
Quantitative Safety-Driven Co-Synthesis of
Cyber-Physical System Implementations

Clara Hobbs∗, Shengjie Xu∗, Bineet Ghosh†, Enrico Fraccaroli∗,
Parasara Sridhar Duggirala∗, Samarjit Chakraborty∗

∗The University of North Carolina at Chapel Hill, USA †The University of Alabama, USA
Email: ∗{cghobbs, sxunique, enrifrac, psd, samarjit}@cs.unc.edu, †bineet@ua.edu

Abstract—Feedback controllers form the algorithmic core of
many cyber-physical systems (CPSs). They are increasingly
becoming computationally expensive and efficiently implementing
them on resource-constrained platforms—such as those in the
automotive domain—while guaranteeing safety is now an im-
portant challenge. Current workflows allow control strategies to
be designed independently of the implementation environment
and require control tasks to meet predetermined deadlines.
Embedded systems engineers treat these control tasks as black
boxes and focus on meeting all deadlines as the mechanism
for ensuring safety. In this paper, we argue that deadlines are
only a means to an end and should not be treated as “first-
class citizens.” Instead, the focus should be on high-level safety
properties of relevance. Our main technical contribution is in
automatic synthesis of safe CPS implementations: given a set
of controllers to be implemented on a shared resource, along
with their safety properties (a form of state space trajectory
robustness), we synthesize an implementation that does not
necessarily meet all task deadlines, but guarantees the safety
specifications of all controllers.

I. INTRODUCTION AND RELATED WORK

A. Background and motivation

The core functionality implemented by software in many
cyber-physical systems consists of various feedback control
loops [1]. In the automotive domain, these might be engine
control, brake control, cruise control, and suspension & vibra-
tion control [2]. The traditional implementation workflow is to
first design a controller, and then implement it as a software
task that is scheduled to finish within a specified sampling
period. Such a workflow ensures the separation of concerns,
enabling control theorists and embedded systems engineers to
only communicate via deadlines that must be met. Ensuring
safety therefore equates to meeting all deadlines.

The rise in demand for implementing autonomous features
into embedded systems such as in the automotive and robotics
domains has resulted in two main developments: (i) a dra-
matic increase in the volume of software being deployed,
and (ii) hardware architectures becoming more complex and
heterogeneous to accommodate new features in software [3].
With increasing hardware and software complexity, tightly
estimating the worst case execution time (WCET) of software
tasks is virtually impossible [4], [5]. For WCET estimates
to be safe, they are grossly overestimated. Meeting all task
deadlines with such overestimated WCET values leads to pes-
simistic or infeasible implementations and scheduling control
& signal processing tasks is also complex [6]. On the other
hand, ignoring the WCET estimates and over-provisioning the

hardware by scheduling an excessive number of tasks could be
potentially hazardous, as some tasks might implement control
mechanisms for safety critical aspects of the system. The
real-time scheduler therefore faces a two-fold pressure—from
the increased number of computationally expensive tasks to
be scheduled, and the overly pessimistic WCET estimates.
The correctness of any standard scheduler also relies on safe
WCET estimates. These developments have made it increas-
ingly challenging to engineer safe and efficient embedded
software implementations.

B. Missing Deadlines on Purpose

Our approach to resolving the above situation is to relax
one of the fundamental tenets of real-time scheduling: that
every task should meet its deadline. By allowing tasks to
occasionally miss their deadlines, we can contain some of the
pessimism stemming from the unavoidable WCET overesti-
mation. Instead of pinning the “safety” of the system to the
satisfaction of deadlines, we shift our focus to high-level safety
properties of relevance, viz., those that are specified in terms of
the behavior of the closed-loop feedback system. These high-
level safety properties can be satisfied even in the presence of
certain deadline misses. Once such “allowable” deadline miss
patterns are identified for each control task sharing a common
resource, they can be used to suitably schedule the tasks.

This raises two key questions: which deadlines may be
missed? and how can we synthesize a scheduler that schedules
only some of the tasks or allows the tasks to skip deadlines
some of the time? In answering these questions, we draw from
two themes of work and merge them in a way that has not been
done before. The first domain is formal methods & control
theory, and the other domain is real-time scheduling.

C. Prior Work: Weakly Hard Constraints and Control Theory

In the formal methods domain, several recent papers [7]–[9]
have investigated the effect of deadline misses on the dynamics
of feedback controllers. Using principles of switched systems
and reachability analysis, these works have demonstrated that
feedback control loops are stable and safe for a variety of
task deadline miss patterns. However, these works do not
provide any insight for synthesizing schedulers when various
control tasks share the same computational resource. Our own
prior work [9], [10] has attempted to synthesize schedules
for control tasks under deadline misses. But the underlying
resource model was restrictive (purely time-triggered [11])

Control
Task

Find Safe((
m
k

)
, d
)

pairs
Prune

dominated pairs
Find schedulable

parameter sets
Remove dominated

options

Fig. 1. The workflow of the proposed co-synthesis approach.

and did not exploit the variety of available algorithms on task
scheduling under deadline misses, as we discuss below.

Work in the real-time scheduling literature has investigated
the notion of weakly hard constraints [12]–[15]—where a task
can miss some of its deadlines—for performing scheduling
analysis. They formulate criteria to guarantee schedulability.
However, they are agnostic to specific weakly hard constraints
and provide no systematic means for deriving them. There also
exists work on scheduling task sets to meet given weakly hard
constraints [10], [16].

It is worth noting that deadline misses are prevalent in
industrial practice. This is because WCET estimates are largely
measurement based [17]–[20], rather than relying on static
analysis [21]–[23], to avoid the overestimation outlined above.
However, such deadline misses happen in an ad hoc man-
ner and are compensated for by extensively testing software
controller implementations and tweaking their parameters in
a trial-and-error fashion. One of the primary motivations
for studying weakly hard constraints is to provide a formal
framework for real-time guarantees in the presence of such
deadline misses stemming from practical estimates of WCETs.
However, most existing work on weakly hard constraints is
restricted to provide formal guarantees on task deadline misses
but do not extend to guarantees on the system-level behavior
of a dynamical system, as we provide in this paper.

D. Our technical contributions

Our main contribution lies in bridging the two above men-
tioned solutions: (i) synthesizing schedules for control tasks
under deadline misses, and (ii) task scheduling to meet weakly
hard constraints. We combine these to co-synthesize schedules
for multiple controllers, while guaranteeing their individual
safety specifications. By eliminating the constraint of meeting
all deadlines, we are able to ensure efficient implementations
and can schedule task sets with utilization greater than 100%,
thereby addressing the pessimism of overestimating WCET
values. Using standard design flows available today, such task
sets could not be implementable without additional resources.

Synthesizing an implementation in our work amounts to
deriving a schedule for multiple control tasks implemented on
a single resource. This can be extended to a broader notion of
implementation involving multiple computation and commu-
nication resources. The challenges involved in synthesizing
such a schedule are threefold. First, missing some of the
deadlines introduces non-determinism in the scheduler and the
number of possible schedules increases combinatorially with
the number of tasks. Second, for each state feedback controller,
the deadline misses that can be tolerated are a function of
its safety specification. Establishing this relationship between
safety and deadline miss patterns is non-trivial. Here, we
consider a quantitative notion of safety, viz., the deviation
of the closed-loop dynamics of the system from its ideal

dynamics where tasks always meet their deadlines. This notion
may be viewed as a form of trajectory robustness, where
certain trajectories in the state space are considered to be safe
and others not. While we only consider the deviation from
an ideal trajectory, additional constraints or other notions of
safety may be incorporated within our framework. Hence, in
the rest of this paper we use the general term “quantitative
notion of safety” to distinguish between safe and unsafe
trajectories using their deviation from an ideal trajectory. A
specific metric of deviation is introduced later in the paper.
Our notion of safety has more practical relevance than merely
ensuring stability, which a number of previous papers have
studied in the context of task deadline misses [7], [24]–[26].
They also did not study schedule synthesis as we do here.

Finally, the safety specifications of one or more tasks could
be interrelated, thus increasing the number of dependencies
on the task scheduler. Often controllers corresponding to
different sub-systems of the same system are implemented
on a shared resource. In such cases, the safety margin of
one controller may be adjusted when the margin of another
one is changed. Such dependencies are difficult to uncover
and typically each controller’s safety margin is determined
independently. We show how to uncover the trade-offs between
the safety margins of the different controllers to ensure that
they are implementable on a shared resource. This opens up
new optimization opportunities and provides an insight into
the design space that was not available before.

Our work leverages compositionality to combat the combi-
natorial explosion in the space of all possible schedulers. Our
approach consists of three parts. First, for a given feedback
control mechanism and its safety specification, we enumerate
possible weakly hard constraints [12]–[15] on the control
tasks that would preserve safety. Such constraints capture how
many deadlines within a specified window of consecutive task
periods need to be met, and are outlined in detail in Section III.
Second, we prune the space of weakly hard constraints for
each task by checking whether they satisfy the safety con-
straint for the task. Finally, we leverage existing schedulability
tests for weakly hard constraints to synthesize schedulers
for the control tasks. Since we consider quantitative safety
properties, we also derive a Pareto front showing the trade-offs
between the safety margins of the different tasks. We call our
approach co-synthesis because the weakly hard constraints for
all tasks sharing the implementation platform are determined
jointly. This design flow is illustrated in Figure 1.

A new & flexible contract: At its core, this paper re-
imagines the contract between the control tasks and the sched-
ulers from “all deadlines should be met,” to “all the deadlines
are weakly hard”. This allows us the flexibility of swapping
one scheduler to another, as long as the scheduler is able to
schedule all the tasks with weakly hard constraints. Indeed,
we show two different ways to synthesize the scheduler—

one is an online, dynamic priority scheduler, and the other is
an offline, automata-theoretic one. In Section IV we highlight
their relative (dis)advantages.

Related work in the broad area: We conclude this section
by putting our work in the broader context of studies on
the behavior of control systems under timing variations and
deadline misses. This topic has generally been studied under
the banner of networked control systems [27]–[29]. Here, the
goal has been to characterize control performance in presence
of (wireless) network packet drops and delays [30]. The drop
or deadline miss characteristics in such cases are given and the
goal has been to mitigate their effect by suitably designing the
controller [31]. In contrast to such studies, in this paper we
determine the drop or deadline miss patterns by appropriately
designing a scheduler, and therefore solve a fundamentally
different problem that is related to synthesizing controller
implementations from control laws [32]. Problems closer to
ours have been studied before, for instance, in [33], which
seeks to optimize control performance while dropping jobs
in overloaded processors. Their approach made use of an
online arbiter to drop selected jobs, which unfortunately runs
in exponential time. By contrast, our work has no such arbiter,
and seeks to optimize performance in an offline fashion for
efficiency. [34] seeks to solve a similar problem to ours, but
focuses on stability instead of safety (as we do), and uses a
different timing model. Further, their experiments test stability
of switched systems by merely testing stability of individual
modes, which is insufficient [35].

Paper organization: We provide background on linear
control systems in Section II, on safety constraints in Sec-
tion III, and weakly hard constraints and their representation
in Section IV-A. The technical details of our proposed co-
synthesis approach is provided in Section IV-B. We highlight
the advantages of our approach by comparing with other
scheduler synthesis frameworks in Section V. Finally, Sec-
tion VI provides concluding remarks and future directions.

II. CONTROL THEORY BACKGROUND

In this work, software tasks are assumed to implement state-
feedback controllers for linear time-invariant (LTI) dynamical
systems. These systems can be modeled in discrete time as

x[t+ 1] = Ax[t] +Bu[t], (1)

where A ∈ Rp×p is the dynamics matrix, x[t] ∈ Rp is the
system state at time t, and B ∈ Rp×q is the input matrix.
The control input u[t] ∈ Rq is computed as u[t] = Kx[t− 1],
giving a one-step delay between sampling the plant’s state
and applying the resulting control input. This is commonly
referred to in the literature as the logical execution time (LET)
paradigm. The matrix K ∈ Rq×p is called the controller’s
feedback gain, and is assumed to be given in this work. A
system of this form can be modeled by a single equation using
an augmented state space z[t] = [x[t]T ua[t− 1]T]T , by

z[t+ 1] =

[
A B
0 0

]
z[t] +

[
0
I

]
ua[t]. (2)

This puts the delayed controller into the standard form of (1),
allowing the feedback gain Ka ∈ Rq×(p+q) to be computed
by standard techniques such as pole placement or as a linear-
quadratic regulator. This can be further simplified to

z[t+ 1] =

[
A B
Ka

]
z[t]. (3)

Now we no longer assume that all deadlines will be met and
therefore some control input updates will be missed, causing
a deviation from the system’s intended behavior.

III. FINDING SAFE WEAKLY HARD CONSTRAINTS

While much of the real-time scheduling work considers
hard real-time tasks, where all deadlines must be met to
ensure a task’s temporal correctness, this is overly restrictive in
some cases. Indeed, many systems can tolerate some deadline
misses, as long as too many of them do not occur consecu-
tively, or within a bounded window. To characterize or model
such hit/miss patterns, the weakly hard real-time model was
proposed in [36], [37] and there has been a renewed interest
in it recently [7], [12]–[14], [38]. This model allows some
deadlines to be missed, as long as some are met according to
a particular sliding window constraint. Several such types of
constraints have been considered in the literature. In this work,
we focus on meet any constraints, denoted

(
m
k

)
(pronounced

“meet any m out of k”), which require that out of any window
of length k, at least m deadlines are met. A constraint of this
form is equivalent to the m, k-firm model proposed in [36].
When considered over finite-length strings, these constraints
make up regular languages, a property that we will use later
when modeling system behavior under deadline misses.

Weakly hard constraints can be compared via the language
of deadline hit/miss patterns they accept. We denote the
language accepted by constraint

(
m
k

)
as L

((
m
k

))
. A con-

straint
(
m
k

)
is said to be stronger than

(
p
q

)
, denoted

(
m
k

)
⪯

(
p
q

)
,

if L
((

m
k

))
⊆ L

((
p
q

))
. An exact condition for this is given

in [37], reproduced here for completeness.

Theorem 1 (Theorem 5 from [37]).(
m

k

)
⪯

(
p

q

)
⇐⇒ p ≤ max

{⌊ q
k

⌋
m, q +

⌈ q
k

⌉
(m− k)

}
.

In this section, we present a method for determining safe
weakly hard constraints for a given control system. We first
present our notion of safety in Section III-A, then discuss how
safety can be proven in Section III-B. Finally, in Section III-C,
we present a method for finding a set of safe constraints for
a given system, keeping the necessary information for our co-
synthesis approach to be discussed later.

A. Safety

In this section, we define the notion of safety considered in
this work. We first introduce the behavior of a control system
during deadline misses and then present the notion of system
safety in presence of such misses. When a feedback control
job misses its deadline, the engineer has the flexibility to either
kill the job, or not change the schedule and let the job run its

course, or not schedule more jobs of the same control task
until the current job is finished. Similarly, the actuator that
receives the actuation values from the control task can either
give zero input when the job misses its deadline, or hold the
previous actuation value, or perform some interpolation on
the history of the actuation values. A thorough discussion on
these strategies and their consequence to stability and safety
have been presented in [7], [9]. In this work, we focus on the
strategy of killing the job at its deadline.

For actuation, we consider two strategies: setting the control
input to zero, and holding the previous control input when the
job misses its deadline. In the former case, the dynamics of
deadline miss are described by

z[t+ 1] =

[
A B
0 0

]
z[t], (4)

and in the latter case, the control input is held via

z[t+ 1] =

[
A B
0 I

]
z[t]. (5)

The various permutations of the scheduling and actuation
strategies only affect the closed loop dynamics; as the readers
will observe in Section IV, the algorithm for co-synthesis of
scheduler for all the control tasks remains the same.

As the system evolves differently when deadlines are
missed, this causes some deviation from the nominal behavior.
For example, in an adaptive cruise control system, deviation
may include a change in the vehicle’s speed, or its lateral
position within the lane. Small amounts of deviation may be
acceptable, but it could clearly be unsafe for a vehicle to travel
much too fast or to swerve out of its lane entirely. Thus, our
goal is to place an upper bound on the amount of deviation
that can occur under deadline misses.

To do this, we first define a run of a control task as a
sequence of actions corresponding to each job of the task.

Definition 1. A run of a control task is a sequence r =
⟨r1, r2, . . . , rH⟩ of actions, where each action is either hit or
miss. The nominal run rnom is the run of all hits.

Given a run of a task, its evolution can be computed
using (3) for each period when the deadline is met, and
using (4) or (5) for each deadline miss.

Definition 2. The evolution of a run r is a sequence evol(r) =
⟨z[0], z[1], z[2], . . . , z[H]⟩, where z[0] is the initial state of the
control system. Each subsequent state z[t + 1] is computed
by (3) if rt+1 = hit , and by (4) or (5) if rt+1 = miss under
the zero or hold strategy, respectively.

From a run’s evolution, we can compute its deviation from
the nominal run as the maximum distance over time.

Definition 3. The deviation of a run r is the maximum dis-
tance over a metric dis(·, ·) between evol(r) and the evolution
of the nominal run evol(rnom) at any time t, computed as

dev(r) = max
1≤t≤H

dis
(
evol(r)[t], evol(rnom)[t]

)
.

This notion of deviation can be easily extended to an
analysis that considers an initial set z[0] instead of one state
by using, e.g., Hausdorff distance between the reachable sets.
Given a weakly hard constraint, the maximum deviation can
be computed as the greatest deviation of any of its allowed
runs.

Definition 4. The maximum deviation of a control system
subject to a weakly hard constraint Oi is defined as

di = max
r∈L(Oi)

dev(r).

We say that a system is safe under a weakly hard con-
straint O if the maximum deviation subject to O is at most
a given upper bound. Intuitively, this means that under any
run, the system’s state can never veer too far from the
evolution of the nominal run. Given that there have been
several quantitative notions of safety such as robustness of
Signal Temporal Logic [39], or probabilistic guarantees on
safety [40], it is worth discussing why we selected the devia-
tion from the nominal behavior for quantifying the notion of
safety. Control design is a multi-objective optimization where
the engineer must carefully balance the safety and performance
requirements along with resource constraints. The engineer
often does not have access to all the requirements expressed
in a formal logic and a given design might implicitly satisfy
several requirements. Further, given the continuity properties
of closed loop systems, engineers expect the system behaviors
to deviate from the ideal behaviors because of sensor and
actuator noise and modeling uncertainties. We therefore build
on this notion of continuity and quantify the safety of a control
implementation as the deviation from the expected behavior.
We demonstrate this notion of safety in Example 1.

Example 1 (Safety of an electric steering application). We
demonstrate the concept of safety, concerning deviations from
the nominal trajectory, using an example of a permanent mag-
net synchronous motor used in an electric steering application.
The system model we consider has two states and one control
input. We use the parameters of the model and Tustin’s method
to discretize it and obtain the following system model [7]:

x[t+ 1] =

[
0.996 0.075
−0.052 0.996

]
x[t] +

[
0.100 0.003
−0.003 0.083

]
u[t];

where x = [d q]T are the state variables. An optimal feedback
controller for this system under nominal timing behavior
computed using LQR is:

u[t] =

[
0.9067 0.07384 0 0
0.01041 0.9685 0 0

] [
x[t− 1]
u[t− 1]

]
.

This controller is computed under nominal timing behavior,
but it may suffer from deadline misses at runtime. In such
cases, some deviation from the nominal trajectory is accept-
able, as long as it falls within the safety margin. The nominal
trajectory of the system, green in Figure 2, represents the
ideal behavior (under no deadline misses). The cyan rectangles
around the nominal trajectory represent the desired safety

Fig. 2. Several trajectories of the electric steering example resulting from
deadline misses in Example 1.

margin, where any deviation remaining within this region is
considered safe. The safety margin at each time step represents
the acceptable deviations in the states of the system. We
computed several trajectories with deadline misses, shown
in black and red in Figure 2. Although the system remains
stable in the presence of deadline misses, some trajectories
violate the safety property by going beyond the safety envelope
(shown in red), while some remain within the safety margin
(shown in black). The safety envelope highlighted in red is
violated by one trajectory. The behavior would have been safe
if the trajectory was within the red highlighted safety envelope,
whereas it stretches outside to the point marked ‘×’. Note that
the point is at a different time instant than the cyan rectangle
it appears inside in the figure due to 2D projection.

Unfortunately, directly computing the maximum deviation
as defined in Definition 4 is intractable, as the number of runs
is exponential in the time horizon for a non-trivial constraint.
We outline an efficient approach to bounding deviation next.

B. Proving Safety

To tackle the problem of efficiently determining if a con-
troller is safe under a given weakly hard constraint, [9] recently
proposed a reachability-based algorithm for the switched
dynamics resulting from deadline misses. We outline the
approach in this section, and refer the reader to that work
for a more in-depth discussion.

The method begins by first modeling weakly hard con-
straints and the resulting plant dynamics as a finite-state
automaton. An example of such an automaton is shown in
Figure 3. Each location in the automaton corresponds to some
past pattern of deadline hits and misses, and a transition is
taken on each hit or miss. In the example, each location ℓi
corresponds to having just missed i deadlines in a row. As we
assume that the scheduler satisfies the weakly hard constraint,
the final location ℓN has no outgoing transition on a deadline
miss. On a transition, a matrix representing the dynamics
and feedback gain is produced as output, thus enabling the
computation of a run’s evolution as in Definition 2. In the

ℓ0 ℓ1 ℓ2 ℓi ℓN

hit/AH

miss/AM miss/AM miss/AM miss/AM

hit/AH
hit/AH

hit/AH

hit/AH

Fig. 3. Automaton capturing the
(1
N+1

)
weakly hard constraint.

example, the matrix from (3) is denoted as AH, and the matrix
from (4) or (5) is denoted as AM.

Given such an automaton, the first iteration of the algorithm
proceeds as follows. Starting at the initial location from plant
state z[0], the algorithm computes all reachable states up to
some short time bound b. It then computes the axis-aligned
bounding box of all plant states that are reachable in each
location. An example is shown in Figure 6 in the appendix,
where the initial plant state is [1.0 1.0]T at t = 0, and the
constraint used is

(
1
4

)
. The plant’s possible evolutions are

simulated for 7 sampling periods, at which time, axis-aligned
bounding boxes are taken for each of the four automaton
locations.

In each following iteration, the algorithm computes the
reachable sets from each of these bounding boxes, stating from
each corresponding automaton location. For linear systems,
this can be done by computing the evolution of each corner of
the bounding box. The boxes for each location are combined
into a single box, setting up similar conditions for each subse-
quent iteration. Running

⌈
H
b

⌉
iterations, an overapproximation

of all runs of the system is computed efficiently for the time
horizon H . Given the reachable sets until time H , the deviation
is computed as the maximum distance between any point in
these sets and the nominal run’s evolution.

C. Finding Safe Constraints

Given this reachability approach to finding an upper bound
on the maximum deviation, it is straightforward to find safe
weakly hard constraints for a given plant model and controller.
One could simply compute upper bounds on deviation for
all

(
m
k

)
constraints up to a maximum window size k, then

check which ones satisfy the system’s safety constraint. How-
ever, this approach is inefficient, as it ignores that some weakly
hard constraints dominate others as shown in Theorem 1. If
for constraints O and P , O ⪯ P , and O is unsafe, then it
is clear that P is also unsafe. Similarly, if P is safe, then O
must also be safe, as all its runs are contained within P .

From these observations, [10] proposes an efficient method
for finding safe

(
m
k

)
weakly hard constraints for a given

control system model. This approach iterates over the window
size k up to a given maximum, finding the smallest m for
which the system is safe at each window size. Once such a
safe constraint is found, Theorem 1 implies that all larger m
values for the same window size are also safe. Therefore, the
iteration increments the window size to try a harder constraint,
without changing m. In this way, one can find the safety of a
quadratic number of constraints in a linear number of calls to
the algorithm from Section III-B.

This approach suffices if one is only interested in finding
which constraints are safe. However, in this work, we propose
to consider safety as a constraint to a multi-objective optimiza-
tion problem, discussed later in Section IV-B. The objective
of this optimization is to minimize deviation for all tasks in
the system. As such, we must also find the actual deviation
bounds achieved for each safe constraint.

Our approach to this checks weakly hard constraints
(
m
k

)
as follows. We iterate over the number of met deadlines m,
checking each window size k from m + 1 to the given
maximum window size, and storing the resulting deviation
bounds. When a constraint

(
m
k

)
is found to be unsafe, i.e., the

deviation bound computed exceeds the safe limit, we move
on to the next number of met deadlines, starting the window
size iteration over. In this way, we only check one unsafe
constraint for each m, but we still check every safe constraint
to determine its resulting deviation bound.

This approach provides a means of determining safe con-
straints for each control system under consideration, as well as
the resulting deviation bounds for each. This acts as the first
step to our co-synthesis approach for cyber-physical system
implementations. To use these constraints, however, we must
also have a way to schedule tasks so that the weakly hard
constraints are satisfied. We examine two such approaches
below in Section IV-A.

IV. CO-SYNTHESIS APPROACH

In this section, we give a brief survey of real-time schedulers
for tasks with weakly hard constraints in Section IV-A. We
then discuss how we use these schedulers in our co-synthesis
approach for implementing multiple control tasks on a shared
processor in Section IV-B.

A. Scheduling with Weakly Hard Constraints

A number of approaches have been proposed in the liter-
ature for scheduling periodic task systems with weakly hard
constraints. These can be broadly classified as either offline
schedulers, which generate a fixed time-driven schedule before
runtime; or online schedulers, which react to events such as
job releases and completions to schedule the task system
at runtime. We consider both approaches in this work via
a representative example of each: an online job-class-level
scheduler [16], and an offline automaton-based scheduler [10]
that has been used for safe scheduling of control systems. The
operation of these are detailed in this section, and we note that
any weakly hard scheduler could be used with our co-synthesis
approach, not only these two. Before presenting these, we
introduce our real-time task model in the next section.

1) Task Model: We consider the scheduling of a set of pe-
riodic real-time tasks τ = {τ1, τ2, . . . , τn} on a uniprocessor.
Each task τi = (Ti, Di, Ci, Oi), where Ti is the period or
interarrival time, Di is the relative deadline, Ci is the worst-
case execution time, and Oi is a weakly hard constraint for
the task. The constraint Oi represents a pattern of deadlines
that must be met for the task’s temporal correctness.

In real-time scheduling, it is often useful to consider a
task’s utilization, representing the long-term average processor
share required by each task to ensure its safe execution. When
weakly hard constraints are considered, however, the notion of
utilization becomes less clear, as not all instances of a task are
required to complete, or even begin, execution. Therefore, we
consider two types of utilization.

Definition 5. The maximum utilization of a task τi is given
by U i = Ci/Ti.

Definition 6. The minimum utilization of a task τi is given
by U i = Ci/Ti ·mi/ki, where Oi =

(
mi

ki

)
.

Both types of utilization may be computed for a task
system τ by summing the utilization for all tasks in τ , and are
denoted with no subscript. In this work, we assume that the
maximum utilization U of the task system is greater than 1,
meaning that the task system cannot be scheduled without
some deadline misses. For a task system to be schedulable,
it is necessary, but not sufficient, that its minimum utiliza-
tion U ≤ 1. The weakly hard constraints of non-control tasks
are given, and are not adjusted by our approach. However, we
assume that changes to the weakly hard constraints of control
tasks can be made as long as their safety is still guaranteed.

2) Job-class-level scheduling: To provide an efficient
method of scheduling periodic weakly hard tasks, Choi, Kim,
and Zhu proposed a dynamic-priority online scheduling ap-
proach [16]. Their algorithm divides the jobs of each task into
job-classes on the basis of the previous number of consecutive
deadline hits. Each job-class of each task is assigned a fixed
priority using a heuristic. Given job-class priorities and the
parameters of each task, a schedulability test is used to
determine if any violations of the weakly hard constraints are
possible during online scheduling. If no such violations are
possible, the task system is deemed schedulable. A description
of the scheduler’s operation is included in Appendix A.

3) Automata-based scheduling: To provide a baseline in our
experimental evaluation (Section V), we consider an automata-
based scheduling approach for weakly hard tasks, which has
been used in the context of guaranteeing safety for multiple
controllers [10]. This scheduler is optimal, in that it will
always find a feasible schedule for the task system if one
exists. However, it can only be used in the limited context
of synchronous weakly hard tasks with equal periods.

The automaton-based scheduler divides time into slots of
one sampling period. The key assumption is that in each slot, a
fixed number of jobs j can be scheduled, less than the number
of tasks in τ . Thus, some deadlines must be missed. The
scheduler operates offline, creating a time-driven schedule.
In each slot, at most j tasks release jobs. The scheduler’s
operation is described in more detail in Appendix B.

B. Co-Optimizing Deviation for Multiple Controllers

The work in [10] provides a method of guaranteeing safety
for a set of control tasks implemented on a shared platform that
lacks sufficient computational resources to run all controllers

as designed. However, when several safe schedules are found,
it offers no guidance to system designers on which schedule to
use. For example, consider a system with two control tasks, τ1
and τ2. It may be that these are both safe when run with the
weakly hard constraint

(
1
3

)
. By Theorem 1, they must also

be safe under
(
2
3

)
, whereby more deadlines must be met. As

meeting more deadlines generally causes lower deviation from
the nominal behavior, this may be desirable, but the system
may not have the resources to run both tasks with this stronger
constraint. While similar scenarios may easily arise in practice,
prior work has not considered how to determine, e.g., which
task to run with the

(
2
3

)
constraint in our scenario.

In this section, we introduce a novel co-optimization ap-
proach that seeks to answer this question by minimizing
the deviation of all tasks via a multi-objective optimization
formulation. We assume that each control task controls an
independent plant, that is, the execution of one task does not
impact the state of another. Our formulation takes the weakly
hard constraints Oi for each control task τi as variables, and
has the minimization of the vector of deviation upper bounds
as its objective. The optimization problem is as follows:

min
Oi

⟨d1, d2, . . . , dn⟩ s.t.(∀i : di ≤ di) ∧ (τ is schedulable)

A solution S corresponds to an assignment of weakly hard
constraints Oi to each control task τi. Such a solution results
in a deviation upper-bound di for each control task, each
satisfying a safe deviation di. A solution S is said to be
dominated by another solution S′ if for all i, di ≥ d′i. As this is
a multi-objective optimization problem, there is generally not
a single solution, but a set of non-dominated, Pareto-optimal
solutions referred to as the Pareto front.

Due to the dynamics of a control system under deadline hits
and misses, this formulation presents a non-linear, non-convex
optimization problem, not amenable to standard tools such as
mixed-integer linear program solvers. As such, we propose a
custom solution that can efficiently solve the problem through
pruning via the dominance of weakly hard constraints. We
explain this approach in Example 2 by way of a simple
example to demonstrate its usage.

Example 2. To illustrate the operation of our optimization
approach, we present a numerical example using two control
tasks and one non-control task. The dynamics of control
task τ1, discretized at a period of 20 ms, are given by

z[t+ 1] =

1 0.12 0.024
0 1 0.4
0 0 0

 z[t] +

00
1

ua[t],

ua[t] =
[
0.584 0.901 0.347

]
z[t].

The dynamics of the second control task τ2, discretized at a
period of 10 ms, are given by

z[t+ 1] =

 0.951 0.00971 0.000049
0.000097 0.990 0.00995

0 0 0

 z[t] +

00
1

ua[t],

ua[t] =
[
0.00706 0.227 0.00228

]
z[t].

Control task τ1 has period T1 = 20 ms, WCET C1 = 6 ms,
and implicit deadline (equal to its period). Control task τ2
has period T2 = 10 ms, WCET C2 = 3 ms, and implicit
deadline. Finally, non-control task τ3 has period T3 = 130 ms,
WCET C3 = 70 ms, and implicit deadline. The weakly hard
constraint of τ3 is given by O3 =

(
2
5

)
.

For this task system, U ≈ 1.138, indicating that this system
cannot be scheduled without some deadline misses. Our goal
is to find weakly hard constraints for tasks τ1 and τ2 that guar-
antee their safety, and the task system’s schedulability, while
keeping their deviation as low as possible. Both controllers
are assumed to start at the state z[0] = [10 10 0]T . Task τ1 is
considered safe if its first state variable z1[t] remains within
5 units of the nominal evolution, and task τ2 is safe if its first
state variable remains within 0.01 units of nominal.

To begin the optimization procedure, listed in Algorithm 1,
we assume that upper bounds to deviation are available for all
safe weakly hard constraints for each controller. We are implic-
itly assuming that the safety requirements of each controller
are independent. While in general there could be dependencies
among safety requirements between controllers, handling such
requirements is beyond the scope of this work. Recall that
these bounds can be obtained as described in Section III-C.
Recalling Theorem 1, some weakly hard constraints can be
found to be stronger than others, meaning that the language
of strings they accept is contained within another’s. Thus, a
weaker constraint allows strictly more flexibility for schedul-
ing than a stronger one.

Our first step in optimization is to use this relation to
prune weakly hard constraints that will never produce optimal
results. Given two constraints O and O′ and their respective
deviation bounds d and d′, if O ⪯ O′, and d = d′,
then the pair (O, d) is pruned on line 6. Intuitively, this is
safe because (O, d) is no better for scheduling or control
performance than (O′, d′).

Example 2 (continued). We first check the safety of all miss-
any weakly hard constraints up to a maximum window size
of 6. For each safe constraint, the deviation bound is shown
in Table I. Constraints that could not be verified as safe are
indicated by an . The bounds on each diagonal are all equal
for τ1, and are close to equal for τ2. Because of this, the
pruning procedure is able to remove all constraints for τ1
except

(
1
2

)
and

(
1
3

)
, but does not remove any constraints for τ2.

After pruning, we examine the Cartesian product of the safe
constraints for each task in the loop on line 8. We iterate
through these sets of constraints in the lexicographical order of
the deviation vectors they produce. For each set of constraints
considered, we test the resulting task system’s schedulability.
For efficiency, we first test the necessary condition that U ≤ 1
on line 10, rejecting any combinations for which this does
not hold. We also avoid running the schedulability test if the
resulting deviation vector is dominated by a candidate solution
we have already found, as we then know that this set of
constraints will never be part of the Pareto front. Searching

TABLE I
SAFE DEVIATION BOUNDS

(m
k

)
FOR THE CONTROL TASKS τ1 (TOP)

AND τ2 (BOTTOM, ALL VALUES ×10−3) IN EXAMPLE 2

m
k 1 2 3 4 5

2 1.6714
3 3.3944 1.6714
4 3.3944 1.6714
5 3.3944 1.6714
6 3.3944 1.6714

m
k 1 2 3 4 5

2 2.9805
3 5.9281 2.9800
4 8.8443 5.9275 2.9799
5 8.8435 5.9272 2.9798
6 8.8430 5.9269 2.9796

in lexicographical order helps to increase the number of
constraint sets we can skip in this way. After this pruning,
we run a schedulability test for the scheduling algorithm
under consideration on line 12. If this test passes, then the
solution is added as a candidate for the Pareto front. After all
combinations from the Cartesian product have been tested, we
eliminate non-optimal solutions by the dominance of deviation
vectors to find the Pareto front on line 15.

1 Function ScheduleOptimization(τ , O1, O2, . . . , On)
input : Task system τ , mapping of safe constraints to deviation

bounds Oi for each control task τi
output: Mapping from optimal task systems to vectors of

deviation bounds
2 foreach control task τi ∈ τ do
3 foreach constraint, deviation pair (O, d) ∈ Oi do
4 foreach constraint, deviation

pair (O′, d′) ̸= (O, d) ∈ Oi do
5 if O ⪯ O′ and d = d′ then
6 Delete (O, d) from Oi ;

7 candidates ← ∅;
8 foreach

(
⟨O1, O2, . . . , On⟩, ⟨d1, d2, . . . , dn⟩

)
∈

O1 ×O2 × · · · ×On, in lexicographical order of deviation
vectors do

9 τO ← τ with constraints ⟨O1, O2, . . . , On⟩;
10 if UO > 1 or ⟨d1, d2, . . . , dn⟩ is dominated by a

candidate then
11 continue;
12 if τO is schedulable then
13 Add

(
τO, ⟨d1, d2, . . . , dn⟩

)
to candidates;

14 P ← ∅;
15 foreach candidate solution do
16 if not dominated by another solution then
17 Add solution to P ;
18 return P ;

Algorithm 1: The proposed co-optimization approach for
minimizing deviation.

Example 2 (continued). All the schedulable solutions for our
example are plotted in Figure 4. Each point represents the
deviation bounds for a safe set of weakly hard constraints; d1
is shown by the horizontal axis, and d2 on the vertical axis.
The optimal solutions are highlighted in blue and annotated
with the weakly hard constraints for tasks τ1 and τ2, and the
dominated solutions are shown in gray.

Fig. 4. Solutions for Example 2. Optimal points are marked with O1, O2.

V. EVALUATION

In this section, we present experimental results from a case
study conducted using five control tasks from the automotive
domain. We examine controllers for these tasks first having
equal periods, then with redesigned controllers for unequal
sampling periods. In both cases, we are able to find schedules
using our method that minimize the deviation of the control
systems, offering tradeoffs to system designers.

To test our methods, we produced an implementation in
the Julia [41] programming language. This implementation
includes our co-synthesis approach, as well as analysis for
the two scheduling algorithms discussed in Section IV-A. All
experiments were performed on an Intel E5-2680 processor
with 256 GB of RAM, running Red Hat Enterprise Linux 7.4.
We consider the execution of controllers for five dynamical
systems from the automotive domain. The parameters of
these systems in continuous time are listed in Appendix C.

A. Equal Period Case Study

For our first case study, we consider the systems from
Appendix C, all sampled at a uniform period of 20 ms,
matching the case study in [10]. The control tasks for the
systems from Sections C1–C5 are denoted by τ1–τ5, respec-
tively. For simplicity, we consider no non-control tasks in this
case study. The WCETs of τ1–τ5 are 5 ms, 6 ms, 3 ms, 11 ms,
and 9 ms, respectively. The maximum utilization is U = 1.7,
meaning the system cannot be scheduled without missing some
deadlines. The RC Network model is considered safe if the
difference between its state variables never exceeds 1.4 V
from nominal. Safety for all other systems is determined by
the difference in the first state variable only. The safe bound
for the F1tenth Steering model is 12.0; for the DC Motor
model, 3.5; for the Car Suspension model, 9.4; and for the
Cruise Control model, 5.3. The initial state considered in all
systems is x[0] = [10 10 0]T .

We first determine safe constraints for this case study. These
are given in Table III in the appendix, where unsafe constraints
are denoted by and safe but dominated constraints are
denoted by . As is clearly seen, a number of safe, non-
dominated constraints are found for each system, leaving a
wide range of tradeoffs to be explored by co-synthesis.

We next attempt to find feasible schedules under combina-
tions of these constraints using the job-class-level scheduler
described in Section IV-A2. Unfortunately, the case of all

d
1

d2

d 50.0

0.5

1.0

0

2

4

0

1

2

3

Fig. 5. Pareto front for equal periods, showing deviation for τ1, τ2, and τ5.

periods being equal is pathological for this algorithm’s schedu-
lability analysis, and reduces to testing U ≤ 1. Since this is
not the case here, no schedules are found to be feasible for this
scheduler. We thus move on to the automata-based scheduler
described in Section IV-A3. Given the WCETs of each task,
this algorithm schedules a maximum of two tasks per 20 ms
sampling period. Despite this limitation, the scheduler is quite
robust for equal-period tasks, finding a total of 133 Pareto-
optimal sets of weakly hard constraints for this task set. A
projection of these into three dimensions for tasks τ1, τ2,
and τ5 is shown in Figure 5. The points that appear to be
dominated in this plot achieve lower deviation bounds for
tasks τ3 or τ4, and therefore are still Pareto optimal.

B. Varying Period Case Study

For our second case study, we consider the same systems
from our experimental setup, but no longer sampled at a
uniform period. Instead, we now take the periods for τ1–τ5
to be 20 ms, 20 ms, 10 ms, 100 ms, and 50 ms, respectively,
still with all deadlines equal to periods. The WCETs are 6 ms,
7 ms, 3 ms, 15 ms, and 11 ms, respectively. Otherwise, the
experimental setup is the same as in Section V-A. In this case,
the maximum utilization U = 1.32, again indicating that the
system cannot be scheduled without some deadline misses.

As before, we begin by finding safe deviation bounds for
each of the controllers in this case study. The results are given
in Table IV in the appendix. As before, a range of tradeoffs
is available for each task. It is worth noting that the deviation
values for the DC Motor model differ slightly along each
diagonal, so that no pruning was possible.

Because the periods are not equal, we can no longer
use the automata-based scheduler. However, the job-class-
level scheduler can be used for this case study. Using the
schedulability test given in [16], we find only 7 optimal
solutions, out of a total of 19,200 possible combinations of
weakly hard constraints, 2,439 of which are schedulable. The
optimal solutions are listed in Table II. The small size of the
Pareto front highlights the need for a methodology to find
the optimal schedules, as most feasible task systems are not
optimal in terms of the deviation bounds they provide.

C. Discussion

The case studies we have provided give useful examples of
the efficacy of our co-synthesis approach. Since the systems

TABLE II
PARETO-OPTIMAL SOLUTIONS FOUND FOR SECTION V-B

O1 O2 O3 O4 O5 d1 d2 d3 d4 d5(1
2

) (1
1

) (1
4

) (1
1

) (1
1

)
0.319 0.0 0.008 0.0 0.0(1

3

) (1
1

) (1
2

) (1
1

) (1
1

)
0.577 0.0 0.003 0.0 0.0(1

1

) (1
3

) (1
2

) (1
1

) (1
1

)
0.0 3.641 0.003 0.0 0.0(1

2

) (1
3

) (1
1

) (1
1

) (1
1

)
0.319 3.641 0.0 0.0 0.0(1

3

) (1
2

) (1
1

) (1
1

) (1
1

)
0.577 1.786 0.0 0.0 0.0(1

2

) (1
2

) (1
2

) (1
1

) (1
1

)
0.319 1.786 0.003 0.0 0.0(1

1

) (1
2

) (1
3

) (1
1

) (1
1

)
0.0 1.786 0.006 0.0 0.0

both have U > 1, they could not even be scheduled without
missing some deadlines. In both cases, we are able to find safe
schedules for the task system that offer a tradeoff between the
control performance of the various controllers. Furthermore,
these schedules are optimal in the deviation bounds produced.

Each case study makes use of a different scheduling al-
gorithm, illustrating that our proposed approach can be used
with any scheduler supporting tasks with

(
m
k

)
constraints. This

even extends to fundamentally different approaches to dealing
with these constraints, such as online vs. offline scheduling.
With an offline scheduler, as in Section V-A, the system’s
utilization is effectively forced to be lower by skipping certain
jobs entirely. Even so, good control performance can still be
achieved by giving enough resources to each control task.
Conversely, online schedulers, such as the one considered in
Section V-B, optimistically try to run every job of every task.
Because most jobs require less than the WCET, this may
be successful, resulting in better control performance for all
plants. However, if enough tasks do require execution times
close to their worst case, the weakly hard guarantees still hold,
and consequently, our deviation bounds hold as well.

VI. CONCLUDING REMARKS

We have demonstrated how quantitative safety properties
can be guaranteed for a number of control tasks implemented
on a shared platform, while optimizing for their control perfor-
mance and offering tradeoffs between them. This quantitative
notion of safety is guaranteed despite allowing some deadline
misses for the control tasks, contrary to the typical hard real-
time approach. By relaxing the requirement that all deadlines
must be met, and instead focusing on a weakly hard setting in
which some deadlines may be missed as long as a minimum
level of service is guaranteed, we can keep the deviation of
all control systems to a minimum. This is achieved by a co-
synthesis approach, whereby safe weakly hard constraints are
determined for each task, and then combinations are tried to
find those that are Pareto-optimal. This offers a set of choices
to control designers, while accommodating non-control tasks
with weakly- or strongly-hard real-time requirements.

For future work, we plan to explore the use of other
measures of control performance beyond deviation in our
co-synthesis scheme. Using common metrics such as change
in rise time and settling time, it may be easier for control
designers to interpret the change in performance of controllers
subjected to occasional deadline misses. It may also prove

useful to add methods of reducing the dimensionality of
the co-synthesis problem. This could be achieved, e.g., by
grouping subsets of the tasks together, and minimizing a
function of the deviations for each group. In this way, related
high-level functionality of the system could be optimized,
while simplifying the presentation of the Pareto front to
designers.

Acknowledgments: This work was partially supported by the
NSF grant# 2038960. The authors also thank the anonymous
reviewers and the shepherd, Ivan Ruchkin, for their construc-
tive suggestions to improve the paper.

REFERENCES

[1] S. Chakraborty et al., “Automotive cyber-physical systems: A tutorial
introduction,” IEEE Des. Test, vol. 33, no. 4, pp. 92–108, 2016.

[2] W. Chang and S. Chakraborty, “Resource-aware automotive control
systems design: A cyber-physical systems approach,” Found. Trends
Electron. Des. Autom., vol. 10, no. 4, pp. 249–369, 2016.

[3] G. Georgakos et al., “Reliability challenges for electric vehicles: from
devices to architecture and systems software,” in 50th Annual Design
Automation Conference (DAC), 2013.

[4] R. Wilhelm, “Determining reliable and precise execution time bounds
of real-time software,” IT Professional, vol. 22, no. 3, pp. 64–69, 2020.

[5] C. Berg, J. Engblom, and R. Wilhelm, “Requirements for and design of
a processor with predictable timing,” in Perspectives Workshop: Design
of Systems with Predictable Behaviour. IBFI, Schloss Dagstuhl, 2004.

[6] S. Chakraborty and L. Thiele, “A new task model for streaming
applications and its schedulability analysis,” in Design, Automation and
Test in Europe Conference and Exposition (DATE), 2005.

[7] M. Maggio et al., “Control-System Stability Under Consecutive Dead-
line Misses Constraints,” in 32nd Euromicro Conference on Real-Time
Systems (ECRTS), 2020, pp. 21:1–21:24.

[8] P. Pazzaglia et al., “DMAC: Deadline-Miss-Aware Control,” in 31st
Euromicro Conference on Real-Time Systems (ECRTS), 2019.

[9] C. Hobbs, B. Ghosh, S. Xu, P. S. Duggirala, and S. Chakraborty,
“Safety analysis of embedded controllers under implementation platform
timing uncertainties,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 11, pp. 4016–4027, 2022.

[10] S. Xu, B. Ghosh, C. Hobbs, P. Thiagarajan, and S. Chakraborty, “Safety-
aware flexible schedule synthesis for cyber-physical systems using
weakly-hard constraints,” in 28th ASP-DAC, 2023.

[11] D. Goswami et al., “Time-triggered implementations of mixed-criticality
automotive software,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2012.

[12] N. Vreman, R. Pates, and M. Maggio, “Weaklyhard.jl: Scalable analysis
of weakly-hard constraints,” in RTAS, 2022.

[13] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. D. Natale, “Beyond the
weakly hard model: Measuring the performance cost of deadline misses,”
in ECRTS, 2018.

[14] Z. Hammadeh et al., “Bounding deadline misses in weakly-hard real-
time systems with task dependencies,” in DATE, 2017.

[15] Y. Sun and M. D. Natale, “Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, 2017.

[16] H. Choi, H. Kim, and Q. Zhu, “Toward practical weakly hard real-
time systems: A job-class-level scheduling approach,” IEEE Internet of
Things Journal, vol. 8, no. 8, pp. 6692–6708, 2021.

[17] J. P. Hansen, S. A. Hissam, and G. A. Moreno, “Statistical-based
WCET estimation and validation,” in 9th Intl. Workshop on Worst-
Case Execution Time Analysis (WCET), ser. OASIcs, vol. 10. Schloss
Dagstuhl, Germany, 2009.

[18] A. Horga, S. Chattopadhyay, P. Eles, and Z. Peng, “Measurement based
execution time analysis of GPGPU programs via SE+GA,” in 21st
Euromicro Conference on Digital System Design (DSD), 2018.

[19] H. Shah et al., “Measurement based WCET analysis for multi-core
architectures,” in 22nd International Conference on Real-Time Networks
and Systems (RTNS), 2014.

[20] I. Wenzel et al., “Measurement-based worst-case execution time anal-
ysis,” in 3rd IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS), 2005.

[21] P. Axer et al., “Building timing predictable embedded systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 4, pp. 82:1–82:37, 2014.

[22] R. Wilhelm, “Why AI + ILP is good for WCET, but MC is not, nor ILP
alone,” in 5th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2004.

[23] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Systems, vol. 28, no. 2-3, pp. 157–177, 2004.

[24] S. Linsenmayer and F. Allgöwer, “Stabilization of networked control
systems with weakly hard real-time dropout description,” in CDC, 2017.

[25] A. Aminifar, E. Bini, P. Eles, and Z. Peng, “Bandwidth-efficient
controller-server co-design with stability guarantees,” in Design, Au-
tomation & Test in Europe (DATE), 2014.

[26] A. Aminifar, P. Eles, Z. Peng, A. Cervin, and K. Årzén, “Control-quality-
driven design of embedded control systems with stability guarantees,”
IEEE Design & Test, vol. 35, no. 4, pp. 38–46, 2018.

[27] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp.
84–99, 2001.

[28] M. C. F. Donkers et al., “Stability analysis of stochastic networked
control systems,” Automatica, vol. 48, no. 5, pp. 917–925, 2012.

[29] D. Soudbakhsh, L. T. X. Phan, A. M. Annaswamy, and O. Sokolsky,
“Co-design of arbitrated network control systems with overrun strate-
gies,” IEEE Trans. Control. Netw. Syst., vol. 5, no. 1, pp. 128–141, 2018.

[30] D. Goswami et al., “Characterizing feedback signal drop patterns in
formal verification of networked control systems,” in IEEE International
Symposium on Computer-Aided Control System Design (CACSD), 2013.

[31] M. B. G. Cloosterman et al., “Controller synthesis for networked control
systems,” Automatica, vol. 46, no. 10, pp. 1584–1594, 2010.

[32] E. S. Kim, M. Arcak, and S. A. Seshia, “Flexible computational pipelines
for robust abstraction-based control synthesis,” in 31st International
Conference on Computer Aided Verification (CAV) Part I, ser. Lecture
Notes in Computer Science, vol. 11561, 2019.

[33] T. Yoshimoto and T. Ushio, “Optimal arbitration of control tasks by job
skipping in cyber-physical systems,” in IEEE/ACM Second International
Conference on Cyber-Physical Systems (ICCPS), 2011.

[34] H. S. Chwa, K. G. Shin, and J. Lee, “Closing the gap between stability
and schedulability: A new task model for cyber-physical systems,”
in 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018, pp. 327–337.

[35] Z. Sun and S. S. Ge, Stability theory of switched dynamical systems.
Springer, 2011.

[36] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m, k)-firm deadlines,” IEEE Transactions
on Computers, vol. 44, no. 12, 1995.

[37] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[38] C. Huang, K. Chang, C. Lin, and Q. Zhu, “SAW: A tool for safety
analysis of weakly-hard systems,” in 32nd International Conference on
Computer Aided Verification (CAV), 2020.

[39] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, 2009.

[40] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical model
checking with application to simulink/stateflow verification,” in 13th
ACM international conference on Hybrid systems: Computation and
Control (HSCC), 2010.

[41] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, 2017.

[42] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in RTSS, 1990.

[43] R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 2nd ed.
John Wiley & Sons, 1980.

[44] O’Kelly et al., “F1tenth: An open-source evaluation environment for
continuous control and reinforcement learning,” Proceedings of Machine
Learning Research, vol. 123, 2020.

[45] W. C. Messner and D. M. Tilbury, “Control tutorials for MATLAB
and simulink: a web-based approach,” 1998. [Online]. Available:
http://ctms.engin.umich.edu/CTMS

[46] R. Schneider et al., “Constraint-driven synthesis and tool-support for
Flexray-based automotive control systems,” in (CODES+ISSS), 2011.

[47] K. Osman, M. F. Rahmat, and M. A. Ahmad, “Modelling and controller
design for a cruise control system,” 5th International Colloquium on
Signal Processing & its Applications (CSPA), 2009.

Fig. 6. An illustration of one iteration of the bounded runs algorithm.

APPENDIX

This appendix contains ancillary materials omitted from
the main text of the paper. Figure 6 shows an example of
the reachability algorithm in Section III-B. Tables III and IV
give the safe deviation bounds for Sections V-A and V-B,
respectively. We give descriptions of the scheduling algorithms
used in Appendices A and B. Additionally, we list the plant
models for our experiments in Appendix C.

A. Job-Class-Level Scheduling

Under job-class-level scheduling, each task τi with Oi =(
mi

ki

)
is defined as having job classes ranging from 0 to mi

if mi < ki, or only one class if mi = ki (i.e., if the task is hard
real-time). Assuming the task is not hard real-time, each job-
class j contains those jobs of τi whose most recent sequence of
consecutive deadline hits has length j. This definition allows
a number of deadlines to be missed since the most recent
sequence of deadline hits. To place a bound on this, a miss
threshold wi is used, defined as

wi = max

{⌊
ki
mi

⌋
− 1, 1

}
. (6)

If wi consecutive deadlines are missed, the next job is assigned
to job-class 0. Figure 7 shows a schedule under this scheme,
including the job-class indices and priority assigned to each
job. Task 1 has parameters (10, 10, 6,

(
2
4

)
), and Task 2 has

parameters (7, 7, 4,
(
3
7

)
).

The priorities of the job-classes of each task are monotonic
non-increasing, so a task’s priority can only decrease as it
meets more consecutive deadlines. Intuitively, this increases
the likelihood that a task will meet its deadline if it has
not met as many recently, helping to satisfy the weakly hard
constraint. Priorities for this scheduler are assigned through
three heuristics. First, if the tasks are schedulable under dead-
line monotonic priority (where shorter deadlines get higher
priority), that assignment is used. If not, then tasks are sorted
in order of ascending miss threshold wi, with ties broken by
deadline. Then, for each job-class-level, priorities are assigned
in descending order by task. A schedulability test, discussed
below, is then run, and if the system is unschedulable, a third
heuristic is tried. This heuristic holds the priority of job-classes
for each task τi in groups of ⌈mi/(ki−mi)⌉ classes, allowing
more jobs to run at higher priority.

As this scheduler operates in an online fashion, a schedula-
bility test is required to verify that no runtime violations of the
weakly hard constraints may occur. A sufficient schedulability
test is provided in [16]. The procedure follows two stages.
First, a worst-case response time is computed for each job-
class of each task, following a similar strategy to time-demand
analysis for task-level fixed priority systems [42]. From these
worst-case response times, it is known which job-classes may
miss their deadlines. The schedulability test thus concludes by
checking all possible patterns of job-classes for each task τi,
and verifying that none violates the weakly hard constraint Oi.
This being the case, the task system is deemed schedulable.

B. Automata-Based Scheduler

As described in Section III-B, a weakly hard constraint O =(
m
k

)
can be modeled as a finite-state automaton. An accepting

TABLE III
SAFE DEVIATION BOUNDS FOR RC NETWORK, F1TENTH STEERING, DC MOTOR, CAR SUSPENSION, AND CRUISE CONTROL MODELS IN SECTION V-A

m
k 1 2 3 4 5

2 0.319
3 0.577
4 0.783
5 0.945
6 1.070

m
k 1 2 3 4 5

2 1.786
3 3.641
4 5.566
5
6

m
k 1 2 3 4 5

2 0.005
3 0.011
4 0.016
5 0.020
6 0.025 0.020

m
k 1 2 3 4 5

2 0.141
3 0.334 0.111
4 0.628 0.245 0.103
5 0.937 0.393 0.228 0.099
6 1.593 0.557 0.368 0.220 0.096

m
k 1 2 3 4 5

2 1.563
3 3.489 1.184
4 2.776 0.983
5 4.854 2.416 0.873
6 4.139 2.091 0.783

Deadline
Miss

Fig. 7. A job-class-level schedule of two tasks. Each job is labeled with (job-class, priority).

run of this automaton corresponds to a sequence of deadline
hits and misses satisfying O, i.e., a string in L(O). This
scheduling algorithm begins by creating such an automaton for
the weakly hard constraint Oi =

(
mi

ki

)
of each task τi. Each

location in each of these automata corresponds to a window
of ki deadline hits and misses in L(Oi). Such a window can be
represented as a binary string, with 0 representing a miss and 1
representing a hit. A location corresponding to the string αβ,
where α is a single bit and β is a string of ki − 1 bits, has
at most two outgoing transitions: one to β1 on a deadline hit,
and if it is in L(Oi), one to β0 on a deadline miss.

Given such an automaton for each task in τ , the algorithm
proceeds by taking a product of the automata. This product
automaton has vectors of |τ | bits as its input characters, and
the states correspond to vectors of |τ | strings. Each input
vector has at most j bits as 1 to ensure that at most j
jobs can be run in each slot. Similarly to the automata for
individual controllers, each transition moves to a state whose
most recent bit in each string equals the corresponding bit in
the input vector. A cycle in such an automaton corresponds to
an infinite-length schedule of the tasks in τ that satisfies all
their weakly hard constraints. By construction, the automaton
will always have such a cycle if the task system is schedulable,
and thus, the scheduler is optimal under its assumptions.

C. Experimental Setup

The parameters of our control systems used in Section V
in continuous time are listed in this section. Our case studies
use discretized versions of these models with a one sampling
period delay, according to the LET paradigm. Controllers were

computed from these delayed, discretized systems using LQR
with identity coefficient matrices.

1) RC Network model: Our first model is of voltages in a
resistor-capacitor network [43], given in continuous time by

ẋ(t) =

[
−6 1
0.2 −0.7

]
x(t) +

[
5
0.5

]
u(t).

2) F1tenth Steering model: The linearized F1tenth [44] car
steering model seeks to keep a car driving in a straight line,
and is given in continuous time as

ẋ(t) =

[
0 6.5
0 0

]
x(t) +

[
0

19.685

]
u(t).

3) DC Motor model: Our next model is of the angle and
angular velocity of a DC motor [45], and is given by

ẋ(t) =

[
−10 1
−0.02 −2

]
x(t) +

[
0
2

]
u(t).

4) Car Suspension model: To provide a higher-dimensional
model, we consider a car suspension system [46], given by

ẋ(t) =


0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 60

x(t) +


0
80
20

−1120

u(t).

5) Cruise Control model: Finally, we consider a model of
a car cruise control system [47], given by

ẋ(t) =

 0 1 0
0 0 1

−6.0476 −5.2856 −0.238

x(t) +

 0
0

2.4767

u(t).

TABLE IV
SAFE DEVIATION BOUNDS FOR RC NETWORK, F1TENTH STEERING, DC MOTOR, CAR SUSPENSION, AND CRUISE CONTROL MODELS IN SECTION V-B

m
k 1 2 3 4 5

2 0.319
3 0.577
4 0.783
5 0.945
6 1.070

m
k 1 2 3 4 5

2 1.786
3 3.641
4 5.566
5
6

m
k 1 2 3 4 5

2 0.003
3 0.006 0.003
4 0.008 0.006 0.003
5 0.011 0.008 0.006 0.003
6 0.014 0.011 0.008 0.006 0.003

m
k 1 2 3 4 5

2 0.062
3 0.127
4 0.193 0.109
5 0.274 0.178 0.097
6 0.373 0.272

m
k 1 2 3 4 5

2
3 4.967
4 4.026
5 3.386
6 3.050

