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Abstract

Advancements in mobile hardware and streaming technolo-
gies enable high-quality video streaming for mobile users,
but this comes at a cost: a boost in power consumption. De-
spite detailed studies on power consumption during acqui-
sition, existing studies fall short of considering recent tech-
nologies and, hence, of accurately capturing video playback
power consumption. This paper presents a novel method to
model mobile video playback power consumption. First, we
identify the major components contributing to power con-
sumption during video playback on mobile devices. Then,
we develop models for each component to estimate their
power consumption. Our experimental results show that our
combined model estimates power consumption with 91%
mean accuracy. Furthermore, our model maintains its high
accuracy on an unseen device, achieving 88% mean accuracy
despite the hardware and screen heterogeneity.

CCS Concepts: « Information systems — Multimedia
streaming; - Hardware — Platform power issues.
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1 Introduction

Mobile video streaming represents 71% of global mobile traf-
fic as of 2023 and is expected to exceed 80% by 2028[6]. The
widespread adoption of Dynamic Adaptive Streaming over
HTTP (DASH) [1] technology has enabled the surge in video
streaming traffic. DASH provides multiple versions of videos
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and lets clients select a suitable version for each video chunk.
Advancements in mobile device and networking technolo-
gies, along with DASH, enable clients to stream high-quality
videos. However, it can cause a significant decrease in bat-
tery life, up to 50% faster compared to browsing [7, 11]
and 75% faster than audio streaming [12]. Factors such as
screen brightness, video quality, network conditions, and
video codec determine the power consumed. Thus, modeling
power consumption requires analyzing these components.

Prior modeling studies have employed different approaches.
Chen et al. [13] present a model that uses the encoding bi-
trate and the network signal strength. Herglotz et al. [16]
analyze video streaming components separately and propose
a feature selection model. Similarly, Yue et al. [20] proposes
component-based models for regular and 360° videos. All
the above models work on devices with liquid crystal display
(LCD) screens and omit light-emitting diode (LED) screens
despite significant differences in their patterns. These ap-
proaches and their limitations are further explained in Sec-
tion 2.

This paper makes the following contributions: (1) We an-
alyze the impact of each factor of mobile adaptive video
playback with a series of controlled experiments. (2) We de-
velop separate models for both LED and LCDs as well as
video processing, allowing us to account for differences in
power consumption patterns between these types of displays.
(3) We evaluate the accuracy of our combined video playback
power consumption model, which considers both display
and processing power. Our results show that the model esti-
mates the power consumption with up to 91% accuracy for
the training device and achieves an average accuracy of 88%
on an unseen device.

2 Background and Related Work

Modeling the power consumption of video streaming is vi-
tal for sustainability. Existing studies suggest different ap-
proaches. Chen et al. [13] present a quadratic function using
encoding bitrate and signal strength to estimate power con-
sumption due to downloading and playing videos simultane-
ously. For local playback intervals, they use a linear function
of encoding bitrate. Herglotz et al. [16] consider data acquisi-
tion, video processing, display, audio processing, and speaker
as the significant components of video streaming power
consumption. They analyze each component theoretically
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and propose a combined model for total power consump-
tion. They find throughput, display brightness level (for LCD
screens), and video frame rate are significant parameters that
enable accurate modeling.

Yue et al. [20] propose different models for CPU, display,
network, and residual power components. For the CPU com-
ponent, they use CPU frequency and utilization and base-
line power consumption for all active cores. They suggest
constant power consumption due to display for a given
brightness level. For the network component, they only con-
sider the network throughput while using different coeffi-
cients for WiFi and LTE connections. Finally, they calcu-
late residual power consumption by subtracting CPU, net-
work, and display components from total power consump-
tion. GreenABR [19] presents a model to capture the power
consumption pattern of ABR streaming components. It uses
the power model to guide the ABR agent and does not target
estimating power consumption.

All of the above studies suggest that the network through-
put level decides the data acquisition power consumption.
Similarly, the component-wise models find frame rate as a
significant parameter. However, they either do not model
display power consumption or consider only LCD screens,
which have significantly different behavior than LED screens.
We further examine their differences with our experiments in
Section 3.3. Similarly, they all present custom coefficients for
each device rather than having a more general model, which
requires having the same set of measurements for each new
device and calculating the corresponding coefficients.

Addressing the aforementioned limitations of existing
models motivates our work. Specifically, we identify all ma-
jor parameters of video processing and display components
and propose a combined model to estimate video playback
power consumption for different screen types (i.e., LCD and
LED) and unseen devices.

3 Components of Mobile Video Playback
Power Consumption

This section analyzes the video processing and display com-
ponents regarding video playback power consumption. We
present the results of our controlled experiments for the im-
pact of encoding parameters, genre, and display components.

Experimental Setup: In our experiments and evaluations,
we used Samsung XCover Pro (XCover) and Samsung Galaxy
S21 (S21) phones with Android 11.0. We collected power mea-
surements for both phones with the Android battery man-
ager (ABM) [15]. We also used Monsoon power monitor [3]
for XCover to confirm ABM measurements since it has a
removable battery. The "Big Buck Bunny"[4] video encoded
with AVC codec is used for all video experiments and train-
ing of our models. We played our videos with ExoPlayer [2]
and displayed our images with a modified Glide Slider[8] ap-
plication. In all of our experiments, we used representations
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Figure 1. Impact of encoding bitrate and resolution on
XCover.
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Figure 2. Impact of frame rate and resolution on S21.

supported by our phones. Therefore, we did not observe any
software decoder activity. We ran our experiments five times
and used average results for each analysis and evaluation.

3.1 Impact of Encoding Parameters

Encoding Bitrate and Resolution. Video encoding solu-
tions commonly target using an equal amount of data per
second based on a given bitrate [5]. Similarly, resolution de-
cides the number of pixels processed for each frame during
encoding and playback. In this experiment, we encode videos
for different bitrate levels from 0.7 to 9 Mbps for the same
resolution and codec and repeated the experiment for five
different resolution levels. Figure 1 shows that power con-
sumption is nearly constant for XCover despite increasing
encoding bitrate as found in [10]. The shaded area represents
the standard deviation during five repetitions of experiments,
which is comparable for different bitrates. On the other hand,
resolution mainly decides the power consumption, as increas-
ing resolution increases power consumption significantly.
The results for S21 are quite parallel, with a relatively higher
standard deviation due to screen technology differences. We
should note that existing works [13, 16] consider bitrate as
a major component since they use a single bitrate for each
resolution.

Frame Rate. Frame rate determines the number of frames
used for each second of a video. Video content creators use
high frame rates to store more details for content with high
motion rates, such as sports videos. Similar to resolution, it
decides the number of pixels to be processed and impacts
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Table 1. Comparison of power consumption of videos in
different genres.

360p 720p 1080p
Video Genre (mW) (mW) (mW) Phone
TOS Sci-Fi 2103 2160 2254  XCover
Sintel ~ Animation 2089 2164 2252 XCover
BBB Cartoon 2105 2201 2282  XCover
Samsung Sports 2134 2190 2271  XCover

the power consumption. In this experiment, we encoded our
video with four commonly used frame rates and five different
resolutions. Figure 2 shows that increasing the frame rate
significantly impacts power consumption for any video reso-
lution on S21. It is the largest for 4K videos, as expected, due
to the boost in total pixels to be processed on the hardware
decoder. Despite the differences in the amount, XCover has
a similar power consumption pattern.

Video Codec. In this experiment, we encoded videos with
AVC and VP9 codecs and analyzed the difference in power
consumption due to the codec. We found a matching power
consumption pattern for both codecs, while VP9 consumes
slightly more power than the AVC codec. However, we should
also note that VP9 is known to achieve the same quality with
lower data usage.

3.2 Impact of Video Genre

Videos may have different characteristics, such as motion
rate and shot proximity. To understand their impacts on
power consumption, we conducted experiments on four
videos, "Big Buck Bunny" (BBB), "Tears of Steel" (TOS), "Sin-
tel", "Samsung Sports Video" (Sports), from cartoon, anima-
tion, sci-fi, and sports genres. In general Cartoon videos have
the lowest spatiotemporal image complexity while it is much
higher for Sci-Fi and Sports videos where the motion is more
unpredictable. We encoded videos for the same represen-
tation sets in our experiments and compared their average
power consumption. Table 1 shows that video content has
a minor impact on power consumption on XCover. We ob-
served slightly more differences for S21 due to the color rate
of images as explained in Section 3.3.

3.3 Impact of Display Parameters

Lighting technology is the dominant factor in display power
consumption. LCD screens use constant light resources for
brightness, while LED screens change the light amount based
on the color levels in RGB channels. In this regard, we tested
S21 (LED) and XCover (LCD) with black, blue, red, green,
and white images. We displayed single-color images for five
brightness levels, 0, 25, 50, 75, and 100%, and collected power
consumption measurements.
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Figure 3. Impact of brightness and color on power consump-
tion.

Brightness. Screen brightness level affects the power con-
sumption for both LCD and LED displays. Higher bright-
ness levels require more power consumption for both, al-
though the relations between their slider brightness level
and power consumption differ. In LCD screens, the bright-
ness level decides the voltage on the backlight source and
has almost a linear relationship with the corresponding
power consumption[17]. On the other hand, Phones with
LED screens convert the slider brightness from 0-100 scale
to 0-255 scale to find the system brightness level. This corre-
sponds to a nearly logarithmic relationship between them[14].
Figure 3 shows that brightness is linearly related to the power
consumption of LCD screens, while it differs based on the
colors of the pixels for LED screens.

Color. The color rate of pixels impacts only LED displays’
power consumption since each pixel is lighted separately.
For instance, they do not use any light source for a pixel
with an entirely black color while they use whole light for
a white color pixel. Figure 3a indicates that the power con-
sumption difference is minimal for shallow brightness levels.
At the same time, it becomes significant for a 100% brightness
level, which aligns with the findings in a current study on
the power consumption of applications with different color
schemes[14]. It also shows that power consumption change
is almost negligible for black images despite the increasing
brightness. Shutting off the corresponding LED lights for
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black pixels causes this behavior. The color rate may have a
minor impact on LCD screens that use TFT layers with LED
light sources as shown in Figure 3b.

Our experiments suggest that resolution, frame rate, screen
brightness, and screen type are the most significant param-
eters. In addition, we found the screen to be the primary
source of device heterogeneity and the most dominant power
consumption component. In the next section, we design a
new model to estimate video playback power consumption
using the significant parameters above.

4 Design

The power consumption of video streaming has five essen-
tial components: video processing, displaying video files, data
acquisition, audio processing, and speaker operations [16]. We
model the consumption of the first two components as the
most relevant to video playback power consumption. The
data acquisition power consumption is the same as down-
loading files over HTTP and mainly depends on network
throughput and technology as discovered in existing stud-
ies [16, 18, 20, 21]. Audio files are commonly provided in a
single version, encoded with a high bitrate due to their neg-
ligible file sizes compared to video files. In addition, speaker
power consumption is highly affected by user preferences.
Therefore, we excluded these components from our modeling
work to focus only on video playback elements.

4.1 Display Power Consumption Model

Mobile device displays use two standard display technolo-
gies, LCD and LED, which cause heterogeneous power con-
sumption patterns. Existing studies [16, 20] commonly model
LCD displays and suggest constant power consumption for a
given brightness level. However, the color rate of displayed
frames significantly impacts the power draw for LED screens,
especially for high brightness levels. In this section, we first
confirm the linear relation between brightness level and
LCD energy consumption and then present a model for LED
screens that uses brightness level and color rates to estimate
instantaneous current usage. Instantaneous power consump-
tion, P = V = I, where I is the current level and V is the
voltage, can easily be calculated using the current level since
device batteries supply a constant voltage level.

Power consumption of LCD displays. In our experiments
on LCD displays, we found a linear relation between bright-
ness level and power consumption. We also discovered a
significant base power consumption due to the active light
source even for zero brightness level. In this regard, we de-
sign a linear function, Equation 1 where 14 is the current
level due to display, Ipase is the idle current to operate the
device, I is the base current to feed the light source, and
Br is the brightness level.

I4:=Ipase + I1s+ @ *Br 1)
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Power consumption of LED displays. Our experiments in-
dicate that brightness level and color rate must be considered
for modeling LED display power consumption. The impact
of brightness level is extensively different for frames with
different color rates. For instance, increasing the brightness
levels does not impact black pixels, while it is dominant for
white pixels. Similarly, the color does not change the power
consumption for shallow brightness levels, while it has a
significant impact when brightness levels approach 100%.

Dataset: We collected power measurements on S21 while
displaying 125 generated single-color images using five val-
ues for RGB channels. We repeated our experiments for
0,25,50,75,100% brightness levels five times. Due to the dif-
ference in the brightness and RGB channel data scales, we
normalized our data with the maximum value for each vari-
able. We split our dataset as 80% for training and 20% for
testing randomly.

First, we consider that each color channel impacts the
power consumption independently, and the brightness level
affects the overall power consumption with their combined
contribution. Thus, we use a straightforward linear function
in Equation 2, where I; is the estimated current at time ¢,
br, is the brightness level, r;, g;, and b, are the RGB channel
values of the frame respectively. & parameter corresponds to
the base current level to operate the device while S, y, andu
are the coefficients for individual impacts of color channels.

It s=a+bry s (Bxre+y*gr+pxby), (2

Next, to analyze the compound impact of brightness level
and color channels, we train a linear regression model with
a neural network (NN) of one input layer, two hidden layers,
and a single output layer. We use the root mean squared error
(RMSE) for our loss function as shown in Equation 3, where
p; is the predicted current, and o; is the observed instant
current value at the time ¢. Our inputs include the values
of RGB channels and the brightness level, while the output
only has the estimated current level.

RMSE := +/(ps — 01)2, 3)

We train a Scikit-learn KerasRegressor model through a
pipeline that evaluates the model with ten-fold cross-validation
and 250 epochs. Our model achieves an RMSE of 0.0041 as a
cross-validation score with a 0.0004 standard deviation on
the test set.

4.2 Video Processing Power Model

Measuring video processing power consumption on mobile
devices is not trivial. We observed that when the device
screen is locked, the video player application stops process-
ing the frames even though it continues buffering them. To
this end, we collected instant current levels by streaming
BBB video for 20 representations: 360p, 720p, 1080p, 1440p,
and 2160p resolutions, and 24, 30, 48, and 60 frame rates. To
obtain the current values due to processing, first, we calcu-
lated the average color levels of each second of the video and
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Figure 4. LCD power consumption model evaluation.

used our display power model to estimate the correspond-
ing current usage. Then, we subtract the screen’s current
usage from the total video playback current usage. Our ex-
periments encountered that resolution and frame rate are
the major components of processing power consumption.

Training. We train another regression model using the same
neural network structure and training process as the display
power model. We feed the input layer with the normalized
data for video height, width, and frame rate. We use the same
loss function, RMSE, in Equation 3. Our model achieves a
0.0065 cross-validation score with a 0.0023 standard deviation
on the test set.

5 Evaluation

This section explains our evaluations for display and video
processing power models. We evaluate the display models
independently. Then, we explain our results for the combined
video playback power consumption model. We used S21 and
XCover for our experiments. We used only the S21 dataset
to train the video processing model and evaluated it with
both phones.

5.1 Display Power Consumption Model

LCD Display Power Consumption. We optimize our linear
function in Equation 1 for the training set of our measure-
ment data and find the parameters as I;5 = 0.273 and « =
0.527. Figure 4 indicates that our calculation method accu-
rately estimates the current level with around 6% estimation
error on XCover.

LED Display Power Consumption. We evaluated both
linear function and NN-based regression models over the test
set on S21. For the linear model in Equation 2, we optimized
our function for the training set and found the parameters:
a =0.174, f = 0.111,y = 0.133, and pz = 0.239. Figure 5 shows
that our NN-based regression model achieves an RMSE of
0.0047 compared to the linear fitting function with an RMSE
of 0.0076.

To evaluate our display power consumption model for
regular videos, we selected random frames with different
scene characteristics from BBB and TOS videos. We used our
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Figure 6. Comparison of estimated and actual current levels
of individual frames. The average colors are shown for each
frame as x-axis labels.

slider application and collected the instant current values
for each frame for 30 seconds with S21. We considered a
frame would consume a similar amount of power with a new
frame created for the average color rate of the selected frame.
Thus, we calculated the average color rates of the frames
with OpenCV [9] and used them for our model predictions.

Figure 6 shows that our model captures the pattern ac-
curately. BBB frames commonly have brighter colors than
TOS frames, and their corresponding current usage is also
higher. Our model estimates the instant current with ~10%
error for BBB and ~12% error for TOS frames. During our
experiments, we measured the instant current level at each
second and used the average for evaluation. We should note
that the standard deviation of these consecutive readings is
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Table 2. Video Playback Estimation Accuracy Percentage of
S21 and XCover (XC)

360p 720p 1080p 1440p 2160p
Video FPS S$21 XC S21 XC S21 XC S$21 XC S21 XC

BBB 24 93.8 85.7 91.9 89.3 92.0 93.1 88.7 94.6 83.5 90.2
BBB 30 93.0 89.9 93.5 92.0 93.1 92.5 88.7 93.7 87.9 86.5
BBB 48 93.3 90.7 92.5 92.4 94.2 94.6 89.8 91.6 89.3 77.2
BBB 60 94.1 91.9 94.4 93.8 93.2 91.3 844 88.5 89.6 73.6
Sports 24 85.4 87.0 86.0 88.5 88.8 90.5 90.0 92.3 84.1 88.2
Sports 30 89.4 85.0 87.1 91.0 87.6 90.2 86.7 91.0 86.7 87.2
Sports 48 88.8 87.7 87.6 90.6 88.6 89.7 86.5 914 86.5 79.5
Sports 60 87.0 89.4 89.1 915 84.0 91.5 90.7 92.5 89.7 77.9
Docu. 24 93.5 91.6 86.5 89.6 87.2 91.0 85.9 89.9 89.3 88.23
Docu. 30 91.2 90.8 80.1 91.9 83.0 92.3 86.6 88.6 88.7 85.4
Docu. 48 88.2 90.4 87.3 90.9 84.6 90.6 88.0 91.7 87.8 75.0
Docu. 60 87.4 92.1 90.0 933 86.3 90.3 88.5 88.9 91.6 7255

around 14.5% on average. Our model achieves a lower er-
ror rate than the average standard deviation of the actual
measurements.

5.2 Local Playback Power Consumption Model

We evaluated our processing power model and display power
model together since their integrated performance is what
matters for video playback power consumption. For our eval-
uations, we used sample videos from Highsense in sports and
documentary categories in addition to our training video,
BBB. We created 20 distortions for each video with five differ-
ent resolutions and four frame rate levels we used for training
data collection. In these experiments, we set the brightness
level to 100% since the display power varies more for high
brightness levels. We measured the instant current level by
playing each video representation separately to avoid any
buffering interventions. We calculated the color rates for our
videos to feed our display energy model for LED screens,
and we used Equation 4 to find the estimated current usage
of video playback where I, is the estimated current level due
to video playback, I; is the estimated current level due to
display, and I, is the current level due to processing.

Ip =I;+ Iprom (4)

Table 2 shows our estimation accuracy percentage for video
playback power consumption for S21 and XCover. Our model
performs best with 91% accuracy for BBB on S21 and 90%
accuracy with XCover, as expected, since it was used for the
training of the processing power model. It achieves 87.5% ac-
curacy on average for both Sports and Documentary videos
for S21, while it achieves 88% accuracy for XCover. Consid-
ering the standard deviation in actual measurements with
around 14.5%, our results indicate that our model successfully
generalizes to unseen videos. Similarly, our results indicate
that our model generalizes to XCover, which was not used in
the training of the processing power model. Since it has an
LCD screen, we used the LCD power model for the display
component and used the same processing model. Similar pro-
cessing power consumption patterns and training our model
with normalized data led to the compatible performance of
our model for the unseen device, XCover. In our results, we
observe that the performance of our model degrades for 4K
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videos for 48 and 60 fps levels. It is due to the hardware de-
coding limits of the XCover for AVC codec. It simply boosts
the energy consumption when it exceeds the capacity, as
also found in another existing work [19].

6 Conclusion and Future Work

Video streaming applications significantly drain the batteries
of smartphones compared to audio playback or web brows-
ing due to high power consumption during video playback.
To model video playback power consumption, we propose
separate models for display and processing, with different
approaches for LCD and LED displays due to their distinct be-
havior. Our combined model estimates video playback power
consumption with 91% average accuracy, despite the average
standard deviation in measurement sensitivity of 14.5%. We
also evaluate our model’s performance on a different device,
achieving less than 3% average degradation.

In the future, we plan to improve the generalization of our
models by using transfer learning and tuning coeflicients
with a few experiments on new devices. Similarly, we will
extend our work to tablets with similar technologies.
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