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“I Can See Your Password”: A
Case Study About Cybersecurity
Risks in Mid-Air Interactions
of Mixed Reality-Based Smart
Manufacturing Applications
This paper aims to present a potential cybersecurity risk existing in mixed reality (MR)-
based smart manufacturing applications that decipher digital passwords through a single
RGB camera to capture the user’s mid-air gestures. We first created a test bed, which is
an MR-based smart factory management system consisting of mid-air gesture-based user
interfaces (UIs) on a video see-through MR head-mounted display. To interact with UIs
and input information, the user’s hand movements and gestures are tracked by the MR
system. We setup the experiment to be the estimation of the password input by users
through mid-air hand gestures on a virtual numeric keypad. To achieve this goal, we devel-
oped a lightweight machine learning-based hand position tracking and gesture recognition
method. This method takes either video streaming or recorded video clips (taken by a single
RGB camera in front of the user) as input, where the videos record the users’ hand move-
ments and gestures but not the virtual UIs. With the assumption of the known size, position,
and layout of the keypad, the machine learning method estimates the password through
hand gesture recognition and finger position detection. The evaluation result indicates
the effectiveness of the proposed method, with a high accuracy of 97.03%, 94.06%, and
83.83% for 2-digit, 4-digit, and 6-digit passwords, respectively, using real-time video
streaming as input with known length condition. Under the unknown length condition,
the proposed method reaches 85.50%, 76.15%, and 77.89% accuracy for 2-digit, 4-digit,
and 6-digit passwords, respectively. [DOI: 10.1115/1.4062658]

Keywords: cyber-physical security for factories, human computer interfaces/interactions,
machine learning for engineering applications, virtual and augmented reality environments

1 Introduction
The industrial world is right now undergoing a transformation

through the fourth revolution, also known as Industry 4.0 or smart
manufacturing. Industry 4.0 advances manufacturing towards a
highly flexible production model of customized and digital products
or services, with real-time interactions between people, products, and
devices during the production process [1]. In the implementation of
Industry 4.0, cyber-physical systems (CPS) are incorporated with
the advanced manufacturing systems to increase autonomous adapt-
ability, autonomy, and flexibility [2]. In spite of the benefit of Industry
4.0, there are also challenges arising from this rapid transition [3].
One of the biggest problems is that the increased complexity of man-
ufacturing systems makes it hard for people to interact with them

because they do not have the appropriate interfaces. To address this
problem, the extended reality (XR) techniques, consisting of virtual
reality (VR), augmented reality (AR), and mixed reality (MR), are
considered the key to bridging human operators and the manufactur-
ing systems [4]. While VR techniques display the virtual objects in a
fully immersive environment, AR and MR techniques overlay
context-aware virtual information on the display of real objects.
XR’s new affordances in visualization and interaction make it
well-suited to seamlessly connect humans and complex hardware
and software systems, such as the internet of things (IoT), autono-
mous robots, advanced simulations, digital twins, artificial intelli-
gence, etc.
Recently, XR techniques have been extensively investigated in

the context of manufacturing applications, such as design [5], train-
ing [6], robot programming [7,8], maintenance [9], and assembly
[10]. XR is expected to be widely deployed in manufacturing
[11] within the next decade; nevertheless, concern about the cyber-
security risk of XR has been raised, which may prevent its adoption
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in manufacturing applications. In fact, recent articles pointed out the
potential cybersecurity risks in XR [12,13], including ransomware,
malware, stealing network credentials, man-in-the-middle-attacks,
social engineering, etc. Thus, it is critical to identify potential cyber-
security risks associated with XR-based systems in manufacturing
applications and to educate both the developer and user of these
systems on how to eliminate or avoid risks.
Like other connected devices in Industry 4.0, XR devices are vul-

nerable to similar attacks as other IoTs [14], such as these attacks
against sensors [15], networks [16], middleware [17], and the soft-
ware [18]. Apart from these threats, we pay attention to the unique
challenge that XR devices present: the potential privacy/security
issue in mid-air interactions with the intangible XR interfaces.
There are several reasons for us to decide to investigate this risk.
First of all, mid-air interactions may contain information that can
be potentially used for inferring privacy/security-sensitive informa-
tion. Compared with the conventional hand-held controller, the
mid-air interaction has become a more trendy interaction metaphor
in mainstream XR devices (e.g., Microsoft Hololens MR headset,
Lenovo ThinkReality AR headset, Magic leap AR headset, and
Meta Oculus VR headset), as it frees the user’s hands and provides
an intuitive way to interact. Mid-air interaction is especially prefer-
able in manufacturing applications, where people constantly have
to touch machines or tools with their hands. XR systems in indus-
trial applications usually require the user to input privacy-sensitive
information (e.g., password, production information, etc.) through
users’ interactions with the intangible virtual keyboard. As a
result, if the user’s mid-air interactions are recorded and recog-
nized, it is possible to retain the user’s privacy/security-sensitive
information. Second, the privacy/security issue in mid-air interac-
tions has not attracted enough attention from both the user and
the developer. The mid-air interaction has no tangible interfaces,
and the risk of cyberattacks would be easily ignored by the user.
On the other hand, the developer usually relies on the XR device
manufacturers’ software development kits (SDKs) to develop appli-
cations, which may cause their interface layouts to be similar. The
layout information can be utilized by attackers to infer privacy- and
security-sensitive information, whereas both XR device manufac-
turers and developers have no awareness of it. Last but not least,
there are few papers talking about inferring privacy/security-
sensitive information through the user’s interactions using XR
devices. The existing works focus on either physical touchscreen-
based inferences [19] or the head motion-based [20]. Some recent
papers discussed the password estimation through the user’s inter-
actions with the XR interfaces, either based on a human’s observa-
tion [21] or an algorithm requiring the user’s head location and
orientation information from the VR headset [22]. Our proposed
method, on the other hand, takes only 2D video streams and auto-
matically estimates the input information through the user’s
interactions.
To deepen our understanding of the cybersecurity risk of mid-air

interactions in XR and to attract enough attention from the user, the

developer, the researcher, and the practitioner, we conduct a case
study to investigate the following research question: Is it possible
to infer the password information using a camera to record the
user’s mid-air interactions in the physical world while the password
input is completed with the intangible interfaces in virtual space? In
order to answer this question, we created a prototyping XR-based
smart factory management system and developed a password
input interface based on a virtual numerical pad. We then proposed
and developed a machine learning framework to identify hand ges-
tures and motions based on single-view images input extracted from
a video stream, and then estimate the password. Figure 1 illustrates
the pipeline of the proposed work. We perform two types of attacks
using this test bed and password estimation algorithm: one with
known password length and one without. The experimental
results indicate the effectiveness of the proposed password infer-
ence method, and therefore, prove the necessity and urgency of
paying attention to the cybersecurity risks in XR systems’ mid-air
interactions. Please refer to an illustration video about our proposed
method through the YouTube link.2

The rest of the paper is organized as follows: Sec. 2 presents
related works of XR’s applications in Industry 4.0 and associated
cybersecurity risks. The design and development of a prototyping
MR system are described in Sec. 3, and a password inference
method is proposed and presented in Sec. 4. Section 5 reports the
experiment’s details and results. In the last section, the conclusion
is summarized and the future work is pointed out.

2 Related Works
2.1 Extended Reality Techniques and Applications in

Industry 4.0. XR devices, based on their fundamental working
principles, can be generally categorized into three classes [10,23]:
on the user’s head (head-mounted), in the user’s hand (hand-held),
or installed in the environment (spatial). Among these devices, the
head-mounted display (HMD) becomes the primary one to support
Industry 4.0 applications. Different interaction metaphors are pro-
posed around the HMDs, such as voice interaction [24], gaze inter-
action [25], eye tracking [26], mid-air gesture [27], physical
interactive widgets [28], and haptic interaction based on gloves
[29]. Bailenson [30] and JofréPasinetti et al. [31] mentioned that
non-verbal communication with computers such as eye movement,
gaze, and gesture-operated in XR would be of value in the future. In
fact, the mid-air gesture, which includes all techniques by means of
tracking the bare hands or finger gestures as inputs, is an increas-
ingly popular interaction method to manipulate 3D objects in
current HMD-based XR applications [32].
XR techniques have shown their potential in Industry 4.0 appli-

cations as they enable the integration of humans with other complex

Fig. 1 A cyberattack case based on mid-air interactions in MR-based smart factory environment

2https://youtu.be/gTZPE8S1-0M
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systems [33]. The specific applications include design [34], training
[35], maintenance [36], assembly [10], and human–robot interac-
tion [37]. Alongside the exploration of XR techniques in industrial
applications, different interaction metaphors have also been studied.
Gattullo et al. [38] summarized the list of visual assets in industrial
AR applications, namely, text, signs, photographs, videos, draw-
ings, technical drawings, product models, and auxiliary models.
Yew et al. [39] present bare-hand interaction applications for
smart 3D objects and smart machining objects via a griddable dis-
tributed manufacturing system. Maharjan et al. [40] also applied
hand gestures in an AR-enabled human–infrastructure interface
for inspection and monitoring structures to achieve hands-free oper-
ation. Wang et al. [41] evaluated the improvement of a combination
of 3D gestures and computer aided design models in remote collab-
oration on an assembly task with respect to the performance time
and user experience.

2.2 Cybersecurity Risks in Extended Reality Systems.
Although XR techniques have shown tremendous potential benefits,
they could also introduce new cybersecurity risks. Casey et al. [42]
have shown that immersion attacks could incur physical harm and
disrupt the user experience in VR systems. Examples of immersion
attacks include chaperone attacks to tamper with the virtual environ-
ment boundaries, overlay attacks for overlaying unwanted content on
VR users’ view, joystick attacks to mislead the physical movement of
VR users, and disorientation attacks to cause dizziness and confusion
in VR users (as known as cybersickness in Ref. [43]). The XR plat-
form is also vulnerable to various specific side-channel attacks [44–
46] and other general security threats, e.g., DoS attacks and
man-in-the-middle attacks [47]. Apart from the security threat, data
privacy is another serious concern in XR systems, such as the poten-
tial leakage of users’ physical locations in AR systems [48], leakage
of personal information [49], and de-anonymization of users via
leveraging their unique movement patterns [50]. The detailed secur-
ity, privacy challenges, and ethical issues in XR systems have been
well summarized in Refs. [47,51].

Keystroke inference attack is one of the most critical potential
security threats in XR systems. In keystroke inference attacks,
when a user presses a key on the keyboard, the user’s hand coverage
and finger motions could be captured and featured by motion
sensors, videos, or the fluctuation of the wireless signals, which
could then be used to infer users’ inputs. The existing keystroke
inference attack could be mainly divided into three categories:
WiFi signal-based, video-based, and sensor-based. A WiFi-based
keystroke inference framework could accurately infer users’ pass-
words via analyzing channel state information of WiFi signals
[45,52]. Wang et al. [53] proposed a GazeRevealer to infer the
users’ inputted passwords based on the smartphone’s front
camera. Sensor-based keystroke inferences attacks exploit different
sensor data, e.g., electromyography sensor data and motion sensors
data, to infer the inputted password [19,46]. Recently, there have
been some papers focusing on estimating passwords through the
user’s mid-air interactions. Compared with Kreider [21], which is
mainly based on human observation input, our work proposes an
efficient hand-tracking algorithm and a password estimation algo-
rithm that only needs 2D video frames for inferring the password
by recognizing the user’s mid-air interactions. The keystroke
inputs in HoloLogger [22] requires a data stream of head location
and orientation information from the VR headset, while our work
does not need to get information from the headset. However,
most existing keystroke inference attacks were originally designed
for physical keystrokes and were well-evaluated in the real world.
Their performances in virtual environments, especially for the XR
applications in Industry 4.0, are still under-explored.

3 The Development of the Mixed Reality System
We assume the attack scenario where the user is entering a pass-

word with mid-air gestures in MR to log in to a smart factory man-
agement system. We consider that the smart factory management
system contains sensitive information, including production pro-
cesses, machine conditions, and schedules. In this section, we

Fig. 2 The prototyping MR system for smart factory management is displayed in the first-person view of the operator wearing
the MR headset in the machine shop: (a) Interface layout, (b) machine maintenance interface, and (c) live support interface
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present how we design and implement the interfaces and mid-air
interactions of the MR system.

3.1 Hardware and Software. We setup the video see-through
MR system following Yang et al.’s work [8]. An Oculus Quest
headset and a ZED mini-stereo camera are integrated as shown in
Fig. 3. ZED mini is a USB 3.0 stereo camera with 720p resolution,
30 Hz frame rate, and a wide field of view (Vertical 54 deg and hor-
izontal 85 deg). The latency of the MR system is expected to be
under 100 ms. Both the HMD and the camera are connected to a
laptop via two cables.
The entire system is developed based on the unity platform.

There are several SDKs utilized to develop the system, including
Oculus integration [54] for supporting Oculus HMD development,
mixed reality toolkit [55] for supporting user interfaces and interac-
tions development, and OpenCV for unity plugin [56] for detecting
ArUco markers in the physical world and localizing the MR
interface.

3.2 Interfaces and Interactions. This prototyping system is
designed for the management and maintenance of a smart factory
consisting of manufacturing systems such as computerized numer-
ical control (CNC) machines, metal 3D printers, etc. The user who
wears the MR device is able to interact with manufacturing systems
using mid-air interactions to maintain the machines, manage the
schedule, and receive live support through the visualization and
communication modules. Please refer to Fig. 2 for detailed informa-
tion about the interface or access the demonstration video through
the link.3 Using such an MR interface, essential information such
as production plans, machine status, and schedules will be accessed.
Therefore, it is necessary to setup an authorization or identity veri-
fication step when the user starts to use the interface. We developed
a login interface which is a numeric keypad for the user to input
passwords, and the cybersecurity attack is set to be inferring the
password through the user’s mid-air interactions. The details
about the interfaces and interactions are presented as follows.
MR Interfaces. The MR interfaces access each machine’s infor-

mation through a background cloud server, and the information
visualized in the MR environment includes the daily status of the
machine and schedules (see Figs. 2(a) and 2(b)). Moreover, a live
video support interface is available to allow the user to chat with
the support engineer of the machine’s manufacturer from a distance
(see Fig. 2(c)). The support engineer can share the user’s first-
person view to see the situation on-site and can also annotate the
shared view.
Login Interface.We designed a virtual interactive number pad for

the login interface, which is illustrated in Fig. 4. Virtual keyboards
are the current standard in most XR headsets and applications. The
layout of the number pad is similar to the current physical and
touchscreen numerical keyboards, so the users can start using the
method without any friction. The bottom left is the “Delete”

button, and the bottom right is the “Enter” button (see Fig. 4(a)).
This virtual numerical pad is interactive with hand tracking. Users
use the tap gesture to physically press the virtual buttons in
mid-air so that the input is recognized. Note that, from a third-
person view, this virtual numerical pad is invisible.
User Interactions. Instead of directly displaying information, all

MR interfaces are interactive with hand tracking. The hand-tacking
is proven to increase immersion and presence for the virtual ele-
ments [57]. The interface panels and subpanels are moveable with
a mid-air gesture control and can be put anywhere in the space.
In XR interactions, there are two methods enabled by hand tracking:
near-interaction and cursor-pointer. We adopted both methods to
support the user in our prototyping system. Near interaction is
similar to the human’s interaction with physical objects, like grab-
bing, pressing, and tapping, while a laser cursor-pointer is driven by
the hand’s pose and behaves like a standard controller cursor to
highlight, select, click, or any other customized trigger. Both of
these two methods make use of mid-air hand gestures such as
point, pinch, unpinch, scroll, and palm pinch. For example, the
pinch is used for selecting and a combination of pick and drag to
move the panels. For entering characters, near interaction is used
because it is faster than typing with a cursor or physical controller.

4 The Password Inference Method
This section presents the hand-tracking algorithm and the pass-

word estimation algorithms for inferring the password by recogniz-
ing the user’s mid-air interactions. We first describe the hypothetical
attack scenarios and key assumptions. Then, we present the pro-
posed inference method, consisting of hand tracking and password
estimation algorithms. Hand tracking is used for detecting hand key
points and hand gestures. The password estimation procedure uses
the hand gesture detection results and the hand tracking results to
estimate the password entered in the virtual panel.

4.1 Hypothetical Attack Scenario and Assumptions. An
experiment of potential password inference attacks is developed
based on the login interface shown in Fig. 4 with ten numerical
keys, a “Delete” button, and an “Enter” button. There are several
key assumptions as follows.
ASSUMPTION 1. The attacker can neither physically touch the

HMD nor get access to its data.
ASSUMPTION 2. The attacker knows the layout information and

the position of the numerical keypad (as illustrated in Fig. 4(b)).
ASSUMPTION 3. The input data for the attack are a 2D video clip

containing the user’s mid-air interactions, taken from the first-
person view by a hidden camera in front of the user.

Fig. 3 Augmented reality head-mounted display device imple-
mented with Oculus Quest first generation and ZED mini in this
work

Fig. 4 The login interface is a virtual numerical keypad dis-
played in the MR system. (a) The login keypad has ten numerical
keys, a “Delete” button (left bottom corner), and an “Enter”
button (right bottom corner). (b) The layout design of the main
12 buttons with two calibration points is illustrated.

3https://youtu.be/6m-VTKPbyMc
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Our research focus determines Assumption 1 that the mid-air
interactions information is the only information for the password
inference. The reason for adopting Assumption 2 is that the
virtual interactive interfaces are usually developed with the
support of XR device manufacturers’ SDKs and are therefore uni-
versal and well known. Assumption 3 again comes from the setup
of the proposed cybersecurity attack, which is the password infer-
ence based on mid-air interactions. We also want to minimize the
required input data, therefore, only a first-person view video clip
is assumed to be sufficient for the attack. Because the password
length could vary (e.g., 4 or 6 digits), we devise two attack scenar-
ios: Attack 1 (known password length) and Attack 2 (unknown pass-
word length).

4.2 Hand Gesture Tracking. Unlike typing on the physical
keyboard, the password input mechanism in the prototyping
system is different from traditional computers and phones. Users
are required to click the virtual panel displayed in the headset
through a particular hand gesture. The login interface is shown in
Fig. 5. Normally, the hand gesture is combined with a series of
hand poses in the time period, and the virtual panel is only visible
to the headset wearer. However, the hand gesture in the password
input video contains spatial–temporal information about the pass-
word and the virtual panel. Spatial–temporal information refers to
the information having connections between time and spatial move-
ment. In this section, we propose to use the hand-tracking algorithm
to reveal the location of the hand and the gesture classification
method to detect the action of the user.
Palm Detection Model and Hand Kinematic Skeleton Model.Due

to the computing device constraint in the password estimation case,
we use a lightweight hand-tracking algorithm to track the palm
movement and the skeleton key points of the hand. There are two
steps for tracking the hand. First, the tracking algorithm will
detect the palm. We use a single-shot detector to detect a palm,
and palms are modeled using square bounding boxes. To reduce
the influence of a bigger scene context, encoder–decoder features
are used to train the detector to enhance the attention on the
palm. The second step is to reconstruct the skeleton’s key points
of the hand. Based on the palm location, we use a hand landmark
model to learn a consistent hand pose representation. Then we
select 21 skeleton key points of the hand and use the regression
method to get the coordinates of the key points (Fig. 6(a)).
Details of the palm detection model and the skeleton key points
reconstruction model are based on Mediapipe [58].
Hand Pose Estimation. The hand pose estimation is designed for

capturing hand pose and enabling additional functions after record-
ing the hand skeleton key points from the hand-tracking algorithm
[59]. In this section, we design four common hand poses, including
close, open, pointer, and pick, to simulate the user’s hand pose in

the MR system (Fig. 6(b)). The pick hand pose is used to adjust
the location and size of the element’s virtual button area in the cap-
tured scene. The pointer hand pose is designed for collecting
spatial–temporal data from the hand poses. Open and close hand
poses are basic poses that indicate no additional functions are acti-
vated. Then we use a neural network with two hidden layers to esti-
mate the hand poses. The input of the neural network is 21 hand
skeletons’ key point coordinates. The output of the neural
network is hand pose labels.
Hand Movement Classification.After collecting spatial–temporal

data on the hand poses, we need to analyze the hand gesture
sequence to get the movement of the hand and identify the action.
In this case study, we design two classifiers to recognize the
meaning of hand movements (Fig. 6(c)). The first neural network,
the movement classifier, is to separate the directional movement
from the stop. The inputs of the movement classifier are the 48 skel-
eton key points of the index finger in the last 16 frames. The move-
ment classifier produces the probabilities for eight directions and the
stop. The click classifier is a neural network that identifies the click
and the unclick. The inputs for the click classifier are identical to the
movement classifier, and the output is the probability of the two
classes. To minimize the impact of unrelated hand frames, we use
a neural network with long-short-term-memory (LSTM) [60].
Both the movement classifier and the click classifier use a neural
network with two hidden layers and the LSTM. Since the input
dimension of the framework is small, a network with two layers
and one LSTM layer is sufficient for the classifiers, which is
shown in Fig. 7. The first and second hidden layers have 48 and
10 nodes, respectively, and the LSTM layer contains 16 nodes.

4.3 Password Estimation. Based on the hand skeleton detec-
tion model, hand pose estimation model, and hand movement
model, we propose to estimate the password using the RGB
webcam (Fig. 6(d )). There are two types of attacks: Attack 1 and
Attack 2. Attack 1 will provide the length of the password, while

Fig. 5 The setup of password inference attacks in the MR
system is illustrated

Fig. 6 The password inference workflow. The palm detection
model and the hand kinematic skeleton model are used to trans-
form 16 RGB video frames into a series of skeleton key points (a).
Then the hand pose estimation (b) classifies the hand into four
hand pose categories. If the hand pose is a pointer, movement
and click classifier results (c) will determine the tracking result
and output the corresponding passwords (d).
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the length of the password in Attack 2 is not given. The pseudo-code
of Attack 1 is presented in Algorithm 1. Figure 6 illustrates the
overall framework for the unknown length password estimation.
The inputs of the framework are RGB video frames from the
webcam. We first detect the hand and skeleton key points for
each frame and identify the hand pose. When the hand pose is a
pointer, the movement classifier and the click classifier identify
the movement and the click separately. After that, the password esti-
mation model estimates the digit based on the results of the move-
ment classifier and the click classifier.
Attack 1. In Attack 1 (see Algorithm 1), the attacker can get the

coordinates of the virtual interface (x, y, width, height), recorded
video V, and the length of the password n. Since the length of the
password is available, we roughly separate the recorded information
into n clips according to the finger area a, where n represents the
digit number of the password. If the number of lasting frames for
the index fingertip on the digit button is greater than a threshold
tl, digits are selected as the potential password pp. When the
number of potential digits npp is equal to n, output the selected
digit as the password. When the number of selected digits is
greater than n, we select the top-n common digits in pp as the
output password P. If npp < n, we use the click and movement infor-
mation to determine whether some of the digits need to be counted
multiple times. Following that, we add or remove digits to generate
the password P with a length of n. Please refer to Algorithm 1 for
more details.

Algorithm 1 Attack 1

Require: Coordinate of virtual interface (x, y,w, h); recorded
video V ; length of password n

1: for each frame fi ∈ V do
2: Detect click ci, click confidence cci , movement mi, and

movement confidence mc
i , finger area a

3: end for
4: Separate video clips using finger area a
5: Delete non-digit frames using tl, get potential password pp
6: if length of potential password npp = n then
7: Password P = pp
8: else if npp > n then
9: Select nn non-consecutive digits in detected order

10: Shorten top common consecutive digits until npp = n
11: else
12: if Multiple cci ∈ cV then
13: Add digits to pp and separate digit frequency
14: if npp < n then
15: Add random numbers until npp = n
16: else if npp = n then
17: Password P = pp
18: else
19: Select nn non-consecutive digits in detected order
20: Shorten top common consecutive digits until

npp = n
21: end if
22: else if Multiple cci ∉ cV then
23: Add random numbers until npp = n
24: end if
25: end if

Attack 2. In Attack 2, the attacker can only get the coordinates of
the virtual interface and the layout of the keyboard to estimate the
password in a real-time situation. We use the click result, the move-
ment results, and the index finger location to determine the pass-
word. Since the length of the password is not known, we use a
sliding set ss to record the effective movement and the click
results. The effective movement results are selected when its
movement confidence is greater than the threshold tm, and the
click results are recorded when the click confidence is greater

than the threshold tc. After that, the potential password digit is the
most common number in the sliding window. When there is no
movement, the potential password digit is selected for the final pass-
word. We also set a click parameter pc to dynamically control the
waiting frames, and a movement parameter pm to determine
which potential password digit can be selected. Specifically, the
number of waiting frames wi = pc ∗ wc, where wc is the number
of the most common numbers in the sliding set.

5 Inference Performance Evaluation
5.1 Experimental Setup. We setup experiments to evaluate

the real-time performance of the proposed method. First, we
collect the hand gesture dataset to train the hand pose detector
and the hand movement classifier, as discussed in Sec. 4.2. Then
we setup the attack scenarios mentioned in Sec. 4.1, which are dem-
onstrated in Fig. 5.
We compare the proposed password estimation method with a

clustering method, which is based on one neural network with
two hidden layers. The output of the clustering method is eight
directions, click, and not move. To capture videos for the proposed
method and the clustering method, we put two hidden cameras in
front of the user. In order to eliminate the difference in both intrinsic
and extrinsic parameters of the two cameras, calibration is con-
ducted. The button “1” at the upper left corner and button “Enter”
at the lower right corner of the virtual interfaces (see Fig. 4(b))
are picked and compared to obtain the horizontal and vertical dis-
tance difference (Δu, Δv) in the two videos captured by two
cameras.

Δu = 3 · l + 2 · su (1)

Δv = 4 · l + 3 · sv (2)

l : su : sv = 8 : 5 : 1 (3)

where l is the length of the button square, su and sv mean the space
horizontally and vertically among buttons. Their ratio relationships
are directly obtained from the interface design process, see
Fig. 4(b). We first use Eqs. (1) and (3) to obtain l and su, then
apply Eq. (2) to get sv.
Details. The user first conducts the 500 sets of single-key button

tests. Then the user inputs three groups of passwords (i.e., 100 sets
of 2-digit, 4-digit, and 6-digit, respectively, for each group) for
Attack 1 and Attack 2, respectively. For Attack 1, separated finger
area can be combined if the non-digit frames are less than threshold
tl= 7. When multiple clicks happen, the lasting time of one finger
area will be separated evenly. For Attack 2, we set the movement
parameter pm and the click parameter pc as 1.0 and 0.75 to

Fig. 7 The neural network of the movement classifier and the
click classifier, consisting of two fully connected hidden layers
and an LSTM layer in between
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control the sensitivity of detecting movement and click, and the
confidence thresholds tm= 0.5 and tc= 0.5. In the clustering
method, the clustering sensitivity index ic is 0.95. The average
frame rate of the experiment for the proposed method and the clus-
tering baseline method is 8.1 fps. For hand detection and tracking,
both the minimum detection threshold and tracking threshold are
0.5. The confidence range for click button cV is (0.7, 1).

5.2 Dataset. We collected 4797 hand pose images to train the
hand pose detector. Each hand pose image is labeled by one of the
four poses (open, close, pointer, and pick), where pointer indicates
the hand gesture during clicking buttons in the virtual panel, and
pick is used to adjust the layout of the virtual keyboard. Other
5800 hand gestures were collected to train the hand movement clas-
sifier. Each hand gesture data are in the form of 〈name, click〉, where
name indicates the direction of movement (e.g., eight direction or
no move), and the click label indicates whether the gesture has
the click action or not, i.e., click∈ {click, non− click}. The hand
pose detection accuracy is 93.0% and the hand movement detection
accuracy is 94.3%.
To evaluate the proposed method, we also collected the following

testing datasets. A 1-digit test dataset includes 500 samples, where
each digit has 50 samples. A 2-digit test dataset consists of samples
from “00” to “99” and 100 in total. A 4-digit dataset includes 100
samples randomly generated from “0000” to “9999” and a 6-digit
dataset also includes 100 samples that are randomly generated
from “000000” to “999999.”

5.3 Metrics. We use the inference accuracy to evaluate the
performance of the two types of attacks, which is defined by

Inference Acc. =
Nm

max (Lpsd, Nt)
× 100% (4)

where Nm is the size of the correct inferred digits where each digit
has a right relative position with the targeted password. Lpsd is the
length of the targeted password, and Nt is the size of the inferred
password. Note that for Attack 1 with knowledge of the password
length, i.e., Lpsd=Nt, the inference accuracy could be simplified
as Nm/Nt.

5.4 Results. Impact of Different Key Numbers. We use the
1-digital test dataset to evaluate the inference accuracy of the pro-
posed method and the clustering method. Since the inference of
Attack 1 and clustering with known password length both high
and comparable accuracy (i.e., 99.01% and 92.08%, respectively),
we focus on the comparison of Attack 2 and clustering without
known password length. As we can see from Fig. 8, the average
inference accuracy of our proposed method, i.e., Attack 2, is
80.97%, which is much higher than the one of clustering
(60.35%). An interesting observation we have is that Attack 2 has
different inference accuracies for different key numbers. As
shown in Table 1, key numbers “1,” “4,” and “7” have a low accu-
racy compared with others (see Table 1). The main reason is that
these three number buttons are placed in the left column of the inter-
face panel, as shown in Fig. 4(a). Since the dataset is collected from
a right-handed person, the “Click” operation with hand tracking
affects the gesture recognition of the left column in pixel space
resulting in low inference accuracy. In contrast, the key numbers
in the right column of the pixel space, e.g., “3,” “6,” and “9,”
have a higher inference accuracy due to the same reason (shown
in Table 1).
Impact of Password Length.We also evaluate the impact of pass-

word length on inference accuracy. From Fig. 9, the inference accu-
racy of Attack 1, Attack 2, clustering with known password length,
and clustering without password known length all decrease as the
password length increases. This result is anticipated as the longer
the password length, the smaller size of the correct inferred digits,
e.g., smaller Nm, resulting in lower inference accuracy. Moreover,

Attack 1 and the clustering with known password length have
higher inference accuracy. This is expected as the more pre-
knowledge the attacker has, the higher the inference accuracy is.
Attack 1 achieves the highest inference accuracy among different
digits cases (i.e., 97.03%, 94.06%, and 83.83% for 2-digit,
4-digit, and 6-digit, respectively). In addition, both Attack 1 and
Attack 2 outperform the clustering method under the same condi-
tions, respectively (i.e., with or without known password length).
In fact, the inference accuracy of Attack 2 is much higher than the
one of clustering without known password length for all cases.
Even compared with clustering with known password length, the
inference accuracy of Attack 2 is very close, which further confirms
the superiority of our proposed method. Please refer to Table 2 for
detailed statistics. During our investigation, we observed an unex-
pected increase in accuracy from 4-digit to 6-digit passwords
using the proposed method during attack 2. Our findings indicated
that, on average, the inference accuracy was slightly higher for
6-digit passwords than for 4-digit passwords based on 100 test
cases. However, we conducted a two-tailed t-test on the two datasets
and obtained a p-value of 0.3943, which is greater than the standard
significance level of 0.05. This suggests that there is no significant
difference between the accuracy of the two datasets. Additionally,
when considering only the total number of corrected estimations
from both datasets, we found that the 4-digit group outperformed
the 6-digit group with 26 corrected estimations showing higher
accuracy, compared to only six for the 6-digit group. We attribute
the observed increase in accuracy for 6-digit passwords to the cal-
culation metric employed. The input of a 6-digit password requires
more gesture movements by the operator, resulting in a longer
length of output under the unknown length condition, which can
increase the accuracy of some test cases. These results indicate
that the password length would significantly affect the performance
of the attack, and the knowledge about password length increases
the inference accuracy as well. Therefore, increasing the password
length and varying the password length are expected to be effective
ways to improve security.

Fig. 8 Inference accuracy of each key number using our pro-
posed method and clustering method

Table 1 Key number accuracy according to the column
distribution

Column Key numbers Inference accuracy Standard deviation

1 1,4,7 71.01% 0.4418
2 2,5,8,0 83.17% 0.3510
3 3,6,9 87.65% 0.2883
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6 Conclusion and Future Works
With the adoption of XR techniques in Industry 4.0, security and

privacy issues are seldom discussed in previous research. Mid-air
interactions, supported by XR techniques, bring a new affordance
of intuitive and efficient interactions to the user but also pose a
potential risk for privacy and security information inference. To
study this potential risk, we developed a prototyping system for
smart factory management based on a video see-through MR head-
mounted display. This system allows the user to interact with the
MR interfaces through mid-air interactions, including the input of
a password on a login interface to access security/privacy-sensitive
information. The proposed attack targets inferring the user’s
password based on the known size, layout, and relative position
of the XR interface and a video stream or recording from a
hidden camera in front of the user. We built up a machine
learning-empowered password inference framework consisting of
hand gesture tracking and password estimation modules. To evalu-
ate the performance of the inference, we tested passwords with dif-
ferent lengths in two scenarios: known and unknown password
lengths. The result indicates that the proposed method achieves a
high accuracy of 97.03%, 94.06%, and 83.83% for 2-digit,
4-digit, and 6-digit passwords, respectively.
Based on the result of this research, the potential preventive

actions for cybersecurity attack during password input with hand
gesture include using more complex characters, applying remote
interaction methods, or inputting the password while moving. In
the future, practicability and accuracy are expected to improve
with more sophisticated inference algorithms. We plan to extend
the proposed method to other application scenarios, for example,
the QWERTY keyboard. Furthermore, more challenging attacks,
such as those without knowing the positions and layouts of the
numerical keypad, are worthy of investigation. A more sophisti-
cated algorithm is also expected to be developed to deal with the
current problem of having lower accuracy in estimating the right
column in the pixel space.
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