with
N;_1-N; edges present in the i junction. While a sparse MLP
has at least one junction with less than this number of edges.
The number of edges in junction ¢ is given by the formula:

|Wi| = Ny - do" = N; - di" . (1)

The density of junction ¢ is measured relative to MLP, and is
denoted by the function:

Wil
P = . 2
P NN )
In our structured predefined sparse network, the density
of the i-th junction p; cannot be arbitrary. By replacing
Equation (1) in Equation (2), we can define:
o dim N;
N, Aot
where d¢“! and di" are natural numbers. The number of
possible p; values is the same as the number of (d9“!, di™)
values satisfying the structured predefined sparsity constraints:
N; -din
Ni1 '
Now, the smallest value of di™ which satisfies the assign-
ment to d?*! in Equation (4), and d“* € N, is the following:
Ni—y
ged(Ni—1, N;)
and other values are integer multiples. Since di™ is upper
bounded by N;_i, the total number of possible (d¢“, di") is
ged(N;—1, N;). We can now define the set of possible densities
pi, as follows:

Pi €)

out __
dovt =

di" < N;_y . “4)

k
e Yt ——— . € (0,1], keNj,. 5
{p wcd(N, Ny P e O } ®)
Specifying Ny,.; and the out-degree configuration d2%! =
(dg¥t,...,d3"") determines the density of each junction and
the overall density, defined as:

S Wi

= - (6)
S Niet - N;

Pnet =



It’s worth noting that, for an MLP using structured prede-
fined sparsity, only the weights corresponding to connected
edges are stored in memory and used in the computation.
Specifically, the parameters are updated based on the gradient
of a loss function with respect to the parameters. Let’s denote
the parameters of the network as 6 and the loss function as
L(6). The gradient of the loss function for the parameters is
denoted as VyL. Then, the parameters are updated using a
gradient descent step:

enew - eold - n- VGL 5 (7)

where 7 is the learning rate, controlling the step size in the
direction opposite to the gradient.

IV. EXPERIMENTS

This section describes the experimental trials performed to
validate our proposal, along with their implementation details
and results.

Models details: We use three types of MLPs in our
experiments: shallow, deep, and sparse. We can characterize
them as follows:

o Shallow: This is the simplest type. It contains only one
hidden layer besides the input and output layers and
represents the base case. The hidden layer neurons receive
information from the input layer and process it before
transmitting it to the final output layer;

e Deep: Each neuron within a hidden layer is fully con-
nected to all neurons in the subsequent layer;

o Sparse: The predefined sparsity pattern is applied. This
sparsity pattern essentially removes certain connections
between neurons in adjacent layers. Specifically, the
sparse MLP aims to balance the simplicity of the shallow
MLP and the learning capacity of the deep MLP.

Each network configuration is defined by using two lists.
The first list identifies the number of neurons in the hidden
layers:

H = [Hy,...,H,],

where n is the number of hidden layers, and intuitively, Hy and
H,, represent the number of neurons in the input and output
layers, respectively. The second list identifies the out-degree
of each neuron for each layer:

G =1[Go,...,Gr1].

Specifically, G is the out-degree of each input layer node,
and the output layer G, is not reported because it is zero.

Then, the shallow, deep, and sparse MLP has been split. Our
research primarily focuses on using existing sparsity patterns
in split computing applications for these networks. Inspired by
the approach presented in [30], we opt to split the network at
the midpoint, ensuring uniformity in our approach. While more
recent studies, such as [12], [13], have proposed advanced
techniques for selecting optimal splitting points, exploring
these methods will be part of future investigations.

Finally, the inserted EEs are composed of linear layers
followed by Rectified Linear Unit (ReLU) activation functions,

where the dimension of the last layer matches the desired
output size of the DNN.

Even with the rise of specialized architectures like Convo-
lutional Neural Networks (CNNs), MLPs remains a valuable
tool for researchers. Their fundamental structure allows for
in-depth exploration of core deep learning concepts without
the added complexity of specialized architectures. This focus
on MLPs aligns with the experimental nature of this research,
where we aim to isolate the effects of the proposed technique
and gain a deeper understanding of its fundamental workings.
Furthermore, recent advancements in research in MLP have
demonstrated their continued effectiveness in various real-
world applications, highlighting their ongoing relevance in the
field [38], [39].

Datasets: In this research, we focus on the image clas-
sification task. We utilize the MNIST dataset [40], a well-
known collection of handwritten digits. This contains 60,000
training and 10,000 testing images for the multi-class image
classification task. The images were centered in a 28 x 28
image by computing the center of mass of the pixels and
translating the image to position this point at the center of
the 28 x 28 field.

MNIST has to be considered as a placeholder for bigger
datasets (e.g., ImageNet [41]); nonetheless, the focus here is
to show the potentialities of the predefined sparsity applied in
an SC and EE and not beating the state-of-the-art in a specific
computer vision challenge.

While this article focuses on a computer vision task, the
concepts explored here remain valid also for broader appli-
cations. For example, they can be effectively used for other
tasks, such as time series forecasting.

Training details: All the source code is implemented in
TensorFlow [42]. We train our models for 50 epochs, with a
learning rate of 1 x 105, using Adam [43] as an optimizer,
on an NVIDIA RTX 3060 Ti.

A. Why predefined sparsity in SC and EE?

The motivation behind predefined sparsity can be exempli-
fied by examining the weights histograms of a trained MLP
shown in Figure 3. Specifically, the three histograms show the
weight distributions for each layer in a 3-layer MLP model
trained on the MNIST dataset with hidden layers having the
following number of neurons H = [800, 180, 180, 10].

As we can see from Figures 3(a) and 3(b), the first layers of
the network have a significant concentration of weights around
zero, suggesting that these weights might not be crucial for the
network’s performance. While Figure 3(c) highlights how the
weights in the last layer assume a broader spectrum of values.

This finding suggests that the benefits of predefined sparsity
can be especially pronounced in the earlier layers of the
network. As a result, in resource-constrained environments,
like those encountered in SC and EE applications, predefined
sparsity offers significant advantages because by reducing
the number of connections, we can decrease the size and
complexity of the network portion deployed on the edge
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Figure 3. Histograms of weights in each junction resulting from training a deep MLP on the MNIST dataset. The network configuration H = [Ho, . ..

used is [800, 180, 180, 10].
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Table IT
RESULTS REGARDING THE ACCURACY AND THE NUMBER OF
PARAMETERS WITH DIFFERENT CONFIGURATIONS OF TAIL MLPS.

Type Neurons Out-degree ~ Accuracy  Number of Type Neurons Out-degree ~ Accuracy  Number of
per Layer per Node (%) Parameters per Layer per Node (%) Parameters
Deep [800 33 10] [3 3 10] 76.58 2443 Deep [800 6 6 10] [6 6 10] 90.68 4918
Shallow  [800 3 10] [3 10] 80.89 2455 Shallow [800 6 10] [6 10] 91.03 4876
Sparse [800 40 40 10] [2 9 10] 93.93 2450 Sparse [800 40 40 10] [5 11 10] 95.65 4930
Deep [800 55 10] [55 10] 90.69 4095 Deep [800 10 10 10]  [10 10 10] 94.59 8230
Shallow  [800 5§ 10] [5 10] 89.84 4065 Shallow  [800 10 10] [10 10] 94.00 8120
Sparse [800 40 40 10] [4 10 10] 95.30 4090 Sparse [800 40 40 10] [9 14 10] 96.24 8250
Deep [800 7 7 10] [7 7 10] 92.85 5743 Deep [800 14 14 10] [14 14 10] 95.43 11574
Shallow  [800 7 10] [7 10] 9222 5687 Shallow  [800 14 10] [14 10] 94.88 11364
Sparse [800 40 40 10] [6 11 10] 95.89 5730 Sparse [800 40 40 10]  [13 17 10] 96.72 11570
Deep [800 14 14 10] [14 14 10] 95.35 11574 Deep [800 28 28 10]  [28 28 10] 96.79 23530
Shallow  [800 14 10] [14 10] 95.44 11364 Shallow  [800 29 10] [29 10] 96.79 23529
Sparse [800 40 40 10]  [13 17 10] 96.54 11570 Sparse [800 80 80 10]  [26 22 10] 97.33 23530
Deep [800 20 20 10]  [20 20 10] 96.03 16650 Deep [800 39 39 10]  [39 39 10] 97.35 33199
Shallow  [800 21 10] [21 10] 96.03 17041 Shallow  [800 41 10] [41 10] 97.34 33261
Sparse [800 40 40 10]  [19 24 10] 96.98 16650 Sparse [800 80 80 10]  [37 33 10] 97.75 33210

device. This translates to lower memory requirements and
faster processing times during training and inference.

Furthermore, the storage footprint is directly proportional
to the number of edges. Operating at a sparsity level of, for
example, 50% results in a two-fold reduction in complexity.
This translates to significant efficiency gains, making deploy-
ing more complex models on devices with limited resources
possible. These findings led us to want to study them in the
context of SC and EE.

B. Results

Tables I and II provide a comparative overview of the three
neural network configurations, detailing their architectural
details and performances. Specifically, each table reports the

number of neurons per layer, focusing on the number of
neurons in hidden layers (in bold), the out-degree for each
node, their accuracy, and the number of parameters.

Figures 4 and 5 show the accuracy plots against the number
of parameters for the three neural network configurations.
These two plots reveal the advantage of sparse split models:
they present remarkable stability in accuracy even with sig-
nificant reductions in trainable parameters. This characteristic
results in two key advantages, particularly desired and pursued
in resource-constrained settings like SC and EE.

Unlike traditional deep and shallow DNN, where accuracy
improvements often depend on a significant increase in the
number of parameters, sparse split models achieve optimal
inference performance without requiring massive parameter
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expansions. As a result, they are much more efficient when
using the limited processing power and storage space available
on edge devices, and so very suitable for distributed deep
leasing scenarios through SC and EE.

Furthermore, the predefined sparsity of these networks
leads to decreased memory usage, both during training and
inference. Regarding the training, this is an advantage because
researchers with limited resources can also engage in cutting-
edge research in deep learning without the need for expensive,
high-end computational resources. Instead, the reduced com-
plexity translates into faster processing times, enabling real-
time operation on edge devices with limited processing power.

C. Discussion

Early Exiting and reduced communication: In SC and
EE applications, where data security and bandwidth limitations

are paramount, sparse split models represent an ideal solution.

The early exiting strategy applied to the head provides
an acceptable level of accuracy with a smaller subset of
parameters, as highlighted by the achieved accuracy shown in
Figure 4. This allows the network to terminate computations
early, significantly reducing the amount of data transmitted
between the edge device and the server. This not only min-
imizes the risk of data breaches but also conserves precious
network bandwidth, enabling efficient communication even in
low-connectivity environments.

Balancing training time and efficiency: While the
benefits of sparse split models are evident, it’s important
to acknowledge the trade-off with training time. When we
introduce predefined sparsity into a MLPs, we aim to train
the model to learn a function using a significantly reduced
number of connections compared to a non-sparse network.
This approach creates a more lightweight structure for the
model but also leads to a more challenging optimization prob-
lem. Consequently, the gradient descent algorithm may require
more iterations to converge due to the increased complexity
introduced by the sparsity constraints. In particular, sparse
split models in our experiments exhibited a 2 x slowdown
in training time compared to their dense counterparts.

However, this drawback needs to be considered in the
context of the specific application and its resource constraints.
In many cases, the significant gains in memory usage, com-
munication efficiency, and inference speed during deployment
far outweigh the potential increase in training time.

Potential further exploration: While this work demon-
strates the effectiveness of predefined sparsity with SC and EE,
further exploration is possible. First, future research could look
at applying this technique to different DNN architectures on
top of existing SC and EE methods.

It would also be interesting to see how different hardware
edge devices can benefit from this. For example, we know
that devices like GPUs and Field Programmable Gate Arrays
(FPGAs) handle sparse data well. So, using this technique with
these devices on the edge (like GPU-based or FPGA-based
hardware) could be a promising direction.

Finally, further exploration could involve applying these
techniques to real-world applications. This would allow us to
assess the effectiveness of the approach in practical scenarios
and identify any challenges that may arise.

V. CONCLUSION

In this paper, we presented the effect of predefined sparsity
within the SC and EE paradigm. This approach, demonstrably
effective for the first time in an SC and EE scenario, signifi-
cantly reduces the computational, storage, and energy demands
during training and inference, regardless of the hardware
platform. The experimental results showcase impressive reduc-
tions exceeding 4 X in both storage and computational com-
plexity while maintaining comparable accuracy. This paves the
way for deploying complex DNN models on edge devices for
real-world SC and EE applications.
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