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Abstract—Neural networks are now routinely used for per-
ception processing in autonomous systems. Often, these neural
networks are used to estimate the state of the system, such
as distance and velocity of the car in front, that is used in
downstream control tasks. While significant advances in neural
architecture search and sizing have been made towards improving
inference quality, they do not take into account the effect of these
improvements in the performance of the overall system. In this
paper, we examine a setup where multiple neural networks for
estimating various state components of the same system share the
same graphics processing unit (GPU) — a limited computational
resource. We address the problem of optimal resource allocation
for each neural network, e.g., how to suitably size these networks,
while improving the overall performance — specifically, safety —
of the system. In particular, we distinguish between optimizing
the performance of individual neural networks, versus optimizing
the system-level performance or safety. Our main technical
contribution is a set of techniques for neural architecture sizing
with the goal of optimizing overall system safety for a given GPU
capacity. Our evaluation on two different benchmarks shows
that we can explore the architecture space with 10x to 100x
improvements in running time.

Index Terms—GPU partitioning, optimal neural architecture
sizing, autonomous system, uncertainty, reachability, sensitivity

I. INTRODUCTION

The progress in algorithms, hardware, and software frame-
works for deep learning has led to the widespread deployment
of neural networks (NNs) in various machine learning tasks,
especially in the context of autonomous systems. For example,
in an autonomous car, the data from various cameras, lidar,
radar, and ultrasonic sensors are partially or fully processed
using multiple NNs. Due to its mission criticality, autonomous
driving systems usually require high accuracy from NNs.
While advances in deep learning have steadily improved the
state-of-the-art in NN accuracy, a large portion of this is
achieved through an even greater increase in training data
size and neural network parameters, significantly increasing
computational demands. While hardware performance has
constantly improved and various techniques have been devel-
oped to compress NNs to realize reasonable accuracy with
less computational resources (e.g. [1]–[3]), the model sizes
and accuracy requirements keep outgrowing the hardware
performance improvement. Another challenge is that compute
platforms in autonomous systems are usually constrained by
space, energy, and cost. Therefore, designers have to work
with limited computational resources and must allocate these

resources among multiple different NNs with different func-
tionalities and accuracy requirements.

While research efforts like [4] demonstrate the feasibility
of partitioning GPU resources to meet specific accuracy re-
quirements for individual neural networks (NNs), they often
overlook the need for optimizing NNs as parts of a larger
system. In the broader context of autonomous systems, which
consist of sensing, decision, and actuation stages, the overall
system performance depends on accurate system state estima-
tion by NNs in the sensing stage and the sensitivity of the
control system’s performance (including stability and safety)
to state estimation errors (NN accuracy) is not uniform.

Therefore, optimizing each neural network in isolation, or
even considering their average accuracy, might not lead to the
most effective overall system performance. To illustrate this,
consider an agent equipped with p sensors, each processed by
a different NN offering different trade-offs between accuracy
and resource requirements. Given that state estimation serves
as the foundation for feedback control, an inaccurate estimate
could lead to a deviation from the desired path, potentially
violating the performance and safety requirements of the
system. Addressing this requires more than just optimizing
individual NN accuracy. State components with high sensi-
tivity might require greater accuracy in state estimation to
avoid significant behavioral alterations in the system. Achiev-
ing a globally optimal solution requires allocating resources
judiciously, prioritizing crucial components while ensuring
adequate resources for others.

Yet, manually tuning performance by evaluating every
potential resource allocation is often impractical, given the
complex dynamics of autonomous systems and the increasing
number of NNs. This complexity calls for a systematic
approach to resource allocation that can dynamically adapt to
the evolving needs of the system.

Contributions of this paper: In this paper, we present a
design automation framework for resource allocation of neural
networks in autonomous systems. Our primary observation is
that resource allocation for a neural network should depend
on its contribution to the overall system performance. Given
the dynamics of an autonomous system, a list of neural
networks that can be used for state estimation, and a resource
constraint, our framework efficiently allocates the resources
for state estimation that optimize the overall system’s control



performance. This is achieved by selecting neural networks
that minimize the deviation in the closed loop behavior of
the system from the ideal behavior, while taking into account
the uncertainty in state estimation by the neural networks. To
the best of our knowledge, this is the first work to explicitly
relate the control performance of autonomous systems with the
resource allocation of neural networks. We also associate the
problem of NN sizing to system safety, where the safety of the
system is connected to the size of the reachable state space of
the closed-loop system. With smaller NNs, the uncertainty of
their inference is higher, which translates to a larger reachable
state space. The main contributions of this work include:

• a constant time sensitivity analysis heuristic that, for a
given resource constraint, produces one solution that is
reasonably close to the Pareto front of optimal solutions,

• a dynamic programming heuristic that captures virtually
all solutions on the Pareto front and in the average case
uses much less time than the exhaustive search, and

• a fast iterative heuristic that captures solutions extremely
close to the Pareto front and runs in polynomial time

All our methods scale well even when the exhaustive search
becomes infeasible. These three heuristics offer various op-
timality and speed tradeoffs and are suitable for different
scenarios. Our evaluation shows that they achieve near-optimal
results while improving the search time by 10× to 100× when
compared to the baseline.

II. RELATED WORK

Given that embedded systems are cost- and energy-sensitive,
considerable efforts have been made to lower the memory (e.g.
by using smaller networks) and computational requirements of
neural networks running on them (e.g. by employing early exit
strategies). For example, EfficientNet [1] represents a class
of neural networks designed for scalability and efficiency. Its
unique approach to scaling network dimensions allows for
improved accuracy and lower parameter count, adaptable to
different platform constraints. This makes EfficientNet ideal
for various applications, where a model is selected and trained
according to the specific needs of the target platform.

In contrast, [3], [5] focused on scaling down pre-trained
models efficiently to retain reasonable performance compared
to their explicitly trained counterparts while eliminating the
need for retraining, reducing the cost of adapting similar
networks to a diverse set of platforms. While these works
focused on achieving high accuracy while reducing resource
usage, they did not study the impact of the accuracy-resource
tradeoffs in the context of control performance.

Our work is also inspired by recent trends in GPU par-
titioning, with [4], [6]–[9] being some recent examples in
this area. The work in [4] holds particular promise, as it
enables the partitioning of GPUs at the fine granularity of
individual stream processors. This corresponds well with the
optimal neural architecture sizing problem presented in this
work, where a finite budget of resources (e.g., GPU) is
distributed among different neural network tasks, with the
goal of optimizing system-level performance/safety. Finally,
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Fig. 1. Control system with neural network-based state sensing.

this work is related to cyber-physical systems safety [10],
security [11], [12] and reliability [13] verification [14], and in
particular to the testing [15] and verification of NN-enabled
systems.

III. PRELIMINARIES

A. Control System Models

This section introduces the basics of feedback control
systems and the specific models studied in this paper. An
overview of the system under study is outlined in Figure 1.
Control systems are dynamic in nature and are often described
using differential equations. One common representation of
control systems is the state-space model, where the state of
the system is represented by a state vector x(t) ∈ Rp, where
elements in the state vector xi are state components, and the
input to the system by u(t) ∈ Rq . Using these notations, the
state-space model of a continuous, linear time-invariant (LTI)
system is given by

ẋ(t) = Acx(t) +Bcu(t), (1)

where Ac ∈ Rp×p, and Bc ∈ Rp×q . Equation (1) shows that
the rate of change of the system state ẋ(t) depends both on the
current state x(t) and the control input u(t). While many real-
world control systems are non-linear, they are often modeled
as linearized systems around their fixed operation points and
controlled with linear controllers in practice.

To enable feedback control, the control input u[k] is com-
puted by a periodic real-time task running on a processor.
Computing u[k] requires discretizing the continuous state-
space model with a constant sampling period h. Assuming
periodic sampling, i.e., tk+1 − tk = h, matrices A and B can
be derived from Equation (1) such that:

x(tk+1) = Ax(tk) +Bu(tk),

where A = eAch and B =
∫ h

0
eAcsBcds For simplicity, we

denote x(tk) as x[k] to obtain the discrete state-space model:

x[k + 1] = Ax[k] +Bu[k] . (2)



Using the discrete model, the control input u[k] can be
computed by:

u[k] = Kx[k − 1] , (3)

where K ∈ Rq×p is the feedback gain. We follow the logical
execution time (LET) paradigm, where the real-time task
computing control inputs has a deadline equal to its sampling
period. That is, the system state sampled at time step k− 1 is
used to compute the control input u for time step k.

B. Reachable Sets under Uncertainty

Given system dynamics and an initial set of states X[0] ⊆
Rp, it is possible to compute the reachable sets of the system
over a finite time horizon H from Equations (2) and (3). These
reachable sets represent the possible states of the system at
various time instances given that it was initially in X[0].

However, Equations (2) and (3) model the system evolution
only when the system state is known exactly. In this paper,
since the state estimation is performed by NNs, we assign an
uncertainty with each state component. More specifically, we
assume that the estimate of every state component x̂i[k] ∈
[xi[k]− ei, xi[k] + ei] where e ∈ (R+)p is a bounded vector.
This uncertainty can be expressed as set operations over
Zonotopes: x ⊕ E, where ⊕ is the Minkowski sum operator,
and E is the uncertainty bounding Zonotope. To model the
evolution of the system in presence of uncertainties, we replace
the closed loop control inputs in Equations (2) and (3) with
set operations as follows:

x[k + 1] ∈ Ax[k]⊕BKx̂[k]

= Ax[k]⊕BK(x[k]⊕ E)

= (A+BK)x[k]⊕BKE. (4)

The reachable sets for closed loop system with uncertainty in
state estimation can be computed using Equation (4).

Given the state-space model x[k + 1] = Ax[k] + Bu[k],
feedback gain K, uncertainty bounding Zonotope E, initial set
X[0], and time horizon H , we compute the reachable set and
denote the maximum diameter of reachable set across time as
diam(A,B,K,E,X [0], H). This diameter is a measure of the
overall system performance in presence of uncertainties; larger
diameter of reachable set implies that estimation uncertainties
can result in larger deviation of trajectory and smaller diameter
implies that the system is robust to estimation uncertainties.

C. Neural Network Accuracy-Cost Tradeoff

Empirical studies have consistently shown that increasing
the size of neural networks tends to enhance their accuracy in
various machine-learning tasks, but this improvement comes
with a price. For example, consider the relationship between
the size and classification accuracy of 8 EfficientNet [1] pro-
vided in Figure 2. EfficientNet B0 is a small baseline network
that has been optimized through neural architecture search.
Building upon it, EfficientNet B1-B7 are scaled up uniformly
while keeping a similar neural architecture. A diminishing
returns of accuracy as a function of network size can be clearly
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Fig. 2. Diminishing returns of neural network accuracy vs. size from different
EfficientNet [1] configurations

seen from the figure. This highlights a number of challenges
in neural network design:

1) Cost Implications of Large Neural Networks: Large
neural networks are resource-intensive, requiring signifi-
cant computational power [16], memory [17], [18], and
energy [19] for training, which can be prohibitive in
mobile or embedded systems.

2) Diminishing Returns on Accuracy: Although larger net-
works generally yield higher accuracy, the improvement
rate diminishes as the network size increases [20], [21],
indicating inefficiencies in resource utilization without
proportional performance gains.

3) Challenges in Network Scaling: Scaling neural networks
involves increasing the depth (adding more layers), the
width (adding more channels per layer), or the input res-
olution (increasing the number of pixels in input images)
[22], [23]. It remains unclear how to scale up neural
networks to achieve the best efficiency and accuracy [1].

4) Neural Architecture Search (NAS): Traditionally, neu-
ral network architectures are manually designed, a pro-
cess that is both time-consuming and requires extensive
expertise. This manual approach is becoming increasingly
untenable with the rise of diverse hardware platforms
each requiring optimized solutions. Neural Architecture
Search (NAS) offers a promising solution by automating
the design of neural networks using techniques like
reinforcement learning [24]–[26], evolutionary algorithms
[27], or gradient-based methods [28]–[30] to find archi-
tectures that balance computational efficiency and ac-
curacy to find architectures that balance computational
efficiency and accuracy.

This work focuses on the deployment of multiple neural
networks in a resource-constrained setting, making the tradeoff
between accuracy and efficiency the central consideration.
Since the NNs are used in estimating the state components,
we use accuracy as a proxy for the uncertainty associated with
the estimation. To quantify the trade-offs between network size
and performance under practical constraints, we define:

• ϵ as the uncertainty of a neural network’s estimation,
• c as the cost associated with the neural network.



IV. NEURAL ARCHITECTURE SIZING METHODS

This section introduces the optimal neural architecture siz-
ing problem, the assumptions made in this study, and the
methods proposed to approach the problem.

We make the following assumptions: 1) We are given a
p-dimensional linear system with feedback control, described
by the state-space model x[k + 1] = Ax[k] + Bu[k], and a
linear controller K, described by u[k] = Kx̂[k]. 2) x̂[k] is an
estimation of x[k], and each component x̂i is estimated using
a separate neural network. 3) A pool of n neural networks
with varying cost-uncertainty tradeoffs are available and can be
used to estimate any of the p system state; multiple instances
of the same neural network may be used to estimate different
state components.

It is important to note that the assumption (3) is purely for
the ease of constructing the problem statement. In practice, it
is completely reasonable that different state variables require
different neural networks for estimation – i.e., a unique set of
ni neural networks is available for each state component xi –
and our methods would still be applicable.

We formally define the optimal neural architecture sizing
problem based on the above assumptions:

Problem 1. Given a p-dimensional linear system described
by matrices A and B, feedback gain K, initial set X[0],
and time horizon H , and n neural networks described by
their costs c1, · · · , cn and uncertainties ϵ1, · · · , ϵn, find an
optimal selection of neural networks J = j1, · · · , jp, where
ji ∈ {1, · · · , n}, such that the maximum diameter of the
reachable sets diam(A,B,K,E,X [0], H) is minimized and
the cumulative cost of all neural networks stays within a
budget C. i.e.,

∑p
i=1 cji ≤ C.

Essentially, the system designer is presented with a col-
lection of neural networks with varying cost and uncertainty
tradeoffs, Where the j-th neural network is associated with
a cost cj and an uncertainty ϵj . This is similar in concept
to the different configurations of EfficientNet [1]. The job of
the designer is to assign one neural network for each state
component to optimize the overall system performance, while
ensuring the total cost of state estimation is below a budget C.
This cost can be used to model constraints on computational
resources, memory usage, price, or energy consumption.

We now present a naive approach — exhaustive search —
for discovering the optimal allocation and three heuristics for
solving the optimal neural architecture sizing problem.

A. Exhaustive Search: The Naive Approach

One way to find the optimal allocation of neural networks
is by enumerating every possible allocation of neural net-
works that satisfies the budget constraints. The maximum
diameters of the reachable sets for each allocation will then
be calculated. Formally, an allocation of neural networks
J = j1, · · · , jp ∈ {1, · · · , n}p has the associated uncertainty

values of ϵj1 , · · · , ϵjp . The uncertainty bounding zonotope E
is then defined as

E =

{
x ∈ Rp : x = 0+

p∑
i=1

ξigi, ξi ∈ [−1, 1] ∀i

}
, (5)

where gi = (0, · · · , ϵji , · · · , 0) ∈ Rp is a vector with all
zero values except for the i-th element, which is ϵji . The
reachable sets X[k] for the time horizon k = 1, · · · , H
can be then calculated by iterating Equation (4), starting
from the initial set X[0]. Once the reachable sets are cal-
culated, the diameter of reachable sets can be calculated by
diam(X[k]) = maxx,y∈X[k] d(x, y) for any metric – such as
the Euclidean distance – between two points x and y. The
maximum diameter of the reachable sets is therefore defined
as

diam(A,B,K,E,X [0], H) = max
k∈[0,H]

diam(X[k]). (6)

Note that the only variable in Equation (6), the error bound
zonotope E, is calculated from the selection of neural net-
works J . For convenience, we define the maximum diameter
for a specific selection J as

diam(J) = diam(A,B,K,E(J), X[0], H) (7)

where E(J) follows Equation (5), and the cost for a specific
selection J as cost(J) =

∑p
i=1 cji . Finally, the allocation

with the smallest diameter diam(J) and a cost cost(J) < C
is determined to be optimal. This approach is intractable as
the possible number of allocations is O(np), exponential in
the number of states p. Whenever possible, we use this naive
search as the baseline for comparing other algorithms.

B. Sensitivity Analysis-Based Heuristic

Our primary insight for accelerating the search for optimal
assignment is to quantify the effect of neural network uncer-
tainty on the overall system performance. More specifically,
we introduce the notion of sensitivity of a given state com-
ponent xi as the multiplicative effect of the uncertainty in xi

on the system trajectory. Simply put, state components with
a greater sensitivity value would perturb the trajectory to a
greater degree than state components with lesser sensitivity.
Given the sensitivity values for each state component, the
heuristic then considers the overall budget C and the un-
certainty bound-to-cost (ϵi, ci) tradeoffs of candidate neural
networks to 1) “guess” an optimal selection of neural networks
that satisfies the budget constraint, and 2) perform a single
reachability analysis to calculate the diameters of the reachable
sets using this combination.

1) Computing the Sensitivity of State Components: An
existing work [31] have explored a way to compute sensitivity
of system dynamics using perturbation theory. More precisely,
given a system dynamics matrix A, and an index (i, j), [31]
computes the effect of introducing an ϵ uncertainty at A[i, j]
on the system trajectory and in turn the system’s safety [32].
As illustrated in Figure 3, the reachable set as a result of
uncertainties introduced at different indices, namely U1 and U2
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Fig. 3. Impact of uncertainties on a system’s reachable set.

can differ significantly. Clearly, the uncertainty U1 is resulting
in an increased volume of reachable set when compared to U2.
Therefore, we say that the system exhibits a higher sensitivity
to U1 than to U2. In the case where the reachable set resulted
from U2 is not strictly contained in the one from U1, we
consider the system more sensitive to U2 if its reachable set has
a larger diameter as defined in Equation (6). Furthermore, the
sensitivity value (due to a given uncertainty) is a quantitative
measure of the stretch in the reachable set compared to the
reachable set of the nominal dynamics. It is worth noting that
the method presented in [31] can compute such sensitivity
values without computing reachable sets, thus making the
technique computationally very efficient and suitable for our
purpose.

At its core, [31] highlights a link between the reachable set
and the maximum singular value (SV) of the dynamics. The
one step reachable set for the system x[t+1] = Ax[t] is a linear
transformation on a given initial set Θ, i.e., A ·Θ. Given a sin-
gular value decomposition (SVD) of A = MΣN∗, where M
and N∗ are unitary matrices and Σ is a diagonal matrix with
the singular values, we examine the geometric interpretation
of the linear transformation (A ·Θ). The transformation A ·Θ
can be interpreted as an ordered sequence of three distinct
linear transformations, with N∗ being the initial rotation,
followed by Σ’s scaling, followed by a rotation M . Because
both M and N∗ are unitary matrices, these transformations
do not lead to any “stretching” (increase in relative distances
among the elements) of the set in any direction. However,
the set undergoes stretching in the second step as a result of
the transformation by Σ, with the most significant stretching
occurring due to the maximum singular value.

It is worth noting that the maximum singular value of the
dynamics matrix A is responsible for causing the maximum
stretching of the reachable set. Using this observation, any
set of perturbations to A (i.e., uncertainties) that causes the
most increase in the maximum singular value of A, will cause
the most stretching in the reachable set. For instance, in our
previous example, when A is faced with a set of uncertainties
U1 than U2, the increase in the maximum singular value
due to U1 is more than that of U2. Therefore, U1 causes
more stretching in the reachable set than U2, as illustrated
in Figure 3. Given a perturbation of ϵ at an index [i, j], the

algorithm in [31] computes the multiplicative factor q such
that the maximum singular value increases by q · ϵ. This
multiplicative factor is called the sensitivity of the index [i, j].

We adapt the method proposed in [31] to work with un-
certainties in state component estimation x—instead of the
dynamics A—by using augmented system dynamics. Particu-
larly, we leverage the fact that u[t] = Kx̂[t] = Kλx[t], where

λ =


1 + δ1 0 · · · 0

0 1 + δ2
...

...
. . . 0

0 · · · 0 1 + δp


represents the uncertainty in estimating x[t]. The augmented
dynamics can then be described by

x[t+ 1] = Ax[t] +Bu[t]

= Ax[t] +BKλx[t]

= (A+BKλ)x[t].

We call Φ′ = (A + BKλ) as the perturbed dynamics,
analogous to introducing perturbations in the system dynamics
A in [31]. To compute the sensitivity value of a particular
state component xi, we set δj = 0 for all j ̸= i, and
observe that with Φ = A + BK and Yi = (BK)∗,i, the
perturbed dynamics become Φ′ = Φ + δiYi. This is nothing
but introducing perturbations in the dynamics A at specific
indices determined by BK. We then use the method in [31]
to compute the sensitivity value Si for xi.

2) Heuristic Leveraging Sensitivity Values: Given the sen-
sitivity values Si for all states components, our heuristic
uses integer programming to select neural networks for each
state. The integer programming optimization problem can be
formulated as follows:

min
j1,··· ,jp

p∑
i=1

ϵji · Si (8a)

subject to
p∑

i=1

cji ≤ C (8b)

ji ∈ {1, · · · , n} ∀i. (8c)

Intuitively, we try to minimize the sum of products of the
sensitivity value and uncertainty bound for each state compo-
nent, while being subject to the system budget C. Notice that
the optimization problem attempts to allocate more resources
to the highly sensitive state components while satisfying
the cost constraints. It is possible to formulate several such
optimization problems with quadratic functions in the min-
imization, however, they might require more resources for
solving the optimization problem and might not scale well
with increase in number of neural networks or dimensionality
of the system. Once we obtain such a selection J = j1, · · · , jp,
we compute the reachable set for the neural network allocation
and compute its maximum diameter.

One of the primary advantages of using this heuristic over
others is its scalability. The sensitivity values of the states can
be computed very efficiently in polynomial time. Furthermore,
the sensitivity values have to be computed only once.



Algorithm 1: Dynamic programming heuristic
Data: A, B, K, X0, H , c1, · · · , cn, ϵ1, · · · , ϵn
Result: List of ⟨J, diam(J), cost(J)⟩
J ← vector of p ones;
Add J to current solutions;
Add J to tried solutions;
repeat

foreach J ∈ current solutions do
Add ⟨J, diam(J), cost(J)⟩ to results;
foreach i ∈ 1 . . . p do

J ′ ← J incremented in position i;
if J ′ ∈ tried solutions then

continue;
Add J to next solutions;
Add J to tried solutions;

foreach J ∈ next solutions do
Prune J if dominated by other solutions (Equation (9))

current solutions ← next solutions;
next solutions ← ∅;

until current solutions = ∅;
return results

C. Dynamic Programming-Based Heuristic

Our next heuristic for assigning resources for neural network
state sensing is a dynamic programming-based heuristic. It
is important to note that, despite the use of dynamic pro-
gramming, this method does not guarantee optimality. This
is because the behavior of control systems cannot be simply
predicted by neural network uncertainty alone.

Assuming that the neural networks ji are sorted in increas-
ing order of cost, we first assign the lowest-cost network to
each state variable, i.e., J ← 1, 1, · · · , 1, and run a reachability
algorithm to determine the resulting maximum diameter E.
Following this, we take an iterative approach to explore neural
network options for each state. Taking the solutions from the
previous iteration, we increase the resources allocated to each
state variable. For example, the allocation [2, 3, 3] is followed
by [3, 3, 3], [2, 4, 3], and [2, 3, 4]. The maximum diameter of
the reachable sets is computed for each of these allocations.
We then prune all solutions that are dominated and add the new
solutions to our suboptimal set. A solution J1 is considered
dominated by another solution J2 if J1 both has a higher cost
and results in a larger diameter. I.e., J1 is dominated by J2 iff

cost(J1) > cost(J2) ∧ diam(J1) > diam(J2) (9)

We call this dynamic programming heuristic because we
explore the solution space by systematically increasing the
resources allocated for estimating each state component and
aggressively prune the solution space. The iteration terminates
once the highest cost allocation (J = n, n, · · · , n) has been
explored, or when all solutions are pruned in one iteration.
The pseudocode for this heuristic is listed in Algorithm 1.

However, it does so at the expense of exploring a non-
negligible number of non-optimal assignments, making it still
relatively slow, especially for high-dimensional systems. To
alleviate this, we propose a faster, albeit farther from optimal,
heuristic in the next section.

Algorithm 2: Fast iterative heuristic
Data: A, B, K, X0, H , c1, · · · , cn, ϵ1, · · · , ϵn, order
Result: List of ⟨J, diam(J), cost(J)⟩
J ← vector of p ones;
repeat

Add ⟨J, diam(J), cost(J)⟩ to results;
Increment next element of J following order ;

until J > vector of p n’s;
return results

D. Greedy Fast-Iterative Heuristic

Exploring the solution space in a systematic way as done in
the dynamic programming heuristic might still explore a large
part of solution space. We therefore propose a faster heuristic
that explores even fewer solutions and give a quick estimate of
the cost and overall performance tradeoff. Instead of increasing
the resources allocated for state estimation in a systematic
way, this heuristic only explores the solution space that are
estimated to be optimal (hence the name, greedy heuristic).
This heuristic works by simply increasing the resources for
estimating a state component one at a time in a pre-determined
order. For instance, if the order is [1, 3, 2] (i.e., state component
x1 is given first priority, then x3 and then x2), then we will
try the assignments [1, 1, 1], [2, 1, 1], [2, 1, 2], [2, 2, 2], and
so on, until the most expensive option is being used for all
networks. In this way, the resources allocated for various state
components remains almost uniform, but a part of the solution
space can be explored very quickly. This tradeoff turns out to
be near-optimal in our experiments. The pseudocode for this
heuristic is listed in Algorithm 2. While any predetermined
order can be used for the heuristic, we make an informed
choice and give priority to state components with higher
sensitivity as described in Section IV-B. Additionally, because
the assignments’ cost is monotonically increasing, the heuristic
may be easily modified to return only the closest assignment
to a maximum budget, skipping reachability analysis for all
other assignments. The timing complexity of the greedy fast-
iterative search is therefore O(np).

V. EVALUATION OF THE PROPOSED METHODS

We evaluated the three classes of heuristics with two case
studies: 1) A case study where the neural network uncertainty
and costs are derived from EfficientNet [1], and 2) an evalu-
ation using the Dist-YOLO [33] object detection and distance
estimation model with different backbones.

For both case studies, we use a numerical five-dimensional
state-space model [34] from the JuliaReach [35] toolbox. We
use Julia to implement and evaluate the proposed heuristics.
The heuristics are evaluated against the exhaustive search
method on an Apple M2 processor at 3.5GHz in single-
threaded mode.

A. Case Study using EfficientNet Accuracy and Cost Values

As a proof of concept, in [36] we proposed to use cost
and uncertainty values from EfficientNet [1] for our first case
study. We used the uncertainty-cost tradeoff values from Ef-
ficientNet [1] because it is an architecture designed to perform



TABLE I
PARAMETERS OF THE EFFICIENTNET CONFIGURATIONS

Model FLOPs Accuracy

EfficientNet B0 0.39G 77.1%
EfficientNet B1 0.70G 79.1%
EfficientNet B2 1.0G 80.1%
EfficientNet B3 1.8G 81.6%
EfficientNet B4 4.2G 82.9%
EfficientNet B5 9.9G 83.6%
EfficientNet B6 19G 84.0%
EfficientNet B7 37G 84.3%

well across a wide range of configurations and network sizes.
Although the networks are evaluated on image classification
tasks instead of regression tasks that are more relevant to
control systems, we expect well-trained regression models to
exhibit similar cost and uncertainty tradeoffs. Furthermore,
EfficientNet is already being used as the backbone for a
number of regression tasks [33], [37].

The work in [1] presented 8 configurations, EfficientNet
B0 to B7, and provided the ImageNet Top-1 accuracy,
ImageNet Top-5 accuracy, and FLOPS (billions) for each
configuration. These parameters are shown in Table I. We
used (Top-5 accuracy)−1− 1 as an uncertainty measure, and
floating point operations (FLOPs) as a cost measure.

We conducted two experiments using the first 5 and 8
configurations from EfficientNet, respectively. For each ex-
periment, we performed an exhaustive search over the entire
solution space, followed by the three proposed heuristics.
The number of points explored and the execution time are
recorded for both experiments, in Table II. The solutions from
the first experiment using 5 EfficientNet configurations are
shown in Figure 4. To illustrate a potential safety violation
as a result of uncertainty in estimation, we marked solutions
as “unsafe” if the third dimension of the system crosses
the unsafe region of x3 ≤ −25. These are shown as “×”
in Figure 4. Additionally, Figure 5 shows the unsafe region
along with reachable sets of states, projected on to state
dimensions 3 and 4. Green regions indicate reachable sets
with no estimation uncertainty. The reachable sets achieved
by using the most accurate NNs for all states are shown in
yellow, while the reachable sets with least accurate NNs for
all states are shown with blue.

While the latter two heuristics search the whole space, the
sensitivity analysis heuristic only explores a single solution for
any given budget. To provide a more comprehensive evaluation
of its performance compared to the other two heuristics, we ran
the sensitivity analysis heuristic with 40 budget values, evenly
placed between the lowest and highest possible budgets.

Discussions: In this section, we compare the results from
the three heuristics and provide discussions on the distinct
traits displayed by each of them. The first observation is
that out of the 50 points on the Pareto front, the dynamic
programming heuristic explored was able to capture nearly
all of them (49) with its 268 points (18%); the fast iterative
heuristic captured 7 points on the Pareto front with its 21
points (33%), but all points are very close to the Pareto front

TABLE II
NUMBER OF POINTS AND RUNTIME COMPARISON OF THE ALLOCATION

HEURISTICS

5 Configurations 8 Configurations
Method Points Time Points Time

Exh. Search 3125 411 s 32768 4685 s
Sens. Anal. (total) 40 5.8 s 40 6.5 s
Sens. Anal. (avg.) 1 0.14 s 1 0.14 s

Dyn. Prog. 268 41.4 s 414 64.5 s
Fast Iter. 21 3.5 s 36 6.0 s

TABLE III
NUMBER OF POINTS COMPARISON FOR VARIOUS VALUES OF p (# OF

STATES) AND n (# OF NNS)

Method p=5, n=5 p=5, n=20 p=20, n=5 p=10, n=8

Exh. Search 3125 3.2× 106 9.5× 1013 1.1× 109

Dyn. Prog. (est.) 268 1200 1013 888
Fast Iter. 21 96 81 71

as seen in Figure 4d; the sensitivity analysis heuristic captured
11 Pareto-optimal points with its 40 points (28%), but are
on average worse than the fast iterative method, as shown
in Figure 4b.

The second observation is that different methods require
vastly different times to obtain these results. As shown in Ta-
ble II, the dynamic programming and fast iterative heuristics
achieved 10× and 118× speedups in the first experiment, and
72× and 780× in the second experiment. These speedups
directly correlate to the number of points explored by each
method.

To verify the scalability of our methods beyond the case
study, we calculated the number of points that would be
required with various values of p (number of states) and
n (number of neural network configurations). The results
are shown in Table III. Notably, for a practical setup of
p = 10, n = 8, the exhaustive search is already exploring
1.1 × 109 solutions. If each solution takes 1 s to compute,
the total execution time will exceed 34 years. In contrast,
the dynamic programming heuristic is estimated to take less
than 15min, the fast iterative heuristic less than one-and-half
minutes, and the sensitivity analysis heuristic takes just one
second (if a budget is given). Note that since the number
of points explored by the dynamic programming heuristic
depends on the concrete values of diameters, it cannot be
precisely calculated without actually running the heuristic.
Instead, we took the average ratio between the number of
points explored by the dynamic programming heuristic and
the number of points explored by the fast iterative heuristic
in Table II (12.5) and multiplied it with the values of fast
iterative in Table III. It is clear that the exhaustive search is
not feasible for larger values of p and n, while the proposed
heuristics scale much better. The sensitivity analysis heuristic
is not included in Table III since it only requires exploring a
single point for any given budget, regardless of the number of
states or neural networks.

Depending on the use case, we see that the three meth-
ods might be desirable in different scenarios. The dynamic
programming heuristic and fast iterative heuristic are more
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Fig. 4. Results of the exhaustive search and the three allocation heuristics, using cost and uncertainty values derived from Table I.

Fig. 5. Reachable sets of the system states for the first 20 steps with perfect
state sensing, min., and max. uncertainty among all NNs considered, projected
into dimensions 3 and 4, up to time 20.

suitable when a concrete budget has not been set, and a search
over the whole space might provide valuable insight into
the cost-performance tradeoff of the system. In this scenario,
the two methods differ in the granularity of the results: the
dynamic programming approach finds more optimal points but
is slower, and the fast iterative approach leaves some gaps but
is more efficient. The sensitivity analysis approach is more
suitable when a budget has already been set, or when the
design space is too huge for using other methods.

B. Case Study with Dist-YOLO

In our second case study, we aim to verify the results
obtained from EfficientNet uncertainty and cost values by

evaluating our method with realistic neural networks. Towards
this, we trained the Dist-YOLO [33] object detection and
distance estimation model on the KITTI dataset [38], namely
the KITTI 3D Object Detection Evaluation 2017 dataset. It
contains 7481 images with ground truth distance labels, of
which, 6699 images are used for training and 782 images for
testing. We used six different backbones configurations such as
MobileNet [2], EfficientNet [1], and Xception [39]. For each
configuration, we trained and evaluated Dist-YOLO model on
the KITTI dataset, reporting the absolute relative error (ARE)
in distance estimation and floating point operations (FLOPs)
required by each configuration. They are outlined in Table IV
and in Figure 7. We use the absolute relative error (ARE) as
the uncertainty values ϵ and FLOPs as the cost values c.

Figure 6 highlights the exhaustive search and heuristic
results using cost and uncertainty values from the Dist-YOLO
models. Given the relatively high error in estimation, the
maximum diameters in this case study are higher, potentially
indicating that the system reaches a divergent state. This has
also made it less meaningful to distinguish between a safe
and unsafe maximum diameter. Nonetheless, we observe from
the exhaustive search results in Figure 6a that the general
shape of the maximum diameter vs. cost tradeoff surfaces
remains similar to the previous case study. We evaluate the
heuristics against the exhaustive search and report the re-
sults in Figures 6b to 6d. Out of the three heuristics, the
dynamic programming-based heuristic still performs very well,
capturing nearly all points on the Pareto front. In contrast,
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Fig. 6. Results of the exhaustive search and the three allocation heuristics, using cost and uncertainty values from Dist-YOLO [33] in Table IV.
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Fig. 7. Absolute relative error vs. size from different Dist-YOLO [33]
configurations utilizing various backbones.

the greedy fast iterative heuristic produces solutions that are
close but not quite on the Pareto front. We hypothesize that
this is due to the uncertainty vs. cost tradeoff in our trained
Dist-YOLO setup, as shown in Figure 7, is not as optimized
as the EfficientNet configurations, whereas the greedy fast
iterative heuristic assumes diminishing returns in increased
neural network sizes. Finally, the sensitivity analysis-based
heuristic also performed worse than in the previous case study.

VI. CONCLUDING REMARKS

In this work, we associated the control performance of
autonomous systems to the optimal neural architecture sizing
problem. Our key observation is that optimizing the accuracy
of neural networks in isolation does not necessarily lead
to better control performance. Instead, it is important to
consider the dynamics of the system, and resource allocation

TABLE IV
DIST-YOLO FLOPS VS. ABSOLUTE RELATIVE ERRORS (TRUCK AND

CAR) WITH DIFFERENT SIZED BACKBONES

Backbone FLOPs Abs. Rel. Error

MobileNetv3 small 9.833G 42.53%
MobileNetv2 43.714G 34.23%

EfficientNet B2 69.371G 30.61%
EfficientNet B3 84.574G 27.23%

Xception 103.935G 24.34%
EfficientNet B6 205.171G 21.08%

for neural networks should reflect their contribution to the
overall system performance. We presented three heuristics
with varying optimality and speed tradeoffs and evaluated
them on a numerical case study against solutions obtained
from exhaustive searches. We found that they were able to
identify close-to-optimal solutions while drastically reducing
the design space exploration time.

This work also points to the possibility of co-designing
(a) neural architectures for perception processing, and (b) con-
trollers that use the output of such neural networks. There
is a large volume of literature on the co-design [40], [41]
of controllers and communication schedules for a variety
of protocols [42]–[44] that impact the sensor-to-actuator de-
lays experienced by the controllers [45]. Scheduling control
tasks [46] and communication protocols together with neural
architectures and controllers will be an interesting extension
to the existing control/architecture co-design literature.

While our methods effectively minimize the diameters of
reachable sets, there is an avenue for future exploration in



considering alternative metrics for evaluating the performance
or safety of autonomous systems, such as liveness properties.
In addition, our focus has been on the accuracy and cost
tradeoffs of neural networks in an offline context. Yet, there
are many other properties of neural networks that are relevant
in autonomous system design. For instance, neural network
early exit policy, an online strategy that trades accuracy
and inference latency, remains unexplored in our framework.
Extending our framework to encompass these richer settings
will be a fruitful future direction. Finally, this work belongs
to the less explored area of context-dependent neural network
design, where the goal is no longer to design networks with the
best inference, but rather the best system-level performance.
Acknowledgments: This work was partially supported by the
NSF grant CPS-2038960.
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