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ABSTRACT: Spin relaxation, dephasing, and diffusion are at the heart of spin-based information technology. Accurate theoretical
approaches to simulate spin lifetimes (τs), determining how fast the spin polarization and phase information will be lost, are
important to the understanding of the underlying mechanism of these spin processes, and invaluable in searching for promising
candidates of spintronic materials. Recently, we develop a first-principles real-time density-matrix (FPDM) approach to simulate spin
dynamics for general solid-state systems. Through the complete first-principles descriptions of light−matter interaction and
scattering processes including electron−phonon, electron−impurity, and electron−electron scatterings with self-consistent spin−
orbit coupling, as well as ab initio Lande ́ g-factor, our method can predict τs at various conditions as a function of carrier density and
temperature, under electric and magnetic fields. By employing this method, we successfully reproduce experimental results of
disparate materials and identify the key factors affecting spin relaxation, dephasing, and diffusion in different materials. Specifically,
we predict that germanene has long τs (∼100 ns at 50 K), a giant spin lifetime anisotropy, and spin−valley locking effect under
electric fields, making it advantageous for spin−valleytronic applications. Based on our theoretical derivations and ab initio
simulations, we propose a new useful electronic quantity, named spin−flip angle θ↑↓, for the understanding of spin relaxation through
intervalley spin−flip scattering processes. Our method can be further applied to other emerging materials and extended to simulate
exciton spin dynamics and steady-state photocurrents due to photogalvanic effect.

I. INTRODUCTION
In the past two decades, spintronics in unconventional
semiconductors and metals, including two-dimensional materi-
als and their heterostructures,1,2 topological and magnetic
materials,3,4 hybrid perovskites,5,6 etc., have drawn significant
interests owing to its unprecedented potentials in micro-
electronics and next generation low-power electronics. Spin, as
a pure quantum mechanical object, is the fundamental
information on carrier instead of charge, with much less
energy dissipation. Ideally one wants such information
preserved as long as possible for stable manipulation.
Therefore, understanding how spins relax and transport is of
central importance in spintronics.
Spin is an unconserved quantity in solids due to its coupling

with other quantities, such as electron orbital. Therefore, after
excess spins being generated, spin can loose its polarization
(relaxation) and phase (dephasing) due to coupling with the

environment. One critical parameter describing the time scale
of such processes is spin lifetime τs including T1 (relaxation)
and T2 (dephasing), which is often required to be sufficiently
long for stable detection and manipulation of spin. Accurate
and reliable theoretical approaches to simulate τs are
demanded for the detailed understandings of spin dynamics
and transport phenomena, and designing new spintronics
materials and devices.
Previously, methods based on model Hamiltonian with

empirical parameters1,7,8 were extensively employed for
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simulation of spin relaxation, dephasing, and diffusion in solids.
While these methods provide some mechanistic insight, they
do not serve as predictive tools for the design of new materials
and may sometimes lead to qualitatively incorrect predictions
due to the use of simplified electronic structures and
interactions.
To mitigate these issues, several different first-principles

approaches were proposed, which often are suitable for
particular symmetry or simulation conditions.9−15 For
example, methods considering spin−flip transitions based on
Fermi’s golden rule (FGR) were implemented to simulate
phonon- and impurity-induced spin relaxation,9,10 which are
more proper for Elliot−Yafet mechanism; spin dynamics based
on time-dependent density functional theory (TDDFT)11 was
developed for ultrafast demagnetization of magnetic systems,
more affordable within a ps process.12−14 Recently, a method
based on spin−spin correlation function was developed to
simulate spin−phonon relaxation15 time, which may be
applicable to both Elliot−Yafet and Dyakonov Perel
mechanisms, but its generality to various relaxation and
dephasing channels as well as their dependence on external
conditions remains to be seen.
Recently, we developed a first-principles real-time density-

matrix (FPDM) approach16−18 to simulate spin dynamics and
pump−probe Kerr rotation for general solid-state systems. The
approach is free from empirical parameters and is thus of great
predictive power. Through the complete first-principles
descriptions of light−matter interaction and scattering
processes including electron−phonon, electron−impurity,
and electron−electron scatterings with self-consistent spin−
orbit coupling (SOC) and Lande ́ g-factor, our method can
predict τs as a function of temperature and carrier density,
under electric and magnetic fields. The method was applied to
disparate materials, including semiconductors and metals, with
and without inversion symmetry, in good agreement with
experimental results.16−21

In this work, we briefly introduce the theory and
implementation of our method with brief comparisons to
other ab initio methods and then present its applications and
show its predictive power using a two-dimensional Dirac
material�Germanene�as a showcase. Through detailed
theoretical analysis, we show how ab initio simulations
improve our understandings of spin relaxation mechanisms
and are used to identify the key quantities and/or factors to
spin relaxation, dephasing, and diffusion. At the end, we discuss
how our FPDM approach can be generalized/extended to
simulate spin dynamics of excitons, instead of free carriers, and
transport properties such as photocurrent and spin currents in
broken inversion systems (photogalvanic effect).

II. THEORY
II.A. Density-Matrix (DM) Master Equation.

II.A.1. Quantum Master Equation. To provide a general
formulation of quantum dynamics in solid-state materials, we
start from the Liouville−von Neumann equation in the
Schrödinger picture,

= [ ]t
t

i
H t

d ( )
d

, ( )
(1)

= +H H H0 (2)

where H, H0, and H′ are total, unperturbed, and perturbation
Hamiltonians, respectively. In this work,

= + +H H H He0 ph photon (3)

= + + +H H H H He light e ph e i e e (4)

where He, Hph, and Hphoton are single-particle electronic,
phonon, and photon Hamiltonian, respectively. He−light is the
light−matter interaction term. He−ph, He−i, and He−e describe
the electron−phonon (e−ph), electron−impurity (e−i), and
electron−electron (e−e) interactions, respectively.
In practical simulations of ultrafast dynamics or quantum

transport of Bloch electrons, it is more convenient to reduce
the many-body density matrix in eq 1 to one-particle density
matrix for electrons, where the environmental degree of
freedom is traced out,22 with a proper truncated BBGKY
((Bogolyubov−Born−Green−Kirkwood−Yvon) hier-
archy.23,24 The total rate of change of the electronic DM ρ is
separated into terms related to different parts of Hamiltonian,

= +
t t t

d
d

d
d

d
dcoh scatt (5)

where
t

d
d coh

describes the coherent dynamics of electrons

including the free-particle dynamics, the field-induced
dynamics, etc.

t
d
d scatt

captures the scattering between electrons

and other particles. Their detailed forms are given in the
subsections below.
To obtain eq 5, which involves only the dynamics of

electrons or the electronic subsystem, we have assumed the
environmental subsystem is characterized by a huge number of
degrees of freedom and is not perturbed by the electronic
subsystem, which implies that the occupations of phonons and
photons stay at their equilibrium values at certain temperature,
i.e., the “hot phonons” are not considered. Formally this is the
prerequisite for the Markov approximation. For spin lifetime
simulations, this assumption is valid in following conditions.
(i) The correlation time of the environment τc is much shorter
than the characteristic time scale of spins, which is determined
by τs and spin precession time 1/Ω. This condition is satisfied
in most of our theoretical studies where τs are long (i.e., ps to
μs) and spin precessions are relatively slow. It ensures spin
evolves slowly so that the memory effects of the bath (e.g.,
phonon) can be safely dropped. (ii) The electronic system is
not far from initial equilibrium; e.g., the excited carrier density
is not very high (correspondingly, the experimental pump
power is low). This ensures that the heat received by the
environment can quickly decay out. In most spin dynamics
experiments, it is desirable to work under the low excitation
density limit to focus on the physics of spin dynamics, which is
often the slowest, compared to other quasiparticles’ dynamics.
Indeed in many experiments, e.g., in refs 25. and26, pump
fluence and excitation density are controlled to be low, e.g., 2 ×
1014 cm−3 for a three-dimensional system. If spin lifetime and
diffusion length are obtained from spin transport measure-
ment, then it is designated at the (quasi-)equilibrium
condition. In fact spin lifetime is quite similar between spin
transport and time-resolved Kerr rotation measurements as
materials’ properties, which again validates the approximations
we explained here.
It is true that the Markov approximation fails in certain

conditions. For example, if τc of the environmental subsystem
is comparable to or longer (but not infinite) than τs or 1/Ω.8

Or the short-time evolution is the focus, such as hot-carrier
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ultrafast dynamics or photocatalytic processes. The inclusion of
dynamics of the environment, e.g., phonon degrees of freedom
in the dynamics, or formally non-Markovian effects by taking
into account the memory effect of phonon bath, has been
discussed in detail in refs 22 and 27. Such development in
principles can be built on top of the current numerical
implementations; however it is much more computationally
costly due to additional dynamics of the bath.
II.A.2. Coherent Terms and External Fields. In general, a

coherent term corresponding to a single-particle electronic
Hamiltonian He reads

= [ ]
t

i
H

d
d

,
free

e
(6)

where [He,ρ] = Hρ − ρH. In absence of external fields, the
coherent term is simply the free evolution

t
d
d free

and He is the

unperturbed electronic Hamiltonian, practically computed at
the mean-field level, i.e., from density functional theory (DFT).
With the electronic eigenbasis,

=H kmn kn mne, (7)

where k is the k-point index, m and n are band indices, ϵ is the
single-particle energy, and δmn is the Kronecker delta function.
Therefore, we have

i
k
jjj y

{
zzz =

t
id

d
( )

kmn
km kn kmn

free (8)

We note that the time-dependent electronic state renorm-
alization due to many-body interactions, e.g., time-dependent
electron correlation contribution to one particle density matrix,
can be included in the electronic Hamiltonian, which will
introduce additional terms in coherent dynamics.8,28,29

The state renormalization may cause the following: (i) the
effective mass of electrons change; (ii) k-dependent (and time-
dependent) effective magnetic fields.8 The former was
extensively studied for various materials,30,31 and it is of
great interest to reexamine such effect on τs. In ref 8, it was
pointed out that the latter effect presents and can be important
to τs if highly spin-polarized excited carriers with a high density
exist. This is however irrelevant to this work, which focuses on
low excitation density. The ab initio studies of this effect within
the DM master equation approach are of great interest but are
complicated and expensive.
The inclusion of external fields in the DM approach for

solid-state materials is not trivial and was studied by many
theorists since the 1950s.32−38 Here, we consider three
spatially homogeneous fields as follows.
II.A.2.1. Laser Field. In this work, we approximate that the

light-mater interaction He−light consists of two parts�a
semiclassical part Hlaser describing electrons moving in a laser
field (i.e., an electromagnetic field caused by the incident laser)
and a quantum part describing the electron−photon
interaction in the vacuum without considering the laser. The
semiclassical part corresponds to light absorption and
stimulated emission under a laser field, while the quantum
part corresponds to spontaneous emission. We discuss the
coherent term due to the semiclassical part first but discuss the
quantum part in the next subsection.
The Hamiltonian of a laser in the velocity gauge with

frequency ωlaser is approximately16

= · +H t e
m

tA p( , ) ( ) H.C.kmn
e

kmnlaser, laser
(9)

where H.C. is the Hermitian conjugate. Alaser(t) is the vector
potential. Alaser(t) is real/complex for linearly/circularly
polarized light, respectively. pkmn is the momentum operator
matrix element; i.e., p = −i/ℏ[r,He], which includes the
contribution of the nonlocal part of the pseudopotentials.
For a Gaussian pump pulse centered at time tcenter with width

τpump,

=t f t i tA A( ) ( ) exp( )G
laser laser laser (10)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
=f t

t t
( )

1
exp

( )
2

G

pump

center
2

pump
2

(11)

Note that the corresponding pump power is
= | |I A /(2 )laser laser

2
laser

2 (we note that, in ref 16, a factor
of 4 is missing for Ilaser), where α is the fine structure constant.
The corresponding dynamics is

= [ ]
t

i
H

d
d

,
laser

laser
(12)

II.A.2.2. Static Electric Field along a Nonperiodic
Direction. Such electric field along the nonperiodic direction
Enp is directly included in the DFT calculation and is modeled
by a ramp or saw-like potential. Under such treatment, He is
Enp-dependent. As all terms of the master equation (eq 5) are
built on eigensystems from He, they are all Enp-dependent.
However, if electric field is applied along the periodic direction,
one needs to properly treat the periodic boundary condition
(e.g., using the modern theory of polarization39,40).

II.A.2.3. Magnetic Field. We describe the effects of an
external magnetic field Bext using Zeeman Hamiltonian

= · +H gB B L S( ) ( )Z k k k,
ext

B
ext

0 (13)

where μB is Bohr magneton; g0 is the free-electron g-factor; S
and L are the spin and orbital angular momentum, respectively.
The simulation of L is nontrivial for periodic systems. With the
Blöch basis, the orbital angular momentum reads

= =i
u

H
u

L
k

B
k

( ( 0) )k mn
km

e kmn
kn

,
ext

(14)

=
+
2kmn

km kn
(15)

where u is the periodic part of the single-particle wave
function; =H B( 0)e

ext is the zero-field Hamiltonian operator.
Equation 14 can be proven equivalent to L = 0.5(r × p − p ×
r) with r being the position operator. The detailed
implementation of eq 14 is described in ref 41.
There are two ways to consider magnetic-field effects. The

first way is including HZ,k(Bext) in He perturbatively (instead of
self-consistently); then the new eigensystems can be obtained
by diagonalizing He(Bext ≠ 0). The second way is including
HZ,k(Bext) in H′ and the corresponding coherent dynamics is

[ ]H B( ),i
Z k,

ext . In practice, the two approaches lead to
nearly the same dynamical quantities such as lifetimes, since
HZ,k(Bext) is rather weak�e.g., Zeeman splitting under 1 T is
of order 0.1 meV for many solid-state systems. In addition, we

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.3c00598
J. Chem. Theory Comput. 2024, 20, 492−512

494

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00598?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


note that we do not consider the effect of very strong magnetic
field such as the appearance of Landau level in this work.
II.A.3. Scattering Terms. Under Born−Markov approxima-

tion and neglecting renormalization of single-particle states due
to many-body interactions, in general we have42
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=

*
+

t

I P

I P

d

d
1
2

( )

( )
H.C.

c

12

345

13 32,45 45

45 45,13 32 (16)

=P P
c

c

(17)

where P is the generalized scattering-rate matrix. The subindex,
e.g., “1”, is the combined index of k-point and band. For
simplicity, when summing over k-points, the weights of k-
points are omitted. c labels a scattering channel corresponding
to an interaction Hamiltonian Hc. Pc of several scattering
channels are given below.
II.A.3.1. Electron−Phonon. The generalized electron−

phonon (e−ph) scattering-rate matrix reads42

= *
±

± ±P A A
q

q q
1234
e ph

13 24
,

(18)

= ±± ± ±A g n
2

( )q q G
q q13 13 13 (19)

=13 1 3 (20)

where q is a phonon wavevector. λ is phonon mode. “+” and
“−” correspond to the absorption and emission of a phonon,
respect ive ly . gq λ ± i s the e−ph matr ix e lement .

= + ±±n nq q
1
2

1
2
, with nq phonon occupation or Bose−

Einstein distribution function. δσ
G represents an energy

conserving δ-function broadened to a Gaussian function of
width σ. The explicit derivation of the above Pe−ph can be
found in ref 42. This form guarantees the positive definition of
single-particle density matrix. gqλ± is computed fully from first-
principles with self-consistent spin−orbit coupling based on
density-functional perturbation theory and Wannier interpola-
tion methods.43

According to ref 42, there exist two alternative pathways to
arrive at the Markov limit of the scattering term, leading to two
different forms of Pe−ph. One is given above in eq 18 with a
symmetric structure (containing square root of two Gaussian
functions) and is called the Lindbladian form of Pe−ph here.
Another is non-Lindblad, contains a single Dirac delta
function, and reads

= *
±

± ±P a b
q

q q
1234
e ph

13 24
,

(21)

=± ± ±a g n1q q
q13 13 (22)

= ±± ± ±b g n2 ( )q q
q q13 13 13 (23)

Equation 21 is called the conventional form of Pe−ph here.
Such form does not preserve the positive-definite character of
the density matrix ρ, unlike the Lindbladian form,42 although
we find that two forms of Pe−ph lead to rather similar τs (within
20% for various materials) and the same carrier lifetime τp.
Therefore, we will stick to the Lindbladian form of Pe−ph.

II.A.3.2. Electron−Impurity. Similar to the e−ph scattering,
the generalized e−i scattering-rate matrix reads

= *P A Ai i
1234
e i

13 24
,

(24)

=A g n V
2

( )13
i

13
i G

13 i cell (25)

= | |g V1 313
i i

(26)

=V V Vi i 0 (27)

where ni and Vcell are impurity density and unit cell volume,
respectively, Vi is the potential of the impurity system, and V0

is the potential of the pristine system. Here we assume
impurities are randomly distributed and impurity density is
sufficiently low so that the average distance between
neighboring impurities is sufficiently long with nearly no
interactions among impurities.
In our implementation, gi of neutral impurities are computed

fully from first-principles, where Vi is computed using the
defect supercell method with SOC.44 On the other hand, for
ionized impurities, we approximate ΔVi as the screened
Coulomb potential of a point charge with effective charge Z.45

Such approximate ΔVi is accurate in the long-range limit;45 i.e.,
its Fourier transform ΔVi(q) is accurate when q → 0, so that it
is most suitable for the intravalley relaxation process due to
electron−impurity scatterings. The justification of this
approximation is that the long-range part is the most dominant
in the electrostatic interaction of ionized impurities.45

In addition, for nonmagnetic impurities, the impurity effects
can be directly simulated via the coherent dynamics,46

= [ ]
t

i V
d
d

,
e i

i

(28)

This naturally includes both the damping and renormaliza-
tion effects of impurities nonperturbatively. Such simple
formula is however numerically cumbersome for propagating
the quantum master equation in real time. The improvement
based on such a formula needs to be studied in future works.
The effects of magnetic impurities on τs are essential for

diluted magnetic semiconductors, a promising class of
spintronic materials, and possibly critical to spin relaxation in
graphene.47 Such effects are complicated, since magnetic
impurities exchange spins with electrons and in principle the
dynamics of impurity spins/magnetization should be consid-
ered. The spin/magnetization fluctuation further complicates
spin dynamics of free carriers. According to ref 8, at zero
external magnetic field Bext = 0, the main effect of paramagnetic
impurities on spin relaxation of bulk or delocalized carriers is
to induce spin−flip transitions through the exchange
interaction (expect other parts of ΔVi unrelated to spin
exchange), which can be simulated via FGR or T-matrix.47 For
paramagnetic impurities at Bext ≠ 0 or magnetic impurities
producing a net magnetization, free carriers will precess about
the effective magnetic fields generated by impurities.8 The
magnitude and k-dependence of the effective magnetic fields
may affect spin relaxation, dephasing, and diffusion signifi-
cantly.

II.A.3.3. Electron−Electron Interaction. The generalized e−
e scattering-rate matrix reads42
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= *P I2 ( )1234
e e

56,78
65 15,37 26,48 78

(29)

= A A
1
2

( )1234 1234 1243 (30)

= [ + ]A g g
1
2

2
( ) ( )1234 1234

e e
,1234

G 1/2
2143
e e

,2143
G 1/2

(31)

= +( ),1234
G G

1 2 3 4 (32)

= | | | |g Wr r r r r r1( ) 2( ) ( ) 3( ) 4( )1234
e e

(33)

where W(r−r′) is the screened Coulomb potential between
two electrons at r and r′. Note that Pe−e is ρ-dependent due to
the two-particle nature of the e−e scattering and needs to be
updated during the time evolution. Pe−e can be separated into a
direct term (Pe−e,d) and an exchange term (Pe−e,x),

=P P Pe e e e,d e e,x (34)

= *P I A A( )e e,d

56,78
65 15,37 26,48 78

(35)

= *P I A A( )e e,x

56,78
65 15,37 26,84 78

(36)

According to ref 22, since the direct term is expected to
dominate the scattering processes among electrons or holes,
the exchange term is neglected here.
In our current implementation, the static random phase

approximation (RPA) dielectric function is used for dielectric
screening without local-field effects.16 Future studies of the
effect of dynamic screening and local field would be beneficial.
II.A.3.4. Spontaneous Emission. As discussed above, in this

work, the light−matter interaction consists of a semiclassical
part (absorption and simulated emission by a laser field) and a
quantum part. The semiclassical part has been discussed above
(Section II.A.2). Here we discuss the quantum part, which
describes the electron−photon interaction in the vacuum.
Similar to the electron−phonon scattering, we write a similar
form for electron−photon interaction (the underlying
consideration on positive definition of density matrix is
similar).42

= *
±

± ±P A A
q

q q
1234
sp em

13
photon,

24
photon, ,

(37)

= ±± ±A g
2

( )q q
q13

photon,
13
photon, G

13
photon

(38)

× ±nq
photon,

(39)

where “ + ” and “−” correspond to photon emission and
absorption, respectively; λ is the photon mode; and g13photon,qλ ±

is the electron−photon matrix element proportional to p
matrix element. The differences from Pe−ph are as follows: (i)
As ωphoton is comparable to the band gap which is much greater
than kBT, nqλ

photon,− ≈ 0 and nqλ
photon,+ ≈ 1. This represents that

photon absorption is not allowed in vacuum and every photon
emission process emits one photon. (ii) As photon momentum
q is tiny (at long wavelength limit), for A13

photon, we have k1 ≈ k3.
Therefore,

= ++ +A g
2

( )q q
q k k13

photon,
13
photon, G

13
photon

1 3

(40)

The detailed form of P1234sp−em will be given in our future work.
II.A.4. Linearized Quantum Master Equation. If the system

is weakly perturbed from its equilibrium, e.g., by a small
magnetic field or a weak pump pulse, the density matrix can be
written as

= +eq (41)

where ρeq ≡ feq is the Fermi−Dirac distribution function.
Neglecting the second-order terms (in terms of δρ), with the
coherent and scattering terms given above, the DM master
equation reads as

= [ ] [ ] +

+

t
i H f i H

t

t

d( )
d

, ,
d( )

d

d( )
d

e
eq

e
scatt

lin,I

scatt

lin,II

(42)

i
k
jjjj

y
{
zzzz = [ ] +

t
P f

d( )
d

1
2

H.C.
ab

ab ab
scatt

lin,I
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where P(0) and P(1) are the zero- and first-order parts (in terms
of δρ) of P, respectively. Since Pe−e is ρ-dependent, Pe−e,(1) is
nonzero and is found to be critical to both carrier and spin
dynamics/transport. On the other hand, Pe−ph and Psp−em are ρ-
independent, so that Pe−ph,(1) ≡ Psp−em,(1) ≡ 0. For ionized
impurities, Pe−i depends on ρ indirectly due to the carrier-
density-dependence of the screening. This indirect ρ-depend-
ence of Pe−i is found to be unimportant when δρ is tiny and is
always neglected, so that Pe−i,(1) is taken to 0.
To derive the above equations, we have used the relation

=0f
t

d
d scatt

eq

, which is true since the scattering should be absent

at equilibrium if we omit the energy renormalization effects of
the scattering.
When He is band-diagonal; i.e., He,kmn = ϵkmδmn, and [He,feq]

≡ 0. In such cases, only the first-order terms of the linearized
master equation (eq 42) are nonzeros. Thus, eq 42 can be
rewritten as

=
t

L
d( )

d ab
ab ab

12
12,
LME

(46)
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The detailed form of L12,ab
LME will be given in our future work.

When the system is close to the equilibrium, the linearized
master equation is numerically preferred (faster and more
accurate), especially for the e−e scattering. Moreover, the
simpler mathematical form of eq 46 potentially allows us to
solve the DM master equation using more elegant numerical
methods.
II.B. Spin Lifetime and Spin Diffusion Length.

II.B.1. Spin Lifetime: Relaxation and Dephasing. In most
spin lifetime τs experiments, τs of ensemble spins are measured.
The spin observable of an ensemble is

= [ ] =S t s t s t( ) Tr ( ) ( )i i
k mn

i kmn knm
tot

,
(47)

where si is a spin Pauli matrix in Blöch basis along direction i.
For spin dynamics, the total excited or excess spin observable is
often more relevant and is defined as

=S t S t S t( ) ( ) ( )i i i
ex tot eq (48)

where “eq” denotes equilibrium.
An ultrafast simulation of τs,i starts at an initial state (at t =

t0) with δρ(t0) = ρ(t0) − ρeq ≠ 0, which leads to a net spin
Siex(t) ≠ 0. We evolve ρ(t) through the quantum master eq eq
5 for a long enough simulation time, typically from a few ps to
a few hundred ns, until the evolution of Siex(t) can be reliably
fitted by
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ex ex
0
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, (49)

× [ + ]t tcos ( )0 (50)

to extract the relaxation time, τs,i. Above, ω is oscillation
frequency due to Larmor precession.
In ref 16, we have shown that one can generate the initial

spin imbalance by applying a test magnetic field at t = −∞,
allowing the system to equilibrate with a net spin and then
turning it off suddenly at t0, in order to measure spin
relaxation.
Historically, spin relaxation time (or longitudinal time) T1

and ensemble spin dephasing time (or transverse time) T2*
were used to characterize the decay of spin ensemble.8,48

Suppose the spins of the system are polarized along direction
r0, possibly due to applying a constant external field B0 along
r0, and suppose the total excess/excited spin is along direction
r1, if r1∥r0 (or r1 ⊥r0), τs is called T1 (or T2*). For T2*, the

excess spin Sex(t) precesses with a frequency proportional to |
B0|.
The ensemble spin dephasing rate 1/T2* consists of

reversible part and irreversible part. The reversible part may
be removed by the spin echo technique. The irreversible part is
called spin dephasing rate 1/T2, which must be smaller than 1/
T2*. According to ref 48, T2 may be also defined using eq 50
without the need of spin−echo but instead of Sitot(t), we need
another quantity�the sum of individual spin amplitudes

= | |S s t( )i
k mn

i kmn knm
indiv

,
(51)

II.B.2. Optical Measurements. Ultrafast magneto-optical
pump−probe measurements such as time-resolved Kerr/
Faraday rotation (TRKR/TRFR) are powerful tools for
studying the dynamics of spin or magnetic polarization and
are thus widely used to measure τs.25,49−51 In these ultrafast
measurements, a circularly polarized pump pulse (Section
II.A.2.1 “Laser Field”) is first used to excite the electron spins
and hole spins via the optical transitions, which approximately
induce a change of the secondary total angular momentum
Δmj = ±1 for left and right circular polarization, respectively.
The evolution of the total spin polarization is detected by
many repeated weak “probe” pulses. For example, in TRKR
(TRFR) experiments, the linearly polarized probe pulses are
reflected by (transmitted through) the material and the
rotations of their polarization planes at different time are
detected. The dynamics of the rotation approximately follows
the dynamics of the total spin polarization, which was
confirmed by the theoretical simulations in ref 16.
In general, the optical signal including the Kerr/Faraday

rotation angle can be simulated from the density-matrix change
induced by a probe pulse�Δρprobe. The probe pulse interacts
with the material the same as the pump pulse, except that the
probe−pulse density is typically low. Therefore, within the
second-order time-dependent perturbation theory, we have
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Figure 1. Work flow of a spin dynamics simulation. The codes implemented for different steps are listed and explained in the main text.
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With Δρprobe, the dielectric function of the excited state
detected by a probe pulse, which is ε, at the independent-
particle level, is

= +
| |

H
A

Im Im
2

( )
Tr( )gs

probe 3 probe 2 e
probe

(55)

With Im ε, the real part Re ε is obtained from the Krames−
Kronig relation; εgs denotes a ground-state dielectric function.
Note that Im Δε is independent of Aprobe as Δρprobe ∝ |Aprobe|2.
Moreover, the Im Δε above is a functional of ρ instead that of
the occupation function f in the usual expression of the
independent-particle dielectric function.52

In TRKR and TRFR, the probe pulse is a linearly polarized
one and can be regarded as a superposition of left and right
circularly polarized pulses. Define the excited-state dielectric
function detected by a left (right) circularly polarized pulse as
ε+ (ε−), the Kerr rotation angle θK is53
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jjjjj
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zzzzz= +

+
Im
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(56)

Similarly, the Faraday rotation can also be obtained from
ε±.

53

II.B.3. Work Flow of a Spin Dynamics Simulation. As
shown in Figure 1, a spin dynamics simulation has three main
steps:
(i) DFT step. The ground-state electronic structure,

phonons, as well as the e−ph and e−i matrix elements are
first calculated using density functional theory (DFT) with
relatively coarse k and q meshes in the DFT plane-wave code
JDFTx.54 The phonon calculation uses the finite difference
method with supercells. Alternatively, we can compute the
same quantities in QuantumEspresso, with phonon and e−ph
couplings calculated by DFPT at the coarse mesh as well.
(ii)Wannier step. All quantities in DFT eigenbasis obtained

in DFT step are transformed to those in maximally localized
Wannier function basis,55 and then interpolated43,56−60 to
substantially finer k and q meshes. The Wannier interpolation
approach fully accounts for long-range dipolar e−ph matrix
elements and dipolar correction on phonon dispersion (mainly
LO−TO splitting) using the approaches of refs 61 and62 for
the 3D and 2D systems. This part is performed in JDFTx code.
(iii) Dynamics step. Starting from an initial state with a spin

imbalance or with a short circularly polarized pump pulse, we
evolve ρ(t) through the quantum master equation of eq 5.
After obtaining spin observable S(t) from ρ(t) (eq 47) and
fitting S(t) to an exponentially oscillating decay curve (eq 50),
the decay constant τs is obtained. This part is performed in the
DMD code interfacing with the JDFTx code.
II.B.4. Carrier Lifetime and Spin Diffusion Length.

II.B.4.1. Semiclassical Limit and Carrier Lifetime. At the
semiclassical limit, ρ is replaced by (non-equilibrium)
occupation f, and then the quantum form of the scattering
term eq 16 reduces to16

= [ ]
f

t
f P f f P f
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2 1
1 11,22 2 2 22,11 1

(57)

using the facts that P11,22 is real and “2 = 1” term is zero. “c”
represent a scattering channel.

The above equation can be linearized as the linearized
quantum master equation eq 42,
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using the fact that P11,22(1) ≡ 0, even for the e−e scattering.

Define carrier/particle lifetime of state “1” τp,1c by =f

t c

fd

d p
c

1 1

,1
,

we have
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c

c c

,1 2 1
11,22 2

eq
2
eq

22,11
(59)

The line width or the imaginary part of self-energy is simply
Im Σ1

c = ℏ/(2τp,1c ).
II.B.4.2. Spin Diffusion Length. The DM approach has been

widely employed to simulate transport properties32,63,64

including spin diffusion length ls.
8 In principle, the DM master

equation approach can be directly applied to simulate quantum
diffusion if the off-diagonal elements between different k are
considered.65 It is however more convenient to simulate
transport properties by explicitly including the real-space
coordinates in the master equation. This is achieved through
the Wigner transformation which constructs the Wigner
function ρ(k,R) from the density matrix ρ(k,k′).66 This
approach can be numerically advantageous compared to the
fully nonlocal k space form, where the real-space coordinate
can be coarse-grained with a macroscopic scale (tenths of
nanometer sizes), while keeping k sampling still at the
microscopic unit-cell level. With the Wigner function master
equation, quantum transport simulations (including the ls
simulation) of solid-state materials or devices with arbitrary
geometries can be carried out, which allows the direct
comparisons to transport measurements such as Hanle-effect
measurements of ls. The first-principles implementation of such
an approach is still under development.
In this work, ls are obtained from first-principles using the

commonly used relation7,8 based on the drift−diffusion model,

=l Ds s (60)

=D n
n

/
d

dc c
c

F (61)

where D is the diffusion coefficient of carriers calculated using
the generalized Einstein relation.67 The underlying assumption
here is the diffusion coefficient of carrier being the same as
spin, which was shown to be true in graphene-derived systems
experimentally.68 ϵμdF

is the electron chemical potential. nc is the
carrier density. μc is the carrier mobility calculated by solving
the linearized Boltzmann equation in momentum−relaxation−
time approximation,69−71

= [ ]e
n V

f vc i
c u

i m,
1

eq
1 1,

2
,1

(62)

where i = x, y, z. Vu is the unit cell volume. [ ]f eq is the
derivative of feq. v is the band velocity. τm is the momentum
relaxation time and is approximated as69−71

= {[ + ] }P f f P(1 ) cosm,1
1

2 1
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2
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= ·
v v
v v

cos 12
1 2

1 2 (64)

where v is the velocity vector. We find that τm is similar to the
carrier lifetime τp except the angle factor cos θ12.
II.C. Comparisons with Other Ab Initio Methods for

Spin Dynamics. II.C.1. Ab Initio NEGF within the KBE.
Within the KBEs (Keldysh−Kadanoff−Baym equations) at
equal time arguments (t = t′), the equations of motion for one-
particle NEGF (non-equilibrium Green’s function) approach
within Martin−Schwinger (MS) hierarchy can be reduced to
the BBGKY hierarchy for the reduced density operators.28,72,73

The latter approach is the focus of this review. An ab initio
implementation of the real-time NEGF approach has been
performed by Marini and co-workers to simulate valley
depolarization (closely related to spin) in transition metal
dichalcogenides (TMDs).28,52 The time-dependent electron
correlation has been included by the Coulomb-hole plus
screened-exchange (COHSEX) self-energy through coherent
dynamics, which can capture the electron−hole interactions. A
similar approach such as time-dependent GW formalism was
developed to simulate other time-dependent phenomena such
as shift current in broken-inversion symmetry systems.74

Although the theoretical formalism is general for describing a
time-dependent non-equilibrium electronic process, in prac-
tice, the scattering dynamics are approximated, i.e., in a form of

| = {[ + ] }( ) ( ) ( ) /2 ( )kmn p km p kn kmnscatt
1 1 eq

The approximations involved in such a form have been
detailed in the Supporting Information of ref 52. Such
simplification is reasonable for carrier dynamics but may not
be justified for spin dynamics, due to the nondiagonal form of
density matrix after spin−orbit coupling.
II.C.2. rt-TDDFT. Real-time time-dependent DFT (rt-

TDDFT) was developed to simulate ultrafast demagnetization
of magnetic systems.12−14 The basic equation is the time-
dependent Kohn−Sham equation

=i
t

t H t tr r r( , ) ( , ) ( , )kn kn (65)

where the time-dependent wave function Ψkn(r,t) is usually
expanded by ground-state Kohn−Sham eigenstates with time-
dependent coefficients. The Hamiltonian H(r,t) contains the
kinetic term, ionic potential, Hartree potential, a time-
dependent vector potential for external laser field, and
exchange−correlation (XC) potential Vxc(r,t). The e−e
interaction is described through time-dependent Vxc. For spin
dynamics, two additional terms are needed: one is a time-
dependent spin−orbit potential; another term is σ·Bs(r, t),
where Bs is the KS effective magnetic field including Bext and
XC magnetic field.75 The importance of memory effect and
accurate electron correlation in rt-TDDFT was investigated
through spin−flip TDDFT and dynamical mean-field theory
recently.13

The e−ph interaction in rt-TDDFT has been described by
several different approaches, such as Enrenfest dynamics or
surface hopping. The most commonly used Ehrenfest
dynamics is a mean-field classical description for nuclear
movement, taking into account all electronic excitation at a
given time. Such description is good when the effect of nuclear
movements is not important or a single trajectory dominates
nonadiabatic evolution. Meanwhile, a large supercell is
required to simulate the e−ph interactions, in particular for

small-q phonon contribution, which leads to extremely high
computational cost. Therefore, rt-TDDFT are often aimed at
describing the early stages of the demagnetization process
(tens to a few hundred fs), when other relaxation mechanisms
(e.g., e−ph) can be ignored or are unimportant.

II.C.3. Method Based on Spin−Spin Correlation Function.
In ref 15, a method based on spin−spin correlation was
developed to simulate spin−phonon relaxation. The formulas
are derived using the diagrammatic approach for the phonon-
dressed spin vertex. This method avoids real-time propagation
which may be computationally convenient. If the system is
near equilibrium and only the e−ph interaction is considered,
this approach is rather similar to our FPDM approach, because
both include only the lowest-order perturbation contribution
of the e−ph interaction and have not considered the dynamics
of the phonon environment (i.e., Markov approximation).
Indeed, their obtained T1 of Si, WSe2, and GaAs are rather
similar to our FPDM results, when only the e−ph scattering is
considered.
On the other hand, our FPDM approach can be generalized

straightforwardly to far-from-equilibrium dynamics, when the
dynamics of the phonon bath is included. This is rather
difficult to do with the approach in ref 15. Moreover, it is not
clear how T2* can be simulated in their method, especially in
the limit where the scattering is absent so that the phonon-
dressed spin vertex becomes not meaningful, and inhomoge-
neous broadening or dephasing process dominates.

II.C.4. Methods Simulating Spin Diffusion Length. Besides
the approach based on quantum master equation of the
Wigner function ρ(k,R) as mentioned in Section II.B.4, other
approaches, such as semiclassical Boltzmann transport
equation,76 non-equilibrium Green’s function,77 Landauer−
Büttiker formula,78 and scattering theory with wave function
matching,79 were widely applied in quantum transport
simulations. However, the ab initio approaches for simulating
ls are rare. To the best of our knowledge, fully ab initio
simulations of spin diffusion have only been carried out
recently for transition metal elements,79 metallic interfaces,80

disordered graphene nanoribbons,81 and double-walled carbon
nanotubes.82 In their ab initio approaches, phonons are either
missing or considered through random atomic movements
with a given mean-square displacement, so that quantum
treatment of the e−ph interaction is difficult. This difficulty
can be easily removed from the Wigner function approach.

III. SPIN RELAXATION MECHANISM AND ANALYSIS
METHODS FOR SPIN RELAXATION

Through studying the relations between τs and important
electronic quantities, switching on/off certain dynamic
processes, or tuning the key factors affecting spin dynamics,
our FPDM method is a powerful technique to determine spin
relaxation mechanism and quantitatively predict spin lifetime
in different materials at various conditions.
There are several mechanisms causing spin relaxation and

dephasing of electron carriers in nonmagnetic systems.7,8

Among them, the most important mechanisms are Elliot−Yafet
(EY) and Dyakonov−Perel (DP) mechanisms. EY represents
spin relaxation due to spin−flip scattering. DP is activated
when inversion symmetry is broken, which results in random
spin precession between adjacent scattering events. Similar to
DP mechanism, free induction decay (FID) mechanism is
caused by random spin precession but happens when
scattering is weak enough. Below we show how to determine
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spin relaxation mechanism and analyze spin relaxation through
ab initio simulations. We note that our FPDM approach
provides unified treatment for different mechanisms. We also
acknowledge that some approximate models were proposed in
the past specific for each mechanism, which was helpful for
providing mechanistic insights and qualitative understanding.
We will introduce them in the following sections. By
comparing FPDM and these approximate models, we can
further grasp the detailed physical picture of spin relaxation.
III.A. Spin Expectation Value, Spin Texture, and

Internal Magnetic Field. We first define some important
spin-related properties in spin dynamics.
The diagonal element of spin matrix si is named as the spin

expectation value Siexp; i.e.,

=S si i,1
exp

,11 (66)

Note that for degenerate bands, the matrix elements of si are
arbitrary; thus, we need to diagonalize si matrix in degenerate
subspaces.
The spin texture presents when the spin-up and -down

degeneracy (Kramers pair) is lifted (e.g., due to broken
inversion symmetry) and is the distribution of the spin
expectation value vector Sexp ≡ (Sxexp,Syexp,Szexp).
When there is time-reversal symmetry, if a pair of bands are

relatively away from other bands and degenerate without SOC,
the main effect of inversion symmetry broken on the pair can
be understood as lifting the degeneracy and inducing k-
dependent effective SOC fields, called internal magnetic fields
Bk
in, which split the degenerate pair and polarize the spins along

their directions. Bk
in is defined as

gB S2 /( )k k k B
in exp

0 (67)

where Δ is the band splitting energy between a Kramers’
degenerate pair before applying SOC. | |S S S/k

exp exp exp . From
eq 67, Skexp∥Bk

in (internal magnetic field Bk
in is along the spin

texture direction Skexp).
III.B. Elliot−Yafet (EY) Mechanism. EY mechanism

dominates spin relaxation when spin-up and spin-down are
well-defined (in the absence of spin precession), so that it
dominates in two types of systems: (i) materials with both
time-reversal and spatial inversion symmetries, e.g., silicon,
freestanding graphene in the absence of external fields (with
such symmetries, every two bands are Kramers degenerate;7

therefore, spin-up/-down is well-defined along an axis r ̂ by
diagonalizing the corresponding spin matrix = ·s s rr in
degenerate subspaces); (ii) systems with high spin polar-
ization, e.g., due to spin−valley locking or intrinsic magnet-
ization, e.g., TMDs and ferromagnets.
III.B.1. Fermi’s Golden Rule (FGR). III.B.1.1. FGR with Spin−

Flip Transitions. For the EY mechanism due to the e−ph
scattering, the free carriers’ τs approximately satisfies17
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(69)

where g↑↓ is the spin−flip e−ph matrix element between a spin-
up and spin-down state.

According to ref 17, it is helpful to further approximate eqs
68 and 69 into a simple form for analyzing EY-type τs−1,

| |g Ds
1 2 S (70)

where | |g 2 is the effective modulus square of the spin−flip e−
ph matrix elements and DS is called the scattering density of
electronic states (DOS). Both | |g 2 and DS depend on T and
chemical potential ϵμdF

, and their detailed formulas are
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(73)

where ωc is the characteristic phonon energy chosen as the
averaged energy of the phonons contributing to spin relaxation
and wk,k−q is the weight function.
Therefore, | |g 2 selects spin−flip e−ph transitions “more

relevant” to spin relaxation or meeting the following three
conditions: (i) nqλ is non-negligible so that at low T the
unoccupied high-frequency phonons do not contribute; (ii)
the energy conservation is satisfied; (iii) the electronic states
are close to ϵμdF

or the band edges (otherwise wk,k−q is
negligible). DS can be regarded as an effective density of spin−
flip e−ph transitions satisfying energy conservation between
states close to ϵμdF

or the band edges.
We can similarly define an effective spin conserving matrix

element | |g 2 by replacing gk,k‑q↑↓,qλ to gk,k‑q↑↑,qλ in eq 71. Then we
have the approximate relation for carrier relaxation rate due to
e−ph scattering,

| |g Dp
1 2 S

(74)

Although such formulas are not as general and accurate as
our FPDM formulation, eqs 70 and 74 can be used to
understand the spin−flip and spin conserving e−ph matrix
element’s relation to spin or carrier relaxation and one can
develop intuition on what type of phonons contribute more to
| |g 2 or | |g 2 . As our recent studies show Fröhlich LO
phonon strongly contributes to carrier relaxation in CsPbBr3,
but much less important in its spin relaxation due to the spin-
conserving nature of long-ranged Fröhlich electron−phonon
coupling.18

III.B.1.2. Generalized FGR. In centrosymmetric systems with
strong spin-mixing and band degeneracy, Skexp may have
multiple values. For example, valence bands of silicon at Γ
are 4-fold degenerate and their Skexp are (more precisely, very
close to) ±1/2 and ±1/6. In such cases, spin relaxation may be
still driven by EY mechanism but needs a generalized FGR
formula17 beyond spin−flip transition,
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1
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(76)

=S S Si i i,12
exp

,1
exp

,2
exp

(77)

Therefore, the transitions with non-negligible ΔSexp can
contribute to spin relaxation. Again, unlike our FPDM method,
this is an approximate formula, which can be used to
understand how e−ph scattering between a pair of states
changes the spin expectation value as we showcase bulk Si hole
spin relaxation in ref 17.
III.B.2. Spin-Mixing Parameter b2. III.B.2.1. State-Resolved

b2. Suppose the spin of a state “1” is highly polarized along the
i direction. Then in general, the wave function of state “1” can
be written as Ψ1(r) = ai,1(r)α + bi,1(r)β, where a and b are the
coefficients of the large and small spin components and α, β =
↑, ↓ are spinors (along i direction). Define = | |a a r r( ) di i,1

2
,1

2

and = | |b b r r( ) di i,1
2

,1
2 with ai,12 > bi,12 , then bi,12 is just a spin-

mixing parameter of state “1” along direction i.19

+ =a b 1i i,1
2

,1
2

(78)

=a b S0.5( )i i i,1
2

,1
2

,1
exp

(79)

Therefore,

=b S0.5i i,1
2

,1
exp

(80)

III.B.2.2. EY Relation. According to eqs 68 and 74, we have

| | | |g g/ /s p
1 1 2 2

(81)

where τp = 1/⟨τp−1⟩.
As thermal averaging frequently appears in spin relaxation

analysis, we define ⟨A⟩ as the thermal average of electronic
quantity A,

=
[ ]

[ ]
A

f A

f

( )

( )
kn kn kn

kn kn

eq

eq
(82)

where [ ]f eq is the derivative of the Fermi−Dirac distribution
function.
According to refs 9. 83, and 84, | | | |g g b/2 2 2 , so that

b/s p
1 1 2

(83)

The above is a rough relation and cannot be used to predict
τs (the error may be several or even ten times). Practically, we
use the following approximate relation

= b/ 4s p
1 1 2

(84)

This is called the EY relation in this work.
III.B.3. Spin-−Fip Angle θ↑↓. In our previous paper,21 we

proposed a new electronic quantity important to intervalley
spin−flip scattering�the spin−flip angle θ↑↓ between two
electronic states. For two states (k,n) and (k′,n′) with opposite
spin directions, θ↑↓ is the angle between −Sknexp and Sk n

exp . The
motivation of examining θ↑↓ is that, according to ref 85, due to
time-reversal symmetry, the spin−flip matrix element of the
same band between k and −k is exactly zero, so that g↑↓ is zero
at its lowest order for intervalley transitions between two
opposite valleys (e.g., K and −K). In the first-order
perturbation level, |g↑↓| between two states is determined by
θ↑↓ between these two states and proportional to |sin(θ↑↓/2)|.

Suppose (i) the inversion symmetry broken induces Bk
in (eq

67) for a Kramers degenerate pair; (ii) there are two valleys
centered at wavevectors Q and −Q; and (iii) k-points k1 and
k2 are near Q and −Q, respectively. Due to time-reversal
symmetry, the directions of Bk

in
1
and Bk

in
2
are almost opposite.

We can prove that for a general operator Â,

| | | |A Asin ( /2)k k k k k k
2 2 2

1 2 1 2 1 2 (85)

where Ak k1 2
and Ak k1 2

are the spin−flip and spin-conserving
matrix elements between k1 and k2, respectively. We present
the detailed derivation in supporting information Section SIII
of ref 21.
From eq 85, obviously we have

| | | |g gsin ( /2)k k k k k k
2 2 2

1 2 1 2 1 2 (86)

Finally, similar to eq 71, we propose an effective modulus
square of sin( /2)k k1 2

,

=sin ( /2)
w sin ( /2)

w
kq k k q k k q

kq k k q

2 ,
2

,

, (87)

We found spin relaxation time (obtained from our FPDM
method) linearly proportional to this quantity (sin ( /2))2

when intervalley spin relaxation process dominates, as an
example of substrate effects on spin relaxation of strong SOC
Dirac materials in ref 21. Such angle relates to the spin
expectation value direction between initial ↑ (↓) and final ↓
(↑) states.

III.C. Dyakonov−Perel (DP) and Free Induction Decay
(FID) Mechanisms. III.C.1. Model Relations. For non-
magnetic materials, with nonzero k-dependent internal
magnetic field Bk

in induced by inversion symmetry broken
and spin−orbit coupling, the spins at k precess about Bk

in. The
Larmor precession frequency vector can be defined as

= Sk k k
exp

(88)

where Sk
exp is the normalized Skexp.

We define r as the component of Ω perpendicular to
direction r.̂ Suppose the fluctuation amplitude among different
k-points of r is r and numerically we define it as (using
eq 82)

= | |r r r
2

(89)

According to refs 7 and8, a nonzero ΔΩ leads to finite spin
lifetime τsΔΩ along r ̂ and the spin relaxation mechanism
depends on the magnitude of τpΔΩ7,8 (the subindex “⊥r”̂ is
dropped for simplicity):
(i) DP mechanism if τpΔΩ ≪ 1 (strong scattering limit).

We have the DP relation

( ) ( ) ( )s s p
1 DP 1 2

(90)

(ii) FID mechanism if τpΔΩ ≳ 1 (weak scattering limit). We
have

( ) ( )s s
1 FID 1 (91)

(iii) Between (i) and (ii) regimes, there is not a good
approximate relation for ( )s

1, but we may expect that8
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< <( ) ( ) ( )s s s
DP 1 1 FID 1 (92)

III.C.2. Lande ́ g-Factor of Free Carriers. Besides intrinsic
spin−orbit coupling, one channel to induce nonzero ΔΩ is
through g factor fluctuations under magnetic field. In Section
II.A.2, we have described how Bext is considered in the FPDM
approach; therefore, with Hz(Bext), the magnetic-field effects
on spin dynamics are straightforwardly included in FPDM
simulations.
For the description of the magnetic-field effects, the Lande ́ g-

factor has been widely used.18 For a single band and a pair of
bands, the g-factor is well-defined and relates to the Bext-
induced change of energy, energy splitting, and/or Larmor
precession frequency. In this work, we limit our discussions to
two Kramers degenerate bands under a transverse Bext

(perpendicular to the direction of the excess/excited spin S
≡ (Sx,Sy,Sz)). In general, in the two-band case, the g-factor is a
tensor and may be defined by the relation Ωk(Bext) = μBBextgkS.
Here, for simplicity, we assume Ωk(Bext)∥Bext, which is valid in
many materials including CsPbBr3. With this assumption and
from eq 88,

=
·

g
B

B B( )
k
S k

B

ext ext

ext
(93)

Ωk(Bext) is computed using eq 88.
However, in many previous theoretical studies,86,87 g-factors

were defined based on pseudospins related to the total
magnetic momenta Jat, which are determined from the atomic-
orbital models. The pseudospins can have opposite directions
to the actual spins (S). Most previous experimental studies
adopted the same convention for the signs of carrier g-factors.
Therefore, to compare with g-factors obtained in those
previous studies, we introduce a correction factor CS→J and
define a new g-factor:

=g C gB( )k
S J

k
Sext

(94)

=C m m/S J
S J at at with mJ

at and mS
at the total and spin magnetic

momenta, respectively, obtained from the atomic-orbital
model.87 CS→J is independent from k-point and is ∓1 for
electrons and holes, respectively, for CsPbBr3.

18

As gk is different at different k, we can define its fluctuation
amplitude as

=g g g( )2 (95)

From the above equation, we have the fluctuation amplitude
of Ωk(Bext)

= B gB( ) B
ext ext

(96)

A nonzero ΔΩ(Bext) leads to spin dephasing under external
magnetic field Bext, and the mechanism may be DP or FID
depending on the magnitude of τpΔΩ as discussed above.

III.D. Determination of Spin Relaxation Mechanism.
In general, the applicability of our FPDM approach does not
depend on a specific spin relaxation mechanism. To determine
the dominant relaxation or dephasing mechanism, we have the
following two approaches by utilizing our FPDM calculations.

III.D.1. Method 1: Comparing FPDM Calculations with
FGR or Model Relations. The first approach is to compare
FPDM results directly with simple models designed for various
mechanisms as introduced in previous two sections. If FPDM
agrees with one of the model relations, it is a good indicator of
dominant mechanism.

III.D.1.1. EY Mechanism. Since spin precession is sup-
pressed when the EY mechanism dominates, the DM master
equation in semiclassical limit from eq 57 and the FGR
formula with spin−flip scattering eq 68 should describe well
spin relaxation (suppose the spin matrix is diagonalized in
degenerate subspaces along the direction of the excess spin).
Therefore, if the values and trends of τs by eqs 57 and 68 are
similar to those obtained from FPDM calculations, the
dominating mechanism is likely the EY.

III.D.1.2. DP or FID Mechanism. With nonzero ΔΩ,
whether spin relaxation is dominated by DP or FID
mechanism may be determined by comparing the values and
trends of τs by eq 90 or 91 with the FPDM results. We have
shown the success of such analysis in our previous work on
spin relaxation and transport in germanene and silicene under
electric field19 as well as CsPbBr3 under magnetic field.18

III.D.2. Method 2: Tuning the Scattering Strength or
Precession Frequency in FPDM Calculations. Conventionally,
spin relaxation mechanism is determined from the relation
between τs and τp�the EY mechanism leads to τs ∝ τp while
the DP mechanism leads to τs ∝ τp‑1. Another way to look at
this is through tuning the strength of scatterings (e.g.,
physically, increasing impurity concentration increases scatter-

Figure 2. Spin relaxation in silicon (Si). Spin (τs) and carrier (τp) lifetimes of (a) electrons and (b) holes of Si. “Exp. A” and “Exp. B” are from refs
88 and89. (c) Cumulative contributions to spin relaxation by change of spin expectation value ΔSexp per scattering event defined based on eqs
75−77. All spin flip events of Si electrons happen with ΔSexp ≈ 1, whereas spin flip events of Si holes can happen with ΔSexp ranging from 0.1 to 1.0.
Reprinted with permission from ref 17. Copyright 2020 The Authors under Creative Commons Attribution 4.0 International license, published by
Springer Nature.
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ing). If τs decreases with increasing scattering, it is likely EY;
otherwise, it is likely the DP mechanism, because τp always
decreases with increasing scatterings.
Practically in our FPDM calculations, this approach can be

implemented by introducing a scaling factor Fsc to tune the
scattering strength, i.e., multiplying Fsc to the scattering term

t
d
d scatt

of the DM master equation (eq 5) but keep the

coherent term (the first term of eq 5) unchanged. This is
equivalent to multiplying Fsc to all elements of the generalized
scattering-rate matrix P (eqs 18, 24, and 29).
To avoid confusion, we name carrier and spin lifetimes after

introducing Fsc as τs′ and τp′, respectively. According to eq 59,
we always have = F/ ( )p p

sc 1. On the other hand, τs′ depends
on the spin relaxation mechanism. For the EY mechanism, τs′/
τp′ = τs/τp = CEY, where CEY is a constant unrelated to Fsc.
Therefore, it can be proven that = =F/ ( ) /s s p p

sc 1 .
Similarly, for the DP mechanism, we can prove that

= =F/ ( / )s s p p
sc 1. For the FID mechanism, as τs′ is

irrelevant to τp′, we have τs′/τs ≡ 1. Therefore, the relation
between τs′/τs and τp′/τp by tuning Fsc is useful to understand
spin relaxation mechanism.
Moreover, the relation between τs and ΔΩ is also useful to

understand spin relaxation mechanism. ΔΩ can be tuned easily
by tuning the energy splitting.

IV. APPLICATIONS
IV.A. Nonmagnetic Materials with Inversion Symme-

try. Spin relaxation in nonmagnetic materials with inversion
symmetry is traditionally described by the EY mechanism.
Figure 2a shows that our theoretical electron τs of Si are in
excellent agreement with experiments.88,89 Note that in
previous first-principles simulations,9 spin−flip e−ph matrix
elements are approximated as the product of spin−flip overlap
integral and spin-conserving e−ph matrix element, assuming
that the scattering potential varies slowly on the scale of a unit
cell, while in our FPDM approach all e−ph matrix elements are
directly evaluated using the relativistic electronic wave
functions and the scattering potentials with self-consistent
SOC. In contrast, holes in Si exhibit strong spin mixing with
spin-3/2 character and |ΔSiexp| can take various values away
from ±ℏ/2 (e.g., ±ℏ/6 at Γ). Figure 2b shows our predicted
hole spin lifetimes τs,h are much shorter than the electron ones
by several orders of magnitude as a result of the strong mixing
and is quite close to carrier lifetime τp. Moreover, Figure 2c
shows that the change of spin expectation values (ΔSexp) per
scattering event (evaluated based on eqs 75−77) has a broad
distribution for holes of Si, indicating that hole spin relaxation
cannot be described by simple spin−flip transitions between a
spin-up and spin-down electronic state, while conduction
electrons of Si predominantly exhibit spin−flip transitions with
ΔSexp = 1.
IV.B. Materials with High-Spin Polarization. In

ferromagnets and antiferromagnets, spins are highly polarized,
so that spin relaxation is likely mainly driven by spin−flip
processes. In ref 17, we simulated τs of bcc iron, where we
found good agreement with experiments, with a dominant EY
mechanism if we do not consider the effect of spin/
magnetization fluctuation. In general, spin fluctuation is
important to spin dynamics in magnets12,90 and its effect was
simulated by several methods including TDDFT,12−14 semi-

classical Boltzmann equation with rates from FGR,90 and
many-body perturbation theory.91,92

In nonmagnetic materials, when inversion symmetry is
broken and SOC strength is moderate or large, it has been
found that some of them such as transition metal
dichalcogenides also have highly polarized carrier spins and
exhibit EY spin relaxation.

IV.B.1. Transition Metal Dichalcogenides (TMDs). Mono-
layer TMDs exhibit exciting features including spin-polarized
bands, valley-dependent optical selection rules, and spin−
valley locking. In refs 93 and 94, it has been shown that by
doping the samples of monolayer TMDs, ultraslow decays of
Kerr rotations, which correspond to ultralong spin/valley
lifetimes τs of resident carriers especially resident holes, can be
observed at low temperatures. Those features establish TMDs’
advantages for spin−valleytronics and (quantum) information
processing. Although τs of resident carriers of monolayer
TMDs, critical to their spin−valleytronic applications, were
extensively examined, the underlying relaxation mechanisms
including the effects of realistic impurities have not been
addressed through ab initio simulations.
In ref 16, we clarified the above problem by conducting ab

initio real-time dynamics simulations with relevant scattering
mechanisms. We focused on WSe2 due to its larger valence
band SOC splitting compared with other TMDs and focused
on dynamics of resident holes as τs of holes seem longer than
electrons.
Hole spin/valley relaxation in monolayer WSe2 is completely

determined by intervalley spin−flip scattering between K and
K′ valleys because of spin−valley locking. Previously, we
reported τs of resident holes of monolayer TMDs at T ≥ 50 K
with e−ph scattering.17 At very low temperatures, e.g., 10 K,
intervalley e−ph scattering is however not activated as the
corresponding phonon occupation is negligible, so that other
scattering channels need to be considered. Note that e−e
scattering should not play an important role in spin relaxation
of holes of TMDs. This is because only the highest valence
band is involved in dynamics of TMD holes, so that an e−e
scattering process within this band does not change the total
spin according to the energy- and momentum-conservation
conditions.16 Therefore, we consider only e−ph and e−i
scatterings.
Here we pick four representative types of impurities with

different symmetries and chemical bonds (see Figure 3a)�Se
vacancy (Se vac.), two neighboring Se vacancies (2N−Se vac.),
W vacancy (W vac.), and two Se vacancies with the same in-
plane position (2S−Se vac.). ni of Se vac. is chosen to be 7 ×
1011 cm−2 within the experimental range,98−100 which is taken
relatively low for better comparison with experimental τs (Exp.
A in Figure 3b). Since ni of larger impurities are found lower
than smaller impurities,100 ni of 2N−Se vac. is chosen to be a
rather low value�8 × 109 cm−2 (also for better comparison
with experimental τs). ni of W vac. and 2S−Se vac. are chosen
arbitrarily as their effects on spin relaxation are found to be
rather weak and are 7 × 1011 and 3.5 × 1011cm−2, respectively.
From Figure 3, we first find that assuming ni are not so high,

at T > 20 K, spin relaxation is almost driven by e−ph scattering
and impurities are only important at T ≤ 20 K. For the effects
on spin relaxation of different impurities, we have 2N−Se vac.
≫ Se vac. ≫ W vac. ∼ 2S−Se vac.. Moreover, the temperature
dependence of τs with 2N−Se vac. is much weaker and in
better agreement with experiments than that with Se vac.
Therefore, the observed weak temperature dependence in
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some experiments possibly indicates the existence of larger
impurities with lower symmetries. Our results suggest that the
local symmetry and chemical bonds surrounding the impurities
have a large impact on spin relaxation. To understand why the
effects of different impurities on spin relaxation significantly
differ, further theoretical investigations on how impurities
affect impurity potentials and their SOC corrections are
required.
IV.B.2. Germanene under an Electric Field or on a

Substrate. In ref 19, through FPDM simulations, we predicted
that monolayer germanene (ML-Ge) has giant spin lifetime
anisotropy, spin−valley-locking (SVL) effect under nonzero
perpendicular electric field Ez and long τs (∼100 ns at 50 K),
which makes it advantageous for spin−valleytronic applica-
tions. In spintronic devices based on 2D materials, the material
layers are usually supported by a substrate. Therefore, it is
crucial to understand substrate effects on spin relaxation. We
thus examined τs of ML-Ge on different substrates in ref 21.
Figure 4 shows band structures and spin textures of

freestanding and supported ML-Ge, essential for under-
standing spin relaxation mechanisms discussed below. At Ez
= 0, ML-Ge has time-reversal and inversion symmetries, so
that its bands are Kramers degenerate.7 A finite Ez or a
substrate breaks the inversion symmetry and induces a strong
out-of-plane Bin (and also Sexp, eq 67), which splits the
Kramers pairs into spin-up and spin-down bands.19 We find
that band structures of ML-Ge-SiH (Figure 4c) and ML-Ge-
GeH (not shown) are quite similar to freestanding ML-Ge
under Ez = −7 V/nm (ML-Ge@−7 V/nm, Figure 4b). On the
other hand, the band structures of ML-Ge-InSe (Figure 4d)

and ML-Ge-GaTe (not shown) have more differences from the
freestanding one under Ez, with larger band gaps, smaller band
curvatures at Dirac cones, and larger electron−hole asymmetry
of band splittings. This implies that the impact of the InSe/
GaTe substrates cannot be approximated by applying an Ez to
the free-standing ML-Ge, unlike SiH/GeH substrates. We
further examine Sexp of substrate-supported ML-Ge. Impor-
tantly, from Figure 4e,f, although Sexp of ML-Ge on substrates
are highly polarized along the z (out-of-plane) direction, the
in-plane components of Sexp of ML-Ge-InSe (and ML-Ge-
GaTe) are much more pronounced than ML-Ge-SiH (and
ML-Ge-GeH). Such differences are crucial to the out-of-plane
spin relaxation as discussed later.
We compare out-of-plane τs due to e−ph scattering between

the freestanding ML-Ge (with/without an electric field) and
supported ML-Ge on different substrates in Figure 5. We find
that τs of ML-Ge under Ez = 0 and −7 V/nm are at the same
order of magnitude for a wide range of temperatures. On the
other hand, τs of supported ML-Ge are very sensitive to the
specific substrates. While τs of ML-Ge-GeH and ML-Ge-SiH
have the same order of magnitude as the freestanding ML-Ge,
in particular very close between ML-Ge-GeH and ML-Ge@−7
V/nm, τs of ML-Ge-GaTe and ML-Ge-InSe are shorter by at
least 1−2 orders of magnitude in the whole temperature range.
Since spins of ML-Ge at Ez ≠ 0 and on a substrate are highly

polarized, spin relaxation in ML-Ge systems is dominated by
the EY mechanism. According to eqs 70 and 83, τs−1 is roughly
proportional to density of states (DOS) and spin-mixing
parameter ⟨bz2⟩. Indeed, in ref 21, we find that, at 300 K, the
differences of τs of ML-Ge on different substrates are well-
explained by the differences of the products of DOS and ⟨bz2⟩.
However, at T ≤ 50 K, the differences of the products of DOS
and ⟨bz2⟩ for different substrates are only about 3−7 times,
while the differences of τs for different substrates can be as
large as 2 orders of magnitude. Therefore, the substrate effects
on τs cannot be fully explained by the changes of DOS and
⟨bz2⟩, in particular at relatively low T.
Since | |g Ds

1 2 S (eq 70), to understand substrate

effects on τs at low T, we first compare τs−1 and | |g D2 S of
different ML-Ge systems. In ref 21, we found that the variation
of τs−1 with the substrate type is well-captured by the variation
of | |g DS2 at 20 K. As the variation of DS is rather weak (at
most three times) compared with the large variation of τs−1

(several orders of magnitude), the substrate-induced change of
τs should be mostly due to the substrate-induced change of
spin−flip matrix elements.
To have deeper intuitive understanding, we then propose a

new electronic quantity important to intervalley spin−flip
scattering�the spin−flip angle θ↑↓. For two states (k1,n1) and
(k2,n2) with opposite spin directions, θ↑↓ is the angle between

Sk n
exp

1 1
and Sk n

exp
2 2

or equivalently the angle between Bk
in

1
and Bk

in
2

. The details of θ↑↓ including its relation to the spin−flip matrix
elements are given in Section III.B.3.
At low T, due to large SOC splittings of conduction and

valence bands of supported ML-Ge, intravalley spin−flip e−ph
scattering processes are forbidden, because the corresponding
phonons have too high energies and are not occupied. So spin
relaxation in supported ML-Ge is dominated by intervalley
spin−flip e−ph scattering. Therefore, θ↑↓ is helpful for
understanding spin relaxation in supported ML-Ge.

Figure 3. (a) Schematics of four types of impurities in WSe2. (b)
Hole τs of monolayer WSe2 with a low hole density 1011 cm−2

considering impurities compared with experimental data.94−97

Adapted with permission from ref 16. Copyright 2021 American
Physical Society.
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As shown in Figure 6c, τs−1 of ML-Ge on different substrates
at 20 K is almost linearly proportional to Dsin ( /2) S2 , where
sin ( /2)2 is the statistically averaged modulus square of
s i n (θ ↑ ↓/2 ) . Th i s i n d i c a t e s t h a t t h e r e l a t i o n
| |g sin ( /2)2 2 is nearly perfectly satisfied at low T,
where intervalley processes dominate spin relaxation. We
additionally examined the relation between τs−1 and

Figure 4. Band structures and spin textures around the Dirac cones of freestanding and supported monolayer germanene (ML-Ge) systems. (a−d)
Band structures of ML-Ge under Ez = 0 and under −7 V/nm and ML-Ge on silicane (SiH) and on InSe substrates, respectively. The red and blue
bands correspond to spin-up and spin-down states. The gray, white, blue, pink, and green balls correspond to Ge, H, Si, In, and Se atoms,
respectively. (e, f) Spin textures in the kx−ky plane and 3D plots of the spin vectors Sk

exp
1
on the circle | |=k 0.005 bohr−1 of the band at the band edge

around K of ML-Ge on SiH and InSe substrates, respectively. The color scales Szexp, and the arrow length scales the vector length of in-plane spin
expectation value. Adapted with permission from ref 19. Copyright 2021 American Chemical Society.

Figure 5. Out-of-plane τs of freestanding ML-Ge under Ez = 0, −7 V/
nm and supported ML-Ge on several substrates as a function of T
without impurities. Adapted with permission from ref 21. Copyright
2023 The Authors under Creative Commons Attribution 4.0
Internation license, published by Springer Nature.

Figure 6. Relation between τs−1 and sin ( /2)2 multiplied by the
scattering density of states DS at 20 K. DS is defined in eq 72. θ↑↓ is the
spin−flip angle between two electronic states. For two states (k,n) and
(k′,n′) with opposite spin directions, θ↑↓ is the angle between −Sknexp

and Sk n
exp . sin ( /2)2 is defined in eq 87. The variation of DS among

different substrates is at most three times, much weaker than the
variations of τs−1 and other quantities shown here. Adapted with
permission from ref 21. Copyright 2023 The Authors under Creative
Commons Attribution 4.0 International license, published by Springer
Nature.
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Dsin ( /2) S2 at 300 K and found that the trend of τs−1 is still
approximately captured by the trend of Dsin ( /2) S2 .
Since θ↑↓ is defined by Sexp at different states, τs is highly

correlated with Sexp and more specifically with the anisotropy
of Sexp (equivalent to the anisotropy of Bin). Qualitatively, the
larger anisotropy of Sexp leads to smaller θ↑↓ (consistent with
Figure 4e,f) and longer τs along the high-spin-polarization
direction. This finding may be applicable to spin relaxation in
other materials whenever intervalley spin−flip scattering
dominates or spin−valley locking exists, e.g., in TMDs,93

stanene,101 2D hybrid perovskites with persistent spin helix,6

etc.
IV.C. DP (Dyakonov−Perel) Systems. In many non-

magnetic materials with broken inversion symmetry, spin
relaxation is dominated by the DP mechanism.
IV.C.1. GaAs. Spin dynamics in GaAs has broad interest in

spintronics,7,25,102−107 partly due to its long τs in n-type GaAs
at low temperatures.25 Despite various experimen-
tal25,51,102,108,109 and theoretical7,103,104,110−112 (mostly using
parametrized model Hamiltonian) studies previously, the
dominant spin relaxation mechanism in bulk GaAs at various
T and doping concentrations ni remains unclear.
Through FPDM simulations of n-GaAs at various T and ni

with different scattering mechanisms in ref 16, we pointed out
that although at low temperatures and moderate doping
concentrations e−i scattering dominates carrier relaxation, e−e
scattering is the most dominant process in spin relaxation.
Figure 7 shows τs and τp with different ni at 30 K with

individual and total scattering pathways, respectively. It is
found that the roles of different scattering mechanisms differ
considerably between spin and carrier relaxation processes.
Specifically, for the carrier relaxation in Figure 7b, except when
ni is very low (e.g., at 1014 cm−3), the e−i scattering dominates.
On the other hand, for the spin relaxation in Figure 7a, the e−e
scattering dominates except at very high concentration (above
1017 cm−3).
Figure 7 shows the calculated τs has a maximum at ni = (1−

2) × 1016 cm−3, and τs decreases fast with ni going away from
its peak position. This is in good agreement with the
experimental finding in ref 25, which also reported τs at ni =
1016 cm−3 is longer than τs at other lower and higher ni at a low
temperature (a few kelvin). The ni dependence of τs may be
qualitatively interpreted from the DP relation7 τs,z ∼ τpΔΩ⊥z

2

(eq 90), where ΔΩ⊥z is the fluctuation amplitude of Larmor
frequency defined in eq 89. From Figure 7, we find that with ni
from 1014 to 5 × 1015 cm−3, τp decreases rapidly (black curve in

Figure 7b) and ΔΩ⊥z
2 remains flat in Figure 7c, which may

explain why τs increases in Figure 7a based on the DP relation;
however, when ni > 1016 cm−3, τp decreases with a similar
speed but ΔΩ⊥z

2 experiences a sharp increase, which may
explain why τs decreases in Figure 7b and owns a maximum at
1016 cm−3.

IV.C.2. Graphene on hBN. Graphene samples exhibit
exciting spintronic properties such as long τs and ls at room
temperature.1,113 In practice, graphene is usually supported by
a substrate.113−117 Actually τs of the freestanding graphene
sample was found relatively low,118 ∼150 ps at 300 K
(compared with the longest reported value of ∼12 ns),
probably due to freestanding graphene samples often having
more imperfections. Therefore, it is important to understand
spin relaxation in supported graphene.
From Figure 8, we find that the EY model for graphene and

the DP model for Gr+E⊥ and Gr−hBN agree qualitatively with
FPDM predictions, but with some important quantitative
differences discussed next. First, the EY model for graphene is
more accurate for electrons than for holes, for both τs∥ and τs⊥
(Figure 8a,b). The conventional DP model matches FPDM
predictions quantitatively for both τs∥ and τs⊥ of Gr+E⊥, but
only for τs⊥ of Gr−hBN.
The discrepancy of the conventional DP model for τs∥ of

Gr−hBN can be rectified by modifying the model. Briefly, the
DP model assumes that Bin effectively changes randomly each
time the electron scatters. The in-plane magnetic field B∥

in

rotates over the Fermi circle and covers all in-plane directions,
satisfying this condition, in both Gr+E⊥ and Gr−hBN.
However, the out-of-plane magnetic field B⊥

in, which matters
only for τs∥ and is present only for Gr−hBN, has the same
direction within each valley. Consequently, only intervalley
scattering will change the B⊥

in for a given electron spin. As
proposed in ref 119, this can be captured by changing the DP
model from = +( ) ( )s x p x p y z,

DP 1 2 2 2 as given
by eq 90 for in-plane x spins, to

+( )s x p y p z,
mDP 1 2 Inter 2

(97)

where τpInter is the intervalley scattering time (dotted line in
Figure 8d). This modified DP model agrees with FPDM
predictions for τs∥ of Gr−hBN (Figure 8a).
The ratio τs⊥/τs∥ (Figure 8c) is nearly 1/2 for graphene,

consistent with the EY relation eq 83 and the fact that ⟨b∥
2⟩/

⟨b⊥
2⟩ is also 1/2 (Figure 8e). This ratio remains unchanged for

Gr+E⊥, but now because = + =( ) 2z x y y
2 2 2 2 ,

Figure 7. (a) τs and (b) τp of n-GaAs with different doping concentrations ni at 30 K with different scattering mechanisms. “All” represents all of the
e−ph, e−i, and e−e scattering mechanisms being considered. (c) ΔΩ⊥z

2 as a function of carrier density n, where ΔΩ⊥z is the fluctuation amplitude
of Larmor frequency defined in eq 89. Adapted with permission from ref 16. Copyright 2021 American Physical Society.
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while =( )x y
2 2 since Ωz = 0 (Figure 8f), leading to

τs,xDP = 2τs,zDP using eq 90. This ratio deviates substantially from
1/2 only for Gr−hBN (Figure 8c) due to the substrate-
induced Ωz ≠ 0. The conventional DP model (eq 90) only
captures part of this dramatic effect seen in the FPDM
calculations, while the modifications in eq 97 account for Ωz
correctly and agree with the FPDM results in Figure 8c.

τs decreases with increasing carrier density magnitude in
graphene (Figure 8a,b), but this trend reverses for both
inversion-symmetry-broken cases, in agreement with some
experiments.113,120 The overall τs are reduced by 1−2 orders of
magnitude in freestanding graphene by E⊥ of 0.4 V/nm, down
from μs to tens of ns. ⟨Ωi

2⟩ of Gr−hBN in Figure 8f is about
100 times larger than that of Gr+E⊥, further reducing τs of Gr−
hBN to the ns scale, comparable to experimental measure-
ments.113,115,116,121

Finally, τs is mostly symmetric between electrons and holes
for Gr+E⊥ (Figure 8a,b). However, we find hole τs to be
typically 2−3 times smaller than electrons for both free-
standing graphene and Gr−hBN. On hBN, this asymmetry is
captured by the (modified) DP model and stems primarily
from the larger spin-splitting and hence ⟨Ωi

2⟩ in the valence
band compared to the conduction band (not shown),
consistent with previous calculations.122 Importantly, this
effect depends sensitively on the substrate and, even on
hBN, could reverse for a different layer stacking.122

Consequently, experiments may find electron−hole asymme-
tries of either sign depending on the substrate and precise

structure,113,115−117,120−122 and we focus here on the
comparison between FPDM predictions and the DP model
for the specific lowest-energy stacking of Gr-hBN.
In our work, we simulate τs of clean Gr−hBN free from

impurities. However, it is well-known that both nonmagnetic
and magnetic impurities play important roles in spin relaxation
in both freestanding and substrate-supported graphene.10,47,123

With inversion symmetry broken, the inclusion of the e−i
scattering may decrease or increase τs of Gr−hBN through EY
and DP spin relaxation. Therefore, it is interesting and crucial
to study how τs of Gr−hBN are affected by different types of
impurities. The inclusion of nonmagnetic impurities is
straightforward in our FPDM approach as described in Section
II.A.3, which will be our future work.

IV.D. Spin Dephasing under Magnetic Field. As
introduced in Section II.B.1, the dephasing time (or transverse
time) of a spin ensemble is called T2* and describes the decay
of the total excess spin S − Seq at an nonzero Bext perpendicular
to S − Seq. As discussed in Section II.A.2, T2* can be simulated
straightforwardly through FPDM simulations with Zeeman
Hamiltonian considering both spin and orbital angular
momenta (eqs 13 and 14). For the purpose of analyzing and
understanding spin dephasing, one key parameter is the Lande ́
g-factor g̃ (eq 94). Its value relates to Bext-induced energy
splitting (Zeeman effect) ΔE(Bext) and Larmor precession
frequency Ω, satisfying =E B gB

ext . More importantly,
the g-factor fluctuation (near Fermi surface or μF,c) Δg̃ (eq 95)
leads to a nonzero ΔΩ (eq 96) and then T2* due to DP or FID
mechanism.
Spintronics in halide perovskites has drawn significant

attention in recent years, due to highly tunable spin−orbit
fields and intriguing interplay with lattice symmetry. Recently,
we have simulated18 g̃, Δg̃, and T2* of a typical halide
perovskite�CsPbBr3. We find that T2* is sensitive to Bext at T
< 20 K but not at T ≥ 20 K. At 4 K, we predict that *T( )2

1 is
linear to Bext at Bext ≥ 0.4 T and the predicted slope of *T( )2

1 is
in good agreement with experimental data. Moreover, we
predict strong n-dependence of g̃, Δg̃, and T2*. Together with
FPDM simulations of spin relaxation time T1 of CsPbBr3 at
various conditions, our work provides fundamental insights on
how to control and manipulate spin relaxation/dephasing in
halide perovskites, which are vital for their spintronics and
quantum information applications.

V. OUTLOOKS
V.A. Method Development. The first-principles density-

matrix dynamics (FPDM) approach is an important technique
for studying spin and electron dynamics and transport, with
outstanding advantages: (i) it can accurately describe various
interactions, scattering processes, and spin precession simulta-
neously; (ii) it can describe processes far from equilibrium;
(iii) it can simulate dynamical processes on various time scales
from femtoseconds to milliseconds. We have shown its success
in simulating ultrafast spin dynamics, spin and charge
transport, relaxation, and dephasing. In the future study, the
FPDM approach still has a broad open area for new theory
development.

V.A.1. Exciton Dynamics. Exciton is a bound electron−hole
pair generated by optical excitation. Excitons play an important
role in optical properties of semiconductors, in particular in
low-dimensional systems. Exciton dynamics has been exten-
sively studied using different methods, in particular non-

Figure 8. Theoretical spin and carrier relaxation in graphene (red
lines), graphene at E⊥ = 0.4 V/nm (Gr+E⊥, green lines), and
graphene on hBN (Gr−hBN, blue lines) as a function of n (positive
or negative for electron and hole doping, respectively) at room
temperature. (a) In-plane spin lifetime τs∥, (b) out-of-plane spin
lifetime τs⊥, and (c) their ratios τs⊥/τs∥ calculated using FPDM
approach (solid lines) compared with those estimated from EY/DP
models with first-principles inputs (dashed for conventional DP and
dotted for modified DP with intervalley scattering contribution lines).
(d) Total τp (three dashed lines) and intervalley only contribution for
Gr−hBN (dotted blue line), (e) ⟨bi2⟩ and (f) ⟨Ωi

2⟩, all predicted from
first-principles for the DP and EY model estimates of τs in panels a−c.
Adapted with permission from ref 20. Copyright 2022 American
Physical Society.
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equilibrium Green’s function theory (NEGF) within Kadan-
off−Baym equations.52,74,124 We focus on theoretical simu-
lations of exciton spin relaxation based on Lindbladian DM
master equation with quantum description of the exciton−
phonon scattering. Understanding the exciton spin relaxation is
also important for understanding optical measurements of spin
dynamics. By replacing electrons to excitons, the existing
FPDM approach can be generalized to simulation spin
dynamics of excitons. The exciton dynamics can involve
many types of processes including exciton−light interaction,
exciton−phonon scattering, phonon-mediated exciton recom-
bination and dissociation, exciton−exciton annihilation, etc.
Initially, we will focus on exciton−light interaction and
exciton−phonon scattering, which are the two most important
processes leading to exciton spin relaxation.
The exciton−light interaction is responsible to exciton spin

generation by light absorption with a circularly polarized pump
pulse and exciton spin relaxation through exciton−phonon
scattering and exciton radiative recombination. The light
absorption for excitons is similar to that for electrons (see
Section II.A.2) except that the momentum matrix elements are
now between two excitonic states.125−127

The exciton−phonon scattering is responsible to exciton
spin relaxation. According to refs 128 and 129, the exciton−
phonon scattering matrix elements can be approximately
obtained from the exciton wave function at finite momentum
and electron−phonon scattering matrix elements. Recently we
implemented the exciton−phonon scattering matrix elements
and used them to simulate phonon-assisted indirect exciton
radiative recombination. In the density-matrix master equation,
the term of the exciton−phonon scattering is rather similar to
the electron−phonon scattering, except that the excitons are
bosons while the electrons are fermions. Therefore, the
implementation of the exciton−phonon scattering in the
frame of FPDM approach can be straightforward.
V.A.2. Circular Photogalvanic Effect (CPGE). CPGE is the

effect that under the circularly polarized light a DC current
may be induced in a solid-state material, and widely presents in
materials without inversion symmetry, in the absence of p−n
junction and applied electric field. In recent years, CPGE has
attracted growing interests in the fields of topological physics
and spin-optotronics.130,131 In order to deeply understand
CPGE, theoretical methods have been developed based on
perturbation theory. However, several critical issues remain: (i)
the scattering mechanisms are highly simplified with a single
relaxation time approximation; (ii) spontaneous recombination
was rarely considered; (iii) available theory requires different
formulation for each contribution, i.e., interband or intraband
contributions; (iv) many-body effects were not considered.
These issues may be resolved based on our FPDM approach.
If a constant laser field is applied to an inversion-symmetry-

broken system, the quantum master equation for describing
the density matrix of the electronic system reads as

= + +
t t t

d
t

d
d

d
d

d
d dlaser sp em e ph (98)

where
t

d
d laser

is coherent dynamics due to a laser field (eq 12)

and
t

d
d sp em

and
t

d
d e ph

are the spontaneous emission (eq 37)

and e−ph scattering terms (eqs 16 and 18), respectively.

CPGE is measuring the steady-state current when a
nonmagnetic system is under a constant circularly polarized
laser field for a long enough time. In the velocity gauge, the
current density is computed using37

=J jTr( ) (99)

i
k
jjjjj

y
{
zzzzz= +t e

e
m

tj v A( ) ( )kmn kmn mn
e (100)

where v is the velocity operator matrix and v = p/me.
V.A.3. More on Scattering Terms. Although, in our FPDM

approach, the ab initio treatment of quantum scattering is
rather general, the following theoretical development can
further improve the applicability of our methods to different
systems:

V.A.3.1. Anharmonic Phonons. In current implementation,
phonons are harmonic and it is required that the material must
be dynamically stable at zero temperature. However, for some
soft materials (e.g., hybrid halide perovskites), significant
anharmonic effects appear at high-T phase, which requires
extracting phonon properties from finite-temperature simu-
lations, e.g., using ab initio molecular dynamics. Such an
approach has been implemented132 for studying phonon,
electron−phonon, and carrier transport properties, which can
be also applied to study the anharmonic effect on spin
relaxation under our FPDM framework.

V.A.3.2. Fröhlich Interaction and LO−TO Splitting in
Doped Semiconductor. The intraband dielectric screening is
not considered for Fröhlich interaction and LO−TO splitting
in current implementation. This may be problematic in doped
semiconductor and may lead to significant errors at moderate
or high carrier density. Since we have already implemented the
intraband RPA dielectric function, its effect can be
straightforwardly included in the FPDM approach similar to
that in ref 133.

V.A.3.3. Short-Range Contribution to the Electron−
Ionized-Impurity Scattering. For the electron-ionized-impur-
ity scattering, we currently only consider the long-range
contribution. This is appropriate for certain systems like GaAs
but may be problematic when intervalley processes dominate
spin relaxation or the short-range spin−flip electron-ionized-
impurity scattering is unimportant to spin relaxation. There-
fore, it is important to include both long-range and short-range
contributions to the electron-ionized-impurity scattering.
Similar to ref 61, the long-range and short-range parts are
treated separately�the short-range part is treated from first-
principles similar to neutral impurity, and the long-range part is
simulated using the screened Coulomb potential.

V.B. Spintronics Materials. V.B.1. Graphene Derivatives.
Graphene is a “star” material in the field of spintronics. It
exhibits long spin lifetime and diffusion length, high carrier
mobility, and an ideal material platform for rich physics.134

Spin dynamics and transport in graphene derivatives, including
van der Waals graphene heterostructures and metal interca-
lated graphene, have been widely studied both experimentally
and theoretically.1,2,135,136 While most theoretical simulations
of spin relaxation and diffusion were carried out by model
Hamiltonian methods, ab initio simulations of τs and ls of
graphene were scarce and only considered the EY mechanism
and the e−i scattering.10 Therefore, our FPDM approach
serves as an invaluable tool to answer some important
questions of spin relaxation in graphene, which have not
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been fully resolved. For instance, (i) how do substrates or the
formation of heterostructures affect τs, ls, and their anisotropy
of graphene? The anisotropy and its variation with the density
and temperature are helpful information for the understanding
of spin relaxation mechanisms.117 (ii) What are the upper
limits of τs and ls of graphene heterostructures and how do they
vary with external conditions? Such information is critical to
the search of promising spintronic materials but is hard to
obtain from the measurements. (iii) What are the effects of
point defects (at graphene or substrates and of different types)
on τs and ls of graphene and its heterostructures? This is helpful
for optimizing the materials synthesis and fabrication. (iv) And
what are the differences of spin dynamics and transport in
multilayer and monolayer graphene, and how does the stacking
angle change the results?
V.B.2. Halide Perovskites. In ref 18, we studied spin

relaxation and dephasing in halide perovskites with inversion
symmetry. We also examined the effects of inversion symmetry
broken by introducing model SOC fields into the centrosym-
metric CsPbBr3. Although this provides helpful mechanistic
insights into the symmetry effects, it does not provide accurate
predictions of specific materials. Systematic ab initio
simulations of spin properties including τs and ls of other
halide perovskites with various symmetries, dimensionalities,
and chemical compositions are demanded for halide−perov-
skite spintronics.
Moreover, with the implementations of exciton dynamics

and CPGE based on our FPDM approach mentioned above,
the corresponding spin dynamic and transport properties of
halide perovskites can be predicted, which is also of great
interest in the field of halide−perovskite spintronics.
In ref 18, it was pointed out that although the fluctuation of

g-factor (and the resulting T2*) is not so sensitive to exchange−
correlation potential Vxc, the magnitude of the g-factor is rather
sensitive to Vxc. For example the PBE values of electron and
hole g-factors of bulk CsPbBr3 has large discrepancy from
experimental data while the EV93PW91 values are much closer
to them. This Vxc dependence may be mitigated by including
the nonlocal electron self-energy effect within the GW
approximation.137 Moreover, our theoretical results also show
that although Vxc does not change the order of magnitude of
T1, it does change T1 of several halide perovskites by up to tens
of percent at high temperatures, and a few times at low
temperatures. Therefore, future theoretical studies are required
to better understand the Vxc dependence of spin properties of
halide perovskites.
V.B.3. Persistent Spin Helix (PSH). In materials with spin

texture of persistent spin helix,6,138,139 e.g., BiInO3, WO2Cl2,
and 2D hybrid perovskites,

= kB ji
in PSH (101)

where αPSH denotes a materials-dependent constant related to
SOC strength, direction i is perpendicular to j,̂ and ki is relative
to a high-symmetry k-point kcenter. Such Bin suppresses spin
relaxation and diffusion through the DP mechanism6 when
parallel to the spin helix. When α is large, e.g., in 2D hybrid
perovskites with Pb, the band edges are located at two opposite
k-points far away from kcenter, so that intervalley spin−flip
scattering may be important in spin relaxation and diffusion.
When below a critical temperature, spin−valley locking can be
realized, as discussed in Sections III.B.3 and IV.B.2. Meanwhile
if the averaged spin−flip angle θ↑↓ is tiny, τs of PSH materials
can be long. Through FPDM simulations, we will predict τs

and ls of PSH materials and reveal the key factors determine
these properties.
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