
Toward Declarative Auditing of Java Software for
Graceful Exception Handling

Leo St. Amour
Virginia Tech

Blacksburg, USA
lstamour@vt.edu

Eli Tilevich
Virginia Tech

Blacksburg, USA
tilevich@cs.vt.edu

Abstract

Despite their language-integrated design, Java exceptions
can be difficult to use effectively. Although Java exceptions
are syntactically straightforward, negligent practices often
result in code logic that is not only inelegant but also unsafe.
This paper explores the challenge of auditing Java software
to enhance the effectiveness and safety of its exception logic.
We revisit common anti-patterns associated with Java ex-
ception usage and argue that, for auditing, their detection
requires a more nuanced approach than mere identifica-
tion. Specifically, we investigate whether reporting such
anti-patterns can be prioritized for subsequent examina-
tion. We prototype our approach as Händel, in which anti-
patterns and their priority, or weight, are expressed declar-
atively using probabilistic logic programming. Evaluation
with representative open-source code bases suggests Hän-
del’s promise in detecting, reporting, and ranking the anti-
patterns, thus helping streamline Java software auditing to
ensure the safety and quality of exception-handling logic.

CCS Concepts: · Software and its engineering→ Auto-
mated static analysis; Software safety;Error handling and
recovery; · Computing methodologies → Probabilistic

reasoning; Logic programming and answer set programming.

Keywords: SoftwareAuditing, Static ProgramAnalysis, Prob-
abilistic Reasoning, Exceptions, Java, Logic Programming

ACM Reference Format:

Leo St. Amour and Eli Tilevich. 2024. Toward Declarative Auditing

of Java Software for Graceful Exception Handling. In Proceedings

of the 21st ACM SIGPLAN International Conference on Managed

Programming Languages and Runtimes (MPLR ’24), September 19,

2024, Vienna, Austria. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3679007.3685057

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

MPLR ’24, September 19, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1118-3/24/09

https://doi.org/10.1145/3679007.3685057

1 Introduction

Java was not the first mainstream programming language
with a built-in exception-handling mechanism. Dating back
to the 1960s [35], several prior languages, including Ada [28]
and C++ [26], supported handling runtime errors and excep-
tional conditions in a structured manner. Drawing inspira-
tion from these languages, the design of Java has reconsid-
ered several aspects of exceptions, including a standardized
exception hierarchy, checked exceptions, and strict exception
type checking [24]. After nearly 30 years, Java has experi-
enced enormous success and now rules the world of enter-
prise software with billions of lines of legacy code. Unfortu-
nately, analyzing legacy Java code reveals that exceptions
have become a double-edged sword. Although it promotes
the intended structured handling of exceptional conditions,
it also allows undisciplined and ill-conceived programming
practices [5, 6, 12, 17]. Unless following a strict set of coding
principles, when it comes to exceptions, Java programmers
are prone to exhibit common poor coding practicesÐoften
referred to as anti-patterns [9, 19].

Before a code base can be included in high-stakes environ-
ments, such as government or critical infrastructure systems,
it must be audited for adherence to safety standards. Soft-
ware auditing verifies and validates that a code base complies
with the necessary standards and meets all its baseline re-
quirements [10]. Unfortunately, auditing large code bases is
notoriously time-consuming and tedious, requiring signif-
icant resources and expertise [32]. Consequently, auditing
can greatly benefit from automated tools and processes [16].

Exception handling needs auditing as it fulfills the critical
role of addressing exceptional runtime conditions. Certain
features of Java exceptions make code susceptible to anti-
patterns. Anders Hejlsberg, the lead C# architect, points out
in an interview that łchecked exceptions become such an
irritation that people completely circumvent the feature. . .
checked exceptions have actually degraded the quality of the
system in the largež [48]. Indeed, Java programmers often
circumvent the necessity to handle checked exceptions by
creating empty catch clauses or catching a generic super-
class exception type. Extensive research has codified such
Java exception anti-patterns and studied their prevalence in
legacy code bases [5, 6, 12, 38, 44, 53].

This paper focuses on the challenge of auditing Java soft-
ware to ensure the effectiveness and safety of exception

90



MPLR ’24, September 19, 2024, Vienna, Austria Leo St. Amour and Eli Tilevich

1 public void myCreateBucket(String name) {

2 S3Client s3 = newS3Client ();

3 try {

4 CreateBucketRequest req = newCBRequest(name);

5 s3.createBucket(req);

6 // throws BucketAlreadyExistsException ,

7 // BucketAlreadyOwnedByYouException ,

8 // AwsServiceException ,

9 // SdkClientException , and S3Exception

10 ...

11 } catch (SdkException e) {

12 ... // handle exception appropriately

13 }

14 s3.close();

15 }

Figure 1. Code snippet for facilitating the exposition and
definitions of Java exception anti-patterns; adapted from [2].

handling. Auditing tools that report many false positives
cause information overload, particularly for large commer-
cial code bases. With unlimited resources, an auditor could
examine each reported case to confirm its validity. However,
this practice would be infeasible in realistic settings. When
it comes to auditing, detecting exception anti-patterns can
benefit from a more nuanced treatment than the current
methods that report their findings using boolean logic.

To address the challenges of boolean reporting, we intro-
duce a novel approach that leverages probabilistic reasoning
to detect and weigh possible anti-patterns. The weighted re-
sults can be used to guide further manual inspection. We pro-
totype our approach as Händel, which concisely expresses
anti-patterns in ProbLog, a probabilistic dialect of Prolog.
This design enables declarative specifications that can be eas-
ily examined and tweaked. Despite the interpretive nature of
ProbLog execution, Händel shows promising performance
and memory consumption characteristics. An evaluation
with representative Java benchmark applications demon-
strates the potential of probabilistic reasoning for reporting
suspected exception anti-patterns as well as Händel’s abil-
ity to point out the likelihood of their presence. This paper
makes the following contributions:

• We introduce a novel approach for reporting exception
anti-patterns based on probabilistic reasoning to guide
subsequent auditing efforts.

• We describe our prototype implementation, Händel,
an extensible analysis framework that leverages prob-
abilistic logic programming to identify potential ex-
ception anti-patterns; in Händel, analysis results are
weighed via highly configurable ProbLog predicates.

• We assess our approach’s suitability for auditing by
applyingHändel to a set of representative Java bench-
mark applications.

2 Exception-handling Anti-patterns

Previous works have established a Java exception-handling
anti-pattern taxonomy [5]. This section revisits common anti-
patterns defined in this taxonomy. Consider the Java method
myCreateBucket depicted in Figure 1. This code snippet uses
the Amazon AWS Java SDK [3]. Specifically, it creates a new
bucket by using the API to interact with the Amazon S3
service. The API createBucket method throws numerous
exceptions, as stated in the listing as comments. All these
exceptions are sub-classes of the base class SdkException.
This inheritance relationship makes it possible to use the
base class exception in the catch clause for handling all
possible exceptions.
Whether this code snippet matches an anti-pattern can-

not be determined definitively. In some contexts, using the
base class is appropriate for the desired level of exception
handling. In others, it may be necessary to handle each of
the potentially thrown exception sub-classes specially. In
particular, from an auditing standpoint, we might need to
be able to specify the degree to which a code base matches
an anti-pattern. The reported degrees would then prioritize
subsequent manual auditing. We next revisit common ex-
ception anti-patterns and argue that boolean reporting logic
might be unnecessarily rigid for software auditing.

2.1 Anti-pattern 1: Catch Generic / Over-Catch

One of the most common Java exception anti-patterns is
Catch Generic orOver-Catch (AP1), inwhich a handler catches
an exception type that is a supertype of the thrown excep-
tions [38]. This type relationship is called subsumption [1].
This anti-pattern branches into two distinct types: (1) łcatch
genericž, a program catching a high-level, generic exception
type (i.e., Throwable, Exception, Error, or RuntimeError);
(2) subsumption, or łover-catchž [53], a handler catching
multiple different lower-level exceptions [5]. In both cases,
the anti-pattern reflects that the caught exception type is a
super-class of the types of exceptions thrown. As a result, the
exception handler is less likely to appropriately account for
the nuances of each possible sub-class of exception. For ex-
ample, in our motivating example, we might want to be able
to distinguish between BucketAlreadyExistsException

and BuckedAlreadyOwnedByYouException, as we want to
ensure that these particular exceptional conditions are han-
dled specially. At the same time, it may be acceptable for the
remaining exceptions to be handled generically.

2.2 Anti-pattern 2: Throws Generic / Over-Throws

Another Java exception anti-pattern is Throws Generic (AP2),
in which amethod’s łthrowsž statement propagates a generic
exception type [5]. Similar to AP1, this anti-pattern derives
from using a super-class exception type. Because the specific
thrown exception types are lost, any handlers that catch
the thrown exceptions become incapable of specializing

91



Toward Declarative Auditing of Java Software for Graceful Exception Handling MPLR ’24, September 19, 2024, Vienna, Austria

Program Joern
Relational
Translator
(Joern)

Cplint/
ProbLog

Passes

ProbLog
Rules

Probable
Antipatterns

Phase 1 Phase 2 Phase 3

CPG
Program
Relations

Figure 2. Händel system overview and data-flow diagram

their handling. Inspired by the over-catch anti-pattern, we
propose a more encompassing Over-Throws anti-pattern in
which the type specified in a throws statement subsumes the
types of exceptions thrown. For example, the control flow
of createBucket could pass through a method that propa-
gates SdkException, which may or may not be problematic
depending on the context.

2.3 Anti-pattern 3: Unhandled Exceptions

Yet another anti-pattern we consider is Unhandled Excep-
tion (AP3), in which a handler fails to catch all reachable
exceptions [5, 44]. This anti-pattern describes the practice of
implementing an exception handler that reaches but does not
catch a thrown unchecked exception. By definition, the Java
semantics do not require unchecked exceptions to be han-
dled. However, within certain contexts, it may be necessary
to handle such runtime exceptions gracefully. For example,
assume the createBucket method in our motivating exam-
ple additionally threw an IllegalArgumentException. If
this exception is not handled, the program will terminate
prematurely. Software auditors might want to ensure that
specific unchecked exceptions are caught so that the soft-
ware does not fail within a high-stakes environment.

3 Händel’s Design and Implementation

Auditing contexts may differ greatly, depending on the soft-
ware domain, deployment environment, and security/privacy
restrictions. In light of these observations, our design must
exhibit high degrees of transparency and configurability.
The key insight of our design lies in employing probabilistic
logic programming to specify our analyses. Transparency is
achieved through comprehensible logical rules that specify
anti-pattern detection. Configurability is achieved through
special or custom logic predicates.
We prototype our approach as Händel, which draws in-

spiration from the renowned baroque composer George Frid-
eric Händel. Just as Händel’s compositions are celebrated

for their elegance, precision, and gracefulness, Händel pro-
motes these qualities in Java exception-handling code. Fig-
ure 2 presents an overview of the Händel framework, com-
prising three distinct phases, whose implementations we
detail next.

3.1 Phase I: Generating Code Property Graph

In Händel’s first phase, a program is converted into a code
property graph (CPG). A CPG is a powerful program rep-
resentation that combines a program’s abstract syntax tree
(AST), control flow graph (CFG), and program dependency
graph (PDG) into a single, joint structure [52]. The AST
represents the program’s source code and syntactic struc-
ture; the CFG captures how execution flows between pro-
gram statements; and the PDG encodes data dependencies
throughout the program. A CPG provides the advantages of
all three graphs in a single, convenient representation. While
CPGs were originally designed for describing and identify-
ing software vulnerabilities, its applicability extends beyond
security-based analyses.
Because they provide a rich expression of a program’s

properties, we adopted CPGs as an intermediate represen-
tation for our analyses. The AST sub-graph contains Java
exception-handling constructs. Each try/catch/finally struc-
ture has a corresponding sub-tree in the AST. A łtryž control
structure is at the sub-tree’s root, and each block comprises
the child nodes. We build our anti-pattern analyses by com-
bining the exception-handling structures expressed in the
AST with the control-flow relationships encoded in the CFG
sub-graph. To obtain a CPG representation of a program,
Händel uses Joern, a CPG framework [22].

3.2 Phase II: Translating CPGs into ProbLog Facts

Händel’s second phase translates a given CPG into ProbLog
facts representing the program’s control-flow and exception-
handling relationships. As depicted in Figure 2, this phase
accepts a set of Händel passes as input. Each pass translates
a targeted set of program constructs into ProbLog facts.

92



MPLR ’24, September 19, 2024, Vienna, Austria Leo St. Amour and Eli Tilevich

3.2.1 Control-flow Pass. This pass outputs a set of re-
lations describing how execution transitions between pro-
gram statements andmethods. Specifically, it translates a pro-
gram’s CFG and constructs its probabilistic CFG (Prob-CFG),
a weighted CFG, in which an edge’s weight represents the
probability of following that edge [41]. The logic for apply-
ing probabilities to control-flow edges is based on branch
selectivity [40]. Each branch condition in the program is con-
verted into satisfiability modulo theory (SMT) constraints
and solved using the automata-based model counter (ABC)
SMT solver [4]. This pass outputs a set of facts represent-
ing an intra-procedural CFG/Prob-CFG for each method. The
declarative ProbLog rules then infer the set of inter-procedural
edges, thus demonstrating an additional advantage of struc-
turing this analysis using probabilistic logic programming.
Specifically, this pass outputs the following facts:

• method(Entry,Name): CFG node Entry is the entry
point for method Name.

• cfg_edge(X,Y): Edge between CFG nodes X and Y.
• P::prob_cfg_edge(X,Y): Edge between CFG nodes
X and Y with probability P.

• calls(Meth,Callee,Site): Meth calls Callee at CFG
node Site.

• returns(Meth,Site): Meth returns at CFGnode Site.

3.2.2 Exception-handling Pass. This pass traverses the
CPG and identifies nodes relevant to exception-handling con-
structs. Specifically, it identifies exception-handling control
structures (i.e., try and catch blocks), caught exception types,
thrown exceptions, and propagated exceptions. This pass
outputs the following exception-handling facts:

• method_throws(Meth,Exc): Meth propagates Exc.
• throws(X,Exc): Exc is thrown at CFG node X.
• catches(Try,Catch,Exc): Control structure Try han-
dles Exc in block Catch.

• in_try(X,Try): CFG node X is in the try block of con-
trol structure Try.

• in_catch(X,Try): CFG node X is in the catch block
of control structure Try.

• subclass(T1,T2): Type T1 is a sub-class of T2.

3.3 Phase III: Identifying Probable Anti-patterns

Händel’s third and final phase employs ProbLog to iden-
tify potential anti-patterns and their corresponding weights.
As its logic engine, Händel utilizes Cplint [36, 37], an
implementation of ProbLog provided as a library for SWI-
Prolog[51]. We selected Cplint due to its full support of the
ProbLog syntax and the robustness of SWI-Prolog.
Händel infers inter-procedural control edges and paths

from the control flow facts extracted in Phase II. The rules in
Figure 3 specify the relationships that infer inter-procedural
control flow edges and paths between nodes X and Y.

The icfg_edge rule on line one represents intra-procedural
edges. Any existing CFG edges not originating from a call

1 icfg_edge(X,Y) :- cfg_edge(X,Y), \+calls(_,_,X).

2 icfg_edge(X,Y) :- calls(_,Y,X).

3 icfg_edge(X,Y) :- calls(_,M,Z), returns(M,X),

4 cfg_edge(Z,Y).

5
6 icfg_path(X,Y) :- icfg_edge(X,Y).

7 icfg_path(X,Y) :- icfg_edge(X,Z), icfg_path(Z,Y).

Figure 3. Inter-procedural edge and path inference rules

1 P:: exception_distance(N) :- P is 1-(1/N)+0.2.

2
3 antipattern1(Catch ,CaughtExc ,Throw ,ThrownExc ,N) :-

4 throws(Throw ,ThrownExc),

5 catches(Try ,Catch ,CaughtExc),

6 is_subclass(ThrownExc ,CaughtExc ,N),

7 exception_distance(N),

8 in_try(TryNode ,Try),

9 in_catch(CatchNode ,Try),

10 icfg_path(TryNode ,Throw),

11 icfg_path(Throw ,CatchNode).

Figure 4. Specification for AP1: catch generic / over-catch

should be included in the inter-procedural CFG. The rule
on line two represents edges between functions. There is an
edge between nodes X and Y if X is a call site and Y is the callee.
The rule on line three establishes a back-edge from a called
function to its call site. There is an edge between nodes X and
Y if X is the return site of a function that was called by the
node immediately preceding Y. The icfg_path rules on lines
six and seven demonstrate how to infer whether a path be-
tween X and Y exists using the icfg_edge relationships. We
introduce a nearly identical set of rules for prob_icfg_edge
and prob_icfg_path by replacing instances of cfg_edge
with prob_cfg_edge. These rules are integrated into addi-
tional rules that define our anti-patterns.

Figure 4 presents the ProbLog rule for AP1, which identi-
fies whether an exception handler Catch is over-catching. If
an exception is thrown along a path between a try block and
its catch block, and the thrown exception is a sub-class of
the caught exception, then the handler, Catch, may match
AP1. The result is weighted via the exception_distance

predicate. For our purposes, the further apart the two excep-
tions are in the type hierarchy, the more likely it is that AP1
has been matched. Depending on the audit, the weight pred-
icate can be modified. For example, exception_distance
can be updated to use a different formula or replaced with a
different predicate that represents the targeted standard.

For brevity, we omit the AP2 and AP3 specifications. How-
ever, they are equally as comprehensible and configurable
as AP1. AP2 is also defined by type subsumption, so it uses
exception_distance as its weight predicate. The weight
predicate for AP3 is derived from the Prob-CFG as the cumu-
lative probability of the edges along a prob_icfg_path. If a
program throws an exception along a typicalÐor probableÐ
path, the exception’s graceful handling should be prioritized.

93



Toward Declarative Auditing of Java Software for Graceful Exception Handling MPLR ’24, September 19, 2024, Vienna, Austria

Table 1. Summary of Händel evaluation; runtime reported
in seconds (s) and memory consumption in megabytes (MB)

Phase III Time / Memory

Benchmark AP1 AP2 AP3

fop-events 14.79 / 343.5 36.03 / 996.3 37.2 / 976.3

fop-sandbox 1.4 / 21.3 104.78 / 2302.9 98.43 / 2062.5

fop-util 0.86 / 17.5 8.94 / 316.2 11.22 / 369.2

h2o-algos 0.42 / 14.7 0.4 / 17.4 0.39 / 14.4

h2o-avro-parser 0.6 / 25.2 0.68 / 36.1 0.76 / 40.8

h2o-clustering 0.42 / 14.7 0.56 / 36.7 0.65 / 39.9

h2o-genmodel 14.64 / 572.4 11.92 / 494 37.19 / 1331.7

h2o-hive 1.95 / 37.2 53.17 / 1809.5 45.45 / 1528.6

h2o-orc-parser 1.11 / 19.8 4.73 / 273.4 7.45 / 377.8

h2o-persist-drive 93.0 / 49.9 1.1 / 73.9 1.71 / 114.8

h2o-persist-gcs 0.81 / 28.2 1.2 / 60.9 1.61 / 82

h2o-persist-http 0.44 / 23.4 0.38 / 20.7 0.41 / 23.4

h2o-persist-s3 134.67 / 3165.7 19.9 / 494.1 143.41 / 3330.9

h2o-security 0.5 / 25.3 0.62 / 40.5 0.48 / 25.1

h2o-webserver-iface 0.5 / 23.9 0.41 / 14.8 0.5 / 24.2

sunflow-image 1.83 / 24.6 2.52 / 124.7 3.09 / 205.2

sunflow-system 1.09 / 19.2 2.14 / 196.2 2.34 / 229.7

4 Evaluation

We evaluate the efficacy of Händel by applying it to 17
benchmark programs. These benchmarks were selected from
the dacapo-23.11-chopin benchmark suite [7]. Specifically,
we analyzed a subset of packages from the fop, h2o, and
sunflow projects. These packages ranged from 150-1600 LoC
with an average of ∼670 LoC. For each benchmark, we ran
Händel to check for each anti-pattern and captured the
time and memory consumption associated with each phase.
Across the 17 benchmarks, Phase I averaged a runtime of
5.53 seconds and 323.6 MB of memory, and Phase II averaged
a runtime of 36.8 seconds and 4501 MB of memory. Table 1
presents the runtime and memory of Phase III.

To study how Händel performs compared to existing ap-
proaches, we implemented two additional rules that mirror
those provided by checkstyle 10.16.0 [11] and PMD 7.1.0 [34],
two popular static Java bug finding tools [39]. Specifically,
we implemented a rule that detects when a program catches
an exception that is too generic and another that detects if a
method propagates a generic exception. Although reminis-
cent of AP1 and AP2, these rules focus on the mere presence
of generic exception types rather than analyzing control-flow
sensitive subsumption relationships. These specifications
utilize generic_expression as a weight predicate, which
assigns exception types arbitrary weights. Suppose an audit
permits catching Exception; in this scenario, an auditor can
either remove the corresponding generic_exception fact
from the database or deprioritize the result by setting the
probability to a small value.
We applied our generic catch, generic throw, and their

comparable rules in checkstyle and PMD to our benchmark
programs, measuring each framework’s identified violations,
runtime, and memory consumption. The results between

checkstyle and PMD contained small discrepancies due to
varying definitions of a łgenericž exception or łillegalž prop-
agation. However, due to the flexible and modifiable defini-
tion of our weight predicate, Händel identified the same
potential violations as the other frameworks individually.
Figure 5 presents the runtime and memory consumption
for each framework’s generic catch detection. We observed
comparable metrics for each framework’s throw detection.

fo
p
-e

v
e
n
ts

fo
p
-s

a
n
d
b
o
x

fo
p
-u

ti
l

h
2
o
-a

lg
o
s

h
2
o
-a

v
ro

-p
a
rs

e
r

h
2
o
-c

lu
s
te

ri
n
g

h
2
o
-g

e
n
m

o
d
e
l

h
2
o
-h

iv
e

h
2
o
-o

rc
-p

a
rs

e
r

h
2
o
-p

e
rs

is
t-

d
ri
v
e

h
2
o
-p

e
rs

is
t-

g
c
s

h
2
o
-p

e
rs

is
t-

h
tt
p

h
2
o
-p

e
rs

is
t-

s
3

h
2
o
-s

e
c
u
ri
ty

h
2
o
-w

e
b
s
e
rv

e
r-

if
a
c
e

s
u
n
fl
o
w

-i
m

a
g
e

s
u
n
fl
o
w

-s
y
s
te

m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

checkstyle

PMD

Handel

Benchmark

R
u

n
ti
m

e
 (

s
)

fo
p
-e

v
e
n
ts

fo
p
-s

a
n
d
b
o
x

fo
p
-u

ti
l

h
2
o
-a

lg
o
s

h
2
o
-a

v
ro

-p
a
rs

e
r

h
2
o
-c

lu
s
te

ri
n
g

h
2
o
-g

e
n
m

o
d
e
l

h
2
o
-h

iv
e

h
2
o
-o

rc
-p

a
rs

e
r

h
2
o
-p

e
rs

is
t-

d
ri
v
e

h
2
o
-p

e
rs

is
t-

g
c
s

h
2
o
-p

e
rs

is
t-

h
tt
p

h
2
o
-p

e
rs

is
t-

s
3

h
2
o
-s

e
c
u
ri
ty

h
2
o
-w

e
b
s
e
rv

e
r-

if
a
c
e

s
u
n
fl
o
w

-i
m

a
g
e

s
u
n
fl
o
w

-s
y
s
te

m

0

50

100

150

200

250

300

350

checkstyle

PMD

Handel

Benchmark

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Figure 5. Runtime and memory performance for detecting
a generic catch using Händel, checkstyle, and PMD

5 Discussion

Next, we discuss the implications of our preliminary evalu-
ation, which aims to answer this question: Is probabilistic
logic a suitable approach for detecting and reporting Java
exception anti-patterns?

When evaluating an approach’s suitability for a software
auditing task, one must consider both usability and perfor-
mance. The approach’s programming interface should be
amenable to easy expression and modification, while the
resulting performance should be capable of efficiently ac-
commodating the auditing needs. Our evaluation indicates
Händel’s promise in achieving both objectives, while future
work will determine to what extent.

We evaluate Händel’s usability by examining the expres-
siveness of its anti-pattern specifications. We report our find-
ings based on our experiences constructing the ProbLog rules.
Notice that the rule in Figure 4 is simple but logical. These

94



MPLR ’24, September 19, 2024, Vienna, Austria Leo St. Amour and Eli Tilevich

properties should make them amenable to comprehension
and modification by software auditors. We intend further
to study the expressiveness of Händel through usability
studies. In terms of modification, we found that exposing
Händel’s configuration as ProbLog predicates presents an
intuitive interface. Our design contrasts existing approaches,
such as PMD or checkstyle, which utilize XML configuration
files, a format designed for easier computer processing rather
than human comprehension.
Often, expressiveness comes at the cost of performance.

Therefore, an objective of our evaluation was to determine
if the highly declarative detection logic of Händel would
exhibit acceptable performance characteristics. Our bench-
marks show promising performance and memory trends.
The runtime of each anti-pattern varied across the evalu-
ation benchmarks, with times ranging from less than half
a second to 143 seconds, with an average of 15.9 seconds.
We see a similar variation in memory consumption, which
ranges from 14.4 to 3,224.4 MB, with an average of 427.7 MB.
Although our benchmark programs are relatively small, the
observed costs should be acceptable in most auditing scenar-
ios. Furthermore, Händel is still in its prototyping phase,
so we have not explored optimizations based on the under-
lying logic engine or methods to reduce the database size.
We expect that applying such optimizations would strictly
improve Händel’s performance.

We also compared Händel with closely related tools con-
cerned with finding defects in Java programs: checkstyle
and PMD. Because these tools are not designed to detect
control-flow-based defects, we introduced two additional
specifications into Händel similar to closely related defect
specifications in these existing tools. Across all evaluation
benchmarks,Händel showed comparable or superior perfor-
mance levels, which aligns with the well-known efficiency of
logical inference. Furthermore, in Händel’s case, the perfor-
mance expenditure is a front-loaded one-time cost. Phases I
and II, which are more expensive than existing approaches,
only need to be executed once to establish the database of
facts. All subsequent analyses can utilize the same database
and benefit from the performance improvements.

6 Related Work

This work is related to Java anti-patterns, automated soft-
ware auditing, and declarative program analysis. Prior works
have defined catalogs of Java anti-patterns, including excep-
tion handling [5, 6, 12, 31, 43], dependency injection [27],
concurrency [15], and performance [47] and demonstrated
their presence in real software. Prior efforts have focused
on creating tools to identify these anti-patterns [46, 54]. Our
approach differs in specifying anti-patterns in a probabilistic
logic language, thus providing weighted results.
Auditing and validating software is extremely resource-

intensive, requiring significant money, developer effort, time,

and expert knowledge [16, 32]. As a result, prior works have
focused on automating the process [10, 30] or developing
tools to identify software flaws [33]. In contrast to prior
works that focus on identifying specific flaws, our work
provides a more general framework for detecting software
defects that can be expressed as logical rules.
Händel builds on extensive prior research on applying

logic languages to solving program analysis problems. Logic
languages are an effective means for specifying sophisti-
cated and scalable analyses in a declarative manner [13, 21].
Past applications vary from calculating large-scale points-to
relationships [8, 49, 50] to identifying structural program de-
pendencies [18] or code property violations [45]. Händel’s
design takes inspiration from program analysis frameworks
that express their analyses in a logic language [8, 23, 29].
The key novelty of our approach lies in employing proba-
bilistic logic programming [14, 20, 25, 42] for specifying and
executing program analyses.

7 Future Work and Conclusion

This paper presented a novel approach that facilitates audit-
ing Java exception-handling logic. Our approach takes ad-
vantage of probabilistic reasoning and uses a logic language
to declaratively express and configure auditing rules. We
prototyped our approach in Händel. As a proof-of-concept,
we revisited and specified three Java exception anti-patterns
with Händel and demonstrated its ability to detect and pri-
oritize potential anti-pattern matches.

Encouraged by our preliminary results, we plan to further
study Händel’s ability to specify auditing standards and
detect violations. We envision our future work following
three lines of inquiry. First, we plan to explore how exten-
sible Händel is. To that end, Händel can be extended to
support additional Java anti-patterns and anti-patterns in
other languages. Second, we plan to explore Händel’s per-
formance and scalability. These characteristics are essential
forHändel to provide practical benefits to software auditors.
We can implement optimizations and expand our evaluation
set to include larger code bases. Finally, we plan to explore
Händel’s usability further. We can conduct usability studies
to understand whether Händel achieves the desired expres-
siveness and configurability.
As software reliability and quality remain an acute prob-

lem in software development, the need for approaches that
facilitate auditing will only increase. By reporting on our
experiences with Händel, we contribute novel designs and
insights for using probabilistic reasoning in service of soft-
ware auditing.

Acknowledgments

The authors thank the anonymous reviewers, whose insight-
ful comments helped improve this paper. This research is
supported by NSF through the grant #2232565.

95



Toward Declarative Auditing of Java Software for Graceful Exception Handling MPLR ’24, September 19, 2024, Vienna, Austria

References
[1] Martin Abadi and Luca Cardelli. 2012. A theory of objects. Springer

Science & Business Media, New York, NY, USA.

[2] Amazon. 2024. Amazon S3 examples using SDK for Java 2.x. Retrieved

May 1, 2024 from https://docs.aws.amazon.com/sdk-for-java/latest/

developer-guide/java_s3_code_examples.html

[3] Amazon. 2024. Developer Guide - AWS SDK for Java 2.X. Retrieved

May 1, 2024 from https://docs.aws.amazon.com/sdk-for-java/latest/

developer-guide

[4] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-

Based Model Counting for String Constraints. In Computer Aided

Verification (CAV ‘15), Daniel Kroening and Corina S. Păsăreanu (Eds.).

Springer Cham, Cham, Switzerland, 255ś272. https://doi.org/10.1007/

978-3-319-21690-4_15

[5] Guilherme Bicalho de Pádua and Weiyi Shang. 2017. Studying the

Prevalence of Exception Handling Anti-Patterns. In 2017 IEEE/ACM

25th International Conference on Program Comprehension (ICPC). IEEE,

328ś331. https://doi.org/10.1109/ICPC.2017.1

[6] Guilherme Bicalho de Pádua and Weiyi Shang. 2018. Studying the

relationship between exception handling practices and post-release

defects. In Proceedings of the 15th International Conference on Mining

Software Repositories (MSR ‘18). ACM, New York, NY, USA, 564ś575.

https://doi.org/10.1145/3196398.3196435

[7] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, et al. 2006. The DaCapo Bench-

marks: Java Benchmarking Development and Analysis. In Proceedings

of the 21st annual ACM SIGPLAN conference on Object-oriented pro-

gramming systems, languages, and applications (OOPSLA ‘06). ACM,

New York, NY, USA, 169ś190. https://doi.org/10.1145/1167473.1167488

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative

Specification of Sophisticated Points-to Analyses. In Proceedings of

the 24th ACM SIGPLAN Conference on Object Oriented Programming

Systems Languages and Applications (OOPSLA ‘09). ACM, New York,

NY, USA, 243ś262. https://doi.org/10.1145/1640089.1640108

[9] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and

Thomas J. Mowbray. 1998. AntiPatterns: Refactoring Software, Archi-

tectures, and Projects in Crisis. John Wiley & Sons, Inc., New York, NY,

USA.

[10] W. L. Bryan, S. G. Siegel, and G. L. Whiteleather. 1982. Auditing

Throughout the Software Life Cycle: A Primer. Computer 15, 03 (March

1982), 57ś67. https://doi.org/10.1109/MC.1982.1653973

[11] Checkstyle. 2024. Checkstyle. Retrieved May 26, 2024 from https:

//checkstyle.sourceforge.io

[12] Roberta Coelho, Jonathan Rocha, and HugoMelo. 2018. A Catalogue of

Java Exception Handling Bad Smells and Refactorings. In Proceedings

of the 25th International Conference on Pattern Languages of Programs

(PLoP ‘18). The Hillside Group.

[13] Steven Dawson, Coimbatore R. Ramakrishnan, and David S. War-

ren. 1996. Practical Program Analysis Using General Purpose Logic

Programming SystemsÐA Case Study. In Proceedings of the ACM SIG-

PLAN 1996 Conference on Programming Language Design and Imple-

mentation (PLDI ‘96). ACM, New York, NY, USA, 117ś126. https:

//doi.org/10.1145/231379.231399

[14] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog:

A Probabilistic Prolog and Its Application in Link Discovery. In Proceed-

ings of the 20th International Joint Conference on Artificial Intelligence

(IJCAI ‘07). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2462ś2467.

[15] Mattias De Wael, Stefan Marr, and Tom Van Cutsem. 2014. Fork/Join

Parallelism in the Wild: Documenting Patterns and Anti-Patterns in

Java Programs Using the Fork/Join Framework. In Proceedings of the

2014 International Conference on Principles and Practices of Program-

ming on the Java Platform: Virtual Machines, Languages, and Tools

(PPPJ ‘14). ACM, New York, NY, USA, 39ś50. https://doi.org/10.1145/

2647508.2647511

[16] Elfriede Dustin, Thom Garrett, and Bernie Gauf. 2009. Implementing

Automated Software Testing: How to Save Time and Lower Costs While

Raising Quality. Pearson Education.

[17] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. 2015. An

Exploratory Study on Exception Handling Bugs in Java Programs.

Journal of Systems and Software 106 (Aug. 2015), 82ś101. https://doi.

org/10.1016/j.jss.2015.04.066

[18] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini.

2008. Defining and Continuous Checking of Structural Program

Dependencies. In Proceedings of the 30th international conference on

Software engineering (ICSE ‘08). ACM, New York, NY, USA, 391ś400.

https://doi.org/10.1145/1368088.1368142

[19] Martin Fowler. 2019. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional, Boston, MA, USA.

[20] Norbert Fuhr. 2000. Probabilistic Datalog: Implementing Logical Infor-

mation Retrieval for Advanced Applications. Journal of the American

Society for Information Science 51, 2 (2000), 95ś110. https://doi.org/10.

1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H

[21] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011.

Datalog and Emerging Applications: An Interactive Tutorial. In Pro-

ceedings of the 2011 ACM SIGMOD International Conference on Man-

agement of data (SIGMOD ‘11). ACM, New York, NY, USA, 1213ś1216.

https://doi.org/10.1145/1989323.1989456

[22] Joern. 2024. Joern: The Bug Hunter’s Workbench. Retrieved May 1,

2024 from https://joern.io

[23] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Souf-

flé: On Synthesis of Program Analyzers. In Computer Aided Verifica-

tion (CAV ‘16), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer

Cham, Cham, Switzerland, 422ś430. https://doi.org/10.1007/978-3-

319-41540-6_23

[24] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. 2000. The Java

(TM) Language Specification.

[25] Angelika Kimmig, Bart Demoen, Luc De Raedt, Vítor Santos Costa,

and Ricardo Rocha. 2011. On the Implementation of the Probabilistic

Logic Programming Language ProbLog. Theory and Practice of Logic

Programming 11, 2-3 (March 2011), 235ś262. https://doi.org/10.1017/

S1471068410000566

[26] Andrew Koenig and Bjarne Stroustrup. 1990. Exception Handling for

C++. Journal of Object-Oriented Programming 3, 2 (1990), 137ś171.

[27] Rodrigo Laigner, Marcos Kalinowski, Luiz Carvalho, Diogo Mendonça,

and Alessandro Garcia. 2019. Towards a Catalog of Java Dependency

Injection Anti-Patterns. In Proceedings of the XXXIII Brazilian Sympo-

sium on Software Engineering (SBES ‘19). ACM, New York, NY, USA,

104ś113. https://doi.org/10.1145/3350768.3350771

[28] David C. Luckham and W. Polak. 1980. Ada Exception Handling: An

Axiomatic Approach. ACM Transactions on Programming Languages

and Systems 2, 2 (April 1980), 225ś233. https://doi.org/10.1145/357094.

357100

[29] Mayur Naik. 2020. Petablox: Large-Scale Software Analysis and Ana-

lytics Using Datalog. Technical Report. Georgia Technology Research

Institute, Atlanta, GA, USA.

[30] Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem

Nguyen Khac, and Anh Nguyen Quang. 2021. On the Adoption of

Static Analysis for Software Security AssessmentśA Case Study of an

Open-Source e-Government Project. Computers & Security 111 (Dec.

2021), 102470. https://doi.org/10.1016/j.cose.2021.102470

[31] Ana Filipa Nogueira, José C. B. Ribeiro, and Mário A. Zenha-Rela. 2017.

Trends on Empty Exception Handlers for Java Open Source Libraries.

In IEEE 24th International Conference on Software Analysis, Evolution

and Reengineering (SANER ‘17). IEEE, 412ś416. https://doi.org/10.

1109/SANER.2017.7884644

[32] Christian Payne. 2002. On the Security of Open Source Software.

Information Systems Journal 12, 1 (2002), 61ś78. https://doi.org/10.

96



MPLR ’24, September 19, 2024, Vienna, Austria Leo St. Amour and Eli Tilevich

1046/j.1365-2575.2002.00118.x

[33] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian

Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. VC-

CFinder: Finding Potential Vulnerabilities in Open-Source Projects to

Assist Code Audits. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security (CCS ‘15). ACM, New York,

NY, USA, 426ś437. https://doi.org/10.1145/2810103.2813604

[34] PMD. 2024. PMD: An extensible cross-language static code analyzer.

Retrieved May 26, 2024 from https://pmd.github.io/

[35] George Radin. 1978. The Early History and Characteristics of PL/I.

ACM SIGPLAN Notices 13, 8 (Aug. 1978), 227ś241. https://doi.org/10.

1145/960118.808389

[36] Fabrizio Riguzzi and Terrance Swift. 2010. Tabling and Answer Sub-

sumption for Reasoning on Logic Programs with Annotated Disjunc-

tions. In Technical Communications of the International Conference

on Logic Programming, Leibniz International Proceedings in Informat-

ics (LIPIcs, Vol. 7). Schloss DagstuhlÐLeibniz-Zentrum für Informatik,

Saarbrüken, Germany, 162ś171. https://doi.org/10.4230/LIPIcs.ICLP.

2010.162

[37] Fabrizio Riguzzi and Terrance Swift. 2013. Wellśdefinedness and

efficient inference for probabilistic logic programming under the dis-

tribution semantics. Theory and practice of logic programming 13, 2

(2013), 279ś302. https://doi.org/10.1017/S1471068411000664

[38] Martin P. Robillard and Gail C. Murphy. 1999. Analyzing Exception

Flow in Java Programs. ACM SIGSOFT Software Engineering Notes 24,

6 (1999), 322ś337. https://doi.org/10.1145/318774.319251

[39] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. 2004. A Com-

parison of Bug Finding Tools for Java. In 15th International Sym-

posium on Software Reliability Engineering. IEEE, 245ś256. https:

//doi.org/10.1109/ISSRE.2004.1

[40] Seemanta Saha, Mara Downing, Tegan Brennan, and Tevfik Bultan.

2022. PReach: A Heuristic for Probabilistic Reachability to Identify

Hard to Reach Statements. In Proceedings of the 44th International

Conference on Software Engineering (ICSE ‘22). ACM, New York, NY,

USA, 1706ś1717. https://doi.org/10.1145/3510003.3510227

[41] Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Al-

bert Li, Ganesh Sankaran, and Tevfik Bultan. 2023. Rare Path Guided

Fuzzing. In Proceedings of the 32nd ACM SIGSOFT International Sym-

posium on Software Testing and Analysis (ISSTA ‘23). ACM, New York,

NY, USA, 1295ś1306. https://doi.org/10.1145/3597926.3598136

[42] Taisuke Sato and Yoshitaka Kameya. 2001. Parameter Learning of

Logic Programs for Symbolic-Statistical Modeling. Journal of Artificial

Intelligence Research 15 (2001), 391ś454. https://doi.org/10.1613/jair.

912

[43] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifá-

cio. 2016. Understanding the Exception Handling Strategies of Java

Libraries: An Empirical Study. In Proceedings of the 13th International

Conference on Mining Software Repositories (MSR ‘16). ACM, New York,

NY, USA, 212ś222. https://doi.org/10.1145/2901739.2901757

[44] Saurabh Sinha, Alessandro Orso, and Mary Jean Harrold. 2004. Au-

tomated Support for Development, Maintenance, and Testing in the

Presence of Implicit Flow Control. In Proceedings of the 26th Interna-

tional Conference on Software Engineering (ICSE ‘04). IEEE, 336ś345.

https://doi.org/10.1109/ICSE.2004.1317456

[45] Leo St. Amour. 2017. Interactive Synthesis of Code-Level Security Rules.

Master’s thesis. Northeastern University, Boston, MA, USA. https:

//doi.org/10.17760/d20467254

[46] Ashish Sureka. 2016. Parichayana: An Eclipse Plugin for Detect-

ing Exception Handling Anti-Patterns and Code Smells in Java

Programs. (Dec. 2016). https://doi.org/10.48550/arXiv.1701.00108

arXiv:arXiv:1701.00108

[47] Catia Trubiani, Riccardo Pinciroli, Andrea Biaggi, and Francesca Ar-

celli Fontana. 2023. Automated Detection of Software Performance

Antipatterns in Java-Based Applications. IEEE Transactions on Software
Engineering 49, 4 (April 2023), 2873ś2891. https://doi.org/10.1109/

TSE.2023.3234321

[48] Bill Verners and Bruce Eckel. 2003. The Trouble with Checked Ex-

ceptions: A Conversation with Anders Hejlsberg, Part II. Retrieved

May 15, 2024 from https://www.artima.com/articles/the-trouble-with-

checked-exceptions

[49] JohnWhaley, Dzintars Avots, Michael Carbin, andMonica S. Lam. 2005.

Using Datalog with Binary Decision Diagrams for Program Analysis.

In Programming Languages and Systems. Springer Berlin Heidelberg,

Berlin, Germany, 97ś118. https://doi.org/10.1007/11575467_8

[50] John Whaley and Monica S. Lam. 2004. Cloning-Based Context-

Sensitive Pointer Alias Analysis Using Binary Decision Diagrams.

In Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (PLDI ‘04). ACM, New York, NY,

USA, 131ś144. https://doi.org/10.1145/996841.996859

[51] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.

2012. Swi-prolog. Theory and Practice of Logic Programming 12, 1-2

(2012), 67ś96. https://doi.org/10.1017/S1471068411000494

[52] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014.

Modeling and Discovering Vulnerabilities with Code Property Graphs.

In 2014 IEEE Symposium on Security and Privacy. IEEE, 590ś604. https:

//doi.org/10.1109/SP.2014.44

[53] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu

Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple

Testing Can Prevent Most Critical Failures: An Analysis of Production

Failures in Distributed Data-Intensive Systems. In 11th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI ‘14).

USENIX, 249ś265.

[54] Lei Zhang, Yanchun Sun, Hui Song, Weihu Wang, and Gang Huang.

2012. Detecting Anti-Patterns in Java EE Runtime System Model.

In Proceedings of the Fourth Asia-Pacific Symposium on Internetware

(Internetware ‘12). ACM, New York, NY, USA, 1ś8. https://doi.org/10.

1145/2430475.2430496

Received 2024-05-25; accepted 2024-06-24

97


	Abstract
	1 Introduction
	2 Exception-handling Anti-patterns
	2.1 Anti-pattern 1: Catch Generic / Over-Catch
	2.2 Anti-pattern 2: Throws Generic / Over-Throws
	2.3 Anti-pattern 3: Unhandled Exceptions

	3 Händel's Design and Implementation
	3.1 Phase I: Generating Code Property Graph
	3.2 Phase II: Translating CPGs into ProbLog Facts
	3.3 Phase III: Identifying Probable Anti-patterns

	4 Evaluation
	5 Discussion
	6 Related Work
	7 Future Work and Conclusion
	Acknowledgments
	References

