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Abstract—Many Cyber-Physical System (CPS), such as au-
tonomous vehicles and robots, rely on compute intensive Machine
Learning (ML) algorithms, especially for perception processing.
A growing trend is to implement such ML algorithms in the
cloud. However, the data transfer overhead and the delay
introduced in the process necessitate some form of edge-cloud
solution. Here, a part of the processing is done locally and the
rest on the cloud, and how to do this partitioning is being explored
in the body of work referred to as Split Computing (SC). In this
position paper, we explore different SC architectures and discuss
their implications on controller design for CPS. In particular, we
discuss the delay and state estimation accuracy of these different
SC architectures and how they would impact the design of the
feedback controllers using them.

Index Terms—Split Computing, Early Exit, Deep Neural Net-
works, Cyber-Physical Systems, Edge Devices.

I. INTRODUCTION

Any Cyber-Physical System (CPS), by definition, involves
a tight interaction between physical systems and software
running on an embedded computing platform [1]. The software
in such systems typically involves a feedback controller that
(i) senses the state of the system, (ii) estimates the value
of the system state using the sensed information, (iii) com-
putes the control input using the estimated value, and finally
(iv) actuates the system using the control input. The steps
(i) – (iv) are carried out in an infinite loop to impose a
desired behavior on the overall system (the physical system
and the controller). In other words, the goal is to ensure
that the system’s state evolves in a particular manner, e.g.,
it follows a desired trajectory in the state space, or avoids
some states/region of the state space, or stays within a certain
region of the state space [2], [3].

As a concrete example of such a CPS, let us consider an
autonomous vehicle that should follow a specified trajectory
and not collide with vehicles in front of it. Using sensors
such as cameras or lidar, the vehicle senses its environment.
The output from such sensors – such as images from the
camera or a point cloud from the lidar – is fed into a
neural network that, e.g., estimates the distance between the
vehicle and the one in its front. The control algorithm uses
this estimated distance to adjust the vehicle’s acceleration to
maintain a safe distance between the two vehicles. Similarly,
the output from the neural network could be an estimate of
the distance between the center of the vehicle and two-lane
boundaries (left and right), with the goal of the controller
being to keep the vehicle in the center of the lane. While
the neural network for such applications can reside on the
computational platform on the vehicle, for more complex
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Figure 1: SC architecture – Head & Tail components.

autonomous features, the computational bandwidth available
on the vehicle might not be sufficient. In such cases, a Deep
Neural Network (DNN) is implemented on a cloud computing
platform. While this enables implementing powerful DNNs,
they are also associated with significant delays that impact
control performance, i.e., the dynamics or behavior of the
system. A middle ground is to use Split Computing (SC), as
shown in Figure 1. Here, a DNN is partitioned into “Head”
and “Tail” components, with the former being implemented
locally on an embedded computing platform and the latter
on the cloud. While such DNN [4] architectures have been
studied in the past, how they should be designed when used
in conjunction with feedback controllers in a CPS has not been
investigated.

It is evident that the partitioning between the head and the
tail of a DNN in SC will determine the delay as well as the
classification or estimation accuracy of the DNN. However, it
remains unclear how these partitions should be “connected”
to the performance of a feedback controller. Additionally,
the impact of different types of connections on the resulting
dynamics of the closed-loop system is not well understood.
In this position paper, we present a few of these connections
between SC architectures and feedback controllers and discuss
their implications on the behavior of the closed-loop dynamics
of the system. We believe that this discussion will trigger
useful research and open up a potentially new field – “Split
Computing CPS” – that has not been explored until now.

II. OVERVIEW OF SPLIT COMPUTING AND EARLY EXIT

We start by introducing different distributed deep learning
application architectures. We focus on architectures operating
through a DNN model M(·), whose task is to produce the
inference output y from an input x. We can identify four
major types of architectures used for distributed deep learning
applications in the literature: Local-only Computing (LoC),
Remote-only Computing (RoC), SC, and Early Exit (EE).
Their structures are shown in Figure 2.



A. Local-only computing

Under this policy, the entire computation is performed on
the edge device. As shown in Figure 2a, the edge device en-
tirely executes the inference function M(x). Its advantage lies
in offering low latency due to the proximity of the computing
element to the sensor/controller in our setup [5]. However,
it may not be compatible with DNN-based architectures that
demand robust hardware capabilities. Usually, simpler DNN
models M̄(x) that use specific architectures (e.g., depth-wise
separable convolutions) are used to build lightweight networks,
such as MobileNetV3 [6]. Besides designing lightweight neu-
ral models, in the last few years, significant progress has
been made in the area of DNN compression. Compression
techniques, such as network pruning and quantization [7], or
knowledge distillation [8] achieve a more efficient representa-
tion of one or more layers of the neural network, but with a
possible quality degradation.

B. Remote-only computing

As shown in Figure 2b, here the input x is transferred
from the edge device through a communication network and
then is processed remotely through the function M(x). This
architecture preserves full accuracy considering the higher
power budget of the remote system, but it leads to high latency
and bandwidth consumption due to the input transfer.

C. Split computing

A typical SC scenario is discussed in [9], where it is shown
that neither LoC nor RoC approaches are optimal, and a split
configuration performs better. The general structure of SC
is shown in Figure 2c, which shows how the SC paradigm
divides the DNN model into a head, executed by the edge
device, and a tail that is executed by the remote system. It
combines the advantages of both LoC and RoC, thanks to
the lower latency and, more importantly, reduced transmission
bandwidth requirements. Such reduction may also be obtained
by compressing an input x to be sent, through the use of an
autoencoder [10]. We define the encoder and decoder models
as zl = F(x) and x̄ = G(zl), which are executed at the edge,
and remotely, respectively. The distance d(x, x̄) defines the
performance of the encoding-decoding process. One of the
earliest works on SC [11] show that the initial layers of a
DNN are the most suitable candidates for partitioning, as they
optimize both latency and energy consumption. Additionally,
latency reduction is usually achieved through quantization, as
explored in [12], and by using lossy compression techniques
before data transmission, as investigated in [13]. In addition
to lossy compression techniques, lossless techniques to encode
intermediate results without modifying the machine learning
model have also been studied [14]. Finally, the concept of
employing autoencoders to compress the data further to be
transferred is discussed in [15].

The prevalent methods for identifying potential splitting
points have evolved from architecture-based techniques to
more refined neuron-based methods. Within the domain of
architecture-based approaches, candidate split locations can
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(c) With SC, the computation is split between the edge and the remote devices.
The transmission bandwidth is reduced by compressing it using encoder and
decoder models.
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(d) When combining SC and EE, the computation is split between the edge
and the remote devices; however, we have intermediate classification branches,
producing an estimate yee of the desired output y.

Figure 2: Comparing the four major types of architectures used for
distributed deep learning applications, i.e., LoC, RoC SC, and EE.

be where the size of the DNN layers decreases [16]: the
rationale is that compressing information by autoencoders,
where compression would still occur due to the shrinking of
the architecture, seems reasonable. Instead, I-SPLIT, demon-
strates that the architecture of the layers and the saliency
of individual layers is a crucial factor [17]. Specifically, a
neuron’s saliency is determined by its gradient in relation
to the accurate decision. Along similar lines, [18] introduces
Split-Et-Impera, a fast and user-friendly framework that eases



the design of a distributed architecture executing one or more
DNNs. Split-Et-Impera not only accurately mimics diverse
communication protocols and application requirements, but
also offers a unique capability. It suggests the proper con-
figuration to match the application’s Quality of Service (QoS)
requirements, ensuring optimal performance in terms of accu-
racy and latency. Since manipulating diverse SC configurations
may require days of computation, Split-Et-Impera allows the
elimination of several configurations through communication-
aware simulations.

At the same time, current state-of-the-art approaches in
different deep learning applications rely on advanced learning
procedures, such as Multi-Task Learning (MTL). In particular,
MTL is a paradigm in which multiple related tasks are
jointly learned to improve the general applicability of a model
by using shared knowledge across different aspects of the
input. In [19], a method to partition multi-tasking DNNs for
deployment within an SC framework is discussed. The pro-
posed MTL-Split design handles multiple tasks concurrently,
shifting the focus from Single-Task Learning (STL) in SC,
and through MTL, increases task performance, overcoming
the challenge of preserving only the performance of the main
task. Moreover, in [20], the effect of predefined sparsity within
the SC paradigm is presented. This approach, demonstrably
practical for the first time in an SC scenario, significantly
reduces computational, storage, and energy demands during
training and inference, regardless of the hardware platform.

D. Split computing and early exit

This scenario adds an EE branch to a standard SC archi-
tecture, as depicted in Figure 2d. Formally, we can define
Bi, i = 1 . . . N (with N = L, and L is the number of layers
of the DNN) as the branch model that takes as input zl and
produces an estimate of the desired output y. In practice, the
EE architecture modifies an existing neural network by adding
one or more classification branches, where the confidence of
the intermediate result is checked before the computation of all
network layers. If the confidence is sufficient, the intermediate
result is considered the final output [21].

The EE architecture can be leveraged in distributed deep
learning applications, where the intermediate result can either
be directly transmitted, as in local computing, or further re-
fined on the remote side, as in SC. In this scenario, the level of
transmission traffic depends on the input, thus varying stochas-
tically. Therefore, the interdependencies between computation
and communication cannot be analytically modeled, and real
experiments are needed to validate a given implementation.

III. BASICS OF CONTROLLER DESIGN

When neural networks are used for sensor data processing
before the data is fed into a controller in a CPS, the overall
system performance is impacted not only by the latency
and accuracy of the neural network, but also the underlying
dynamics of the physical system. This section introduces the
basics of feedback control systems used in the rest of the
paper. One common representation of control systems is the

state-space model, where the state of the system is represented
by a state vector x(t) ∈ Rp and the input to the system by
u(t) ∈ Rq . For simplicity, we discuss Linear Time-Invariant
(LTI) control systems here, but the principles discussed in
this work apply to any type of control system with learning-
enabled components.

The state-space model of a continuous LTI system is:

ẋ(t) = Acx(t) +Bcu(t) , (1)

where Ac ∈ Rp×p, and Bc ∈ Rp×q are matrices encoding the
system’s dynamics. Equation (1) shows that the rate of change
of the system state ẋ(t) depends both on the current state x(t)
and the control input u(t). To enable feedback control, the
control input u(t) is computed by a periodic real-time task
running on a processor. Computing u(t) requires discretizing
the continuous state-space model with a constant sampling
period h. Assuming periodic sampling, i.e., tk+1 − tk = h,
matrices A and B can be derived from Equation (1) such
that:

x(tk+1) = Ax(tk) +Bu(tk) .

For simplicity, we denote x(tk) as x[k] and u(tk) as u[k] to
obtain the discrete state-space model:

x[k + 1] = Ax[k] +Bu[k] . (2)

In the simplest case, the control input u[k] is computed by:

u[k] = Kx[k] , (3)

where K ∈ Rq×p is the feedback gain. Many methods exist
to design the feedback gain K with various stability, energy,
and complexity considerations.

IV. CYBER-PHYSICAL SYSTEMS SAFETY

Multiple issues mentioned in Section III impact the safety
of a CPS. For example, the choice of the sampling period h
affects the response time of the control system to external
disturbances. A sampling period that is too large leads to
unstable systems, while a period that is too small induces
unnecessary load on the processor and may cause other
control tasks utilizing the same processor to become unsafe.
Furthermore, the system state x[k] in Equation (3) is usually
unknown and requires some form of sensing and estimation,
i.e., the control input u[k] is computed by:

u[k] = Kx̂[k] , (4)

where x̂[k] is an estimation of the ground truth state x[k].
While some sensors used for state estimation can be fairly
accurate, e.g., speed and temperature sensors, other sensing
methods, especially ones involving neural networks, can have
non-negligible uncertainties in their estimation. Changes in the
sampling period and errors in state estimation can both lead to
deviation from the intended behavior of a system, potentially
violating its safety requirements.

Here, we introduce two quantitative measures of CPS safety
over a finite time horizon H . First, assuming a nominal (ideal)
behavior of the system xnom (e.g. defined by the trajectory of



the system in its state space), the safety of the system can
be expressed in terms of the maximum deviation D from that
ideal behavior:

D = max
k∈[0,H]

d(x[k], xnom[k]) , (5)

for any defined distance metric d (such as the Euclidean
distance) between two points in the state space. A smaller
deviation D from the nominal behavior implies a safer system.
Second, if the nominal behavior is not known or not applicable,
we measure the safety of the system in terms of the maximum
diameter of reachable states over the time horizon H . Starting
from an initial set of states X[0], the reachable sets can be
calculated by extending Equations (2) and (4):

X[k + 1] =
⋃

χ∈X[k]

Aχ⊕BKχ̂, (6)

where χ̂ denotes the set of possible estimations of χ, and
⊕ denotes the Minkowski sum of two sets. The maximum
diameter Diam can then be calculated as:

Diam = max
k∈[0,H]

(
max

x,y∈X[k]
d(x, y)

)
. (7)

Similar to the safety measure with maximum deviation, a
smaller maximum diameter of reachable sets implies a safer
system. Given different SC architectures, our aim is to use
such safety measures to evaluate their suitability in a CPS. In
addition, we propose to use the above safety metrics to drive
suitable splitting decisions in DNNs between edge and cloud
computing resources.

V. SPLITTING DECISIONS AND ILLUSTRATIVE RESULTS

This section shows how the split point is usually determined
and which factors impact these decisions, providing experi-
mental results based on the current state-of-the-art methods. As
an example, we focus on the image classification task, and as
DNN, we use the PyTorch implementation of the VGG16 [22].
We train our model on the CIFAR-10 dataset [23] up to 20
epochs with a learning rate of 5×10−3, using Adam [24] as an
optimizer. CIFAR-10 has to be considered as a placeholder for
more extensive datasets (e.g., ImageNet [25]); nonetheless, the
focus here is to discuss how different SC options will influence
control performance in a CPS and not beat the state-of-the-art
in a specific computer vision challenge.

All experiments have realized the split point by placing an
autoencoder with a 50% compression rate. For the training
of the encoder/decoder, we run up 50 epochs with a learning
rate of 5 × 10−4, always using Adam as the optimizer. In
the experiments in which we evaluated the communication
network aspects, we always simulated a 1 GB/s Full-Duplex
network channel.

A. Model-based split point selection

Figure 3 shows the results following both, the architecture-
based [16] and the neuron-based split point search. In this
figure, the so called Cumulative Saliency CS [18] is a function
of the layer compared with the accuracy of the DNN split in
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Figure 3: Cumulative Saliency (CS) as a function of the layer
compared with the accuracy of the DNN split in that layer [18].

that layer [17]. The peaks in the CS curve correspond to the
points where accuracy is preserved despite split injection. As
such, the layers in which CS has a local maximum are the
best candidates for splitting. Layers marked with an asterisk
(*) represent VGG16 max-pooling layers, i.e., down-sampling
layers, which reduce the spatial dimensions of the input data.

In Figure 3, the architecture-based approach identifies can-
didate split points (red dots) layers 5, 9, and 13 (dense data),
corresponding to block2_pool, block3_pool and block4_pool.
Instead, the neuron-based approach also identifies two ad-
ditional points (red stars) at layers 11 and 15 (informa-
tive data), corresponding to block4_conv2 and block5_conv2,
respectively. It is worth noting how layers with the same
dimensionality, i.e., convolutional layers belonging to the same
VGG16 block, do not express the same importance, as shown
by the CS curve. Given the model-based split point selection
results, due to the lack of space, in the next section, we present
the communication network-based results only after splitting
the DNN at layers 11 and 15.

B. Communication network-based split point selection

Figure 4 shows the results on the impact of the communica-
tion network on the split point selection, using the simulation
framework for SC and EE in [18]. In this experiment, we
assumed that we have a real-time application with a constraint
on the maximum frame latency of 0.05 seconds (i.e., runs at
20 FPS). Figure 4 highlights how the latency increases with the
packet loss rate due to TCP re-transmission in case of packet
loss. However, this preserves the maximum accuracy of the
application. Specifically, the dashed curve shows that splitting
at layer 15, the application requirements are always satisfied
independently of the packet loss rate. The dotted curve shows
that with the split at layers 11, the 20 FPS constraint cannot
be satisfied when the packet loss rate is more than 3%. This
behavior meets expectation, i.e., by splitting the network at
layer 11, the amount of transmitted data is more significant
than the one obtained by splitting the network at layer 15,
and because of the retransmissions, the latency increases, up
to a point that violates the application constraints represented
by the dashed red line.
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Figure 5: Comparison between the TCP and the UDP protocols [18].

C. Latency-based communication network protocol selection

Based on the experiments in [18], in Figure 5, we show a
comparison between system accuracy and the overall latency
using the TCP and UDP protocols. Figure 5a shows that
application accuracy does not depend on the packet loss rate
when using TCP. Figure 5b shows that this, however, feature
comes at a price: with TCP, the overall latency is much
greater, so it is required to ensure that this is compatible
with the application requirements. UDP protocol shows a dual
behavior: the latency is minimized and kept independent of
the packet loss rate, but the accuracy decreases in case of loss
since no error checking and recovery services are provided.
Finally, Figure 6 shows the bandwidth utilization comparing
the SC (blue curve) and EE scenarios (gray curve), both
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Figure 6: Network bandwidth utilization over time, comparing the
SC (blue) and EE scenario (gray), both using the TCP protocol.

using the TCP protocol. The curves show that SC consumes a
constant bandwidth while EE consumes less bandwidth when
inference is stopped early.

D. Split computing and cyber-physical systems safety

We have seen how different SC configurations yield varying
trade-offs between accuracy, latency, and resource require-
ment. Their effects on the safety of CPSs are many and must
be investigated considering the properties of the specific CPS
at hand. As a case study, we selected two control systems –
a simplified F1/10 car model derived from [26] and a cruise
control model derived from [27] – and measured the maximum
diameter of reachable sets as introduced in Section IV. For
each control system, we evaluated four SC configurations:
(1) splitting at layer 11 using TCP, (2) splitting at layer
15 using TCP, (3) splitting at layer 11 using UDP, and
(4) splitting at layer 15 using UDP. We used the latency of each
configuration as the sampling period h for the control systems.
We assumed that the neural network accuracy a ∈ [0, 1],
translates to a state estimation error of (1− a)2.

Figure 7 shows the maximum diameters of reachable sets
for the above two control systems using these four SC con-
figurations, with packet loss rates ranging from 1% to 5%.
Figure 7a reports the maximum diameters of reachable sets for
the F1/10 car model, while Figure 7b reports the maximum
diameters of reachable sets for the cruise control model. A
key observation is that for the F1/10 car model, the maximum
diameter of the reachable set using the configuration L11
TCP (i.e., splitting at layer 11 and using TCP) increased
significantly between packet loss rates 3% and 4%, making
it the worst configuration at a loss rate of 4% or higher. In
contrast, for the cruise control model, the maximum diameter
using the same configuration (L11 TCP) does not change
much between packet loss rates of 3% and 4%. In fact, for
the cruise control model, L11 TCP yields lower maximum
diameters than both UDP configurations at all packet loss rates.

As shown in Figure 4, increasing the packet loss rate
from 3% to 4% causes a latency increase of more than
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Figure 7: Maximum diameters of reachable sets for two control
systems with neural network components, with latency and accuracy
values from Figure 5.

20ms for the L11 TCP configuration. This difference in
behavior reveals that the F1/10 car model is more sensitive
to control period changes than the cruise control model and
highlights the necessity of considering the properties of the
CPS when assessing different split-computing configurations,
as the latency and accuracy of the neural networks alone can
not tell a complete story about the overall system safety.

VI. CONTROLLER DESIGN FOR SPLIT COMPUTING

We now discuss multiple SC-augmented feedback controller
architectures. These are shown in Figure 8. From their descrip-
tions, it will become clear that these are not exhaustive and
variations of these architectures are possible. As mentioned
earlier, our goal in this position paper is not to conduct an
exhaustive study of this topic but to initiate the first discussion.

Figure 8a shows the most basic scenario, where the entire
DNN is implemented locally on an embedded system. Any
embedded platform’s relatively low computational bandwidth
will restrict the DNN’s size, compromising its classification
or estimation accuracy. As shown in Section V, a higher state
estimation error results in a more extensive reachable set,
thereby compromising system safety.
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Figure 8: SC architectures for a feedback controller.

Figure 8b shows a typical SC architecture. A part of the
inference is done on a neural network running locally on
an embedded platform, and the subsequent inference is done
on a server in the cloud. By using the cloud – and thereby
supporting a bigger DNN – the inference accuracy will be
higher, and therefore, the state estimation error will be lower
than in the case shown in Figure 8a. However, a higher delay
will be involved in communicating to and from the cloud,
resulting in a higher sensor-to-actuator delay. Depending on
the communication protocol used, as shown earlier, there
might also be data loss, which will also impact the size of the
reachable set and, therefore, the system’s safety. The research
question is to determine an appropriate split point to minimize
the size of the system’s reachable set and maximize safety.
What is important to note here is that because of the sensor-
to-actuator delay associated with each splitting point, the DNN
architecture with SC that maximizes inference accuracy will
not necessarily be the optimal SC architecture for maximizing
system safety, motivating a study of SC for CPS.

Finally, Figure 8c shows a scenario, where if sufficient
inference accuracy is reached using the local DNN then early
exit may be used, where x1 is used to compute a control
input u1. This results in a lower sensor-to-actuator delay and
avoids any communication with the cloud. But if the inference
accuracy using a local-only DNN is not deemed sufficient, then
the additional computation is conducted in the cloud, and x2

is instead used by the controller to compute u2.
However, there could be several additional possibilities

here. First, irrespective of the inference accuracy achieved
locally using the edge DNN, a “preliminary” state estimate,
henceforth referred to as x1, can be used to compute an earlier
control input u1. A more accurate state estimate x2 using the
cloud DNN may be used later to apply a second control input
u2. Such a controller addresses the importance of lower delays
and the need for more accurate state estimates. The controller
needs to be appropriately designed, since it might be that the



control input u2 is applied during a later sampling period than
the one in which u1 is applied. Either the entire x̂ may be
sent to the cloud, or as shown in Figure 8c, the data sent to
the cloud might be first processed by the edge DNN.

As yet another possibility, some components of the sensed
state x̂ may be processed by a local DNN on edge to compute
x1, and the remaining components of x̂ may be computed by
the DNN on the cloud to compute x2. The set of x̂ components
sent to the edge and the cloud need not be disjointed. How
to partition state components between the edge and the cloud,
and how to design the resulting controller to maximize system
safety, are again open questions that need to be studied.

VII. CONCLUDING REMARKS AND OUTLOOK

This paper introduced “Split Computing CPS”, a topic that
we believe has not been studied before. Although there exists
a rich literature on implementing DNNs on edge devices,
and more recently on split computing, the focus has almost
exclusively been on maximizing inference accuracy of the
DNN. However, we have argued in this paper that an optimal
DNN implementation architecture when evaluated in isolation
might no longer be optimal when used as a part of a larger
system, e.g., a CPS. We used autonomous systems [28] that
increasingly use DNNs for perception processing as examples
to illustrate this. Here, we have used the size of the reachable
set of a feedback controller as a measure of system safety
and showed that different SC architectures result in different
degrees of system safety. Finally, we introduced different CPS-
SC architectures and showed a large design space that needs
to be studied by the CPS and SC research communities.

The research direction discussed in this paper is related to
the problem of control/architecture co-design [29], [30] that
has lately attracted considerable attention. Such co-design is
motivated by control strategies being designed with simplistic
assumptions on the implementation platform that are not valid
in reality. As a result, verification or certification [31], [32]
results at the model level fail to carry over to an imple-
mentation. While techniques such as progressively refining
a controller by introducing more implementation details and
simulating after each such refinement step [33], [34] are
common, they come with significant overheads. Alternatively,
co-design approaches start with a partial specification of a set
of controllers and their implementation options, and attempt
to explore different implementation choices and the corre-
sponding optimal parametrizations of the controllers [35]–[37].
Here, the implementation choices could involve task map-
ping and task and communication scheduling [38]–[42]. Each
of these implementation choices is associated with different
delays experienced by the control tasks, for which optimal
control parameters may be synthesized [43]–[45]. Taking such
co-design a step further, recent work has considered different
notions of system-level safety (such as those discussed earlier
in this paper) and studied scheduling and controller design
techniques that allow non-ideal timing behaviors such as dead-
line misses [46]–[49]. As CPS implementation platforms and
their communication architectures – such as in the automotive

domain – become more complex, distributed, and increasingly
wireless [50], [51], there is also a need for new timing analysis
techniques [52], [53] to support such co-design.

This paper extends such co-design for CPS to consider
machine learning components [54], [55]. With increasing
design complexity, in the future, co-design techniques need
to be extended to consider the design space of not only
control strategies and the implementation of control tasks and
signals [56], but also the design space of machine learning
components, and security mechanisms [57], [58]. Such holis-
tic co-design approaches can focus on system-level safety [2]
and performance metrics instead of following current design
methods that attempt to optimize individual components (such
as machine learning, real-time schedulers, or security) and as-
semble multiple individually-optimized components. Focusing
on such system-level metrics will allow more design flexibility
and help design better resource provisioned and more cost-
effective CPS and autonomous systems.
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