
Poster Abstract:
Neural Architecture Sizing for Autonomous Systems

Shengjie Xu1, Clara Hobbs1, Yukai Song2, Bineet Ghosh3, Sharmin Aktar1, Lei Yang4,
Yi Sheng4, Weiwen Jiang4, Jingtong Hu2, Parasara Sridhar Duggirala1, Samarjit Chakraborty1

Abstract—Neural networks (NNs) are now widely used for
perception processing in autonomous systems. Data from sensors
like cameras and lidars, after being processed by NNs, feed
control algorithms that form the core of autonomy-related
functions. Such NNs are implemented on graphics processing
units (GPUs) and modern GPUs can be partitioned into multiple
virtual machines, each implementing a separate NN. Given an
autonomous system with multiple NNs, how should each NN be
sized and the GPU implementing them be optimally partitioned?
In this work, we study multiple GPU partitioning techniques with
the goal of optimal and safe system-level control performance.

I. INTRODUCTION
The advancement in deep learning technologies has led

to the widespread deployment of neural networks (NNs) in
autonomous systems. Due to their mission criticality, au-
tonomous driving systems usually require high accuracy from
NN components. However, achieving state-of-the-art accuracy
often results in increased computational and memory demands.
Despite efforts to compress NNs for efficiency (e.g., [1]), the
challenge of meeting accuracy requirements within an au-
tonomous systems’ intrinsic space, energy, and cost constraints
remains significant. Furthermore, the overall performance of
such systems, encompassing sensing, decision-making, and
actuation, is impacted by not only the accuracy of its NN
components, but also the control system’s sensitivity to un-
certainties of NN outputs. Since the impact of NN estimation
errors varies across the system, optimizing for overall system
performance necessitates a nuanced approach to resource
allocation among NNs, prioritizing critical functions while
allocating adequate resources for others.

Contributions of this work: We address resource allocation
of NNs in autonomous systems, to optimize safety and control
performance. Specifically, we focus on NNs used for state
estimation (e.g., depth estimation). Since NNs are imple-
mented on GPUs and modern GPUs can be partitioned, the
allocation problem reduces to NN sizing and GPU partitioning.
We present three heuristics for NN sizing and demonstrate
near-optimal system performance with significantly less com-
putational effort than an exhaustive search. To the best of
our knowledge, no prior work relates control performance of
autonomous systems to NNs’ sizing or GPU allocation.

Related Work: Extensive literature exists on the opti-
mization of memory, computation, and energy demands of
embedded NNs. Notable strategies include developing smaller,
more efficient NNs [1], [2] and implementing early exit

1The University of North Carolina at Chapel Hill, USA
2University of Pittsburgh, USA
3The University of Alabama, USA
4George Mason University, USA

strategies [3]. However, little work exists on how to choose
NNs that collectively contribute to overall system performance
and safety. This work is also inspired by recent trends in GPU
partitioning: whereas GPUs have been traditionally treated as
exclusive-access resources in scheduling, efforts have been
made [4]–[6] to explore various approaches to GPU parti-
tioning, viz., the mechanism to share a single GPU among
multiple applications, such as multiple neural networks.

II. PRELIMINARIES

We focus on linear time-invariant (LTI) systems modeled in
discrete time, captured by x[t + 1] = Ax[t] + Bu[t], where
x[t] ∈ Rp represents the state and u[t] ∈ Rq control inputs
at time t, and A ∈ Rp×p and B ∈ Rp×q define the system’s
dynamics. Feedback control is implemented through the com-
putation of control inputs u[t] = Kx̂[t], where K ∈ Rq×p

is the feedback gain and x̂[t] is the NN-estimated state. We
assume that there is uncertainty in state estimation, so that
x̂[t] ∈ x[t] ⊕ E, where ⊕ is the Minkowski sum operator,
and E is the uncertainty bounding zonotope, obtained from
uncertainties ϵi of individual states.

Given system dynamics A,B, an initial set of states x[0],
and the uncertainty bound E, we can compute the reachable
sets R[t] of the system. We denote the maximum reachable
set diameter across the time horizon as D = maxt diam(R[t]).
This lets us compare the effects of varying uncertainty, as more
measurement uncertainty gives larger maximum diameters.

III. METHODS

Problem 1 (Optimal neural architecture sizing problem).
Given a p-dimensional system with dynamics A, B, feedback
gain K, initial states x[0], and n available NNs for state
estimation with associated uncertainty bounds ϵj and costs cj ,
we want to find an optimal selection of NNs J = (j1, . . . , jp) ∈
{1, . . . , n}p such that the maximum diameter of the reachable
sets D is minimized, while the overall cost of all NNs stays
within the budget. i.e.,

∑p
i=1 cji ≤ C.

We propose three heuristics to solve the optimal neural
architecture sizing problem.

A. Sensivity Analysis-Based Approach

Our first heuristic is adapted from an analysis that measures
a system’s dynamic sensitivity—the degree to which uncer-
tainty in a system’s dynamic matrix A impacts the system’s
trajectory [7]. We adapt this method for system states rather
than dynamics by introducing augmented system dynamics



(a) Impact of uncertainties on a system’s
reachable set.

(b) Reachable sets projected into dimensions 3
and 4, up to time t = 20.

21.0 21.5 22.0 22.5

5

10

15

20
Exhaustive Search
Exhaustive Search (unsafe)
Fast Iterative
Fast Iterative (unsafe)

Diameter

C
os

t

(c) Fast iterative heuristic results (solid) com-
pared to exhaustive search

Algorithm 1: Dynamic programming heuristic
J ← vector of n ones;
D ← calculate diameter using J ;
Add (J,D) to solution set;
while there are further solutions to explore do

foreach solution from the last iter of outer loop do
J ← solution indices;
foreach i ∈ 1 . . . n do

J ′ ← J incremented in position i;
if J ′ ∈ tried solutions then

continue;
D ← calculate diameter using J ;
Add (J ′, D) to solution set;

Prune dominated solutions from set;

that incorporate state uncertainties. This allows computing sen-
sitivity values Vi for individual system states xi by considering
the impact of uncertainties on the system’s evolution. A state
with a higher sensitivity value V is more likely to cause system
unsafety, as illustrated in Figure 1a.

We formulate the NN selection with sensitivity values as
an integer programming problem: minj1,...,jp

∑p
i=1 ϵji · Vi,

subject to
∑p

i=1 cji ≤ C where ji ∈ {1, . . . , n} ∀i. Intuitively,
we minimize the sum of products of the sensitivity value and
uncertainty bound for each state, and use reachability analysis
to estimate the impact on the system’s trajectory.

B. Dynamic Programming Approach

Our next heuristic is a dynamic programming-based ap-
proach outlined in Algorithm 1. This method sorts NNs ji
by increasing cost and initially assigns the lowest-cost net-
work to each state. It iteratively explores higher-cost network
assignments by increasing allocated resources per state and
evaluates these via reachability analysis to determine their
reachable sets’ maximum diameter. For example, the allocation
(2, 3, 3), would result in (3, 3, 3), (2, 4, 3), and (2, 3, 4). The
process iteratively refines the resource allocation, eliminating
dominated solutions, until it either considers the highest-cost
network for all states or when no new non-dominated solutions
emerge.

C. Fast Iterative Approach

Our third heuristic exploits the diminishing returns in NN
accuracy improvements with increased resources, sequentially

Algorithm 2: Fast iterative heuristic
J ← vector of n ones;
while J ≤ vector of n k’s do

D ← calculate diameter using J ;
Add (J,D) to solution set;
Increment next element of J following order ;

incrementing the NN indices one at a time in some pre-
determined order while maintaining that no two states’ indices
differ by more than 1. We outline it in Algorithm 2. For
instance, if the pre-determined order is 1, 3, 2, then we will try
the assignments (1, 1, 1), (2, 1, 1), (2, 1, 2), (2, 2, 2), and so on
until the most expensive option is used for all networks. Any
order may be used for the dimensions; in our experiments, we
order them by sensitivity values as described in Section III-A.

IV. EVALUATION

We plan to evaluate the three classes of heuristics
using a numerical five-dimensional state-space model from
the ReachabilityModels.jl package. The neural network
uncertainty ϵ and cost c values are adapted from the accuracy
and FLOPS values of EfficientNet [1]. Figure 1b visualize the
reachable sets of dimensions 3 and 4 of the five-dimensional
model. Preliminary results from the fast iterative heuristic
are highlighted in Figure 1c and compared to the exhaustive
search values. They are promising, as the fast iterative
heuristic found near-optimal solutions while exploring only a
fraction of the solution space of the exhaustive search.

Acknowledgments: This work was supported by the NSF grant# 2038960.

REFERENCES

[1] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” Sep. 2020, arXiv:1905.11946 [cs, stat].

[2] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications,” Apr. 2017, arXiv:1704.04861 [cs].

[3] Y. Wu et al., “Intermittent inference with nonuniformly compressed multi-
exit NNs for energy harvesting powered devices,” in DAC, 2020.

[4] J. Bakita and J. H. Anderson, “Hardware Compute Partitioning on
NVIDIA GPUs,” in 29th RTAS, 2023.

[5] S. Jain et al., “Fractional GPUs: Software-Based Compute and Memory
Bandwidth Reservation for GPUs,” in IEEE RTAS, 2019.

[6] T. Yandrofski et al., “Making Powerful Enemies on NVIDIA GPUs,” in
IEEE RTSS, 2022.

[7] B. Ghosh and P. S. Duggirala, “Robustness of Safety for Lin-
ear Dynamical Systems: Symbolic and Numerical Approaches,”
10.48550/arXiv.2109.07632, 2021.


	Introduction
	Preliminaries
	Methods
	Sensivity Analysis-Based Approach
	Dynamic Programming Approach
	Fast Iterative Approach

	Evaluation
	References

