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A B S T R A C T

Cooperative vehicle platooning enabled by connected automated vehicle (CAV) technology
has shown to bring various benefits including energy savings and a reduction in driving
effort. Nevertheless, because these benefits vary over different platoon positions, vehicles from
different owners may not be willing to platoon together; even if they form a platoon, they
may attempt to change positions. To address such a behavioral-instability issue, it is necessary
to redistribute the benefits among platoon members. To this end, this study investigates a
decentralized multi-agent system where individually rational agents form platoons through peer-
to-peer coordination under designated mechanisms that simultaneously determine the benefit
reallocation. Depending on whether the scope of coordination is one-to-one or many-to-many,
we introduce two types of mechanisms based on the bilateral trade model and one-sided
matching. As the privacy of information sharing in the decentralized system is a common
concern in practice, we further discuss two settings under each mechanism, differing by whether
complete information is or is not known by the other agents. We indicate both theoretically
and numerically that the decentralized platooning system is flexible and scalable, and can be
implemented in real-time by leveraging the CAV technology.

1. Introduction and motivation

The concept of cooperative vehicle platooning, where virtually-linked vehicles travel together in a string with shorter headway,
as been realized with the advent of connected and automated (CAV) technology. Vehicle platooning in general leads to a
onsiderable amount of energy savings and emission reduction, which has been widely validated through theoretical analyses,
imulation studies, and real-world experiments (Alam, 2011; Hammache et al., 2002; McAuliffe et al., 2017, 2018). Meanwhile,
although the platoon operations in the near future are only partially automated, the complexity of maneuvering the following
vehicles will be greatly alleviated, leading to reduced workloads for their drivers.

In view of these promising benefits, a growing number of studies have been conducted to advance the platooning technology
from various aspects, including control strategy (Alam, 2011), route planning (Larson et al., 2015, 2016; Larsen et al., 2019),
human factors (Zhang et al., 2019a), and impacts on traffic flow (Calvert et al., 2019; Duret et al., 2019). Though their study
scopes, research perspectives, and methodologies differ, many of these studies endeavor to answer one fundamental question: how
to form and maintain vehicle platooning as much as possible to fully reap its benefits. One line of research, reviewed by Bhoopalam
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Fig. 1. Fuel efficiency and driving effort reduction are varying among platoon positions.

et al. (2018), targets high-level decision-making on vehicle route planning to maximize platooning opportunities, specifically for
more regulated commercial vehicles. Another line of research concentrates on the vehicle controls in a more detailed level when
‘platoonable’ vehicles are operated within visible distances. By specifying vehicles’ speeds, accelerations, and intra-platoon headway,
the control policies aim to stabilize the platooning dynamic systems with regard to different traffic and geometric conditions (Duret
et al., 2019; Xiong et al., 2021).

Comparatively, studies considering behavioral issues related to cooperative vehicle platooning are lacking. One of such behavioral
issues is triggered by an unevenly-distributed benefit among different platoon members originated in the inherent cost-saving
mechanisms of platooning, as illustrated in Fig. 1. First, the increase in fuel efficiency from platooning is created by the aerodynamic
drag reduction effect when vehicles travel closely together in a platoon, benefiting the vehicles in the middle the most and that in
the lead the least (Hammache et al., 2002; Levedahl et al., 2010; McAuliffe et al., 2017). Second, supported by cooperative adaptive
cruise control (CACC), current vehicle platooning stipulates the driver in the leading vehicle to take both longitudinal and lateral
controls, while those in the following vehicles to conduct only lateral control (Shladover et al., 2015). It would not be a problem
if all vehicles in a platoon belonged to one owner. However, when vehicles are owned by different individuals or companies, the
sense of unfairness may prevent them from platooning. Even if they happen to form a platoon, some will have the incentive to leave
their current positions, yielding a behaviorally unstable platoon with less amount of benefits and more disruptions to surrounding
traffic flow. One possible way to settle the behavioral instability is benefit redistribution. With this objective, our previous study
structured a benefit reallocation mechanism for a centralized platooning system with multi-brand vehicles (Sun and Yin, 2019). The
term multi-brand refers to vehicles with multiple types and configurations, contributing differently to energy savings of platooning.
Consequently, a platoon’s total utility depends on its vehicle sequence and operating speed. This centralized approach prioritizes
system optimality by first arranging the vehicle platoons that maximize the total utility, then fairly redistributing the obtained
savings using solution concepts in cooperative game theory.

Driven by both practical and theoretical motivations, this paper envisions a decentralized platooning system, where multi-brand
vehicles form platoons and redistribute benefits through peer-to-peer coordination. Requiring the existence of a central controller
with huge computational power and direct, reliable communications to individual vehicles, the centralized platooning scheme
investigated by Sun and Yin (2019) falls short of scalability and flexibility in practice. The decentralized system we attempt to
investigate in this paper addresses this issue by adopting vehicle-to-vehicle (V2V) communication and the computational power
residing in automated vehicles. From a theoretical perspective, the instruments to redistribute benefits in the centralized approach
is limited to those in the domain of cooperative game theory, which may be hard to implement due to the computational complexity
and the non-convexity of the system utility function. Another consequent drawback is that the stable solutions in the core (Gillies,
1959; Aumann, 1961) may not exist. In contrast, the distributed nature of V2V communication supports the assumption that
individual vehicles perform as rational agents. Therefore, one can utilize the more well-studied game-theoretical models, such as
Nash equilibrium and stable matching, to characterize the interactions among agents, then implement the benefit redistribution via
peer-to-peer monetary transfers.

The main focus of this paper is on the modeling of proper vehicle platooning games and transfer functions from the perspective
of a system designer, who aims to achieve behavioral stability for individual vehicles and economic efficiency for the system at the
same time. These two aims, however, contradict each other by nature. Another challenge in designing a distributed system stems
46

from information asymmetry due to the absence of a central controller. When vehicles are reluctant to reveal all information or do
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not bring trustworthy information, customized incentives are difficult to derive and implement, leading to both behavioral instability
and loss of efficiency. Moreover, depending on the communication range and traffic densities, a vehicle can coordinate with either
one or many individual vehicles, or even previously-formed platoons. Consequently, the complexity for individuals to make optimal
decisions may vary from a setting to another tremendously. All of these concerns motivate us to first set key assumptions on the
coordination scope and information sharing in Section 2, and then develop specific models tailored to different coordination schemes
in Sections 3 and 4. Numerical examples are conducted in Section 5, evaluating the solution qualities and computational efficiencies
of the decentralized models, as compared with the centralized approach. Finally, Section 6 concludes the paper.

It should be noted that our models are deliberately as comprehensive as possible to incorporate all possible vehicle platooning
scenarios and heterogeneous valuations on driving-effort reduction. Therefore, they are applicable to single-brand vehicle platooning,
where vehicles are identical in terms of model and configuration and only differ in driving-effort reduction. Nevertheless,
benefit redistribution for single-brand vehicle platooning can be cast into a simpler problem readily solvable through an auction
mechanism (Sun and Yin, 2020). In a broader view, the discussions on benefit redistribution mechanisms in this paper are relevant
to other formats of shared mobility, including peer-to-peer ride-sharing (Tafreshian and Masoud, 2020), resource allocation in the
Mobility-as-a-Service system (Pantelidis et al., 2020), driver team formation and competition for the ride-hailing platform (Zhang
et al., 2019b), etc. This paper also enriches the literature of mechanism design, which has been applied to a number of transportation
problems, such as parking management in urban areas (Zou et al., 2015; Xu et al., 2016; Xiao et al., 2018), on-demand transportation
services (Egan and Jakob, 2016; Bian and Liu, 2019), concession contract design (Shi et al., 2016), public transit regulation (Sun
et al., 2020), and logistic services procurement (Liang et al., 2020; Zhang et al., 2018).

. Premises and key considerations

In a decentralized system, we assume that an individual vehicle or a previously-formed platoon performs as an intelligent agent
ho tries to maximize their utility via platooning. Note that, in the latter case, the formed platoon collectively behaves as a single
gent. If the system is connected, an agent can always find another peer to platoon with via V2V communication. For this reason, we
ssume all platoons are formed through a two-agent game. Naturally, the whole platooning process cannot be completed within one
ame, but rather, multiple games. It then generates questions on the agents matched in the games, the information available in the
ames, and the sequence of the games being played. To settle these concerns, we introduce the system’s main setup in Section 2.1
o 2.4.

.1. The scope of coordination

To begin, we consider one-to-one coordination in Section 3, where each agent can directly connect and communicate with another
earby peer agent in their communication range. We refer to these connected agents as neighbors. When a new platoon is formed by a
air of neighbors, each agent can either take the leading position or the following position. As being in the following position always
enefits more, we assume that agents’ actions are expressing their willingness-to-pay for this position. Specifically, we innovate a
ame based on the classic bilateral trade model (Myerson and Satterthwaite, 1983) where the following agent always pays the leading
gent, and their position in the platoon is determined by comparing their willingness-to-pay.
The one-to-one coordination describes the interaction between any random pair of neighbors. However, when a rational agent

as more than one neighbors, they are likely to platoon with the ‘most beneficial’ peer instead of a randomly chosen one. A conflict
hen arises when two or more agents choose the same peer to platoon with, which, however, has not been captured by the one-
o-one coordination. In this regard, we extend our model from one-to-one coordination to many-to-many coordination structured in
ection 4 by taking the communication network topology into consideration. When allowing the agents to rank their neighbors in
erms of their self-interests, the many-to-many coordination can be modeled as a one-sided matching problem. It is then solved in a
ecentralized fashion, generating non-conflicting pairs of agents and improving overall utility under the properly designed transfer
unction.
Both coordination schemes allow multiple platoons to be formed in parallel simultaneously. A new platoon formed by two

gents then becomes another agent in the system that is capable of platooning with others using the coordination schemes again.
onsequently, the overall platoon formation in the decentralized system is a dynamic process, which is formally described in
ection 2.4. By decomposing the whole platoon formation process into a sequence of direct interactions within two agents, the
ynamic process overcomes the limitation of the proposed games that they do not permit platoons to be formed by three or more
gents simultaneously. The sequence itself is determined by the changing communication network topology, and the coordination
cheme applied.

.2. Complete and incomplete information

One concern of the decentralized system is information asymmetry, since the decentralized system lacks the authority to collect
nd manage all information compared to the centralized counterpart. The main source of information asymmetry in platooning
s agent’s utility, which is known by themselves, but not by their neighbors. As mentioned before, energy savings and driving-
ffort reduction are the two major components of the endogenous benefits of vehicle platooning. Though varying from vehicle to
ehicle, the decisive factors for energy savings, including traffic and road conditions, vehicle types and configurations, operating
47

eadway, and speed, can be easily discovered by all agents. Therefore, all agents’ valuations on energy savings are regarded as
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Table 1
System’s setup and applied models.

Information

Complete Incomplete

Coordination
One-to-One Nash Bargaining Game Bilateral Trade Model

Many-to-Many One-sided Matching -

public information. Quite the contrary, the valuation of driving-effort reduction is more subjective and is perceived differently by
different individuals. An analogy is the reduction in the value of travel time when using fully automated vehicles (van den Berg and
Verhoef, 2016). Influential factors include but are not limited to drivers’ socioeconomic attributes, travel purposes, and the type
and duration of on-board activities (de Almeida Correia et al., 2019; Molin et al., 2020; Pudāne et al., 2018). Consequently, the
individual’s valuation on driving-effort reduction is regarded as private information.

Taking these two different sources of utility into consideration, we conceptualize our game-theoretical models with either
complete or incomplete information. For models with complete information, we assume that every agent is aware of all other agents’
exact utility under each possible outcome. It happens when agents share truthful information via direct communication before
each game is played. Under this consideration, the agents make decisions depending on the ex post utilities, which are realized
in the outcome. For models with incomplete information, we assume that every agent does not know others’ exact utilities. The
uncertainty part of the utility is characterized by the term type. Albeit knowing their own type, agents only have a prior belief
of the distribution that other agents’ types follow. This distribution is common knowledge. Then in each game, every agent makes
decisions based on their interim utility, which is the expected utility over the other agent’s all possible types. The two settings require
different treatments for deriving stable outcomes, which will be elaborated in Section 2.3.

2.3. Required properties

The game-theoretical models imply that the agents are individually rational, meaning that forming a platoon with another agent
always brings them non-negative utility. As no central controller exists, this system needs to be budget-balanced, indicating that
monetary transfers only occur among agents, and no external authority compensates or collects profits from them.

The concept of behavioral stability captures a state that once a platoon is formed, vehicles would not leave or change positions
with others for a greater individual utility. It is then addressed differently under different coordination schemes. In the one-to-one
coordination, we adopt the Nash equilibrium if it is under the complete information setting, and Bayesian Nash equilibrium if it is
under the incomplete information setting. When the equilibrium is achieved, no agents can unilaterally change their decision to
achieve a greater utility so that the formed platoon is stable. Since stable matching is applied for the many-to-many coordination,
we define matching stability using the concept of blocking pair, which refers to a pair of agents who have not been matched with,
but prefer each other, rather than their current partners.

The existence and economic efficiency of the stable solutions are two main concerns, which are closely related to the game format
and transfer functions imposed. In the one-to-one coordination with complete information, since the bilateral trade model with linear
transfer functions admits no equilibrium solution, we resort to Nash Bargaining game (Nash, 1953), which has a sense of cooperative
game as a remedy. Economic efficiency indicates that the total utility achieved under a given solution is a global optimum. As the
decentralized system is indirectly controlled by the system designer through the imposed transfer functions, the economic efficiency
in each model largely depends on agents’ action space. All the aforementioned models are summarized in Table 1.

Finally, the stable solutions are expected to be incentive compatible, indicating that every agent’s optimal strategy under an
equilibrium reflects their true type. It is theoretically not a concern in games with complete information. However, since the
complete information in practice is achieved when agents share information via V2V communication, there might be a chance
that they misreport for a better utility after learning the mechanism. We hence discuss the ex post incentive compatibility of the
Nash bargaining solutions and stable matching in Section 3.3 and Section 4.4 respectively. For games with incomplete information,
we prove that the Bayesian Nash equilibrium obtained is interim incentive compatible.

2.4. Dynamic platoon formation process

We now state the dynamic process of forming platoons. At each step of the process, denoted by 𝑡, a game is defined by a tuple
(𝑡, 𝛩𝑡,𝑡, 𝜒 𝑡,𝐮𝑡) where

• 𝑡 is the finite set of current agents. Each agent 𝑖 ∈ 𝑡 represents a previously formed platoon of 𝑚𝑖 vehicles, with 𝑚𝑖 ≤ 𝑙,
where 𝑙 is the platoon length limit.

• 𝛩𝑡 = 𝛩1 ×⋯ ×𝛩
|𝑡|

is the type space for all agents, where 𝛩𝑖 is the type space of agent 𝑖. All agents know the common prior
distribution 𝜙 on 𝛩 , ∀𝑖 ∈ 𝑡 that their private information follows.
48
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• 𝑡 = 1 × ⋯ × 
|𝑡|

is the set of actions, where 𝑖 = [..., 𝑎𝑖,…] is the set of actions available to agent 𝑖 ∈ 𝑡, and 𝑎𝑖 is
determined by its realized type 𝜃𝑖. An action in a one-to-one coordination refers to either taking the leading or following
position within a platoon and proposing a bid accordingly. In many-to-many coordination, an agent’s action is to generate a
preference list of their neighbors, based on which they can sequentially send and receive proposals on pairing.

• 𝜒 𝑡 is the space of outcomes. An outcome function 𝜒 𝑡 ∶ 𝑡 → 𝜒 𝑡 maps a joint action 𝑎 to an outcome in 𝜒 𝑡. In this study, it
concludes the vehicle sequence in formed platoons. As shown in Sections 3 and 4, the outcome for one-to-one coordination is
whom to lead and whom to follow, while for many-to-many coordination, it is whom to pair and the optimal vehicle sequence
in paired platoons.

• 𝐮𝑡 = [𝑢1,… , 𝑢𝑖,… , 𝑢
|𝑡

|

] defines the risk-neutral utility function:

𝑢𝑖(𝜒(𝑎), 𝜃, 𝑝) = 𝑉𝑖(𝜒(𝑎), 𝜃) − 𝑝𝑖(𝑎), ∀𝑖 ∈ 𝑡 (2.1)

Here, 𝑉𝑖 is the valuation that agent 𝑖 obtains under outcome 𝜒(𝑎), given the joint type 𝜃. Transfer functions 𝑝𝑖 ∶ 𝑡 → R, ∀𝑖 ∈ 𝑡

provide the payment for each agent. The utility is defined per unit distance.
The valuation 𝑉𝑖 reflects platooning benefits such as fuel-savings (McAuliffe et al., 2018) and reduced driving effort (Janssen
et al., 2015), which can vary with respect to vehicle types, operating speed and headway, road and traffic conditions. We
assume the existence of a valuation function that can reflect these factors. Section 5 provides an example of this function.
In this example, we consider an arbitrary freeway segment shared by a set of vehicles who are expected to form platoons by
coordination. No surrounding traffics interact with these platoonable vehicles. Fuel consumption, the main source of valuation,
is modeled as a quadratic function of speed along with parameters reflecting vehicle type, headway, and road conditions.
Driving effort reduction, another source of valuation, is modeled as the type of each agent so that it is assumed to be an
independent variable. To construct such a valuation function for other specific traffic situations, related studies can be of
help. For instance, Liang et al. (2015) simulated the effects of surrounding traffic flow on the timing and speed of platoon
merging on a homogeneous multilane highway segment. By utilizing a Markov Decision Process, Xiong et al. (2021) studied
the platoon coordination by two streams of vehicles at highway junctions or on-ramp, under which a utility function composed
of fuel consumption and travel delay is proposed. Further discussions on integrating practical considerations into the valuation
function can be found in Section 6. Nevertheless, we note that the specification of the valuation function does not affect the
validity of the game-theoretical framework.

Mathematically, the communication network is expressed as an undirected graph 𝐺(𝑡, 𝐸𝑡), ∀𝑡. Each agent in the set 𝑡 is a
vertex. If agent 𝑗 is a neighbor of 𝑖 and vice versa, there is an edge 𝑒(𝑖, 𝑗) ∈ 𝐸𝑡. All agents that are neighbors of agent 𝑖 constitute
its neighborhood,  (𝑖). Clearly, only neighbors can directly interact with each other in the game. The interactions are captured by
ifferent models per coordination schemes. The outcome determined by interaction between 𝑖 and 𝑗, denoted as 𝜒(𝑎𝑖, 𝑎𝑗 ), incorporates
two aspects: the fact that a new platoon is formed or not and the characteristics of the formed platoon, including vehicle sequence
and platoon speed. Agents 𝑖 and 𝑗 then merge into a new agent, denoted as 𝑘, in time step 𝑡 + 1. In this way, the communication
network in time step 𝑡 + 1, 𝐺(𝑡+1, 𝐸𝑡+1) bridges 𝐺(𝑡, 𝐸𝑡) in time step 𝑡 as follows:

𝑖, 𝑗 ∈ 𝑡; 𝑖, 𝑗 ∉ 𝑡+1

𝑘 ∈ 𝑡+1; 𝑘 ∉ 𝑡

𝑒(ℎ, 𝑘) ∈ 𝐸𝑡+1; ∀ℎ ∈ {ℎ|𝑒(ℎ, 𝑗) ∈ 𝐸𝑡 or 𝑒(ℎ, 𝑖) ∈ 𝐸𝑡}

A platoon cannot be infinitely long. Once a platoon is formed, it will not be dissembled in the following steps by principle. An
exception is that, when reaching their destinations, individual vehicles leave the formed platoon. In addition, new agents outside of
the system are allowed to join the process in each step. As a result, when the number of agents in the system is finite, the dynamic
process will always terminate when no new agents can be generated by forming platoons.

A toy example is provided in Fig. 2 to facilitate a better understanding of the dynamic platoon formation process. At the initial
tep of the process, there are six agents in the system. Two agents that are neighbors of each other are connected by an edge. The
dge with red glow indicates the two agents are playing a platooning game. For instance, agent 2 is doing so with agent 1, though
t is the neighbor of agent 3 and 5 as well. Step 1 yields three agents (platoons) with two vehicles each. At step 2, agent 1–2 plays
game with agent 3–5 while agent 6–4 does not play any game at all. The outcome of step 2 is another two agents playing a
latooning game at step 3.

. One-to-one coordination

Below we first introduce the general format of the two-agent non-cooperative game-theoretical model used in the one-to-one
oordination of vehicle platooning in Section 3.1. In short, we refer to these games generically as vehicle platooning games. Under
his framework, we then discuss the existence and implementation of Nash equilibrium in games with complete information in
ection 3.2 and those of Bayesian Nash equilibrium in games with incomplete information in Section 3.3, respectively. As we reveal
hat Nash equilibrium does not exist for most cases, for games with complete information we also discuss the Nash bargaining
49

olution as an alternative.
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Fig. 2. A toy example of the dynamic process for decentralized vehicle platooning.

.1. A general model

We assume that the agent who ends up with the following position transfers the positive amount of money to the agent who is
eading. In other words, we view the agent at the leading position as the seller of the platooning service, and the other as the buyer
f the same service. With this assumption, the dynamic process introduced earlier can be customized as follows:

• In each step 𝑡, a random pair of neighbors (𝑖, 𝑗) ∈ 𝑡 plays the game.
• Before the play, both agents have zero utilities in this step.
• Both agents bid a positive value, i.e., how much they are willing to pay to the leader if they are the follower. For instance,
agent 𝑖 bids 𝑏𝑖, which belongs to their action space 𝐴𝑖.

• The outcome is determined by the relative magnitude of 𝑏𝑖 and 𝑏𝑗 , and thereby is symbolically expressed as 𝜒(𝑏𝑖, 𝑏𝑗 ).
Specifically, the agent with a lower bid automatically becomes the leader and collects the payment, and the other follows and
pays. For simplicity, we denote the utility for agent 𝑖 under the leading position is 𝑉 𝐿

𝑖 , and that under the following position
is 𝑉 𝐹

𝑖 . If there is a tie in the bid, each agent has a half probability of being the leader. According to vehicle platooning’s
cost-saving characteristics, we assume that 𝑉 𝐹

𝑖 > 𝑉 𝐿
𝑖 without loss of generality.

• We propose a budget-balanced interdependent payment rule for the transfer function. Moreover, considering that the game is
symmetric, the transaction amount 𝑝∗ satisfies

𝑝∗ = 1
2
(𝑏𝑖 + 𝑏𝑗 ) (3.1)

Then we can derive the utility function 𝑢𝑖(𝜒(𝑏𝑖, 𝑏𝑗 ), (𝑉𝑖, 𝑉𝑗 ), 𝑝 ∗) under all three outcomes. In short, we denote they are 𝑢𝐿𝑖 , 𝑢
𝐹
𝑖

and 𝑢𝑇𝑖 , respectively.

𝑢𝐿𝑖 = 𝑉 𝐿
𝑖 + 1

2
(𝑏𝑖 + 𝑏𝑗 ), if 𝑏𝑖 < 𝑏𝑗 , (3.2a)

𝑢𝐹𝑖 = 𝑉 𝐹
𝑖 − 1

2
(𝑏𝑖 + 𝑏𝑗 ), if 𝑏𝑖 > 𝑏𝑗 , (3.2b)

𝑢𝑇𝑖 = 1
2
(𝑉 𝐿

𝑖 + 𝑉 𝐹
𝑖 ), if 𝑏𝑖 = 𝑏𝑗 . (3.2c)
50
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Fig. 3. Utility function of agent 𝑖 with interdependent payment.

• Notice that if an agent represents multiple vehicles, their internal vehicle sequence will not be changed by the game outcome.
When a new platoon is formed, the transaction is further allocated to all members evenly within each agent. In this way, every
vehicle achieves non-negative utility in each step, thereby satisfying individual rationality. As a result, the dynamic process
as a whole is cross-monotonicity.

This two-agent game imitates the classic bilateral trade model, which describes the bargaining problems between a buyer and a seller
for a single object. In the classical model, the trade only occurs when the buyer’s bid is higher than seller’s valuation. In contrast, a
trade always occurs in our game because the roles of buyer and seller are not predetermined, but set by their bids revealed during
the play: the one with the higher bid becomes the buyer. Due to this unique feature, well-established results in the classical bilateral
trade model cannot be directly applied here.

3.2. Games with complete information

The complete information setting assumes that an agent’s valuation is known to their neighbors. Unfortunately, we prove that a
Nash equilibrium does not necessarily exist.

Theorem 3.1. In the vehicle platooning game with complete information between an arbitrary pair of agent (𝑖, 𝑗), there is no Nash
equilibrium under interdependent payment described in Eq. (3.1), unless

𝑉 𝐹
𝑖 − 𝑉 𝐿

𝑖 = 𝑉 𝐹
𝑗 − 𝑉 𝐿

𝑗 (3.3)

Proof. To find the equilibrium of a game, we first study an agent’s best response to the other’s proposed bid.
For agent 𝑖, when 𝑏𝑗 is fixed, their utility is a function of their own bid, denoted as 𝑢𝑖(𝑏𝑖) for simplicity. Due to individual

rationality, agent 𝑖’s action space 𝐴𝑖 equals to [0, 2𝑉 𝐹
𝑖 − 𝑏𝑗 ]. Overall, the utility function 𝑢𝑖(𝑏𝑖) is a piece-wise linear function of 𝑏𝑖.

When agent 𝑖 proposes a bid less than 𝑏𝑗 , agent 𝑖 becomes the leader and 𝑢𝑖(𝑏𝑖) equals to 𝑢𝐿𝑖 expressed by Eq. (3.2a). Then 𝑢𝑖(𝑏𝑖)
ncreases with the increase of 𝑏𝑖. When 𝑏𝑖 = 𝑏𝑗 , there is a tie and 𝑢𝑖(𝑏𝑖) equals to 𝑢𝑇𝑖 expressed by Eq. (3.2c). When 𝑏𝑖 > 𝑏𝑗 , agent
becomes the follower and 𝑢𝑖(𝑏𝑖) = 𝑢𝐹𝑖 , a decreasing function of 𝑏𝑖 expressed by Eq. (3.2b). By comparing the value of 𝑢

𝑇
𝑖 , 𝑢

𝐿
𝑖 , and

𝐹
𝑖 , it can be seen that if and only if 𝑏𝑗 =

1
2 (𝑉

𝐹
𝑖 −𝑉 𝐿

𝑖 ), 𝑢𝑖(𝑏𝑖) is a continuous function with the maximum value equal to 1
2 (𝑉

𝐹
𝑖 +𝑉 𝐿

𝑖 ).
Therefore, depending on the values of 𝑏𝑗 and

1
2 (𝑉

𝐹
𝑖 − 𝑉 𝐿

𝑖 ), we discuss the best response of agent 𝑖, if there is any.

1. When 𝑏𝑗 < 1
2 (𝑉

𝐹
𝑖 − 𝑉 𝐿

𝑖 ), the utility function is shown in Fig. 3(a). Agent 𝑖 will bid a value in the region of (𝑏𝑗 ,
1
2 (𝑉

𝐹
𝑖 − 𝑉 𝐿

𝑖 )]
to ensure their following position and a utility at least no less than 1

2 (𝑉
𝐿
𝑖 + 𝑉 𝐹

𝑖 ), the utility they obtained if there is a tie.
Meanwhile, since 𝑢𝑖 is monotonically decreasing when 𝑏𝑖 > 𝑏𝑗 , agent 𝑖 will try to bid 𝑏𝑖 as small as possible. However, they
will not bid 𝑏𝑖 = 𝑏𝑗 since doing so results in a utility of

1
2 (𝑉

𝐿
𝑖 + 𝑉 𝐹

𝑖 ), which is less than 𝑉 𝐹
𝑖 − 1

2 (𝑏𝑖 + 𝑏𝑗 ). Therefore, agent 𝑖 has
no best response in this case.

2. If 𝑏𝑗 =
1
2 (𝑉

𝐹
𝑖 − 𝑉 𝐿

𝑖 ), agent 𝑖 has a best response: 𝑏𝑖 = 𝑏𝑗 (Fig. 3(b)).
3. When 𝑏𝑗 >

1
2 (𝑉

𝐹
𝑖 −𝑉 𝐿

𝑖 ), agent 𝑖 will bid 𝑏𝑖 ∈ [ 12 (𝑉
𝐹
𝑖 −𝑉 𝐿

𝑖 ), 𝑏𝑗 ) to ensure their leading position and a utility at least no less than
1
2 (𝑉

𝐿
𝑖 + 𝑉 𝐹

𝑖 ) (Fig. 3(c)). Since the utility function is discontinuous and monotonically increasing with 𝑏𝑖 when 𝑏𝑖 < 𝑏𝑗 , agent 𝑖
has no best response under this case as well.

ecause the game is symmetric, agent 𝑗’s best response to a given 𝑏𝑖 can be analyzed in a similar way. Therefore, the only condition
that admits an equilibrium is when 𝑉 𝐹

𝑖 − 𝑉 𝐿
𝑖 = 𝑉 𝐹

𝑗 − 𝑉 𝐿
𝑗 = 2𝑝, where 𝑝 denotes some constant value that both agents bid. However,

the prerequisite for this condition is that the total utility achieved by the two agents is indifferent to their positioning, which only
happens for single-brand vehicle platooning and homogeneous drivers. In other words, for the general case of multi-brand vehicle
platooning and heterogeneous drivers, no equilibrium solution exists under the interdependent payment function. □
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Fig. 4. Agents’ best responses and budget-balanced outcomes under given payments. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

emark 3.1 (Independent Payment). One may think that the budget balance constraint performs as a hurdle in achieving equilibrium
utcomes. However, we deduct another line of analysis on a second side-payment rule, named as independent payment, to indicate
hat the result does not change too much with the new linear payment. Independent payment suggests that each agent collects or
ays what they bid. Consequently, the utilities are

𝑢𝑖 = 𝑉 𝐿
𝑖 + 𝑝∗ = 𝑉𝑖(𝜒(𝑏𝑖, 𝑏𝑗 ), 𝜃𝑖) + 𝑏𝑖, if 𝑏𝑖 < 𝑏𝑗 , (3.4)

𝑢𝑖 = 𝑉 𝐹
𝑖 − 𝑝∗ = 𝑉𝑖(𝜒(𝑏𝑖, 𝑏𝑗 ), 𝜃𝑖) − 𝑏𝑖, if 𝑏𝑖 > 𝑏𝑗 . (3.5)

n this way, there is always profit generated from the platooning, making the mechanism weakly budget-balanced. Unfortunately,
eaders can verify that no equilibrium solution exists either under the independent payment rule for multi-brand platooning with
eterogeneous drivers.

.2.1. A cooperative alternative
Due to the failure of finding an equilibrium solution to stabilize the platoon in the non-cooperative game, we resort to a

ooperative-game alternative described as follows. A pair of non-negative payments, 𝑝𝑖 and 𝑝𝑗 , is given to agents 𝑖 and 𝑗, respectively.
The agents then report what positions they would like to take. Still, agent 𝑖 obtains utility of 𝑉 𝐿

𝑖 +𝑝𝑖 for being the leader and 𝑉 𝐹
𝑖 −𝑝𝑖

for being the follower. Based on individual rationality, 𝑝𝑖 ≤ 𝑉 𝐹
𝑖 and 𝑝𝑗 ≤ 𝑉 𝐹

𝑗 .
Without loss of generality, we suppose that 𝑉 𝐿

𝑖 + 𝑉 𝐹
𝑗 ≥ 𝑉 𝐿

𝑗 + 𝑉 𝐹
𝑖 . As a result, agent 𝑖 becomes the leader and 𝑗 becomes the

follower maximizing the total utility of the two. This can easily be seen when

𝑝𝑖 >
1
2
(𝑉 𝐹

𝑖 − 𝑉 𝐿
𝑖 ),

agent 𝑖’s best response is to become the leader. Otherwise, their best response is to become the follower.
Accordingly, the agents’ best responses to the given 𝑝𝑖 and 𝑝𝑗 are shown in the two-dimensional diagram in Fig. 4. As an

xplanation, the notation 𝑖𝐿 indicates that the best response for 𝑖 is being the leader in the dashed rectangle region of the diagram,
nd the notation 𝑖𝐹 indicates that the best response for 𝑖 is being the follower in the marked region of the diagram. To satisfy at
east weak budget-balance, agent 𝑗 is sought to take the leading position in the lower triangle region that is colored in pink when
𝑖 ≥ 𝑝𝑗 , while agent 𝑖 is sought to take the leading position in the upper right angle trapezoid region that is colored in blue when
𝑗 ≥ 𝑝𝑖. Combining these with the best responses, it can be seen that when

𝑝𝑖 >
1
2
(𝑉 𝐹

𝑖 − 𝑉 𝐿
𝑖 ), 𝑝𝑗 <

1
2
(𝑉 𝐹

𝑗 − 𝑉 𝐿
𝑗 ), 𝑝𝑗 ≥ 𝑝𝑖, (3.6)

here exist equilibria (outlined in green in Fig. 4) that align with economic efficiency: 𝑉 𝐿
𝑖 + 𝑉 𝐹

𝑗 > 𝑉 𝐿
𝑗 + 𝑉 𝐹

𝑖 . In addition, when
nforcing 𝑝𝑖 = 𝑝𝑗 = 𝑝 that satisfies

1 (𝑉 𝐹 − 𝑉 𝐿) < 𝑝 < 1 (𝑉 𝐹 − 𝑉 𝐿), (3.7)
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Fig. 5. Pareto optimal solutions.

budget balance is ensured. Therefore, all the efficiency is received by the agents and the equilibria with 𝑝 satisfying Eq. (3.7) are
areto optimal. In addition, it is behaviorally stable since given such a payment, no agent would likely switch their positions.
Fig. 5 shows the Pareto frontier in the two-dimension plane of 𝑢𝑖 and 𝑢𝑗 . It is an open one-dimensional set on the 45 degree

oblique line, since the utilities agents received are bounded by Eq. (3.6). In this figure, (𝑢𝑖, 𝑢𝑗 ) and (𝑢𝑖, 𝑢𝑗 ) confine the boundaries of
the Pareto Frontier, where

𝑢𝑖 =
1
2
(𝑉 𝐹

𝑖 + 𝑉 𝐿
𝑖 ), 𝑢𝑖 = 𝑉 𝐿

𝑖 + 1
2
(𝑉 𝐹

𝑗 − 𝑉 𝐿
𝑗 ), 𝑢𝑗 = 𝑉 𝐹

𝑗 − 1
2
(𝑉 𝐹

𝑖 − 𝑉 𝐿
𝑖 ), 𝑢𝑗 =

1
2
(𝑉 𝐹

𝑖 + 𝑉 𝐿
𝑖 )

re generated from Eq. (3.7). The point (𝑉 𝐹
𝑖 −𝑝∗, 𝑉 𝐿

𝑗 +𝑝∗) is considered as the disagreement point, or the threat of the Nash bargaining
game.

Among all the Pareto optimal solutions, we choose a unique Nash bargaining solution (Nash, 1953) derived from

𝑝∗ = argmax
𝑝

{(𝑉 𝐿
𝑖 + 𝑝 − (𝑉 𝐹

𝑖 − 𝑝))(𝑉 𝐹
𝑗 − 𝑝 − (𝑉 𝐿

𝑗 + 𝑝)) | 𝑝 ≥ 0}

which gives

𝑝∗ = 1
4
[(𝑉 𝐹

𝑖 − 𝑉 𝐿
𝑖 ) + (𝑉 𝐹

𝑗 − 𝑉 𝐿
𝑗 )]. (3.8)

t can be used as the payment given to both agents before the play.

.3. Games with incomplete information

Though a Nash bargaining solution provides an equilibrium with Pareto optimality, it is not ex post incentive compatible. Plainly
peaking, ex post incentive compatibility (EPIC) assures that both agents achieve their maximum utilities if they reveal their valuations
ruthfully. However, if agent 𝑖 reports a false valuation, 𝑉 𝐹

𝑖 , which is greater than the true valuation 𝑉 𝐹
𝑖 , they can collect more from

gent 𝑗. In fact, since all Pareto optimal payments depend on agents’ valuations, there is no way to guarantee EPIC for platooning
ames with complete information.
For this reason, the assumption of complete information is relaxed to achieve a Bayesian Nash equilibrium that is hopefully interim

ncentive compatible (IIC). With incomplete information, every agent’s valuation is refined as functions of their types, 𝜃𝑖,∀𝑖 ∈ 𝑀 𝑡,∀𝑡,
which is the private information intangible to others. Therefore, interim incentive compatibility in general means that before any
outcome is realized, every agent can maximize their expected utility over all other agents’ possible types by reporting their own type
ruthfully, given that all other agents perform in the same way.

.3.1. Utility functions
More specifically, agents’ type in vehicle platooning games represent the valuation of driving-effort reduction sensed by different

gents. Using 𝛿𝑖 to represent their energy-saving benefit, agent 𝑖 thereby has valuation

𝑉 𝐿 = 𝛿𝐿
53
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if they are the leader, and valuation

𝑉 𝐹
𝑖 = 𝛿𝐹𝑖 + 𝜃𝑖

if they are a follower. When 𝜃𝑖 is the private information enclosed to agent 𝑖 themselves, agent 𝑗 and other agents only know that
𝜃𝑖 ∈ 𝛩 = [𝜃, 𝜃], and it follows a cumulative distribution function 𝐹 ∶ 𝛩 → [0, 1], with probability density function 𝑓 ∶ 𝛩 → R.
oreover, functions 𝐹 and 𝑓 are assumed to be continuous and differentiable. Similarly, agent 𝑖 only knows that 𝜃𝑖 ∈ 𝛩, but not
he exact value. Consequently, each agent proposes the bid to maximizes their interim expected utility. In this way, their bid can
e represented as a one-to-one mapping from their own type. When both agents bid by following the same mapping, the expected
ayesian Nash equilibrium can be derived.

.3.2. The Bayesian Nash equilibrium
Our exploration for the games with incomplete information finds that under some certain feasibility conditions, it is possible to

chieve a Bayesian Nash equilibrium. The main result is formally stated as follows:

heorem 3.2. Suppose that agents 𝑖 and 𝑗 participate in the two-agent non-cooperative game with incomplete information, if their types
oth follow uniform distribution on [𝜃, 𝜃] and satisfy

𝜃 − 3
4
𝛥𝑒 ≤ 𝜃𝑖 ≤ 𝜃 − 3

4
𝛥𝑒, (3.9a)

𝜃 + 3
4
𝛥𝑒 ≤ 𝜃𝑗 ≤ 𝜃 + 3

4
𝛥𝑒 (3.9b)

with 𝛥𝑒 being defined as

𝛥𝑒 = (𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) − (𝛿𝐹𝑗 − 𝛿𝐿𝑗 ), (3.9c)

there exists a unique Bayesian Nash equilibrium under which agent 𝑖 has the optimal linear strategy of bidding

𝑏𝑖 = 𝜎𝑖(𝜃𝑖) =
1
3
𝜃𝑖 +

3
8
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

1
8
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

𝜃 + 𝜃
12

, (3.10a)

and agent 𝑗 has the optimal linear strategy of bidding

𝑏𝑗 = 𝜎𝑗 (𝜃𝑗 ) =
1
3
𝜃𝑗 +

3
8
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

1
8
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

𝜃 + 𝜃
12

. (3.10b)

The proof is given in Appendix A.1.

emark 3.2 (Different Uniform Distributions on Types). The theorem above can be extended to the case when agents’ types follow
ifferent uniform distributions. For instance, agent 𝑖’s type uniformly lies in [𝜃𝑖, 𝜃𝑖], and agent 𝑗’s type uniformly lies in [𝜃𝑗 , 𝜃𝑗 ]. In
his case, when 𝜃𝑖 and 𝜃𝑗 satisfy

𝜃𝑗 −
3
4
𝛥𝑒 + 1

24
[(𝜃𝑖 + 𝜃𝑖) − (𝜃𝑗 + 𝜃𝑗 )] ≤ 𝜃𝑖 ≤ 𝜃𝑗 −

3
4
𝛥𝑒 + 1

24
[(𝜃𝑖 + 𝜃𝑖) − (𝜃𝑗 + 𝜃𝑗 )],

𝜃𝑖 +
3
4
𝛥𝑒 − 1

24
[(𝜃𝑖 + 𝜃𝑖) − (𝜃𝑗 + 𝜃𝑗 )] ≤ 𝜃𝑗 ≤ 𝜃𝑖 +

3
4
𝛥𝑒 − 1

24
[(𝜃𝑖 + 𝜃𝑖) − (𝜃𝑗 + 𝜃𝑗 )],

there exists a Bayesian Nash equilibrium under which agents’ optimal linear strategies of bidding are

𝑏𝑖 = 𝜎𝑖(𝜃𝑖) =
1
3
𝜃𝑖 +

3
8
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

1
8
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

𝜃𝑖 + 𝜃𝑖
48

+
𝜃𝑗 + 𝜃𝑗
16

, (3.11a)

𝑏𝑗 = 𝜎𝑗 (𝜃𝑗 ) =
1
3
𝜃𝑗 +

3
8
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

1
8
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

𝜃𝑗 + 𝜃𝑗
48

+
𝜃𝑖 + 𝜃𝑖
16

. (3.11b)

Remark 3.3 (General Distributions on Types). In the above, we only focus on the scenario with uniform distributions. Our analyses
on general distributions reveal that it is hard to derive a closed-form solution because agents adopt asymmetric bidding strategies
considering their differences in energy-saving benefits. We leave the general distribution case as an open question for further study.

3.3.3. Discussions
Fig. 6 illustrates the strategies applied by each agent specified by their types. In the feasible region colored in blue, both agents

adopt the linear bidding strategies specified by Eq. (3.10) and end up with the Bayesian Nash equilibrium. Here, each agent can
retrieve the other agent’s true type by their bid, making the whole mechanism interim incentive compatible. However, in regions
colored in red, one or more agents adopt the extreme strategies, 𝜎𝑗 (𝜃) or 𝜎𝑖(𝜃), to maximize their expected utility. The derivation of
optimal strategies in red regions is provided in Appendix A.1. Therefore, the whole mechanism is not interim incentive compatible:
when an agent are using extreme strategies, the other can only tell the upper and lower bounds of this agent’s type, but not the
exact value.
54
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Fig. 7. Ex post economic efficiency.

Nevertheless, the space for misreporting, equivalently, the infeasible regions for Bayesian Nash equilibrium, can be negligible

when 𝛥𝑒 approaches to zero. This happens when agents are identical in terms of their engine performance, so that changes in

the total energy-saving benefit is insignificant by switching the leading and following positions. Furthermore, if the driving-effort

reduction weighs more heavily in the total valuation than the energy-saving benefit, 𝛥𝑒 can be ignored.
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We then evaluate the ex post economic efficiency from the Bayesian Nash equilibrium. Without loss of generality, assume that
he total utility is maximized when agent 𝑖 becomes the follower, that is to say,

𝛿𝐿𝑗 + 𝛿𝐹𝑖 + 𝜃𝑖 > 𝛿𝐿𝑖 + 𝛿𝐹𝑗 + 𝜃𝑗 , (3.12)

f agent 𝑖 wins the bid under a Bayesian Nash equilibrium, we know that

𝜎(𝜃𝑖) ≥ 𝜎(𝜃𝑗 ) ⟺ 𝛿𝐹𝑖 + 𝛿𝐿𝑗 + 4
3
𝜃𝑖 ≥ 𝛿𝐹𝑗 + 𝛿𝐿𝑖 + 4

3
𝜃𝑗 . (3.13)

omparing the two conditions above, one can conclude that when

𝜃𝑖 − 𝜃𝑗 ∈ (3𝛥𝑒
4

, 𝛥𝑒),

Eq. (3.13) is satisfied but Eq. (3.12) is not, indicating that the outcome is ex post inefficient under this Bayesian Nash equilibrium.
The efficiency is further illustrated in Fig. 7, where x axis indicates agents’ type, and y axis indicates their utility. When agent 𝑗

has the type 𝜃𝑗 , 𝜃𝑏𝑖 is the lowest type of agent 𝑖 that ensures their following position, and 𝜃∗𝑖 is the agent 𝑖’s lowest type that ensures
the efficient outcome is achieved when they are the follower. If 𝜃𝑖 < 𝜃𝑏𝑖 , the bidding outcome is ex post efficient with agent 𝑖 being
the leader. If 𝜃𝑖 ≥ 𝜃∗𝑖 , the bidding outcome is ex post efficient with agent 𝑖 being the following. Thus when 𝜃𝑏𝑖 < 𝜃𝑖 < 𝜃∗𝑖 , there is no
ex post efficient.

Remark 3.4 (Independent Payment). In the end, we provide the equilibrium result when independent payment is applied. The optimal
bidding strategies adopt a similar linear format with parameters defined below:

𝑎𝑖 = 𝑎𝑗 = 1
4
,

𝑐𝑖 = 1
3
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

1
6
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

𝜃 + 𝜃
8

,

𝑐𝑗 = 1
3
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

1
6
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

𝜃 + 𝜃
8

.

The feasible region is given by

𝜃 − 2
3
𝛥𝑒 ≤ 𝜃𝑖 ≤ 𝜃 − 2

3
𝛥𝑒,

𝜃 + 2
3
𝛥𝑒 ≤ 𝜃𝑖 ≤ 𝜃 + 2

3
𝛥𝑒.

Unlike that in games with complete information, applying independent payment changes the result in games with incomplete
nformation. Obviously, independent payment leads to a larger feasible region. As a trade-off, we can prove that the ex post inefficient
egion is enlarged from 𝜃𝑖 − 𝜃𝑗 ∈ ( 3𝛥𝑒4 , 𝛥𝑒) to 𝜃𝑖 − 𝜃𝑗 ∈ ( 2𝛥𝑒3 , 𝛥𝑒). As a conclusion, interdependent payment is more favorable from the
ystem’s perspective and will be further studied numerically in Section 5.

. Many-to-many coordination

Below we first introduce the one-sided matching model and its feasibility to be used in the many-to-many coordination in
ection 4. Section 4.2 introduces a benefit redistribution mechanism that secures the matching stability. Section 4.3 then describes
decentralized algorithm that generates the stable matching. Finally, the underlying optimization problem of the decentralized
lgorithm is provided and discussed in Section 4.4.

.1. A general model

The one-sided matching model is originated in roommate matching (Gale and Shapley, 1962), which is a classic economic model
escribing how graduate students choose each other as their roommate. Comparatively, readers from the transportation community
ight be more familiar with bipartite matching or two-sided matching problems. A typical example is the matching of passengers
nd drivers in a ride-hailing market. In bipartite matching, agents are divided into two sides, and no agent can pair with another
rom the same side. In contrast, agents in the roommate matching problem are not distinguishable so that they are regarded as on
ne side. Accordingly, the dynamic process described in Section 2.4 can be customized as follows:

• In each time step 𝑡, agents broadcast their information within their neighborhoods.
• Based on the information received and the benefit mechanism specified, agents calculate the utilities their neighbors can
bring to them and rank their neighbors accordingly, generating a preference list denoted as 𝑃 (𝑖),∀𝑖 ∈ 𝑡. Moreover, the most
preferable neighbor of agent 𝑖 is denoted as 𝑃 (𝑖, 1), the second most is denoted as 𝑃 (𝑖, 2), and so on.

• Each agent then proposes the pairing requirement by following the order of their preference list. In the meantime, they are
allowed to receive proposals from their neighbors. If both agents agree to pair with each other, they become a pair in the
matching and are referred to as each other’s partners. An agent is also allowed to not form platoons with others, either because
there are an odd number of agents, or because matching with others deteriorates their own utility.

• When no agent can pair with another, the whole matching process stops.
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Fig. 8. Stable matching.

4.2. Matching stability

The core solution concept in all kinds of matching problems is stability. Generally speaking, stability ensures each agent has no
incentive to change its current partner, either because the current partner is the most-preferable one or because their more preferred
ones prefer others. Contrary to the fact that stable matching always exists in bipartite matching problems, Irving (1985) has shown
that the stable matching in the one-sided matching problems does not always exist. For example, Fig. 8 shows four agents 𝑖, 𝑗, 𝑘, ℎ
who can be matched into two pairs. Assume that agent 𝑖 prefers agent 𝑗 the most, agent 𝑗 prefers agent 𝑘 the most, agent 𝑘 prefers
agent 𝑖 the most, and agent ℎ is least preferred by agents 𝑖, 𝑗, 𝑘. If agents 𝑖 pairs with agent 𝑗 and agent 𝑘 pairs with agent ℎ, agent
𝑗 and 𝑘 will prefer each other rather than their current partners, forming a blocking pair that makes the current matching unstable.
Indeed, it can be easily discovered that other matchings of the four also possess blocking pairs, indicating that no stable matching
exists in this example.

Fortunately, since agents in vehicle platooning use cardinal utilities as references to generate ordinal preferences of their
neighbors, we prove that the undesirable blocking pairs can be eliminated by a simple benefit redistribution mechanism, thereby
ensuring the existence of stable matching. Theorem 4.1 provides the formal statement.

Theorem 4.1. Assume that in step 𝑡 of the dynamic process, a random pair of neighbors 𝑖 and 𝑗 achieve the maximum total utility, 𝑟𝑖,𝑗 ,
under an optimal platoon formation 𝜒∗

𝑖,𝑗 . Their individual utilities are 𝑤𝑖(𝑟𝑖,𝑗 ) and 𝑤𝑗 (𝑟𝑖,𝑗 ), respectively. If 𝑤𝑖(𝑟𝑖,𝑗 ) is a strictly increasing
function of 𝑟𝑖,𝑗 , ∀𝑖 ∈ 𝑡, ∀𝑒(𝑖, 𝑗) ∈ 𝐸𝑡, then there exist stable matchings in this step.

To prove this, we first introduce the concept of odd ring in agents’ preferences. As an example, blocking pairs always exist in
Fig. 8 because agents 𝑖, 𝑗, 𝑘’s preferences form an odd ring:

𝑖 ≻𝑘 𝑗 ≻𝑖 𝑘 ≻𝑗 𝑖.

Here, the notation 𝑖 ≻𝑘 𝑗 states that agent 𝑘 strictly prefers agent 𝑖 over agent 𝑗. Therefore, the three agents’ preferences contribute
a loop, which starts from agent 𝑖 and ends at agent 𝑖. An odd ring also permits the existence of weak preference: e.g., agent 𝑘 may
weakly prefer agent 𝑖 over agent 𝑗, denoting as 𝑖 ⪰𝑘 𝑗. However, there must exist at least one strict preference in an odd ring. In
other words, an odd ring does not have the following format:

𝑖 ⪰𝑘 𝑗 ⪰𝑖 𝑘 ⪰𝑗 𝑖.

Then the relationship between odd rings and stable matchings are given by the following lemma.

Lemma 4.1. If agents’ preferences generate no odd rings, there exist stable one-sided matching.

We skip its proof for the sake of space. Readers who have an interest may refer to Chung (2000). Based on Lemma 4.1, we now
provide the proof for Theorem 4.1.

Proof. Assume that there exists an odd ring on agents’ preferences. Therefore, it is sufficient to say that there are agents 1..., 𝑛 such
that for each agent 𝑖, 1 ≤ 𝑖 ≤ 𝑛,

𝑖 − 1 ⪰𝑖 𝑖 + 1(mod 𝑛),

and 𝑛 is a odd number.
Since preferences are generated from utilities, and 𝑤𝑖 is a monotonically increasing function, one can further conclude that
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By definition, there must exist some agent 𝑘 in the ring, who strictly prefers agent 𝑘−1 over agent 𝑘+1, meaning that 𝑟𝑘,𝑘−1 > 𝑟𝑘,𝑘+1.
n sum, we get

𝑟𝑛1 ≥ 𝑟12 ≥ ⋯ ≥ 𝑟𝑘,𝑘−1 > 𝑟𝑘,𝑘+1... ≥ 𝑟𝑛−1,𝑛 ≥ 𝑟𝑛1 ⇒ 𝑟𝑛1 > 𝑟𝑛1,

clear false statement. Therefore, the assumption must be incorrect. Using Lemma 4.1, we can conclude that stable matchings exist,
hen using utilities 𝑤𝑖(𝑟𝑖,𝑗 ),∀𝑖 ∈ 𝑀 𝑡,∀𝑒(𝑖, 𝑗) ∈ 𝐸𝑡 described above. □

For any arbitrary pair of neighbors 𝑖 and 𝑗, once the optimal platoon 𝜒∗
𝑖,𝑗 is known, each agent is aware of their valuations

𝑖(𝜒∗
𝑖,𝑗 , 𝜃𝑖, 𝜃𝑗 ), 𝑉𝑗 (𝜒

∗
𝑖,𝑗 , 𝜃𝑖, 𝜃𝑗 ), and their utilities 𝑤𝑖(𝑟𝑖,𝑗 ), 𝑤𝑗 (𝑟𝑖,𝑗 ). Let

𝑤𝑖(𝑟𝑖,𝑗 ) = 𝑤𝑗 (𝑟𝑖,𝑗 ) =
1
2
𝑟𝑖,𝑗 , (4.1)

nd the transfer functions be

𝑝𝑖 =
1
2
𝑟𝑖,𝑗 − 𝑉𝑖(𝜒∗

𝑖,𝑗 , 𝜃𝑖, 𝜃𝑗 ),

𝑝𝑗 =
1
2
𝑟𝑖,𝑗 − 𝑉𝑗 (𝜒∗

𝑖,𝑗 , 𝜃𝑖, 𝜃𝑗 ),

he mechanism is budget-balanced and will be used in the further numerical examples. In this way, agents’ transfers are determined
y the final utilities. It is quiet contrary to the games in one-to-one coordination, where transfer functions are given at first to
nduce the final utilities. In practice, the optimal formation of a single platoon formed from two neighbors can be easily calculated
y themselves without using the computational power of the centralized controller. However, agents must share their complete
nformation to serve this purpose. It then leads to the question on incentive compatibility, which we will discuss in Section 4.4.

4.3. The decentralized dynamic process

Based on the previous result, this section discusses agents’ pairing procedure that results in a stable matching. Under the one-sided
matching environment, each agent can propose to and receive proposals from their neighbors simultaneously. Moreover, agents’
behaviors not only affect their neighbors, but also affect those who are indirectly connected with them, as long as the underlying
communication network is a connected graph. For this reason, depending on the moment that the new agent influences the rest of
the agent’s pairing procedure, different dynamic processes can be generated.

Suppose that when two agents successfully pair with each other, all their neighbors will be notified via V2V communication.
In one method, we can require neighbors to reproduce their preferences by taking the newly-generated agent into consideration,
regardless of whether they have paired with others or not. Consequently, an agent is likely to reproduce their preference several
times before a pair happens. Because the dynamic process is conducted distributively and asynchronously, this method provokes a
stochastic and unpredictable final result.
Data: Vehicle Information
Result: Platoon Formation and Individual Payoffs
while |𝑡

| > 1 do
for ∀𝑖 ∈ |𝑡

| do
Update their preference list 𝑃 (𝑖).

end
while ∃ 𝑖 ∈ |𝑡

| 𝑠.𝑡. 𝑃 (𝑖) ≠ ∅ do
if Receive a rejection then

Update 𝑃 (𝑖) ∶ 𝑛 ← reject agent, 𝑃 (𝑖, 𝑚) = 𝑃 (𝑖, 𝑚 + 1),∀𝑛 ≤ 𝑚 ≤ |𝑃 (𝑖)| − 1.
else if Receive a proposal then

Update 𝑃 (𝑖) ∶ 𝑛 ← proposed agent, 𝑃 (𝑖, 𝑚) =null, ∀𝑛 + 1 ≤ 𝑚 ≤ |𝑃 (𝑖)|;
if 𝑛 = 1 then

Accept.
else if Receive acceptance from 𝑃 (𝑖, 1) then

𝑃 (𝑖) = ∅;
pair with 𝑃 (𝑖, 1) into a new agent 𝑖′, let 𝑃 (𝑖′) = ∅;
𝑡 = 𝑡∕{𝑖, 𝑃 (𝑖, 1)}

⋃

{𝑖′}.
else

Propose to agent 𝑃 (𝑖, 1);
end

end
𝑡 = 𝑡 + 1

nd
Algorithm 1: The Deterministic Matching Procedure

Another method enforces that neighbors only consider the newly-generated agent once they complete the current pairing.
herefore, only if a matching for all current agents is completed can the dynamic process move to the next step. This method
ctually applies the first phase of Irving’s algorithm (Irving, 1985) in each step of the dynamic process, and is formally stated in
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Algorithm 1. The whole process is then illustrated by the flowchart provided in Fig. 11. We call it the Deterministic Matching Procedure
(DMP) to emphasize that it leads to a fixed outcome. The proof is given in Proposition 4.1. Before that, two related properties are
stated and proved.

Lemma 4.2. A matching is finished when all agents have empty preference lists, indicating whether the agent is paired with another agent,
or stays single.

Proof. This can be simply proved by contradiction. If agent 𝑖 with a nonempty preference list 𝑃 (𝑖) is unmatched, then all agents
n 𝑃 (𝑖) are unmatched. Otherwise, if an arbitrary agent 𝑗 on 𝑃 (𝑖) has been matched with someone else, see 𝑘, 𝑗 would broadcast
he matching to 𝑖 and 𝑖 would delete 𝑗. Therefore 𝑖 must have an empty preference list. □

Since the number of agents is finite in the dynamic platoon formation process, Lemma 4.2 ensures that DMP will terminate in
inite steps.

emma 4.3. In each step of DMP, the agent pair that achieves the maximum total utility must be matched.

roof. If the maximum total utility is achieved by pair 𝑖, 𝑗, meaning that 𝑟𝑖,𝑗 ≥ 𝑟𝑘,𝑙 ,∀𝑘, 𝑙 ∈ , according to Eq. (4.1) the following
nequalities must stay true as well:

𝑤𝑖(𝑟𝑖,𝑗 ) ≥ 𝑤𝑖(𝑟𝑖,𝑘),∀𝑘 ∈  (𝑖)

𝑤𝑗 (𝑟𝑖,𝑗 ) ≥ 𝑤𝑗 (𝑟𝑖,𝑘),∀𝑘 ∈  (𝑗)

quivalently, 𝑖 is the first preference on 𝑗’s list and vise versa. By the proposed sequence, both of them will first propose to each
ther and they will be matched accordingly. □

roposition 4.1. DMP always results in a deterministic outcome.

roof. In each step 𝑡, Lemma 4.3 ensures that the pair of agents with the maximum total utility will be matched and then removed.
mong the rest of the agents, the pair with the maximum total utility will be matched. As the number of agents is finite and the
otal utility can be ordered, the matching will always terminate at a finite number of steps, say 𝑚 steps. The total utility is then
he summation of the 𝑚 largest total utilities generated by 𝑚 disjointed pairs of agents. Thus the outcome at the end of each step
s deterministic. When no agents outside join the matching system during the dynamic process, the final outcome will always be
ixed. □

.4. The optimization perspective

As introduced previously, the purpose of matching is to allow agents to pair with better partners to improve the total system
tility. Therefore, the matching procedure can be regarded as decentralized heuristic algorithms that solve the following optimization
roblem in each step:

max
𝑧

∑

𝑒(𝑖,𝑗)∈𝐸
𝑤𝑖,𝑗𝑧𝑖,𝑗 (4.2a)

∑

𝑗∈ (𝑖)
𝑧𝑖,𝑗 ≤ 1, ∀𝑖 ∈  (4.2b)

𝑧𝑖,𝑗 = 𝑧𝑗,𝑖, ∀𝑒(𝑖, 𝑗) ∈ 𝐸 (4.2c)
max{

∑

𝑘∶ 𝑒(𝑖,𝑘)∈𝐸, 𝑘≠𝑗
𝑤𝑖,𝑘𝑧𝑖,𝑘 −𝑤𝑖,𝑗 (1 − 𝑧𝑖,𝑗 ),

∑

𝑘∶ 𝑒(𝑗,𝑘)∈𝐸, 𝑘≠𝑖
𝑤𝑗,𝑘𝑧𝑗,𝑘 −𝑤𝑗,𝑖(1 − 𝑧𝑗,𝑖)} ≥ 0, ∀𝑒(𝑖, 𝑗) ∈ 𝐸 (4.2d)

𝑧𝑖,𝑗 ∈ {0, 1},∀𝑒(𝑖, 𝑗) ∈ 𝐸 (4.2e)

ere, agents’ communication network is represented by a general graph 𝐺(, 𝐸). If 𝑖, 𝑗 ∈  are neighbors, there is an edge
(𝑖, 𝑗) ∈ 𝐸. The objective (4.2a) maximizes the system total utility by pairing two agents with each other. Parameter 𝑤𝑖,𝑗 indicates
he predetermined utility of agent 𝑖 if they pair with agent 𝑗. A binary variable 𝑧𝑖,𝑗 indicates whether 𝑖 pairs with 𝑗. Hence constraint
4.2b) states that each agent can match with at most one other agent in its neighborhood and constraint (4.2c) regulates that the
atching is reciprocal: if 𝑖 pairs with 𝑗, 𝑗 pairs with 𝑖 as well. Constraint (4.2d) mathematically describes matching stability, under
hich no blocking pair is allowed. Furthermore, the solution quality of DMP can be concluded in Theorem 4.2:

heorem 4.2. By using the utility function Eq. (4.1), DMP in each step generates the matching with the maximum system utility that
uarantees stability, equivalently, DMP provides the optimal solution of Problem (4.2).

The proof is provided in Appendix A.3.
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Remark 4.1 (Incentive Compatibility and Incomplete Information). By assuming all agents broadcast truthful information in their
neighborhoods, we set the incentive compatibility issue aside and derive the one-sided stable matching. Theoretically, no mechanism
implements stable matchings in which truth-telling is the dominant strategy for all agents, even in two-sided matching (Roth,
1982). Consequently, one-sided matching cannot guarantee the incentive compatibility by nature. Studying stable matchings with
incomplete information is meaningful in this sense. However, when information asymmetry is involved between any candidate pair
of agents, no consensus on their optimal platoon formation can be achieved by this pair. And optimal platoon formation is indeed
the basis for achieving a stable one-sided matching for vehicle platooning. Therefore, we only focus on the matching with complete
information and leave those with incomplete information for a future study.

5. Numerical examples

In this section, we consider an arbitrary freeway segment shared by a set of vehicles who are expected to form platoons by
coordination. Cases with the number of vehicles varying from 7 to 25 are studied. In each case, a vehicle has a type belonging to
either heavy-duty, medium-duty or light-duty vehicles, whose parameters are identical as those in Sun and Yin (2019). The platoon
size limit is set to be seven for all cases. The solution quality and computational efficiency of the decentralized coordination schemes
are evaluated by comparing them with solutions achieved in the centralized platoon formation approach developed in Sun and Yin
(2019). The centralized approach employs a mixed integer program and a column-generation-based algorithm to find the optimal
platoon formation for all vehicles in the system, considering their heterogeneity in fuel efficiency, vehicle type, and speed preference.
The optimal platoon formation specifies the number of platoons, the vehicle sequence in each platoon, and the platoon operating
speed. We consider two scenarios. The first scenario implies that all agents possess complete information on others’ utilities, so that
Nash bargaining solutions are used in the one-to-one coordination. The second scenario allows agents to have incomplete information
on others’ utilities. Therefore, Bayesian Nash equilibrium solutions are adopted in the one-to-one coordination.

5.1. Games with complete information

In this scenario, we assume that fuel-savings is the main source of vehicle platooning’ utility. By referencing the fuel consumption
function developed in Sun and Yin (2019), we provide 𝑢𝐿𝑖 and 𝑢𝐹𝑖 , the utility functions for agent 𝑖 when platooning with agent 𝑗
under the leading and the following positions respectively, in the one-to-one coordination:

𝑢𝐿𝑖 = 𝑉 𝐿
𝑖 + 𝑝∗

= 𝛾
∑

𝑚∈𝑀(𝑖)
[𝐹𝑚(𝑣𝑖1, 𝑛𝑖,𝐏(𝐢)) − 𝐹𝑚(𝑣𝑖1, 𝑛𝑖 + 𝑛𝑗 ,

[

𝐏(𝐢) 0
0 𝐏(𝐣)

]

)] + 𝑝∗ (5.1)

𝑢𝐹𝑖 = 𝑉 𝐹
𝑖 − 𝑝∗

= 𝛾
∑

𝑚∈𝑀(𝑖)
[𝐹𝑚(𝑣𝑖1, 𝑛𝑖,𝐏(𝐢)) − 𝐹𝑚(𝑣𝑗1, 𝑛𝑖 + 𝑛𝑗 ,

[

𝐏(𝐣) 0
0 𝐏(𝐢)

]

)]

+ 𝛼𝑖
∑

𝑚∈𝑀(𝑖)
[(𝑣𝑖1 − 𝑣𝑚)2 − (𝑣𝑗1 − 𝑣𝑚)2] − 𝑝∗ (5.2)

In Eq. (5.1), 𝑝∗ represents the side-payment determined by the Nash bargaining solution. The valuation 𝑉 𝐿
𝑖 is given by the monetary

value of fuel-savings. The parameter 𝛾 is the gas price. The ordered set of vehicles contained in agent 𝑖 is denoted as 𝑀(𝑖), which
has a size of |𝑀(𝑖)|. For the 𝑚th vehicle in the set𝑀(𝑖), its individual fuel consumption before joining with agent 𝑗 is 𝐹𝑚(𝑣𝑖1, 𝑛𝑖,𝐏(𝐢)),
a convex function of the leader vehicle’s speed 𝑣𝑖1:

𝐹𝑚(𝑣𝑖1, 𝑛𝑖,𝐏(𝐢)) = 𝛽𝑚3(𝑛𝑖,𝐏(𝐢))𝑣2𝑖1 + 𝛽𝑚2𝑣𝑖1 + 𝛽𝑚1 +
𝛽𝑚0
𝑣𝑖1

Here, 𝛽𝑚𝑘, 𝑘 = 0, 1, 2, 3 are vehicle-specific parameters, and 𝛽𝑚3 is determined by the number of vehicles 𝑛𝑖 and the vehicle sequence
𝐏(𝐢) in platoon 𝑖. More specifically, 𝐏(𝐢) is a 𝑛𝑖 × 𝑛𝑖 matrix with entries 𝑝𝑙𝑚 defined as follows.

𝑝𝑙𝑚 =
{

1, if 𝑚 = 𝑙,
0, otherwise. ∀1 ≤ 𝑚, 𝑙 ≤ |𝑀(𝑖)|.

When the 𝑚th vehicle is in the platoon composed by agent 𝑖 and 𝑗, its individual fuel cost is determined by the leading vehicle’s

peed 𝑣𝑖1, number of vehicles 𝑛𝑖 + 𝑛𝑗 , and the vehicle sequence
[

𝐏(𝐢) 0
0 𝐏(𝐣)

]

, with 𝐏(𝐣) representing the vehicle sequence in agent 𝑗.

Therefore, the large matrix
[

𝐏(𝐢) 0
0 𝐏(𝐣)

]

indicates that agent 𝑖 leads agent 𝑗 with their inner vehicle sequences remaining unchanged.

Similarly, the term 𝛾
∑

𝑚∈𝑀(𝑖)[𝐹𝑚(𝑣𝑖1, 𝑛𝑖, [𝐏(𝐢)])−𝐹𝑚(𝑣𝑗1, 𝑛𝑖+𝑛𝑗 ,
[

𝐏(𝐣) 0
0 𝐏(𝐢)

]

)] in Eq. (5.2) defines the monetary value of fuel-savings

when agent 𝑖 is the follower. Since agent 𝑗 is leading the whole platoon now, the fuel consumption of 𝑚th vehicle under platooning

is determined by the operating speed 𝑣𝑗1, the number of vehicles 𝑛𝑖 + 𝑛𝑗 , and the vehicle sequence
[

𝐏(𝐣) 0
]

. An additional term,
60
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Fig. 9. Efficiency comparisons of the centralized approach, Nash bargaining solution, and one-sided matching for utilities without driving-effort reduction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

𝛼𝑖
∑

𝑚∈𝑀(𝑖)[(𝑣𝑖1 − 𝑣𝑚)2 − (𝑣𝑗1 − 𝑣𝑚)2], is then introduced to describe the disutility in speed deviation and the sensitivity term 𝛼𝑖 is
assumed to be known.

In the one-sided matching problem, the maximum utility of agent 𝑖 and 𝑗 being in one platoon is provided by

𝑟𝑖,𝑗 = max
𝑣,𝐏(𝐢,𝐣)

∑

𝑚∈𝑀(𝑖,𝑗)
[𝐶0

𝑚 − 𝐹𝑚(𝑣, |𝑀(𝑖, 𝑗)|,𝐏(𝐢, 𝐣))] −
∑

𝑚∈𝑀(𝑖)
𝛼𝑖(𝑣 − 𝑣0𝑚)

2 −
∑

𝑚∈𝑀(𝑗)
𝛼𝑗 (𝑣 − 𝑣0𝑚)

2

𝑠.𝑡.𝑣 ∈ [𝑣, 𝑣]

ere, 𝑀(𝑖, 𝑗) refers to the set of vehicles from both agent 𝑖 and 𝑗, which has a size of |𝑀(𝑖, 𝑗)|. For simplicity, we use 𝐶0
𝑚 to indicate

vehicle 𝑚’s current cost, and 𝑣0𝑚 to indicate its current speed ∀𝑚 ∈ 𝑀(𝑖, 𝑗). The maximum utility 𝑟𝑖,𝑗 is derived by optimizing the
platoon speed 𝑣 and vehicle sequence 𝐏(𝐢, 𝐣), with 𝑣 subject to the speed limits 𝑣 and 𝑣. By optimizing 𝐏(𝐢, 𝐣), the previous vehicle
sequences within agent 𝑖 and 𝑗 will be changed.

It should be noted that all the utilities are derived when agent 𝑖 and agent 𝑗 together has a vehicle size that is less that 𝑙, the
platoon size limit defined in Section 2.4. Otherwise, they two will not form platoon together.

Fig. 9 presents the utilities under the Nash bargaining solution and one-sided matching in all 19 cased by comparing them with
he optimal utilities achieved by the centralized approach. For a better illustration, all utilities have been normalized, so that those
chieved under the centralized approach equals 1 (red line), regardless of the number of vehicles tested. As indicated previously,
ne-to-one coordination generates stochastic solution due to random pairing, so that we conduct 200 times of the dynamic process,
esulting in a range of random outcomes shown in the purple boxes in Fig. 9. More specifically, each vertical purple line indicates
the full range of the obtained total utilities under the corresponding case; the box represents the first quartile to the third quartile
of the utilities; the dot in the middle is the median value of the utilities, while the purple circles are outliers plotted individually.

On average, the generated total utility achieves 51.8% of the global optimality generated by solving the optimal platoon
formation in the centralized approach. It is an acceptable solution quality for several reasons. First, one-to-one coordination does
not optimize platoon operating speed and intra-agent vehicle sequence, while the centralized approach does so. Then one-to-one
coordination could only find solutions in a much smaller feasible region than the centralized approach, limiting its performance
in solution optimality. Second, the trade-off between solution optimality and computational efficiency is inevitable when shifting
from the centralized approach to the decentralized approach. But the loss in solution optimality is compensated by the gain in
computational efficiency in the latter approach. A 50% loss is well accepted in the literature. For example, a decentralized consensus
building to perform robot task allocation can only guarantee 50% optimality at best (Choi et al., 2009). Lastly, decentralized
approaches only generate stable solutions, where the optimal solutions from the centralized approach are hard to prove to be stable.

When applying the one-sided matching model for many-to-many coordination, every candidate pair of agents must optimize
their vehicle sequence and speed to determine the associated utilities and preferences first. Theorem 4.2 ensures a deterministic
result under each case. However, the solution performance is unavoidably influenced by the communication network topology: if
an agent can connect to at most four other agents, DMP generates an average of 64.3% of the global optimality. When all agents
are assumed to be connected, DMP achieves 68.2% of the global optimalities on average, which is a 16.4% improvement compared
to the Nash bargaining solution. The blue dots in Fig. 9 illustrate the deterministic result when all agents are connected.

It can be seen that when all information is public, many-to-many coordination improves both individuals’ and system’s utilities.
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However, compared to the centralized approach, there is still a 31.8% optimality gap on average. The optimization problem (4.2)
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Table 2
Solutions for cases under utilities without driving-effort reduction.
Case Normalized Utility Computational Time (s)

One-to-One Many-to-Many Centralized One-to-One Many-to-Many

Mean SD

7 0.564 0.130 0.739 5.70 0.17 0.47
8 0.456 0.088 0.831 13.40 0.12 0.30
9 0.550 0.080 0.645 22.30 0.12 0.29
10 0.488 0.109 0.806 28.37 0.10 0.24
11 0.530 0.070 0.556 39.08 0.11 0.28
12 0.525 0.073 0.824 39.09 0.12 0.27
13 0.462 0.054 0.696 85.94 0.13 0.23
14 0.436 0.072 0.636 110.00 0.12 0.26
15 0.517 0.070 0.628 121.35 0.12 0.51
16 0.501 0.058 0.608 157.79 0.12 0.24
17 0.514 0.068 0.610 154.00 0.13 0.24
18 0.579 0.087 0.790 168.02 0.17 0.29
19 0.555 0.068 0.823 185.40 0.16 0.30
20 0.565 0.066 0.586 231.53 0.13 0.25
21 0.488 0.056 0.611 295.47 0.13 0.52
22 0.554 0.064 0.705 322.41 0.13 0.32
23 0.551 0.076 0.725 288.22 0.12 0.30
24 0.512 0.089 0.518 281.24 0.15 0.27
25 0.588 0.071 0.624 314.81 0.14 0.29

reveals that the dynamic platoon formation process offers a heuristic algorithm framework for solving the original platoon formation
problem. At each step of the process, one-sided matching generates the optimal solution with the constraint that one agent can only
match with another one agent in their neighborhood. Comparatively, the centralized approach allows many-to-many matching all
at once. The loss of economic efficiency is compensated in two aspects. First, the behavioral stability is theoretically ensured by
matching stability, which is in general impossible in the centralized approach. Second, one-sided matching can be performed very
fast, releasing the computational burden from the centralized approach as we expect.

More detailed numerical results are provided in Table 2. For one-to-one coordination, we provide the mean value and the standard
deviation of the normalized utilities under each case. For many-to-many coordination, we provide the deterministic results. The
computational time Nasof all three approaches are then compared in seconds. It can be seen that the two decentralized approaches
significantly improve computational efficiencies, making them suitable to be implemented in real-time for large-scale systems.

5.2. Games with incomplete information

To intimate the one-to-one coordination with incomplete information, each agent’s exact valuation on driving-effort reduction is
assumed to be known only by themselves. Therefore, when agent 𝑖 is the leader, their utility remains the same as that in Eq. (5.1).
When agent 𝑖 is following agent 𝑗, their utility is provided as follows:

𝑢𝐹𝑖 = 𝑉 𝐹
𝑖 − 𝑝∗

= 𝛿𝐹𝑖 + 𝑠𝑖𝜃𝑖 − 𝑝∗

= 𝛾
∑

𝑚∈𝑀(𝑖)
[𝐹𝑚(𝑣𝑖1, 𝑛𝑖,𝐏(𝐢)) − 𝐹𝑚(𝑣𝑗1, 𝑛𝑖 + 𝑛𝑗 ,

[

𝐏(𝐣) 0
0 𝐏(𝐢)

]

)]

+ (
∑

𝑚∈𝑀(𝑖)
𝛽[(𝑣𝑖1 − 𝑣𝑚)2 − (𝑣𝑗1 − 𝑣𝑚)2] + 1)𝜃𝑖 − 𝑝∗ (5.3)

Here, 𝛿𝐹𝑖 is agent 𝑖’s monetary fuel-savings at the following position, and 𝑠𝑖𝜃𝑖 is their driving-effort reduction deteriorated by the
deviation disutility. In this way, we assume the agent-specific sensitivity 𝛼𝑖 appeared in Eq. (5.2) is a production of their driving-effort
reduction 𝜃𝑖 and a positive constant 𝛽. By assumption, agent 𝑗 knows the term 𝑠𝑖 = 𝛽[(𝑣𝑖1 − 𝑣𝑚)2 − (𝑣𝑗1 − 𝑣𝑚)2] + 1 but does not know
the term 𝑠𝑖𝜃𝑖. Therefore, agent 𝑗 assumes that 𝑠𝑖𝜃𝑖 follows a uniform distribution on [𝑠𝑖𝜃, 𝑠𝑖𝜃]. Accordingly, the optimal bidding
strategy elaborated in Eq. (3.11) is applied. It is also worth mentioning that 𝛽[(𝑣𝑖1 − 𝑣𝑚)2 − (𝑣𝑗1 − 𝑣𝑚)2] is usually relatively small so
that the value of 𝑠𝑖 is around 1.

Contrarily, we assume that the valuations on driving-effort reduction are known when conducting the optimal platoon formation
in the centralized approach and the one-sided matching. For the latter case, agent 𝑖 and 𝑗 jointly determine the their optimal utility
by solving the following problem:

𝑟𝑖,𝑗 = max
𝑣,𝐏(𝐢,𝐣)

{
∑

𝑚∈𝑀(𝑖,𝑗)
𝐶0
𝑚 − 𝐹𝑚(𝑣, |𝑀(𝑖, 𝑗)|,𝐏(𝐢, 𝐣))]

−
∑

𝑚∈𝑀(𝑖)
(1 − 𝑠𝑖(𝑣 − 𝑣0𝑚)

2)𝜃𝑖 −
∑

𝑚∈𝑀(𝑗)
(1 − 𝑠𝑗 (𝑣 − 𝑣0𝑚)

2)𝜃𝑗 |𝑣 ∈ [𝑣, 𝑣]}
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Fig. 10. Efficiency comparisons of the centralized approach, Bayesian Nash equilibrium solution, and one-sided matching for utilities with driving-effort reduction.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Solutions for cases under utilities with driving-effort reduction.
Case Normalized Utilities Computational Time (s)

One-to-One Many-to-Many Centralized One-to-One Many-to-Many

Mean SD

7 0.474 0.179 0.590 89.85 0.03 0.05
8 0.440 0.162 0.597 76.26 0.03 0.06
9 0.494 0.124 0.680 209.45 0.03 0.08
10 0.523 0.162 0.691 345.94 0.03 0.09
11 0.569 0.121 0.711 311.40 0.03 0.11
12 0.563 0.132 0.688 687.93 0.03 0.11
13 0.622 0.091 0.711 441.67 0.03 0.15
14 0.582 0.106 0.668 1085.09 0.03 0.16
15 0.579 0.083 0.752 423.76 0.03 0.20
16 0.602 0.092 0.750 619.51 0.04 0.21
17 0.630 0.095 0.765 905.23 0.04 0.24
18 0.642 0.087 0.803 956.19 0.04 0.30
19 0.604 0.075 0.722 1138.77 0.04 0.29
20 0.624 0.077 0.743 1584.62 0.04 0.34
21 0.634 0.077 0.775 423.84 0.04 0.37
22 0.652 0.066 0.819 813.43 0.04 0.41
23 0.667 0.063 0.768 1252.06 0.04 0.45
24 0.638 0.060 0.724 2085.00 0.04 0.50
25 0.628 0.056 0.750 2292.65 0.04 0.54

As for the result, the one-to-one coordination achieves 58.8% of the global optimalities on average (purple box plots in Fig. 10),
which is a 7.0% optimality improvement compared to the previous scenario. Moreover, the standard deviation of the normalized
utilities is decreasing with the increase of number of vehicles. When all vehicles are connected with each other, one-sided matching
achieves 72.1% of the economic efficiency on average (blue dots in Fig. 10), a 3.9% optimality improvement from that under the
first scenario. The solution quality and computational time can be found in Table 3.

The results reveal that many-to-many coordination via one-sided matching is a better coordination scheme in terms of economic
fficiency. However, when driving effort is considered, one-to-one coordination via bidding brings relatively greater efficiency
mprovement. In the numerical examples, the parameters are selected in a way that the driving-effort reduction is of the same
agnitude as energy-savings: each occupies about half of the total utility. While finding the formation with the most energy-
aving benefit is a complicated combinatorial optimization problem, finding the platoon formation with the most driving-effort
eduction is much less complicated. Therefore, when the ratio of driving-effort reduction to the total utility increases, the advantage
f using the one-to-one coordination over the many-to-many coordination appears. In addition, as we indicated previously, the ex
ost inefficiency by using Bayesian Nash equilibrium diminishes when the energy-saving benefit is negligible.
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6. Discussions and conclusions

As an early adopter of CAV technology, cooperative vehicle platooning has drawn great attention from both industry and
cademia in recent years. Among the many research questions and practical problems, the behavioral instability issue can be a
rucial barrier for facilitating platooning by different vehicle owners, limiting the vehicle platooning to only a small scale.
This study has proposed a decentralized platooning system for general, multi-brand vehicles with heterogeneous drivers.

ompared to the previous study where vehicles are formed into platoons by a central controller all at once (Sun and Yin, 2019),
this decentralized system embraces a dynamic platoon formation process. Individual vehicles and previously formed platoons are
regarded as rational agents in the process, who can only platoon with another agent at each step. Based on whether agents evaluate
one or more peer agents before platooning, two schemes, one-to-one and many-to-many coordination, are developed.

In practice, the platoon formation process can be restricted by the meeting locations, e.g., whether vehicles meet in a hub or in
motion, and their road and traffic conditions. The dynamic decentralized system can be tailored to these practical considerations by
changing the agents in the system, the communication network topology, and their valuation functions. When vehicles meet at hubs
or parking lots, their platooning process is separate from traffic so that their costs in forming platoons are negligible. Therefore,
their valuations are mainly composed by benefits and costs in the formed platoons. Meanwhile, all vehicles can participate in the
system as long as they are connected via V2V communication. However, depending on their meeting distance, speeds, surrounding
traffics, road conditions, including the number of lanes and road gradient, vehicles’ fuel and time consumption to form platoons in
motion can vary significantly, which should also be included in the valuation. For instance, when a vehicle intends to platoon with
its precedent vehicle, it may cost too much fuel energy and time to conduct lane-changing and overtaking due to the surrounded
heavy traffic (Liang et al., 2015), making the opportunity to be the lead vehicle less attractive.

Theoretically, the one-to-one coordination extends the classical bilateral trade model in the economics community. This is
inspired by the fact that a platoon’s leading vehicle always gains less benefits than its followers while contributing the most to
the overall fuel efficiency and taking the most driving effort. Therefore, it is reasonable to view the leader as a seller of platooning
service and the follower as a buyer of it, whose bidding strategies are well studied in the bilateral trade model. However, the
difficulty of vehicle platooning is that the two agents are ‘born equal’: they are both capable of being the leader or the follower.
With this uniqueness, we have showed that when using the extended bilateral trade model as a two-agent platooning game, there
is no Nash equilibrium in general when agents possess complete information. However, when randomness on others’ utilities is
involved, it is possible to achieve Bayesian Nash equilibrium in certain cases. Moreover, when one’s utility as a whole is random to
all but themselves, Bayesian Nash equilibrium together with ex post efficiency holds in general.

The many-to-many coordination is characterized by a one-sided matching problem. Similarly, the reason to use one-sided
matching instead of a two-sided one is that all agents are ‘born equal’ and cannot be distinguished into the leader side and
follower side before the play. By designing the proper transfer function and the matching algorithm, we have ensured that the
most economically-efficient stable matching can be easily derived in a decentralized manner. However, one-sided matching could
not be conducted with an incomplete information setting, and the incentive compatibility is difficult to check theoretically.

The numerical studies, together with the theoretical analyses, reveal that these two coordination schemes achieve different
performances regarding different scenarios: one could be more fitting in one scenario than the other, and vice versa. If information
sharing is the main concern, one-to-one coordination with the Bayesian Nash equilibrium solution can better address utilities’
uncertainty. The matching mechanism works better when complete information sharing is possible. Both schemes have been verified
to be flexible, scalable, and computationally efficient.

A few extensions based on this current model framework can be anticipated. The ‘lightweight’ property of the decentralized
system makes it possible to easily integrate with decision-making at higher levels, e.g., routing and departure-time decisions in path
planning. The multi-agent system studied here implies that each vehicle belongs to one agent, however, it is possible that one agent
in the game owns multiple vehicles in different platoons. For instance, a truck company can invest the platooning technology on
its own fleet and allows them to platoon with others as well. Beyond the context of platooning, the models developed in this study
are relevant to shared mobility services, which often require reciprocal coordination among peers. But the fact that individuals
are benefited differently, either by the nature of coordination or unreasonable operating mechanisms, prevents the widespread
deployment of these services. As the essence of our models settles the controversy via benefit redistribution, they are applicable for
other shared mobility services.
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Appendix

A.1. Proof of Theorem 3.2

roof. Under interdependent payment, the ex post utility function of agent 𝑖 can be written as

𝑢𝑖(𝜒(𝑏𝑖, 𝑏𝑗 ), (𝜃𝑖, 𝜃𝑗 ), 𝑝∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝐿𝑖 + 1
2 (𝑏𝑖 + 𝑏𝑗 ), if 𝑏𝑖 < 𝑏𝑗 ,

1
2 (𝛿

𝐿
𝑖 + 𝛿𝐹𝑖 + 𝜃𝑖), if 𝑏𝑖 = 𝑏𝑗 ,

𝛿𝐹𝑖 + 𝜃𝑖 −
1
2 (𝑏𝑖 + 𝑏𝑗 ), if 𝑏𝑖 > 𝑏𝑗 .

Hence, agent 𝑖’s expected utility conditioning on their own type 𝜃𝑖 can be expressed as follows:

𝐄[𝑢𝑖(𝜒(𝑏𝑖, 𝑏𝑗 ), (𝜃𝑖, 𝜃𝑗 ), 𝑝∗)|𝜃𝑖] = 𝑃𝑟(𝑏𝑖 > 𝑏𝑗 )[𝛿𝐹𝑖 + 𝜃𝑖 −
1
2
(𝑏𝑖 + 𝐄[𝑏𝑗 |𝑏𝑖 > 𝑏𝑗 ])]

+ 1
2
𝑃𝑟(𝑏𝑖 = 𝑏𝑗 )(𝛿𝐹𝑖 + 𝜃𝑖 + 𝛿𝐿𝑖 )

+ 𝑃𝑟(𝑏𝑖 < 𝑏𝑗 )[𝛿𝐿𝑖 + 1
2
(𝑏𝑖 + 𝐄[𝑏𝑗 |𝑏𝑖 < 𝑏𝑗 ])]

When 𝐹 is a uniform distribution on [𝜃, 𝜃], we make a few assumptions on 𝑏𝑗 in advance and verify them later:

(1). Agent 𝑗’s strategy 𝑏𝑗 is a function of their type 𝜃𝑗 , denoted as 𝜎𝑗 (𝜃𝑗 ).
(2). 𝜎𝑗 is differentiable and strictly increasing to 𝜃𝑗 .
(3). Moreover, 𝜎𝑗 is a linear strategy, meaning that

𝜎𝑗 (𝜃𝑗 ) = 𝑎𝑗𝜃𝑗 + 𝑐𝑗 .

Assumption (2) indicates that 𝑎𝑗 > 0. Non-negativity of bid leads to 𝑎𝑗𝜃 + 𝑐𝑗 ≥ 0. With determined 𝑎𝑗 and 𝑐𝑗 , the range of 𝑏𝑗 is
bounded in [𝑎𝑗𝜃 + 𝑐𝑗 , 𝑎𝑗𝜃 + 𝑐𝑗 ].

With the aforementioned assumptions, we specify agent 𝑖’s conditional expected utility and denote it as 𝐄[𝑢𝑖(𝜃𝑗 ; 𝑏𝑖)|𝜃𝑖] for short:

𝐄[𝑢𝑖(𝜃𝑗 ; 𝑏𝑖)|𝜃𝑖] = (𝛿𝐹𝑖 + 𝜃𝑖 −
1
2
𝑏𝑖)𝐹 (𝜎−1𝑗 (𝑏𝑖)) −

1
2
𝐄[𝑏𝑗 |𝑏𝑖 > 𝑏𝑗 ]𝐹 (𝜎−1𝑗 (𝑏𝑖))

+(𝛿𝐿𝑖 + 1
2
𝑏𝑖)(1 − 𝐹 (𝜎−1𝑗 (𝑏𝑖))) +

1
2
𝐄[𝑏𝑗 |𝑏𝑖 < 𝑏𝑗 ](1 − 𝐹−1(𝜎−1𝑗 (𝑏𝑖)) (A.1a)

where 𝜎−1𝑗 (𝑏𝑖), 𝐹 (𝜎−1𝑗 (𝑏𝑖)), 𝐄[𝑏𝑗 |𝑏𝑖 > 𝑏𝑗 ] and 𝐄[𝑏𝑗 |𝑏𝑖 < 𝑏𝑗 ] takes the following formats, respectively:

𝜎−1𝑗 (𝑏𝑖) =
𝑏𝑖 − 𝑐𝑗
𝑎𝑗

(A.1b)

𝐹 (𝜎−1𝑗 (𝑏𝑖)) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑏𝑖 ≤ 𝑎𝑗𝜃 + 𝑐𝑗 ,
𝑏𝑖−𝑐𝑗−𝜃𝑎𝑗
(𝜃−𝜃)𝑎𝑗

, if 𝑎𝑗𝜃 + 𝑐𝑗 < 𝑏𝑖 < 𝑎𝑗𝜃 + 𝑐𝑗 ,

1, if 𝑏𝑖 ≥ 𝑎𝑗𝜃 + 𝑐𝑗 .

(A.1c)

𝐄[𝑏𝑗 |𝑏𝑖 > 𝑏𝑗 ] = 𝑎𝑗𝐄[𝜃𝑗 |
𝑏 − 𝑐𝑗
𝑎𝑗

> 𝜃𝑗 > 𝜃] + 𝑐𝑗

= 1
2
(𝑏𝑖 + 𝑐𝑗 + 𝜃𝑎𝑗 ) (A.1d)

𝐄[𝑏𝑗 |𝑏𝑖 < 𝑏𝑗 ] = 𝑎𝑗𝐄[𝜃𝑗 |
𝑏 − 𝑐𝑗
𝑎𝑗

< 𝜃𝑗 < 𝜃] + 𝑐𝑗

= 1
2
(𝑏𝑖 + 𝑐𝑗 + 𝜃𝑎𝑗 ) (A.1e)

Under uniform distribution 𝜃𝑗 and linear strategy, it is easy to check that 𝐄[𝑢𝑖(𝜃𝑗 ; 𝑏𝑖)|𝜃𝑖] is a concave quadratic function of 𝑏𝑖. If it is
aximized when 𝑎𝑗𝜃 + 𝑐𝑗 < 𝑏𝑖 < 𝑎𝑗𝜃 + 𝑐𝑗 , the first order conditions leads to

𝑏𝑖 =
1
3
𝜃𝑖 +

1
3
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

1
3
𝑐𝑗 +

𝑎𝑗
6
(𝜃 + 𝜃) (A.2)

Therefore, the optimal strategy for agent 𝑖 under the given 𝜎𝑗 would be

+ 𝑐 if 1 𝜃 + 1 (𝛿𝐹 − 𝛿𝐿) + 1 𝑐 + 𝑎𝑗 (𝜃 + 𝜃) < 𝑎 𝜃 + 𝑐 ,
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• bidding 𝑏𝑖 indicated in Eq. (A.2) if 𝑎𝑗𝜃 + 𝑐𝑗 ≤
1
3 𝜃𝑖 +

1
3 (𝛿

𝐹
𝑖 − 𝛿𝐿𝑖 ) +

1
3 𝑐𝑗 +

𝑎𝑗
6 (𝜃 + 𝜃) ≤ 𝑎𝑗𝜃 + 𝑐𝑗 ,

• bidding 𝑏𝑖 = 𝑎𝑗𝜃 + 𝑐𝑗 if
1
3 𝜃𝑖 +

1
3 (𝛿

𝐹
𝑖 − 𝛿𝐿𝑖 ) +

1
3 𝑐𝑗 +

𝑎𝑗
6 (𝜃 + 𝜃) > 𝑎𝑗𝜃 + 𝑐𝑗 .

imilarly, by assuming that the maximum of 𝐄𝑈𝑗 is achieved in the interior of [𝑎𝑖𝜃 + 𝑐𝑖, 𝑎𝑖𝜃 + 𝑐𝑖], we have

𝑏𝑗 =
1
3
𝜃𝑗 +

1
3
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

1
3
𝑐𝑖 +

𝑎𝑖
6
(𝜃 + 𝜃) (A.3)

Existence of both Eq. (A.2) and Eq. (A.3) generates an equilibrium, under which

𝑎𝑗 = 1
3
, 𝑐𝑖 =

3
8
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

1
8
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

𝜃 + 𝜃
12

, (A.4a)

𝑎𝑖 = 1
3
, 𝑐𝑗 =

3
8
(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) +

1
8
(𝛿𝐹𝑗 − 𝛿𝐿𝑗 ) +

𝜃 + 𝜃
12

. (A.4b)

The equilibrium holds when

𝜎𝑗 (𝜃) ≤ 𝑏𝑖 ≤ 𝜎𝑗 (𝜃),

𝜎𝑖(𝜃) ≤ 𝑏𝑗 ≤ 𝜎𝑖(𝜃),

aking the values in Eq. (A.4) into consideration, the above inequalities can be expressed as

𝜃 − 3
4
[(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) − (𝛿𝐹𝑗 − 𝛿𝐿𝑗 )] ≤ 𝜃𝑖 ≤ 𝜃 − 3

4
[(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) − (𝛿𝐹𝑗 − 𝛿𝐿𝑗 )], (A.5a)

𝜃 + 3
4
[(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) − (𝛿𝐹𝑗 − 𝛿𝐿𝑗 )] ≤ 𝜃𝑖 ≤ 𝜃 + 3

4
[(𝛿𝐹𝑖 − 𝛿𝐿𝑖 ) − (𝛿𝐹𝑗 − 𝛿𝐿𝑗 )], (A.5b)

which are exactly the same as the feasibility condition Eq. (3.9). Therefore, we complete the proof of the existence and the feasible
region for the Bayesian Nash equilibrium.

It should be mentioned that we do not take the interim individual rationality into consideration when deriving the best response.
This is not a concern because it can be automatically satisfied under equilibrium solutions. To see this, note that expected utility
𝐄[𝑢𝑖(𝜃𝑗 ; 𝑏𝑖)|𝜃𝑖] takes a concave quadratic form over 𝑏𝑖 and the boundary solution 𝐄[𝑢𝑖(𝜃𝑗 ; 𝜎(𝜃))|𝜃𝑖] = 𝛿𝐿𝑖 + 1

2 (𝑏𝑖 + 𝑎𝑗
(𝜃+𝜃)
2 + 𝑐𝑗 ) is

non-negative and is no greater than the maximum expected utility 𝐄[𝑢𝑖(𝜃𝑗 ; 𝜎(𝜃𝑖))|𝜃𝑖].
Next we discuss the optimal strategy for agents that do not satisfy Eq. (A.5), or in other words, outside of the feasible region.

Without loss of generality, suppose 𝛥𝑒 > 0. Then for agent 𝑖 with 𝜃𝑖 ∈ [𝜃 − 3
4𝛥𝑒, 𝜃], their bid under Eq. (A.4a) exceeds the highest

possible bid of 𝑏𝑗 if agent 𝑗’s bid follows Eq. (A.4b), making them the follower regardless of 𝑏𝑗 ’s exact value. Therefore, their optimal
strategy is bidding 𝜎𝑗 (𝜃), the lowest bid that secures their following position. Notice that agent 𝑗 does not know the exact value of 𝜃𝑖
in the interim stage. If they have a type 𝜃𝑗 within their feasible region [𝜃+ 3

4𝛥𝑒, 𝜃], they bid according to Eq. (A.4b). Otherwise, they
bid 𝜎𝑖(𝜃), the highest bid that secures their leading position. As a result, agent 𝑖 becomes the follower and pays, agent 𝑗 becomes
the leader and collects the payment.

From this analysis, we can see that even if a Bayesian Nash equilibrium cannot be achieved by all pairs of agents, the associated
linear bidding strategies can still be applied to achieve some platooning outcomes. The underlying reason is that the decision is
made during the interim stage when agents assume their peers’ types follow the common distribution and they have no way to
detect more precise information other than bidding. The only possible reason for them to quit this game is their expected utility
being negative. Nevertheless, this situation can only happen for agent 𝑖 with 𝜃𝑖 ∈ [𝜃 − 3

4𝛥𝑒, 𝜃] in the above example, since the
payment might be higher than the valuation. □

A.2. Flow chart of deterministic matching procedure

A.3. Proof of Theorem 4.2

Proof. Denote the stable matching from DMP is 𝑚. By contradiction, suppose that there exists another matching 𝑚′, which is also
stable but owns a greater system utility than that in 𝑚. It suggests that

𝑢(𝑚′) > 𝑢(𝑚).

Comparing 𝑚 and 𝑚′, there must exist some pair (𝑖, 𝑗) matched in 𝑚′, but unmatched in 𝑚:

(𝑖, 𝑗) ∈ 𝑚′, (𝑖, 𝑗) ∉ 𝑚 (A.6)

Those pairs that are both matched and unmatched under 𝑚 and 𝑚′ contribute the same portion of utility, and thereby are not of
nterest in this proof. Assume that agents 𝑖 and 𝑗 are matched with 𝑝(𝑖) and 𝑝(𝑗), respectively, the possible relationships among
𝑖,𝑗 , 𝑟𝑖,𝑝(𝑖) and 𝑟𝑗,𝑝(𝑗) can be discussed:

1. For all (𝑖, 𝑗) ∈ 𝑚′ and (𝑖, 𝑗) ∉ 𝑚, 𝑟𝑖,𝑝(𝑖) ≥ 𝑟𝑖,𝑗 and 𝑟𝑗,𝑝(𝑗) ≥ 𝑟𝑖,𝑗 .
Such a relationship is impossible since it leads to

𝑢(𝑚) ≥ 𝑢(𝑚′),
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Fig. 11. Flowchart of the deterministic matching procedure.

thereby contradicting with the assumption in Eq. (A.6). Therefore, there must exist a pair (𝑖, 𝑗) such that

𝑟𝑖,𝑗 > min{𝑟𝑖,𝑝(𝑖), 𝑟𝑗,𝑝(𝑗)}.

2. Suppose that there exists a pair (𝑖, 𝑗) ∈ 𝑚 such that 𝑟𝑖,𝑝(𝑖) < 𝑟𝑖,𝑗 and 𝑟𝑗,𝑝(𝑗) < 𝑟𝑖,𝑗 , satisfying 𝑟𝑖,𝑗 > min{𝑟𝑖,𝑝(𝑖), 𝑟𝑗,𝑝(𝑗)}. However, it
is also impossible because under the stability definition, such a pair (𝑖, 𝑗) is a blocking pair for matching 𝑚, contradicting the
fact that 𝑚 is a stable matching generated from DMP.

3. As inequalities in (1) and (2) do not hold, every (𝑖, 𝑗) must satisfy

𝑟𝑖,𝑗 > min{𝑟𝑖,𝑝(𝑖), 𝑟𝑗,𝑝(𝑗)}, 𝑟𝑖,𝑗 < max{𝑟𝑖,𝑝(𝑖), 𝑟𝑗,𝑝(𝑗)}.

Without loss of generality, suppose that 𝑟𝑖,𝑝(𝑖) > 𝑟𝑖,𝑗 > 𝑟𝑗,𝑝(𝑗). Under the stability constraint, if 𝑝(𝑖) does not match with 𝑖 under
𝑚′, it must match with another agent, denoted as 𝑔(1)𝑝(𝑖). Otherwise, if all 𝑝(𝑖) stays single under 𝑚′, 𝑟𝑖,𝑝(𝑖) + 𝑟𝑗,𝑝(𝑗) > 𝑟𝑖,𝑗 + 0
making 𝑢(𝑚′) < 𝑢(𝑚), a contradiction to the assumption as well. In this way, the pair (𝑝(𝑖), 𝑔(1)𝑝(𝑖)) is another pair that matches
under 𝑚′ and unmatches under 𝑚. The previous analysis can be applied to it as well. Following this logic, one can get a list
of agents 𝑔(2)𝑝(𝑖), 𝑔(3)𝑝(𝑖),…, such that

(𝑔(2𝑛)𝑝(𝑖), 𝑔(2𝑛+1)𝑝(𝑖)) ∈ 𝑚′, (𝑔(2𝑛+1)𝑝(𝑖), 𝑔(2𝑛+2)𝑝(𝑖)) ∈ 𝑚, 𝑛 ≥ 0, 𝑛 ∈ Z,
𝑟𝑔(2𝑛+3)𝑝(𝑖), 𝑔(2𝑛+2)𝑝(𝑖) > 𝑟𝑔(2𝑛+2)𝑝(𝑖), 𝑔(2𝑛+1)𝑝(𝑖) > 𝑟𝑔(2𝑛+1)𝑝(𝑖), 𝑔(2𝑛)𝑝(𝑖), 𝑛 ≥ 0, 𝑛 ∈ Z.

As Fig. 12 shows, the matching under 𝑚′ is colored in red, and that under 𝑚 is colored in black.
Since the number of agents in each step is finite, the list is finite as well. Assume that the last element in the list 𝑔(2𝑛+1)𝑝(𝑖), 𝑛 ∈
Z+. Moreover, stability indicates that

𝑃 (𝑔(2𝑛)𝑝(𝑖), 1) = 𝑔(2𝑛+1)𝑝(𝑖), 𝑃 (𝑔(2𝑛+1)𝑝(𝑖), 1) = 𝑔(2𝑛)𝑝(𝑖).

In other words, 𝑔(2𝑛)𝑝(𝑖) and 𝑔(2𝑛+1)𝑝(𝑖) are the first preferences of each other. If it is not the case, one can always lengthen the
list based on previous analysis. However, as 𝑚 is generated by DMP and according to Lemma 4.3, we also have

𝑃 (𝑔(2𝑛−1)𝑝(𝑖), 1) = 𝑔(2𝑛)𝑝(𝑖), 𝑃 (𝑔(2𝑛)𝑝(𝑖), 1) = 𝑔(2𝑛−1)𝑝(𝑖).
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Fig. 12. List of agents under matched pairs in 𝑚 and 𝑚′.

Together with the previous conditions, agent 𝑔(2𝑛)𝑝(𝑖) has two first preferences, which is obviously a contradiction when the
preference is strictly ordered. On the other hand, if the last element in the list is 𝑔(2𝑛)𝑝(𝑖), 𝑛 ∈ Z+,

𝑛
∑

𝑘=1
𝑟𝑔2𝑛𝑝(𝑖),𝑔2𝑛−1𝑝(𝑖) + 𝑟𝑝(𝑖),𝑖 + 𝑟𝑗,𝑝(𝑗) >

𝑛
∑

𝑘=2
𝑟𝑔2𝑛−1𝑝(𝑖),𝑔2𝑛−2𝑝(𝑖) + 𝑟𝑔1𝑝(𝑖),𝑝(𝑖) + 𝑟𝑖,𝑗 ,

meaning that the difference parts between 𝑚 and 𝑚′ generated by (𝑖, 𝑗) has a greater value in 𝑚 than in 𝑚′. If all the difference
between 𝑚 and 𝑚′ are represented in this list, 𝑢(𝑚) > 𝑢(𝑚′) accordingly. If not, combining all the results from disjoint lists, one
can still achieve a result of 𝑢(𝑚) > 𝑢(𝑚′).

In sum, a stable and more efficient matching 𝑚′ does not exist. 𝑚 achieves the maximum system utility among all stable matchings.
A toy example illustrates this result as follows.

𝑖

𝑗

10

𝑘

ℎ
8

12

11

Four agents, 𝑖, 𝑗, 𝑘, ℎ, can be matched into two pairs. The corresponding total utility for each pair is 𝑟𝑖𝑗 = 10, 𝑟𝑗ℎ = 8, 𝑟ℎ𝑘 =
11, 𝑟𝑘𝑖 = 12. According to Algorithm 1, we have (𝑖, 𝑘), (𝑗, ℎ) ∈ 𝑚. Another matching 𝑚′ includes the pairs (𝑖, 𝑗) and (ℎ, 𝑘). Though

𝑢(𝑚′) = 21 > 20 = 𝑢(𝑚),

meaning that matching 𝑚′ achieves a higher utility than 𝑚, it is unstable because (𝑖, 𝑘) is a blocking pair. □
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