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A B S T R A C T

This paper aims to establish a framework of participatory traffic control, wherein connected and
automated vehicles (CAVs) subtly influence the day-to-day adjustment process of human drivers,
strategically redistributing traffic demand to enhance overall system efficiency. To address this
complex challenge, we adopt the mean-field control framework, which enables us to model
macroscopic interactions between CAVs and other travelers. After theoretically establishing the
existence of the optimal policy, we leverage reinforcement learning algorithms to numerically
solve the control problem. Distinct from existing approaches, our proposed method is scalable,
model-free, distributed, and does not rely on the convergence properties of the underlying day-
to-day traffic dynamics. It helps pave the way for the practical implementation of participatory
traffic control.

1. Introduction

Participatory traffic control involves engaging a subset of participants in a traffic system to subtly influence the behaviors of
thers, thereby enhancing the overall system efficiency. The concept draws inspiration from previous strategies where individual
ravelers are nudged to alter their behaviors, with the expectation that these collective changes will positively impact the behavior of
he wider traveling population to improve system performance (Xiong et al., 2020). We envision that the advance of connected and
automated vehicle (CAV) technologies will offer new opportunities for participatory control, allowing for more real-time, adaptive,
individualized, and flexible control mechanisms. As CAV adoption grows, this control scheme is anticipated to become increasingly
appealing and advantageous.

Specifically, driving automation requires drivers to relinquish certain levels of control to their vehicles. In the early stages of
development, this involves handing over driving maneuvers such as pedal and brake operations. Such relinquishment enables CAVs
to function as ‘‘traffic stream regulators’’. By controlling the real-time speeds of CAVs, traffic authorities can influence the speed
and acceleration of following vehicles to manage traffic. Pioneering work by Jin and Orosz (2014, 2016), Cui et al. (2017), Wu
t al. (2018) and Zheng et al. (2020) demonstrated the ability of CAVs in maintaining string stability in mixed traffic environments,
ith field experiments providing further validation (Stern et al., 2018; Jin and Orosz, 2018). Subsequent studies by Vinitsky et al.
2018) and Wu et al. (2021) expanded these controllers and explored broader management objectives such as maximizing network
apacity. Čičić et al. (2021) further explored CAVs in coordinating platoons to alleviate bottlenecks on highways. These studies
ollectively demonstrate the potential of CAVs as control actuators to improve road performance in various local traffic scenarios.
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As driving automation continues to advance and travelers become more trusting of the technology, they are expected to be
ore willing to surrender higher levels of control to their CAVs, including choices about routes and departure times (Di and
hi, 2021). Given human drivers’ natural tendency to avoid congestion, this higher level of relinquished control enables CAVs
o act as ‘‘traffic demand distributors’’, effectively regulating traffic flow across the network. Considering human drivers who aim
o minimize individual travel costs while CAV actuators aim to minimize system travel costs, Zhang and Nie (2018) investigated
he resulting mixed equilibrium and determined the optimal ratio of these two user types to strike a balance between improving
ystem performance and lowering control intensity. Sharon et al. (2018) and Chen et al. (2020) investigated the minimal ratio of
CAVs required to be controlled to achieve the system optimum. Moreover, Chen et al. (2020) demonstrated that CAV-based control
can be effectively combined with pricing mechanisms to further enhance traffic management. More recently, Zhang et al. (2022)
extended these considerations to include emission reduction as an additional control objective.

In another vein of inquiry, studies by Li et al. (2018), Lazar et al. (2021), Guo et al. (2022), and Liang et al. (2023) have
moved beyond the steady-state analysis of network equilibrium to explore how network flow evolves on a day-to-day basis as
travelers adjust their choices. In this setting, these works focus on using CAVs to steer the system towards a more efficient state
of equilibrium. Although these investigations showcase the potential of CAVs as traffic demand distributors, they may fall short
in supporting real-world implementation. For one thing, existing model-based methods assume human drivers following certain
response dynamics, which may not align with actual human behavior. Moreover, the reliance on centralized control in previous
models limits scalability, particularly in scenarios with a high population of CAVs. Furthermore, the success of previous methods
largely hinges on the assumption that travel costs are monotone, a crucial factor for the global stability of the day-to-day traffic
dynamics. However, as highlighted by Guo et al. (2018a), the monotonicity requirement may not always hold and flow dynamics
do not necessarily converge to equilibria, especially when departure time choices are involved.

Motivated by these issues, this paper proposes a model-free and distributed approach to control a fraction of CAVs to enhance
the system performance over time. The proposed approach offers a practical solution for implementing CAVs as traffic demand
distributors without relying on exhaustive knowledge of human behaviors. This method employs a distributed control policy,
instructing individual CAVs to act based on their local information. In addition, our approach significantly differs from previous
studies (Li et al., 2018; Guo et al., 2022; Liang et al., 2023) in its control objective. Instead of driving the system to a desired state
of equilibrium, we focus on minimizing the total system cost over time. Therefore, our method has no requirement for the choice
of the underlying day-to-day dynamical models and their convergence properties.

To facilitate the presentation of our approach, we first consider a scenario with homogeneous travelers and model it as a finite
agent control problem. Noting that the problem quickly becomes intractable as the number of travelers increases, we reformulate the
problem within the mean-field control (MFC) framework (Cui et al., 2023) by considering the limiting case with an infinite number
of travelers. In the new formulation, the control problem is elevated from the individual level to the population level, thereby
significantly alleviating the computational burden. We further extend the model to accommodate traveler heterogeneity, enhancing
its applicability to real-world scenarios. After establishing the existence of the optimal control policy, we employ reinforcement
learning algorithms to numerically compute the optimal policy. The effectiveness of the proposed method is then tested in various
choice scenarios and penetration levels.

Our model-free, scalable, and distributed control scheme offers a flexible and adaptable solution for various traffic management
scenarios, capable of accommodating varying levels of CAV penetration. The remainder of this paper is structured as follows.
Section 2 presents the model. Section 3 discusses the control algorithm and Section 4 presents numerical examples. Lastly, Section 5
concludes the paper.

2. Model

In this section, we present a general model that is applicable to various travel choices, such as route and/or departure time
choices. We start with a simplified case where all travelers are assumed to be homogeneous and subsequently extend it to
accommodate heterogeneous travelers. The main notations are summarized in the Appendix.

2.1. Finite-agent control

Consider a traffic system with 𝑁 controllable CAVs (their recruitment is out of the scope of this paper) and 𝑀 uncontrollable
vehicles (e.g. human drivers and uncontrolled CAVs). We refer the controllable CAVs as system-optimal (SO) users, focusing on
overall system efficiency, and the uncontrollable vehicles as user-optimal (UO) users, prioritizing individual interests.

The day-to-day (DTD) travel decision-making is modeled as a Markov decision process (MDP). The travel demand is 𝑁 SO users
and 𝑀 UO users, and each traveler’s choice is considered as their state of that day. Let 𝑥𝑖𝑡 ∈  represent the travel choice of SO
user 𝑖 ∈ [𝑁] = {1,… , 𝑁} on day 𝑡, where  is the finite set of all travel choices. Similarly, 𝑠𝑗𝑡 ∈  denotes the travel choice of UO
user 𝑗 ∈ [𝑀] on day 𝑡. The penetration rate of SO users is defined as 𝜃 = 𝑁

𝑀+𝑁 .
Each traveler’s state contributes to a state distribution over the population. We define the empirical distributions 𝜇𝑁

𝑡 and 𝜈𝑀𝑡 for
SO and UO users, respectively, as follows:

𝜇𝑁
𝑡 = 1

𝑁
∑

𝑖∈[𝑁]
𝛿𝑥𝑖𝑡 ,

𝜈𝑀𝑡 = 1
𝑀

∑

𝛿𝑠𝑗𝑡
.

2

𝑗∈[𝑀]
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where 𝛿𝑥 denotes a Kronecker delta function at point 𝑥. It represents a vector of shape || that equals 1 at 𝑥 and 0 elsewhere. Here,
the superscripts, 𝑀 and 𝑁 , are used to clarify that we are dealing with a finite agent model.

To provide an illustrative example, 𝑥𝑖𝑡 can represent the route choice of SO user 𝑖 on day 𝑡. In this case,  represents the path
et, while 𝜇𝑁

𝑡 and 𝜈𝑀𝑡 reflect the path choice distribution of the two groups. Therefore, the path flow of the two groups on day 𝑡
can be represented by 𝑁𝜇𝑁

𝑡 and 𝑀𝜈𝑀𝑡 .
UO users are assumed to follow a certain response dynamic, aggregatedly represented by a DTD model 𝜈𝑀𝑡+1 = 𝑞(𝜇𝑁

𝑡 , 𝜈𝑀𝑡 ), which
ay not be revealed to the traffic management agency. This model reflects the influence of the previous day’s experience, dictated
y 𝜇𝑁

𝑡 and 𝜈𝑀𝑡 , on the subsequent day’s behavior. An example of such response functions is Smith’s dynamic (Smith, 1984), a widely
sed model in literature, which is characterized by the following equation:

𝜈𝑀𝑡+1(𝑥) − 𝜈𝑀𝑡 (𝑥) = 𝜂
∑

𝑥′∈

(

𝜈𝑀𝑡 (𝑥′)[𝑐𝑥′ (𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ) − 𝑐𝑥(𝜇𝑁

𝑡 , 𝜈𝑀𝑡 )]+ − 𝜈𝑡(𝑥)[𝑐𝑥(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ) − 𝑐𝑥′ (𝜇𝑁

𝑡 , 𝜈𝑀𝑡 )]+
)

, (1)

here 𝜈𝑀𝑡 (𝑥) represents the proportion of UO users choosing travel choice 𝑥 on day 𝑡, [⋅]+ = max {0, ⋅}, 𝜂 dictates the user inertia
evel, and 𝑐𝑥(𝜇𝑁

𝑡 , 𝜈𝑀𝑡 ) denotes the travel cost of choice 𝑥.
On the other hand, each SO user’s behavior is modeled individually by an MDP. Each SO user 𝑖 is assigned an action 𝑎𝑖𝑡 ∈ 

n day 𝑡, which represents the suggested travel option for the next day 𝑡 + 1. In the homogeneous case,  and  are equivalent
ince they both denote the identical travel choice set. The action 𝑎𝑖𝑡 is drawn from an assignment policy 𝜋(⋅|𝑥𝑖𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ) determined

y the management agency, which is a function of the current choice and the empirical distributions. Based on their actions, SO
sers’ states evolve according to the transition kernel 𝑥𝑖𝑡+1 ∼ 𝑝(⋅|𝑥𝑖𝑡, 𝑎

𝑖
𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ). The kernel can be adapted for various compliance

cenarios:

• Full compliance: SO users are perfectly compliant with the assignment. In such case, 𝑝(𝑥|𝑥𝑖𝑡, 𝑎
𝑖
𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ) = 𝑝(𝑥|𝑎𝑖𝑡) =

{

1, if 𝑥 = 𝑎𝑖𝑡,

0, otherwise.
• Partial compliance due to inertia: SO users may have a preference for retaining their previous choices (Srinivasan and
Mahmassani, 2000; Qi et al., 2023), which can be modeled by

𝑝(𝑥|𝑥𝑖𝑡, 𝑎
𝑖
𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ) = 𝑝(𝑥|𝑥𝑖𝑡, 𝑎

𝑖
𝑡) =

⎧

⎪

⎨

⎪

⎩

1 − 𝜖, if 𝑥 = 𝑎𝑖𝑡,

𝜖, if 𝑥 = 𝑥𝑖𝑡,

0, otherwise.

• Partial compliance due to self-interests: we can also manipulate the transition kernel to model the behavior considered in Guo
et al. (2022), where SO users are only willing to sacrifice interest within a threshold 𝜖

𝑝(𝑥|𝑥𝑖𝑡, 𝑎
𝑖
𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑥 = 𝑎𝑖𝑡 and 𝑎𝑖𝑡 ∈ 𝛺𝜖−𝐵𝑅
𝜇𝑁𝑡 ,𝜈𝑀𝑡

,

1, if 𝑥 = 𝑥𝑖𝑡 and 𝑎𝑖𝑡 ∉ 𝛺𝜖−𝐵𝑅
𝜇𝑁𝑡 ,𝜈𝑀𝑡

,

0, otherwise .

here 𝛺𝜖−𝐵𝑅
𝜇𝑁𝑡 ,𝜈𝑀𝑡

refers to the set of acceptable choices for 𝜖-bounded rational travelers. The travel cost of choices within 𝛺𝜖−𝐵𝑅
𝜇𝑁𝑡 ,𝜈𝑀𝑡

is
-close to the optimal choices determined by 𝜇𝑁

𝑡 and 𝜈𝑀𝑡 .
The system’s average travel cost follows

𝐶(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ) = 1

𝑀 +𝑁
∑

𝑥∈
(𝑁𝜇𝑁

𝑡 (𝑥) +𝑀𝜈𝑀𝑡 (𝑥))𝑐𝑥(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ),

where 𝜇𝑁
𝑡 (𝑥) is the proportion of SO users that choose travel choice 𝑥. It is worth noting that the system cost is equivalent to

𝐶(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ) =

∑

𝑥∈
(𝜃𝜇𝑁

𝑡 (𝑥) + (1 − 𝜃)𝜈𝑀𝑡 (𝑥))𝑐𝑥(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ),

which reflects the impact of the penetration rate 𝜃 on the system’s total travel cost. Moreover, the penetration rate also affects the
UO user behavior as SO users have a higher influence when the penetration rate increases.

We now define the metrics to facilitate the following discussion. We first metrize  with the discrete metric, i.e. for 𝑥, 𝑦 ∈  ,
𝑑(𝑥, 𝑦) = 0 if 𝑥 = 𝑦, and 1 otherwise. Hence, ( , 𝑑) is a complete metric space. We further use the total variation for probability
distributions 𝜇, 𝜈 ∈ (), i.e. 𝑑𝑇𝑉 (𝜇, 𝜈) =

1
2
∑

𝑥∈ |𝜇(𝑥) − 𝜈(𝑥)|.
Two assumptions are made regarding the transition kernel and the cost function, which will be used in later sections.

Assumption 1. The transition kernels 𝑝 and 𝑞 are Lipschtiz continuous with respect to 𝜇 and 𝜈.

Assumption 2. The individual cost 𝑐𝑥 is Lipschtiz continuous with respect to 𝜇 and 𝜈 for all states 𝑥 ∈  .

For route choice problems, the Lipschtiz continuous cost assumption is commonly satisfied by a range of link performance
functions including the BPR function (Bureau of Public Roads, 1964). When the departure time choice is involved, the assumption
3
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(essentially the Lipschitz continuity of the delay operator (Friesz et al., 2021)) is still widely used in literature, such as in Mounce
and Carey (2011) and Friesz et al. (2011). Under Lipschtiz continuous cost functions, it is mild to assume transition kernels also
eing Lipschtiz continuous, which can be satisfied by many day-to-day dynamical models. Proposition 1 establishes the Lipschtiz
ontinuity of Smith’s dynamic (Smith, 1984). Besides, our numerical experiments later demonstrate that the proposed method can
chieve good performance even when these assumptions are not strictly satisfied (e.g. experiments with the bathtub model).

roposition 1. Under Assumption 2, Smith’s dynamic 𝜈𝑡+1 = 𝑞(𝜇𝑡, 𝜈𝑡) characterized by Eq. (1) is Lipschitz continuous

roof. To simplify notations, we omit the superscripts 𝑀 and 𝑁 . For every state 𝑥, 𝑥′, 𝑐𝑥′ (𝜇𝑡, 𝜈𝑡) − 𝑐𝑥(𝜇𝑡, 𝜈𝑡) is Lipschitz continuous,
enoted as 𝑔(𝜇𝑡, 𝜈𝑡). By definition, we have |𝑔(𝜇′

𝑡 , 𝜈
′
𝑡 ) − 𝑔(𝜇𝑡, 𝜈𝑡)| ≤ 𝐿1𝑑𝑇𝑉 (𝜇′

𝑡 , 𝜇𝑡) + 𝐿2𝑑𝑇𝑉 (𝜈′𝑡 , 𝜈𝑡) for all 𝜇𝑡, 𝜈𝑡, 𝜇′
𝑡 , 𝜈

′
𝑡 ∈ (), where 𝐿1

nd 𝐿2 are two Lipschitz constants.
Now let us consider [𝑔(𝜇𝑡, 𝜈𝑡)]+. If 𝑔(𝜇𝑡, 𝜈𝑡) and 𝑔(𝜇′

𝑡 , 𝜈
′
𝑡 ) are both non-negative, then |[𝑔(𝜇𝑡, 𝜈𝑡)]+ − [𝑔(𝜇′

𝑡 , 𝜈
′
𝑡 )]

+
| = |𝑔(𝜇𝑡, 𝜈𝑡) − 𝑔(𝜇′

𝑡 , 𝜈
′
𝑡 )| ≤

1𝑑𝑇𝑉 (𝜇′
𝑡 , 𝜇𝑡)+𝐿2𝑑𝑇𝑉 (𝜈′𝑡 , 𝜈𝑡). If one of them is negative, without losing generality, assume 𝑔(𝜇′

𝑡 , 𝜈
′
𝑡 ) < 0, then |[𝑔(𝜇𝑡, 𝜈𝑡)]+ − [𝑔(𝜇′

𝑡 , 𝜈
′
𝑡 )]

+
| =

(𝜇𝑡, 𝜈𝑡) ≤ |𝑔(𝜇𝑡, 𝜈𝑡) − 𝑔(𝜇′
𝑡 , 𝜈

′
𝑡 )| ≤ 𝐿1𝑑𝑇𝑉 (𝜇′

𝑡 , 𝜇𝑡)+𝐿2𝑑𝑇𝑉 (𝜈′𝑡 , 𝜈𝑡). Otherwise, when the two are both negative, |[𝑔(𝜇𝑡, 𝜈𝑡)]+ − [𝑔(𝜇′
𝑡 , 𝜈

′
𝑡 )]

+
| =

. Therefore, [𝑔(𝜇𝑡, 𝜈𝑡)]+ is also Lipschitz continuous. As the finite sum and product of Lipschitz continuous functions is also Lipschitz
ontinuous, 𝜈𝑡+1(𝑥) or 𝑞(𝜇𝑡, 𝜈𝑡)(𝑥) is Lipschtiz continuous for all states 𝑥 ∈  . Denote |𝑞(𝜇𝑡, 𝜈𝑡)(𝑥) − 𝑞(𝜇′

𝑡 , 𝜈
′
𝑡 )(𝑥)| ≤ 𝐿𝑥

1𝑑𝑇𝑉 (𝜇𝑡, 𝜇
′
𝑡 ) +

𝑥
2𝑑𝑇𝑉 (𝜈𝑡, 𝜈

′
𝑡 ). Furthermore, we have

𝑑𝑇𝑉 (𝑞(𝜇𝑡, 𝜈𝑡), 𝑞(𝜇′
𝑡 , 𝜈

′
𝑡 )) =

1
2
∑

𝑥∈
|𝑞(𝜇𝑡, 𝜈𝑡)(𝑥) − 𝑞(𝜇′

𝑡 , 𝜈
′
𝑡 )(𝑥)|

≤ 1
2

(

∑

𝑥∈
𝐿𝑥
1

)

𝑑𝑇𝑉 (𝜇𝑡, 𝜇′
𝑡 ) +

1
2

(

∑

𝑥∈
𝐿𝑥
2

)

𝑑𝑇𝑉 (𝜈𝑡, 𝜈′𝑡 ),

which proves the Lipschitz continuity of 𝑞(𝜇𝑡, 𝜈𝑡). □

The control objective of the management agency is to find the optimal policy to minimize the total discounted cost over the
infinite horizon, leading to the following optimal control problem:

min
𝜋

𝐽 (𝜋) = 𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝐶(𝜇𝑁

𝑡 , 𝜈𝑀𝑡 )

]

𝑠.𝑡. 𝜈𝑀𝑡+1 = 𝑞(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ),

𝑎𝑖𝑡 ∼ 𝜋(⋅|𝑥𝑖𝑡, 𝜇
𝑁
𝑡 , 𝜈𝑀𝑡 ); ∀𝑖 ∈ [𝑁]

𝑥𝑖𝑡+1 ∼ 𝑝(⋅|𝑥𝑖𝑡, 𝑎
𝑖
𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ); ∀𝑖 ∈ [𝑁]

where 𝛾 is the discount factor, and the constraints govern the behavior of SO and UO users.

2.2. Mean-field control

Effectively solving the multi-agent control problem above involves the joint state–action space of all agents (Zhang et al.,
2021). Due to its exponential nature, solving the optimal control policy becomes intractable as the number of agents increases
significantly (Yang et al., 2018). To address this issue, we adopt the mean-field control (MFC) framework proposed by Cui et al.
(2021, 2023). This approach, inspired by mean-field game theory (Huang et al., 2006; Lasry and Lions, 2007), simplifies the model
by considering an infinite number of agents, thereby making it more scalable and computationally feasible.

In this MFC framework, as the numbers of controllable CAVs (𝑁) and uncontrollable vehicles (𝑀) approach infinity, the empirical
distribution 𝜇𝑁

𝑡 and 𝜈𝑀𝑡 becomes the mean-field (MF) distribution 𝜇𝑡, 𝜈𝑡 ∈ () under the law of large numbers, where () denotes
all probability mass functions on the state space. This transition to the limiting case eliminates the necessity of tracking the state
of each individual SO user. Instead, we concentrate on a representative agent, whose state 𝑥 is now regarded as a random variable
aligned with the MF distribution. For consistency, we use the same notations as previously introduced. Specifically, 𝑞(𝜇𝑡, 𝜈𝑡) represents
the transition kernel for UO users, while 𝑝(⋅|𝑥, 𝑎, 𝜇𝑡, 𝜈𝑡) refers to the transition kernel for each individual SO user. The assignment
policy and the system cost are denoted as 𝜋(⋅|𝑥, 𝜇𝑡, 𝜈𝑡) and 𝐶(𝜇𝑡, 𝜈𝑡), respectively.

We are now ready to reformulate the control problem at the population level. The two MF distributions (𝜇𝑡, 𝜈𝑡) are used to
represent the aggregate behavior of the two populations, which will be considered as the population state. The aggregate assignment
for all SO users is represented by the joint state–action distribution over all SO users:

ℎ𝑡 = 𝜇𝑡 ⊗ 𝜋𝑡(𝜇𝑡, 𝜈𝑡) ∈ (𝜇𝑡),

where 𝜋𝑡(𝜇𝑡, 𝜈𝑡) = 𝜋𝑡(⋅|⋅, 𝜇𝑡, 𝜈𝑡) and ⊗ denotes the element-wise product. (𝜇𝑡) ⊆ ( ×) denotes the joint distribution whose state
marginal distribution matches with 𝜇𝑡. Note that ℎ𝑡 encompasses the comprehensive information of all individual assignments, hence
we regard it as the population action.

It is intriguing to ask how the population state evolves with the population action. Due to the homogeneity assumption, every SO
user follows the same transition kernel. Consequently, the subsequent MF distribution of SO users can be calculated deterministically
by:

𝜇𝑡+1 =
∑ ∑

𝑝(⋅|𝑥, 𝑎, 𝜇𝑡, 𝜈𝑡)𝜇𝑡(𝑥)𝜋𝑡(𝑎|𝑥, 𝜇𝑡, 𝜈𝑡). (2)
4

𝑥∈ 𝑎∈
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Table 1
Comparison between finite-agent and mean-field control.

Finite-agent control Mean-field control

State Current route choice of each traveler Current route choice distributions of two
groups

Action Assigned route choice for each SO user Joint distribution of current and
assigned route choices for all SO users

Transition Each SO user follows assignment
UO users follow day-to-day dynamics

SO users follow a population kernel
UO users follow day-to-day dynamics

Cost Total cost of all travelers Total cost of all travelers

To bring more insights into Eq. (2), 𝑝(⋅|𝑥, 𝑎, 𝜇𝑡, 𝜈𝑡) represents the outcome of implementing state–action pair (𝑥, 𝑎). The next MF
distribution 𝜇𝑡+1 is the weighted sum of all possible outcomes based on the possibility of each state–action pair, 𝜇𝑡(𝑥)𝜋𝑡(𝑎|𝑥, 𝜇𝑡, 𝜈𝑡).
ote that 𝜇𝑡(𝑥)𝜋𝑡(𝑎|𝑥, 𝜇𝑡, 𝜈𝑡) is simply ℎ𝑡(𝑥, 𝑎), and the transition kernel 𝑝(⋅|𝑥, 𝑎, 𝜇𝑡, 𝜈𝑡) is determined by 𝜇𝑡 and 𝜈𝑡. Therefore, Eq. (2)
an be rewritten as a function of 𝜇𝑡, 𝜈𝑡 and ℎ𝑡:

𝜇𝑡+1 = 𝑇 (𝜇𝑡, 𝜈𝑡, ℎ𝑡),

hich, together with 𝜈𝑡+1 = 𝑞(𝜇𝑡, 𝜈𝑡), provides a population transition kernel.
In addition, we introduce a population policy 𝜋̂ ∶ () × () → ( × ), which takes the population state (𝜇𝑡, 𝜈𝑡) as input,

nd outputs the population action ℎ𝑡. This allows us to retrieve the following single-agent control:

min
𝜋̂

𝐽 (𝜋̂) = 𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝐶(𝜇𝑡, 𝜈𝑡)

]

𝑠.𝑡. 𝜈𝑡+1 = 𝑞(𝜇𝑡, 𝜈𝑡),

ℎ𝑡 ∼ 𝜋̂(⋅|𝜇𝑡, 𝜈𝑡),

𝜇𝑡+1 = 𝑇 (𝜇𝑡, 𝜈𝑡, ℎ𝑡).

To provide more insights into this reformulation, Table 1 compares the model formulation of the finite-agent and mean-field
ontrol using the routing example in Section 2.1. Notably, in the new model, the single agent represents the entire population rather
han an individual traveler. Since we no longer need to track multiple agents simultaneously, the mean-field control is considerably
ore scalable than the finite agent model.
The optimal stationary policy 𝜋̂ always exists, as shown in the following proposition:

roposition 2. Under Assumptions 1 and 2, the MFC model always has an optimal stationary policy 𝜋̂.

roof. Since we are using the discrete metric on  , for 𝜇, 𝜈 ∈ (), the total variation distance is equivalent to 1-Wasserstein
distance (De Palma et al., 2021), i.e., 𝑊1(𝜇, 𝜈) = 𝑑𝑇𝑉 (𝜇, 𝜈).

Meanwhile, the UO user’s response dynamic is equivalent to

𝜈𝑡+1 ∼ 𝛿𝑞(𝜇𝑡 ,𝜈𝑡),

here 𝛿𝑞(𝜇𝑡 ,𝜈𝑡) is a degenerate distribution located at point 𝑞(𝜇𝑡, 𝜈𝑡) ∈ (). Note that for two degenerate distributions located at
point 𝑞, 𝑞′ ∈ (), the 1-Wasserstein distance between the two is equivalent to the ‖𝑞 − 𝑞′‖2, which is further bounded between
2
||

𝑑𝑇𝑉 (𝑞, 𝑞′) and 2𝑑𝑇𝑉 (𝑞, 𝑞′). Therefore, Assumption 1 indicates Assumption B.1 in Cui et al. (2023). Since the finite sum, product,
and composition of Lipschitz continuous functions is also Lipschitz continuous, Assumption 2 implies the Lipschitz continuity of the
system cost 𝐶(𝜇𝑡, 𝜈𝑡), which is equivalent to Assumption B.2 in Cui et al. (2023). Hence, Theorem B.4 (Cui et al., 2023) leads to the
existence of the optimal stationary policy. □

2.3. Relaxing the homogeneity assumption

While previous sections focus on homogeneous travelers, real-world transportation systems exhibit significant heterogeneity
among travelers. To more accurately model these systems, we now relax the homogeneity assumption to accommodate varying
traveler characteristics.

2.3.1. Different action spaces
One typical heterogeneity arises from the variation in action spaces among travelers. For instance, in routing scenarios, travelers

can only choose paths between their origin–destination (OD) pairs.
To address this issue, we first classify travelers into 𝐾 types, index by type 𝑘 ∈  = {1,… , 𝐾}. Each type is associated with a

unique action space 𝑘, which represents the allowable travel choices for type 𝑘. We assume these action spaces are disjoint, and
the overall state space  = ∪𝐾 𝑘. For each state 𝑥 ∈  , denote the type of travelers that can choose it as 𝑘(𝑥). To ensure a valid
5

𝑘=1
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transition kernel for UO users, it is necessary that 𝑞(𝜇, 𝜈) maintains proportionality across types. Specifically, denote 𝜈′ = 𝑞(𝜇, 𝜈),
then it must satisfy ∑

𝑥∈𝑘 𝜈′(𝑥) =
∑

𝑥∈𝑘 𝜈(𝑥) for all types 𝑘. Note that this validity is typically ensured as the kernel is derived from
existing dynamics such as Smith’s dynamic (Smith, 1984).

To facilitate analysis, we introduce a common action space ̄, together with 𝐾 mappings 𝑘 ∶ ̄ → 𝑘, where 𝑘 ∈ . For
xample, if a network contains two OD pairs, each connected by three paths, then  = {1, 2,… , 6}, 1 = {1, 2, 3}, and 2 = {4, 5, 6}.
e can define ̄ = {1, 2, 3}, and 1(𝑎) = 𝑎, 2(𝑎) = 𝑎 + 3.
Based on the common action space, the transition kernel for SO users and the individual policy are redefined as

̂(𝑥′|𝑥, 𝑎̄, 𝜇, 𝜈) = 𝑝(𝑥′|𝑥,𝑘(𝑥)(𝑎̄), 𝜇, 𝜈) ∶  ×  × ̄ × () × () → R and 𝜋(𝑎̄|𝑥, 𝜇, 𝜈) ∶ ̄ ×  × () × () → R. As can be
een, introducing the common action space reduces the dimensionality of the action space and ensures consistency across types.
herefore, the heterogeneous action spaces can be equivalently represented by the common action space ̄ and the 𝐾 mappings.
s a result, considering agent types is no longer necessary, which leads to the following homogeneous optimal control problem:

min
𝜋

𝐽 (𝜋) = 𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝐶(𝜇𝑁

𝑡 , 𝜈𝑀𝑡 )

]

,

𝑠.𝑡. 𝜈𝑀𝑡+1 = 𝑞(𝜇𝑁
𝑡 , 𝜈𝑀𝑡 ),

𝑎̄𝑖𝑡 ∼ 𝜋(⋅|𝑥𝑖𝑡, 𝜇
𝑁
𝑡 , 𝜈𝑀𝑡 ), ∀𝑖 ∈ [𝑁],

𝑥𝑖𝑡+1 ∼ 𝑝̂(⋅|𝑥𝑖𝑡, 𝑎̄
𝑖
𝑡, 𝜇

𝑁
𝑡 , 𝜈𝑀𝑡 ), ∀𝑖 ∈ [𝑁].

s before, letting 𝑁,𝑀 → ∞ yields the limiting MFC model:

min
𝜋̂

𝐽 (𝜋̂) = 𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝐶(𝜇𝑡, 𝜈𝑡)

]

,

𝑠.𝑡. 𝜈𝑡+1 = 𝑞(𝜇𝑡, 𝜈𝑡),

ℎ𝑡 ∼ 𝜋̂(⋅|𝜇𝑡, 𝜈𝑡),

𝜇𝑡+1 ∼ 𝑇̂ (𝜇𝑡, 𝜈𝑡, ℎ𝑡).

here 𝑇̂ (𝜇𝑡, 𝜈𝑡, ℎ𝑡) =
∑

𝑥∈
∑

𝑎̄∈̄ 𝑝̂(⋅|𝑥, 𝑎̄, 𝜇, 𝜈)𝜇𝑡(𝑥)𝜋𝑡(𝑎̄|𝑥, 𝜇𝑡, 𝜈𝑡).
Since our modification of action space and transition kernel does not influence the MF distributions, Assumptions 1 and 2 still

imply the Lipschitz continuity in the revised model. Consequently, we can retain the existence of the optimal policy. We skip the
proof as it is trivial.

Proposition 3. Under Assumptions 1 and 2, the MFC model with heterogeneous state spaces always has an optimal stationary policy 𝜋̂.

2.3.2. Different cost formulations
Besides the state spaces, traveler heterogeneity also manifests in other aspects such as cost functions. For example, travelers

may have different values of time or desired arrival times, leading to different costs even with identical travel choices. Moreover,
different cost functions also lead to heterogeneity in the transition process as commuters react differently to the same population
behavior.

To capture this, we augment the state with an ‘‘ID variable’’ 𝑥̂𝑖𝑡 = (𝑥𝑖𝑡, 𝑧
𝑖). 𝑥𝑖𝑡 is still the travel choice of traveler 𝑖 on day 𝑡 and

𝑧𝑖 ∈  represents a variable sufficient to determine their type, where  denotes the finite set for all possible ID variables. For
example, 𝑧𝑖 refers to the value of time or the desired arrival time for traveler 𝑖. Consequently, the new state space ̂ is the cartesian
product of  and , which is embedded with the discrete metric as before. The action 𝑎𝑖𝑡 ∈  continues to represent the assignment
for traveler 𝑖 on day 𝑡.

With the augmented state for both SO users and UO users, the empirical distribution 𝜇̂𝑁
𝑡 , 𝜈̂𝑀𝑡 now reflects the joint distribution

of travel choices and ID variables. We still metrize () by the total variation distance. Each commuter’s daily travel cost is then
a function of this joint distribution 𝑐𝑥̂(𝜇̂𝑁

𝑡 , 𝜈̂𝑀𝑡 ), leading to a new system cost:

𝐶̂(𝜇̂𝑁
𝑡 , 𝜈̂𝑀𝑡 ) = 1

𝑀 +𝑁
∑

𝑥̂∈̂

(𝑁𝜇𝑁
𝑡 (𝑥̂) +𝑀𝜈𝑀𝑡 (𝑥̂))𝑐𝑥̂(𝜇̂𝑁

𝑡 , 𝜈̂𝑀𝑡 ).

We further assume that each traveler has a fixed ID variable. Thus, the transition kernels for both UO and SO users are modified
to reflect these augmented states:

𝑥̂𝑖𝑡+1 = (𝑥𝑖𝑡+1, 𝑧
𝑖) ∼ 𝑝̂(⋅|𝑥̂𝑖𝑡, 𝑎

𝑖
𝑡, 𝜇̂

𝑁
𝑡 , 𝜈̂𝑀𝑡 ),

𝜈̂𝑡+1 = 𝑞(𝜇̂𝑁
𝑡 , 𝜈̂𝑀𝑡 ),

which leads to the new finite agent control model:

min
𝜋

𝐽 (𝜋) = 𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝐶̂(𝜇̂𝑁

𝑡 , 𝜈̂𝑀𝑡 )

]

,

𝑠.𝑡. 𝜈̂𝑀𝑡+1 = 𝑞(𝜇̂𝑁
𝑡 , 𝜈̂𝑀𝑡 ),

𝑖 𝑖 𝑁 𝑀
6

𝑎𝑡 ∼ 𝜋(⋅|𝑥̂𝑡, 𝜇̂𝑡 , 𝜈̂𝑡 ), ∀𝑖 ∈ [𝑁],
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𝑥̂𝑖𝑡+1 ∼ 𝑝̂(⋅|𝑥̂𝑖𝑡, 𝑎
𝑖
𝑡, 𝜇̂

𝑁
𝑡 , 𝜈̂𝑀𝑡 ), ∀𝑖 ∈ [𝑁].

and the corresponding MFC model:

min
𝜋̂

𝐽 (𝜋̂) = 𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝐶̂(𝜇̂𝑡, 𝜈̂𝑡)

]

,

𝑠.𝑡. 𝜈̂𝑡+1 = 𝑞(𝜇̂𝑡, 𝜈̂𝑡),

ℎ𝑡 ∼ 𝜋̂(⋅|𝜇̂𝑡, 𝜈̂𝑡),

𝜇̂𝑡+1 ∼ 𝑇̂ (𝜇̂𝑡, 𝜈̂𝑡, ℎ𝑡).

where 𝑇̂ (𝜇̂𝑡, 𝜈̂𝑡, ℎ𝑡) =
∑

𝑥̂∈
∑

𝑎∈ 𝑝̂(⋅|𝑥̂, 𝑎, 𝜇̂, 𝜈̂)𝜇̂𝑡(𝑥̂)𝜋𝑡(𝑎|𝑥̂, 𝜇̂𝑡, 𝜈̂𝑡).
With the modified assumptions for the new model, we can recover the existence of the optimal policy. The proof is skipped since

it is similar to Proposition 2.

Assumption 3. The transition kernels 𝑝̂ and 𝑞 are Lipschtiz continuous with respect to 𝜇̂ and 𝜈̂.

Assumption 4. The individual travel cost function 𝑐𝑥̂ is Lipschtiz continuous with respect to 𝜇̂ and 𝜈̂ for all 𝑥̂ ∈ ̂ .

Proposition 4. If Assumptions 3 and 4 hold, the MFC model with heterogeneous cost functions always has an optimal stationary policy 𝜋̂.

. Algorithm

So far, we have developed a single-agent control model for the MFC problem and established the existence of the optimal policy
nder mild conditions. In this section, we propose a distributed and model-free algorithm to solve for the optimal policy, aligning
ith the practical requirements for real-world implementation. We utilize the MFC reinforcement learning (RL) approach (Cui et al.,
023) as outlined in Algorithm 1. This approach provides a framework for iteratively refining the population policy based on the
bserved system behavior.

Algorithm 1 MFC-RL algorithm framework

1: input: Initialize policy 𝜋̂𝜃 .
2: for iterations 𝑛 = 1, 2,… do
3: Sample population action ℎ𝑡 ∼ 𝜋̂𝜃(⋅|𝜇𝑡, 𝜈𝑡);
4: Execute ℎ𝑡 and observe next population state 𝜇𝑡+1, 𝜈𝑡+1 (using Algorithm 2 or 3);
5: Observe system cost 𝐶𝑡;
6: Update policy 𝜋̂𝜃 (with RL algorithms);
7: end for

During training, we can compute the subsequent population state 𝜇𝑡+1, 𝜈𝑡+1 directly from the current one based on the population
ernels 𝑇 and 𝑞. This approach is detailed in Algorithm 2.

Algorithm 2 System transition based on the population kernel
1: input: Population state 𝜇𝑡, 𝜈𝑡 and population action ℎ𝑡.
2: Calculate 𝜇𝑡+1 =

∑

𝑥∈
∑

𝑎∈ 𝑝(⋅|𝑥, 𝑎, 𝜇𝑡, 𝜈𝑡)ℎ𝑡(𝑥, 𝑎);
3: Calculate 𝜈𝑡+1 = 𝑞(𝜇𝑡, 𝜈𝑡);
4: return: Next population state 𝜇𝑡+1, 𝜈𝑡+1

Note that although the population kernel is convenient to use, it accurately captures the system transition only when there are an
nfinite number of agents. As practical scenarios involve only a finite number of travelers, the actual system transition may deviate
rom the ideal assumptions made by Algorithm 2. To address this, Algorithm 3 gives an alternative system transition based on
ndividual sampling, which is more aligned with real-world conditions. Here, the population action ℎ𝑡 is first broadcasted to all SO
sers. As it represents the joint distribution of states and actions, the original individual policy can be recovered (Line 4 in Algorithm
) through 𝜋𝑡(𝑎|𝑥) =

ℎ𝑡(𝑥,𝑎)+𝜖
∑

𝑎′∈(ℎ𝑡(𝑥,𝑎′)+𝜖)
for all state–action pairs. Here, 𝜖 = 10−10 is introduced to ensure numerical stability (Cui et al.,

2023). Subsequently, each SO user independently chooses their action based on their current state, without relying on any population
information. In the final step, the management agency observes the behaviors of UO users and computes the empirical distribution
of SO users as the next population state.

The proposed algorithm offers several advantages for the practical traffic management: (1) By utilizing the individual sampling-
7

based transition, the algorithm follows the paradigm of centralized training decentralized execution (CTDE) (Zhang et al., 2021).
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Algorithm 3 System transition based on individual sampling
1: input: Population state 𝜇𝑡, 𝜈𝑡 and population action ℎ𝑡.
2: Broadcast ℎ𝑡;
3: for SO agent 𝑖 = 1, ..., 𝑁 do
4: Recover individual policy 𝜋𝑡 from ℎ𝑡;
5: Observe current state 𝑥𝑖𝑡;
6: Sample and execute action 𝑎𝑖𝑡 ∼ 𝜋𝑡(⋅|𝑥𝑖𝑡);
7: end for
8: Observe 𝜈𝑡+1;
9: Calculate empirical distribution 𝜇𝑡+1;
10: return: Next population state 𝜇𝑡+1, 𝜈𝑡+1

Table 2
Hyperparameter values.
Hyperparameter Value

GAE lambda 1
KL coefficient 0.03
Clip parameter 0.2
Learning rate 0.00005
Training batch size 24,000
Mini-batch size 4,000
Gradient steps per batch 8

This approach efficiently distributes the decision-making process among individual agents, thereby significantly reducing the
computational burden; (2) As a model-free approach, the MFC-RL framework learns the optimal policy by observing outcomes
of transitions and costs, eliminating the need for requiring specific underlying mechanism; (3) The proposed scheme is flexible in
the choice of RL algorithms for updating the policy (Line 6 in Algorithm 1).

4. Numerical experiments

In this section, we apply the proposed model and algorithm to a range of scenarios including route choices, departure time
choices, and their combination. The experiments span diverse network scales, congestion technologies, and response dynamics,
showcasing the versatility of the proposed method.

4.1. Experiment setup

For all experiments, the discount factor 𝛾 is set to 0.99. Considering the practical implausibility of the infinite horizon in the
control model, we truncate the horizon length to 200 days, hence the training process consists of iterations of these 200-day episodes.
To ensure robustness, we initialize the system randomly at the beginning of each episode, which allows the algorithm to be trained
across various network flow conditions. The system costs are normalized against the average cost of 10 random distributions to
maintain problem independence in our experiment settings and results. For the RL algorithm component, we employ Proximal Policy
Optimization (PPO) (Schulman et al., 2017) with hyperparameters detailed in Table 2. Here we use the same hyperparameter values
or all experiments, indicating the generality of our approach without the need for individual fine-tuning for each scenario.

.2. Problems and benchmarks

Five problems are considered in this paper, including two for route choices, two for departure time choices, and one joint choice
cenario. The problem details are given as follows.

.2.1. Routing
In route choice scenarios, travelers are naturally grouped based on their OD pairs.  refers to the set of all available paths for

ll OD pairs, while the path set for OD 𝑖 is 𝑖 ⊆  . In addition, the travel time is taken as the individual travel cost.
The following two networks are used as testbeds:

• Nguyen–Dupuis network (Nguyen and Dupuis, 1984) with 4 OD pairs and 19 links;
8

• Sioux Falls network (LeBlanc et al., 1975) with 518 OD pairs and 76 links.
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Fig. 1. The example road network. Each link is labeled with link number [free-flow travel time, bottleneck capacity].

As discussed in Section 2.3.1, a common space ̄ and the associated population action ℎ𝑡 ∈ ( × ̄) are utilized to manage
the heterogeneity arising from multiple OD pairs. Given the large number of paths (||), we further assume that the assignment
policy is the same for all commuters within the same OD, regardless of their current path choices. Then, the population action can
be represented by a two-dimensional matrix 𝑂 ∈ [−1, 1]𝐾×|̄|, where 𝐾 is the number of types or ODs. Each individual assignment
policy can be recovered in a similar way as 𝜋(𝑘(𝑠)(𝑎)|𝑠) = 𝑂𝑘(𝑠)𝑎+1+𝜖

∑

𝑥∈̄(𝑂𝑘(𝑠)𝑥+1+𝜖)
. This simplification, although sacrificing some flexibility

for more personalized control, significantly reduces the problem dimension and lowers the training complexity.

4.2.2. Departure time choices
In the departure time choice problem,  =  represents the discretized departure time window, and the MF distribution implies

the departure rate profile over the population. The individual travel cost comprises both the travel time cost and the scheduling
delay.

Two congestion models, the bottleneck and the bathtub model, are considered:

• The bottleneck model, as described in Guo et al. (2018b), consists of 6,000 commuters and a bottleneck with a capacity of
3,000 vehicles per hour. The penalties for travel time, early arrival, and late arrival are set as 𝛼 = 10, 𝛽 = 5, and 𝛾 = 15
respectively. The departure time window for each day is defined as [0, 3] hours, which is further discretized into 60 intervals.
The desired arrival time for all commuters is set at 2.

• The bathtub model is based on the downtown rush-hour setting in Arnott and Buli (2018), which takes Greenshields’
model (Greenshields et al., 1935) as the network fundamental diagram. All commuters share the same trip length of 2 miles.
The penalties for travel time, early arrival, and late arrival are specified as 𝛼 = 1, 𝛽 = 0.51, 𝛾 = 2.06 (Lamotte and Geroliminis,
2018). The departure time window is defined as [0, 1] hours and is discretized into 20 slices.

4.2.3. Joint route and departure time choices
In this more complex scenario, the state space  comprises all combinations of departure time and route choices. The action

space 𝑖 for type 𝑖 refers to all the possible choices associated with OD pair 𝑖. As in the previous case, the travel cost also contains
the scheduling delay.

We employ a simple network with three bottlenecks and four expressways with stable link travel times (Yin et al., 2004), as
shown in Fig. 1. This network consists of two OD pairs (1 → 3, 2 → 4) with the demand of 120 and 150 respectively. Each OD pair
has two routes, and the bottleneck on link 5 is shared by commuters from both OD pairs. We further discretize the departure time
window to 20 time periods, and the desired arrival time for all travelers is set to 8. The penalty for travel time, early arrival, and
late arrival are 𝛼 = 1, 𝛽 = 0.5, 𝛾 = 3. Similar to Section 4.2.1, we assume that SO users within the same OD pair share the same
assignment to manage computational demands.

4.2.4. Benchmarks
Two benchmarks on the system total costs are considered to evaluate the policy performance:

• Pure UO drivers response: This benchmark is established when the penetration rate of SO users is 0%, where the system
performance is entirely dictated by the UO drivers’ response. The control is considered effective if the resulting system
performance outperforms this baseline.

• Theoretical lower bound (LB): Due to the complexity of the MFC problem, deriving the exact optimal control policy is often
impossible. Nevertheless, in a special case with 100% penetration, the optimal system behavior is to attain and maintain system
optimum from the second day onwards, regardless of the random initialization. It results in the lowest achievable system cost,
hence we aim to explore whether the algorithm can approach this LB in cases with 100% SO users. It is important to note that
9
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Table 3
Trained policy performance under 100% penetration.

Nguyen–Dupuis Sioux Falls Bottleneck Bathtub Joint choices

System cost 81.18 16.34 133.09 105.58 47.92
LB 81.04 13.98 131.82 103.57 47.76
Relative error(%) 0.17 16.88 0.96 1.94 0.34

this LB is only attainable at 100% penetration. With a lower penetration level, immediately reaching the system optimum is
not feasible due to the inertia in the response of UO drivers. For the routing experiments and the bottleneck experiment, the
system optimum state can be calculated analytically. For the other two experiments, we numerically compute the population
distribution that minimizes the system cost. The lower bound is then calculated by summing the expected cost from the random
initialization and the system optimum cost over the subsequent 199 days.

4.3. Experiment results

This section presents the experiment results of the five problems in an idealized scenario with fully compliant SO users, and UO
rivers following Smith’s dynamic (Smith, 1984). In this dynamic, individuals switch to lower-cost options based on their experience
rom the previous day, as described by the following equation:

𝜈𝑡+1(𝑥) − 𝜈𝑡(𝑥) = 𝜂
∑

𝑥′∈

(

𝜈𝑡(𝑥′)[𝑐𝑥′ (𝜇𝑡, 𝜈𝑡) − 𝑐𝑥(𝜇𝑡, 𝜈𝑡)]+ − 𝜈𝑡(𝑥)[𝑐𝑥(𝜇𝑡, 𝜈𝑡) − 𝑐𝑥′ (𝜇𝑡, 𝜈𝑡)]+
)

.

s we normalize the daily travel cost, 𝜂 can be chosen independently of the problem at a value of 0.02, consistent with the setting
n Guo et al. (2023). In addition, we train the RL control policy with the population-based kernel, as shown in Algorithm 2.

.3.1. Training results
Training curves for different penetration levels (10%, 50%, and 100%) are depicted in Fig. 2. Each solid curve represents the
ean episode cost over three trials, with the shaded region indicating the standard deviation. The colored curves correspond to the
ifferent penetration rate settings, with the purple and red dotted lines representing the two benchmarks, respectively. While each
igure illustrates the entire training process, the subplot zooms in to display the last quarter of training episodes, providing a clearer
iew of the final control performance.
Notably, the initial policy performance typically worsens with increasing penetration rates, except for the bottleneck model. This

an be attributed to the RL algorithm’s initial random policy, which may be less efficient compared to the pure UO user responses
uided by Smith’s dynamic. It is further investigated in Fig. 3, which offers a comparative analysis of a random action against the
ure UO users’ response. Under Smith’s dynamic, the population behavior is either stabilized at user equilibrium as in Fig. 3(a) and
b), or driven to a more efficient region as in 3(d) and (e). The only exception is the bottleneck model, where even implementing
random action outperforms the chaotic UO user response. This contributes to the different pattern in Fig. 2(c), where the initial
ystem performance improves with a higher penetration rate.
Throughout the training, the costs decrease for all scenarios, showing a significant control performance improvement regardless

f choice scenarios and penetration rates. In particular, the green curves (100% penetration) consistently converge to the theoretical
ower bound. This demonstrates the potential of the proposed scheme to leverage the control capabilities of the SO users. The
uantitative measurements of training outcomes are given in Table 3. While the Sioux Falls network experiment produces an
cceptable training result, it exhibits relatively poorer performance compared to other experiments. This is because it involves higher
imensions in the state and action spaces due to its larger scale, which naturally makes the algorithm harder to train. Nevertheless,
ompared with the pure UO driver response (episodic cost of 48.09), the trained policy is already able to achieve 93% of the
aximum possible reduction, showcasing the effectiveness of the proposed method. Reducing the penetration rate to 50% (orange
urves) and 10% (blue curves) leads to a decline in system performance, indicating a trade-off between control capabilities and
ntensity. Notably, even at a low penetration of 10%, the system performance represented by the blue curves consistently surpasses
he benchmark with no SO users.
Despite the varying complexity and scale of the experiments, these results demonstrate that our proposed control scheme can

ffectively enhance system efficiency across a range of choice scenarios, congestion technologies, and penetration rates.

.3.2. Policy implementation
To visually demonstrate the effectiveness of the trained policy, we apply it on 100% and 50% penetration scenarios and track

he system behavior over the first 5 days.
Fig. 4 shows the link flow evolution for the routing experiment on the Nguyen–Dupuis network. The average link flow of three

rails is plotted using the solid curve, and the standard deviation is shown in the shaded region. The dotted lines represent the
ystem optimum link flow.
In the 100% penetration scenario (left figure), regardless of the initial flow patterns, the link flows consistently converge towards

he system optimum by the second day and maintain these levels on subsequent days. This consistency demonstrates the capability
10

f the proposed control scheme in managing traffic dynamics and directing them towards an optimal state. Conversely, due to the
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Fig. 2. Training curves (normalized episodic cost) under Smith’s dynamic and the population kernel with standard deviation (three trials, shaded). (a) Routing
on the Nguyen–Dupuis network; (b) Routing on the Sioux Falls network; (c) Departure time choices using the bottleneck model; (d) Departure time choices using
the bathtub model; (e) Joint choices of route and departure time.

reduced control intensity at the 50% penetration rate (right figure), the link flow approaches but does not precisely align with the
system optimum pattern.

Furthermore, we apply the trained policy to a departure time choice scenario using the bottleneck model. Fig. 5 illustrates the
cumulative departure rate evolution of the entire population, with solid curves representing daily departure profiles and the red
dotted line marking the system optimum pattern. For a clearer view of convergence, Fig. 6 shows the daily departure profiles’
deviation from the system optimum, with a perfectly horizontal curve indicating an optimal system state. The results indicate that
under full control of all vehicles, the departure profile aligns with the system optimum after approximately four days. This slower
convergence, compared to the Nguyen–Dupuis case, is attributed to the larger state space resulting from the discretized departure
time window—a challenge also reflected in the marginally larger error noted in Table 3. At the 50% penetration rate, the control
scheme fails to achieve the system optimum, instead maintaining a peak around the desired arrival time.

4.3.3. Influence of penetration rates
To further demonstrate the impact of varying penetration rates on the proposed control scheme, Fig. 7 presents the final control

performance across different penetrations, ranging from 0% to 100%, on the Nguyen–Dupuis network. The results indicate a clear
monotonic improvement in control performance with higher penetration rates. However, the convex pattern suggests diminishing
marginal benefits at higher rates. This finding is crucial for traffic management authorities, as it suggests a threshold beyond which
increasing SO user penetration may yield limited additional benefits.
11
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Fig. 3. Initial policy performance. (a) Routing on the Nguyen–Dupuis network; (b) Routing on the Sioux Falls network; (c) Departure time choices using the
bottleneck model; (d) Departure time choices using the bathtub model; (e) Joint choices of route and departure time.

Fig. 4. Nguyen–Dupuis network: link flow evolution and standard deviation (three trails, shaded) under the trained policy.

4.3.4. Cost comparison between two groups
Although the recruitment of SO users is beyond the scope of this paper, analyzing the travel costs for both SO and UO users

enhances the understanding of the control scheme and offers valuable insights into the incentive designs. Fig. 8 illustrates the ratio
f daily travel costs between SO and UO users over several days, with different colors distinguishing between two penetration rate
ettings.
Notably, at a high penetration rate of 50%, the high control intensity allows SO users to improve network efficiency while

acrificing only 20% more in travel costs. Conversely, at a low penetration rate (10%), SO users may need to experience up to
0% more travel costs to counteract the selfish driving behavior of the large proportion of UO users. This outcome highlights the
ual benefits of increasing SO user recruitment: improving overall system performance and reducing the need for SO users to make
ignificant sacrifices.
12
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Fig. 5. Bottleneck model: cumulative departure rate evolution under the trained policy.

Fig. 6. Bottleneck model: deviation from the system optimum with standard deviation (three trails, shaded).

Fig. 7. Nguyen–Dupuis network: influence of penetration rate on the final control performance.

.3.5. Influence of partial compliance

As mentioned in Section 4.3, so far we only consider fully compliant SO users. This section explores the influence of partial
ompliance due to inertia as mentioned in Section 2.1. Fig. 9 depicts the training curves with 100% and 20% compliant SO users,
oth at a 50% penetration rate. Here, 20% compliance means that SO users only have 20% probability following the assignment;
13
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Fig. 8. Nguyen–Dupuis network: ratio of daily travel costs between SO and UO users and its standard deviation (3 trails, shaded).

Fig. 9. Nguyen–Dupuis network: training curves (normalized episodic cost) and standard deviation (3 trails, shaded) under 50% penetration rate and different
compliance rates.

otherwise, they will stick to the previous choice. Surprisingly, at a 50% penetration level, despite the orange curve (20% compliant)
ending slightly higher than the blue curve (100% compliant), the difference is minor, less than 0.4%. This small discrepancy
highlights that compliance rates have only a negligible impact on the final control performance. This robustness is due to the
adaptability of the RL algorithm, which efficiently tailors policies to accommodate varying levels of user compliance.

In addition, Fig. 9 plots the training curve with 100% compliant SO users, but only at a 10% penetration rate. Interestingly, the
system with 50% partially compliant SO users greatly outperforms the one with 10% fully compliant users. This is because, while
SO users might prefer to retain their previous choices, these choices are still influenced by earlier assignments, providing the control
policy more room to impact the system. This result also indicates that, compared to the compliance rate, the penetration rate is a
more important factor influencing control performance.

4.4. Extension with real-world conditions

Our initial experiments utilize Smith’s dynamic and the population kernel to establish the foundational applicability of the model.
However, real-world systems often exhibit more complexity and noise, which poses implementation challenges. To address this, we
conduct three additional experiments on the Nguyen–Dupuis network to test the robustness of the proposed method under more
realistic conditions:

• System transition variation: The actual travelers are always finite, which may impact the accuracy of the population kernel in
fully capturing system transitions. To address this limitation, we substitute the current kernel with the sampling-based kernel
outlined in Algorithm 3, while keeping the other components unchanged.

• Information limitation: The previous experiments utilize MF distributions, essentially path flow, as the policy input. In practice,
agencies usually only have access to the link flow data. To capture this, we modify the model into a partially observable Markov
Decision Process (POMDP), where the population state (𝜇 , 𝜈 ) is now unobservable. Instead, travelers and management agencies
14
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Fig. 10. Influence of the noises in the response dynamic.

Table 4
Comparison of training results in different scenarios.
Scenario Original Sampling-based kernel Link flow-based policy Noisy response dynamics

Results Error (%) Results Error (%) Results Error (%)

10% 88.53 88.49 −0.05 88.10 −0.49 110.2 24.48
50% 82.63 82.92 0.35 83.24 0.74 84.02 1.68
100% 81.18 82.89 2.11 81.20 0.02 81.19 0.01

only observe the compressed information, i.e. link flow 𝛥(𝜃𝜇𝑡 + (1− 𝜃)𝜈𝑡), where 𝛥 denotes the link-path incidence matrix. The
population policy 𝜋̂ now maps from observations, rather than states, to population actions ℎ𝑡. Despite these modifications, we
still use the population kernel and Smith’s dynamic in this experiment.

• Response dynamics with noises: While Smith’s dynamic is commonly used in literature, it remains an idealized representation
of human behavior. In reality, human behavior may exhibit more randomness and unpredictability than the model assumes.
To address this, we introduce random noises into the transition process, while leaving the other components unchanged:

𝑐′(𝜇𝑡, 𝜈𝑡) = 𝑐(𝜇𝑡, 𝜈𝑡) + 𝑐,

𝜈𝑡+1(𝑥) − 𝜈𝑡(𝑥) = 𝜂
∑

𝑥′∈

(

𝜈𝑡(𝑥′)[𝑐′𝑥′ (𝜇𝑡, 𝜈𝑡) − 𝑐′𝑥(𝜇𝑡, 𝜈𝑡)]
+ − 𝜈𝑡(𝑥)[𝑐′𝑥(𝜇𝑡, 𝜈𝑡) − 𝑐′𝑥′ (𝜇𝑡, 𝜈𝑡)]

+) ,

where 𝑐 is a random vector with each element following a standard normal distribution. This dynamic introduces random
residue to the daily travel cost, which influences the evolution process. Fig. 10 displays the impact of such noise on a system
with solely UO drivers, highlighting increased fluctuation and imperfect convergence.
Fig. 11 shows the training curves of three experiments. The initial 50,000 episodes are excluded to better compare the control
performance against the original experiment in Section 4.3. The training outcomes, detailed in Table 4, reveal that while
modifications on the transition kernel or the information state introduce more fluctuation, they do not significantly affect
final control performance. All the relative errors are below 2.11%, which underscores the applicability and robustness of the
proposed method. Interestingly, using the link flow-based policy slightly improves training performance in the 10% penetration
experiment, due to a trade-off between information richness and trainability. While using link flow as input reduces the
information obtained by the RL agent, it lowers the state dimension from 50 to 19, making the policy easier to train. This
improvement becomes more significant for complex training tasks, such as the low penetration scenario.
In contrast, adding noise to Smith’s dynamics alters the system’s behavior. In a 100% controlled environment, this change is
negligible as there is no UO user. However, as the proportion of UO users increases, the added noise prevents SO users from
perfectly influencing the system, which creates a notable gap in the outcomes. It is important to note that this gap is not a
failure of the control policy but an inherent consequence of the noisy dynamic.

. Conclusion and future work

In the transition to the connected and automated mobility era, a significant opportunity arises to harness the shift in travel
gency to enhance the efficiency of our transportation systems. We can accomplish this by encouraging travelers to willingly
elinquish certain aspects of their agency for the distributed control. In this research, we have proposed a pioneering traffic control
cheme that leverages CAVs to subtly influence the day-to-day adjustment process of human drivers, thereby enhancing overall
ystem performance. Our approach began with a finite-agent control model, which was subsequently reformulated as a mean-field
15

ontrol problem by considering the limiting case. We incorporated traveler heterogeneity by introducing a common action space
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Fig. 11. Training curves (normalized episodic cost) with standard deviation (three trails, shaded) under different settings: Path-based (PB) policy against
Link-based (LB) policy; Transition under population kernel (PK) against sampling-based kernel (SK); Response dynamics with or without noises.

and augmenting the state. After theoretically establishing the existence of the optimal policy, we employed reinforcement learning
to numerically solve the control problem.

Distinct from traditional approaches, our proposed method is distributed, model-free, and does not rely on the convergence
properties of day-to-day traffic dynamics. By formulating the problem as a mean-field control model, we address the issue of
tractability even in scenarios involving a large number of travelers, thereby significantly increasing the scalability of the control
scheme. Through various numerical examples, we have demonstrated that the proposed control scheme can effectively enhance
system efficiency across a range of choice scenarios, congestion technologies, and penetration rates.

For future work, we plan to further enhance the model and apply it to larger scale networks to demonstrate the broader
applicability of the proposed method. In addition, it is interesting to explore the potential synergies between our proposed control
scheme and other traditional traffic management methods, such as congestion pricing. Investigating how these different control
strategies can be integrated will help achieve even greater improvements in traffic efficiency. Furthermore, it is also important to
design incentive mechanisms to encourage CAV owner participation.

CRediT authorship contribution statement

Minghui Wu: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Conceptualization.
Ben Wang: Writing – review & editing, Software, Methodology. Yafeng Yin: Writing – review & editing, Supervision, Methodology,
onceptualization. Jerome P. Lynch: Writing – review & editing, Supervision.
16



Transportation Research Part C 166 (2024) 104757M. Wu et al.

(

A

Č

C

C

D
D

F
F

Acknowledgments

The work described in this paper was partly supported by research grants from National Science Foundation, United States
CMMI-1904575, 2233057 and 2240981).

ppendix. Notations

Sets
 Travel choices
 Types
𝑘 Travel choices for type 𝑘
̄ The common action space
 ID variables

Variables
𝑥𝑖𝑡 State of SO user 𝑖 on day 𝑡
𝑠𝑗𝑡 State of UO user 𝑗 on day 𝑡
𝜇𝑁
𝑡 Empirical state distribution among SO users on day 𝑡

𝜈𝑀𝑡 Empirical state distribution among UO users on day 𝑡
𝑎𝑖𝑡 Assigned option for SO user 𝑖 on day 𝑡
𝜇𝑡 Mean-field distribution among SO users on day 𝑡
𝜈𝑡 Mean-field distribution among UO users on day 𝑡
ℎ𝑡 Joint state–action distribution among SO users on day 𝑡
𝑘 Type 𝑘
𝑧𝑖 ID variable for traveler 𝑖

Parameters
𝑁 Number of SO users
𝑀 Number of UO users
𝜃 Penetration rate of SO users
𝛾 Discount factor

Functions
𝑞(𝜇𝑡, 𝜈𝑡) UO users’ response dynamics
𝜋(⋅|𝑥𝑡, 𝜇𝑡, 𝜈𝑡) Assignment policy
𝑝(⋅|𝑥𝑡, 𝑎𝑡, 𝜇𝑡, 𝜈𝑡) Transition kernel for each SO user
𝑐𝑥(𝜇𝑡, 𝜈𝑡) Travel cost of choice 𝑥
𝐶(𝜇𝑡, 𝜈𝑡) System’s average travel cost
𝑇 (𝜇𝑡, 𝜈𝑡, ℎ𝑡) Population transition kernel
𝜋̂(⋅|𝜇𝑡, 𝜈𝑡, ℎ𝑡) Population policy
𝑘(𝑎) Mapping for type 𝑘 to incorporate heterogeneity
𝑘(𝑥) The type of travelers that can choose state 𝑥 ∈ 
𝑝̂(⋅|𝑥𝑡, 𝑎𝑡, 𝜇𝑡, 𝜈𝑡) Modified transition kernel to incorporate heterogeneity
𝑇̂ (𝜇𝑡, 𝜈𝑡, ℎ𝑡) Modified population kernel to incorporate heterogeneity
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