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Abstract— Home robots are envisioned to provide in-home
assistance for older adults and other people who may need help
with daily tasks. To gather information for inferring user status,
robots typically require cameras to detect human subjects,
track their positions, and recognize their activities or poses.
However, having cameras in personal spaces, such as homes,
could pose privacy concerns and risks due to the potential
misuse or compromise of personal image data. It can also lead
to psychological unease and feelings of insecurity, stemming
from the fear of being watched and recorded. To address this
issue, this paper proposes a method for preserving privacy
based on physically obstructing the robot’s camera image and
computer vision methods for detection and tracking of humans
in these obstructed images. We present a hardware platform
that includes a semi-transparent physical layer in front of the
robot’s cameras to obtain privacy-preserving shadow images,
and a software framework that uses a pre-trained EfficientNet,
retrained with a newly-collected dataset of human shadow
images for detecting and tracking human subjects. The testing
results reveal that the network achieves reliable accuracy in
detecting humans from various distances and angles, and it
can be applied to a new subject that it has never seen before.
Finally, the algorithm is implemented in a gaze-based human-
robot interaction scenario, demonstrating its ability to track
humans in real time while preserving privacy.

I. INTRODUCTION

This paper proposes and evaluates a method for preserving
privacy in human-robot interactions by using physical filters
in front of a robot’s camera, and detecting and tracking
humans in the resulting low-fidelity shadow images.

The prevalent use of cameras by robots to detect users
and recognize a user’s state or intention is crucial for
facilitating effective human-robot interactions. Yet, when
these robots are integrated into privacy-sensitive settings
like homes, the presence of a camera may compromise the
user’s privacy, consequently diminishing the comfort level
during interactions. Current technologies primarily focus on
using software-related methods to protect visual privacy.
These methods include modifying the captured visual content
through techniques like blurring faces, altering identifiable
features, or transforming the data into non-detailed forms [1],
[2], [3]. However, these measures still involve the initial
collection of high-resolution images, leaving a door open
to potential privacy breaches through hacking or software
errors. Moreover, this strategy often leaves users with min-
imal control over their privacy and possibly leaving them
uninformed about any invasions of their privacy.

To address this challenge, we propose a privacy-centric
alternative for camera-based interactions through physical
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Fig. 1: The robot wearing a pair of privacy-preserving glasses
can filter high-resolution images into user shadow-captures,
thus protecting users’ visual privacy during privacy-sensitive
tasks, such as changing clothes.

filtering. By equipping the robot’s “eyes” with a translucent
layer, it can still access essential interaction data, via user
shadows, rather than detailed images, balancing informa-
tion gathering and privacy preservation, as illustrated in
Fig. 1. This approach involves physically integrating privacy-
protective layers (manifested as the robot’s glasses), granting
users complete control and awareness over their privacy
settings by physically putting on the glasses. Unlike existing
software-based methods, our proposed method captures the
low-fidelity images from the start, avoiding the risks of
privacy breaches due to software malfunctions or data leaks.
Throughout the paper, we refer to the low-resolution, blurry
image captured via physical filtering as a “shadow image”.
The detection we implemented enables the robot to detect
users and track their positions based on their shadows,
potentially using this information for meaningful interaction
activities. One example is identifying crucial interaction
events, such as a user’s accidental falls, in applications like
elderly care assistance.

The privacy preservation approach consists of two main
components: a hardware mechanism for shadow filtering, and
an algorithm designed to analyze shadow images, enabling
the detection and tracking of human subjects and their
movements. To develop the hardware for collecting shadow
images, we used the anthropomorphic Reachy robot [4],
equipped with two co-mounted cameras and fitted with a
pair of glasses made from translucent materials to obtain
shadow-form blurry images. Our method for detecting human
subjects and track their positions through shadow images
is based on our previous work ShadowSense [5], where
a similar approach was used to classify touch gestures in
inflatable and translucent robots. In this work, however, we
use a different neural network architecture, EfficientNet [6],
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and apply transfer learning to retrain human detection using
self-collected shadow images as training data on a pre-trained
EfficientNet-v2.

To train our model, we collected a training dataset of 1182
pairs of clear and shadow images from four human subjects
and from ten different head orientations of the robot. This
dataset was automatically labeled using a YOLO model [7],
which predicted the bounding boxes on the clear images
for generating corresponding annotations for the associated
shadow images. The model was trained for 8 epochs with
PyTorch on a cloud-based GPU.

To evaluate the model’s performance, we constructed three
test datasets: the first includes a familiar human subject that
the algorithm has seen before, dressed in attire that blends
with the background (108 images); the second comprises a
new subject the model has not previously encountered (110
images); and the third involves two known subjects moving
across different distances and angles to analyze the effect on
detection accuracy. The model demonstrated a detection rate
of 82.4% (IoU score = 0.663) on the first dataset and 83.6%
(IoU score = 0.562) on the second, indicating its reliable
capability to recognize both unseen subjects and subjects
wearing different outfits.

The third test set was comprised of 800 images, featuring
40 distinct distance-angle combinations from two subjects.
The model achieved an average of 94.45% detection accuracy
and 0.6845 IoU score, indicating a reasonable detection
accuracy for all head orientation angles. The results also
revealed a slight decrease in accuracy of IoU score as the
distance between the robot and the human increases.

Using the model, we demonstrate the scenario of preserv-
ing users’ privacy in a gaze-based human-robot interaction.
Upon wearing translucent glasses, a robot engages in a
privacy-maintaining mode while being able to engage in an
interaction scenario by tracking the user’s position, gazing at
the user and using its antenna to respond based on the user’s
distance.

We thus show that, through the filters, robots can still
process shadow images to detect a user’s presence and track
their movements. The method can be applied to various robot
embodiment and interaction scenarios, such as performing
gaze-like behaviors or detecting accidents.

II. RELATED WORK

In this section, we discuss the prevailing challenges related
to privacy concerns in camera-equipped home robots and
review existing methods for visual privacy protection. Fol-
lowing that, we examine current models for human tracking
in computer vision and machine learning that are potentially
applicable to human shadow images, providing a foundation
for our work.

A. Privacy Protection in Camera-Based Interactions

Robots operating in the real world, especially in privacy-
sensitive areas like homes, can raise significant privacy
concerns due to their potential to gather data [8], [9]. A
large number of these robots employ cameras to understand

human states and intentions, which is essential for effective
human-robot interaction (HRI). Yet, this very feature can be
a primary source of potential privacy breaches.

Most current research has tried to mitigate these concerns
by post-processing visual data. For instance, existing meth-
ods use image encryption to conceal the privacy-sensitive
region of interest, such as performing face de-identification
to alter the face of a person in such a way that it cannot
be recognized [10]. Image filtering can use also common
filters such as blurring (e.g., applying a Gaussian function)
and pixelating [1], [2], [3]. Some models can perform visual
abstraction and object replacement to substitute the person
or object appearing in the image by a visual abstraction
that protects the privacy of an individual while enabling
activity awareness [11]. These solutions are not fail-proof.
They remain vulnerable to software failures or hacking
attempts. Furthermore, software-based protection does not
guarantee users full control over their privacy settings, nor
does it directly notify them about the status of their privacy
protection. For instance, users might remain unaware of
privacy breaches resulting from hacking or software failures.
Similar to our approach, other research has investigated
recognizing activities in extremely low-resolution images for
privacy protection, such as in [12] and [13]. However, they
still capture the raw images of the user and use software-
based post-processing to blur those images, which is still
prone to software failures and lack of user control.

Other privacy protection alternatives use low resolution
sensors or non-visual sensors, such as infrared, ultrasonic, or
radar to reduce privacy risks while still enabling the detection
of the environments [14], [15], [16]. For example, Tateno
et al. [14] present a fall detection method using a low-
resolution infrared array sensor by applying convolutional
neural networks. However, these methods necessitate inte-
grating a new sensor to replace the camera, are specific to
low-resolution detection, and cannot shift between privacy
preferences without switching sensors. In contrast, the pro-
posed method allows for an easy switch of privacy modes
by simply physically displacing the filters.

Drawing inspiration from our prior research [5] that en-
abled robots to capture users’ contact shadows (notably of
the hand and arm) during touch interactions and to detect
touch gestures, this paper uses a similar approach to detect
users’ full-body shadows from a distance. In fact, previous
research [5] suggested physically covering the robot’s camera
with a translucent material to allow the capture of users’
shadows as a data source, but it primarily provided this
as a conceptual framework to be explored in future work.
Building on this preliminary concept, this paper aims to
develop a comprehensive algorithmic design to infer user
information from the full-body shadows. We also use a
different neural network architecture than the one previously
proposed for touch recognition.

B. Algorithms for Human Shadow Detection

To extract user information, such as identifying presence
and spatial locations, it’s essential to develop an algorithm
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capable of analyzing shadow images to identify and locate
human shadows. Below we review the state-of-art develop-
ments in deep learning and computer vision technologies
that form the foundation of our methodology. The use
of Deep Learning, specifically using CNN (Convolutional
Neural Networks) architectures has been used to generate
bounding boxes for object detection applications such as
in video surveillance and robotics [17]. Optimization of
the predicted bounding boxes becomes crucial for real-time
object detection such as human detection, especially under
noisy and occluded scenes, as discussed in [18]. YOLOv3
(You Only Look Once) [7], a one-stage algorithm from the
region proposal network family, coupled with data augmen-
tation employs logistic regression to predict bounding box
coordinates and incorporates feature pyramid networks in
its DarkNet [19] architecture. These enhance its robustness
and accuracy in predicting bounding boxes for detection
applications beyond that of traditional CNN architectures.
YOLOv3 is utilized to provide reliable ground truth bounding
box annotations for objects detected in image frames.
A more recent architecture, EfficientNet [6], can give near
state-of-art performance with a much smaller network size
and is computationally cheaper, compared to many two-
stage detectors. [20] presents a survey of many modern deep
learning-based object detection models, such as VGGNet
(Visual Geometry Group Network) [21], CSPNet (Cross
Stage Partial Networks) [22] and also describes the benefit
of EfficientNet over the other architectures. Therefore, the
EfficientNet model proves to be a suitable choice to serve as
an object detection model on resource-constrained devices
such as robots.

Transfer learning has recently gained momentum to trans-
fer learned network weights from commonly used datasets
such as COCO (Common Objects in Context) [23] or
ImageNet [24] to custom datasets, which aids in faster
learning and weight adjustments in comparison to training
the networks from scratch. For example in [25], the Head-
PoseImageDatabase and HeadPoseAnnotationDatabase [26]
were used to pre-train a CNN architecture, which was then
re-trained on a custom database though transfer learning for
behavior recognition in real-time videos. This paper bases on
the EfficientNet model and transfer learning techniques, us-
ing ground truth annotations generated from a robust model
like YOLO, to train a model suitable for robot deployment
such as EfficientNet on a custom-collected dataset for real-
time human shadow detection. Recent advancements in trans-
former technology [27], [28] have demonstrated efficient and
effective human detection and activity recognition, even with
zero-shot learning. Future research will explore additional
models to further enhance the shadow detection capabilities.

III. METHOD

In this section, we present the hardware and software im-
plementation of the privacy-preserving method. This encom-
passes the hardware integration of semi-transparent glasses
and the software framework for training the model for human
detection and tracking.

Fig. 2: The Reachy robot used in the interaction wears a pair
of glasses with customized privacy-preserving lens.

A. Privacy-Preserving Glasses Setup

To incorporate a shadow-filtering mechanism into the
robot cameras, we designed lens consisting of two layers
of transparent acrylic with a semi-transparent silicone layer
sandwiched between them. This silicone layer was fabri-
cated using a conventional mold-casting technique with a
mold created from 3D printing. Empirical tests revealed that
the thickness of the silicone layer directly influences the
shadow’s clarity: a thinner layer results in clearer images
post-filtration. After preliminary tests, we opted for a silicone
layer (Ecoflex 00-30) of 1mm thickness to balance between
data clarity and privacy preservation. These lenses were
incorporated into a pair of 3D-printed glasses, as shown in
figure 2, that can be customized to fit various robot designs.

B. Software Architecture for Human Shadow Detection

The software architecture of the shadow image processing
is based on neural networks that are retrained on a self-
collected shadow image dataset. These networks take the
shadow images as input and output the predicted bounding
boxes of the human subjects. To reduce the annotation effort,
we employ an automatic annotation method to generate
ground truth bounding boxes for the training dataset. This
involves using the YOLO model to annotate the paired clear
images and then transforming these annotations for use with
the shadow image dataset. In the following sections, we detail
the data collection procedure for the training dataset, the
automatic annotation method, and the application of transfer
learning to the EfficientNet model.
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Fig. 3: Software pipeline for Human Shadow Detection, including data collection, automated annotation, transfer learning,
testing, and robotic deployment.

1) Data Collection and Annotation: We use the Reachy
robot’s co-mounted dual-camera system. Each camera is a
1080p@30fps device with motorized zoom (FOV 65° to
125°), and the cameras are 2 inches apart, similar to the
natural human eyes separation.

For data collection, we covered the left camera with
fully transparent acrylic glass, while the right camera was
covered with a semi-transparent shadow filter, as described
in Section III-A. The training data were collected through
this bi-camera system, with each shadow image paired up
with the corresponding clear image, as illustrated in figure 3.
A coordinate transformation through linear shifting was
performed to align the two cameras’ coordinate systems to
compensate for the 2-inch linear separation, so that the clear
and shadow images were captured from the same direction
through the eye cameras.

The training dataset consists of 1182 paired shadow-clear
image frames. We collected images to cover a variety of
human profiles with posture variances, distances from the
robot, different robotic configurations, and environmental
conditions. We included a total of four human subjects (two
male and two female) as volunteers to participate in the
data collection. During the data collection activities, each
subject was asked to perform several static and dynamic daily
activities in front of the robot, such as pulling out a chair
and sitting, drinking from a mug, reading a book, walking
around, working on a laptop, dancing, reaching for items,
etc. They are also asked to move out of the robot’s view
from time to time to include scenes without human presence.
The robot was posed with ten different head orientations
facing different angles in space. Participants were positioned
within a distance range of four to twelve feet from the robot.
The data collection was performed over several sessions, at
different times of the day with varying lighting conditions
and slight variations in the background.

We collected paired video data recorded across four par-
ticipants, each recorded for around five minutes. The paired
shadow-clear video data were pre-processed to construct
individual image frames at a rate of one frame per second to
construct shadow/clear image datasets. To improve training
efficiency, the image size was reduced from the original size
of 480 ∗ 640 from the robot camera to 120 ∗ 160.

To automatically annotate the shadow image frames, we
used the YOLO model [7] to generate ground truth bounding
boxes on the paired clear image frames. The YOLO model,
which was pretrained on the large-scale object detection and
segmentation COCO dataset, includes the human subject as
one of the object categories. One advantage of using the
COCO dataset is that it has more instances per category
compared to other datasets, such as ImageNet-1k [24], which
aids in learning more detailed object models capable of
precise 2D localization [23].

We input the clear images into the YOLO model to output
the bounding boxes of the human subject. This output was
processed with the camera coordinate transformation and
used as the ground truth bounding box annotation for the
paired shadow images to train the EfficientNet, as described
in the following section. We also validated the accuracy of
the automatic annotation method by comparing the annota-
tion labels to manually labeled sample data, and the results
are reported in Section IV-A.

2) Transfer Learning with EfficientNet: To detect and
track human shadows, we employ object-based deep learning
neural networks that draw bounding boxes around human
shadows, thereby inferring the presence and physical position
of humans in the environment. We used the pre-trained
EfficientNet-v2 as our foundation model and applied transfer
learning to retrain it with a self-collected shadow image
dataset, enhancing its performance for the custom use case.

The choice of EfficientNet-v2 over other state-of-the-art
models is based on the following reasons: (1) EfficientNet-
v2 is a Convolutional Neural Network architecture that
boasts high performance for bounding box prediction and
is memory-efficient, making it suitable for storage and use
on resource-constrained devices like the Reachy robot, in
addition to offering fast prediction speeds. (2) It also fea-
tures rapid training speeds and relatively lower number of
parameters, being almost 6.8 times smaller than state-of-the-
art models such as YOLO [19] and RetinaNet [29].

The structure of EfficientNet-V2, from input to output,
consists of a Convolution layer, followed by three Fused-
MBConv (Mobile Inverted Bottleneck Convolution) blocks,
three MBConv blocks, and a final block combining convo-
lution, pooling, and fully connected layers [30]. Table I pro-
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vides details of the network architecture. The model employs
progressive learning through adaptive regularization, incre-
mentally increasing both the image size and regularization
during training.

We utilized the open-source PyTorch-Lightning [31] ma-
chine learning framework to implement the model, train-
ing it on a GPU-equipped server with 14 VCPU and 1
GPU. Through transfer learning, we adapted the original
EfficientNet-v2 model to fit our self-collected shadow image
dataset with automatically-generated bounding boxes for an-
notations. The model was trained using the Adam optimizer
with a learning rate of 0.0002 and mean Intersection over
Union (mIoU) as the minimization objective for the target
and predicted bounding boxes, setting a threshold of 0.44 and
class confidence prediction of 0.2. At each epoch, we shuffled
the shadow dataset, using 50% of the frames for training
with their corresponding ground truth annotations and 50%
for validation. A small batch size of 2 was chosen, as it
is preferable for an object-detection network dealing with
images of lower resolution (120∗160 pixels) and because the
EfficientNet-v2 network performs computationally intensive
operations, particularly due to the MBConv and Fused-
MBConv layers. Loss convergence was observed after just
2-3 epochs. To prevent overfitting, the model was trained for
a total of 8 epochs. Figure 3 depicts the transfer learning
pipeline for training the EfficientNet-v2 model.

Stage Operator Stride # Channels # Layers
0 Conv3X3 2 24 1
1 Fused-MBConv1, k3X3 1 24 2
2 Fused-MBConv4, k3X3 2 48 4
3 Fused-MBConv4, k3X3 2 64 4
4 MBConv4, k3X3, SE0.25 2 128 6
5 MBConv6, k3X3, SE0.25 1 160 9
6 MBConv6, k3X3, SE0.25 2 272 15
7 Conv1X1+Pooling+FC - 1792 1

TABLE I: EfficientNet-V2 architecture [30]

IV. MODEL EVALUATION

We began with a validation of the automated annotation
generation method. Then, we evaluated the performance of
the retrained EfficientNet on three test datasets, which were
collected using unseen human subjects at various distances
and with different configurations of the robot’s head, to
assess the model’s generalization capabilities.

A. Validation Results of Automated Annotation Generation

To assess the reliability of the ground truth bounding box
annotations automatically generated by the YOLO model, we
performed a validation test for the automatically generated
bounding boxes. We manually annotated a small sample data
set and compared the manually annotated bounding boxes to
the automatically generated bounding boxes.

We firstly performed a detection rate validation to identify
human subjects present in image frames. We randomly
sampled 200 image frames from the training dataset, repeat-
ing this process five times. Some frames contained human
subjects, while others did not. Across all five samplings,

totaling 1,000 image frames, the YOLO model successfully
detected all human subjects when present.

We then compared the automatically annotated bounding
boxes with the manually labeled ones by constructing a val-
idation test set of 79 image frames. These frames, randomly
selected from those containing human subjects, showed that
the automatically annotated bounding boxes achieved a mean
Intersection over Union (IoU) score of 0.80 when compared
to the manually labeled ones.

Although this is considered a satisfactory score, there is
still a slight deviation from the manually annotated ground
truth in terms of IoU score, and that may have introduced
noise into the training set. However, such noise can poten-
tially aid in the generalization of the model’s performance
during training. Neural networks can find learning from small
datasets challenging, as they may end up memorizing the
examples. Introducing noise during training can enhance
the robustness of the training process and decrease the
generalization error.

B. Evaluation of Human Shadow Detection Accuracy

To evaluate the accuracy and robustness of the retrained
EfficientNet-v2 in performing human shadow detection and
tracking, we constructed three test datasets. These datasets
were designed to assess detection accuracy under various
conditions. Test Set 1 includes a human subject previously
seen in the training dataset but wearing a different outfit
with a color similar to the background. Test Set 2 features
a subject not seen during training. Test Set 3 involves two
subjects from the training dataset wearing different outfits
and introduces variations in the subjects’ distances from the
robot and angles of the robot’s head orientation, aiming to
test detection accuracy in relation to spatial dynamics.

We employed several metrics to evaluate detection accu-
racy: detection rate, to measure the proportion of correctly
predicted image frames; precision, to identify the model’s
false positive predictions; recall, to capture the model’s
false negative predictions; and mIoU (mean Intersection over
Union), which quantifies the overlap of predicted bounding
boxes relative to ground truth bounding boxes.

1) Test Set 1: Test Set 1 is comprised of a human
subject who previously appeared in the training dataset but
is wearing a different outfit (white) that blends with the
background (white wall). This setup is designed to assess
how the algorithm performs in challenging situations where
shadows may blend with the environment and might not
be properly captured. The set includes 108 image frames
collected from the subject moving in front of the robot,
featuring varied distances, robot head orientations, and slight
variations in the lighting conditions of the environment. The
retrained EfficientNet-v2 model achieves a detection rate of
0.824, with a precision of 1 and a recall of 0.763. The IoU
(Intersection over Union) scores of the successfully detected
samples are averaged at 0.663 ± 0.102 (mean ± standard
deviation).

2) Test Set 2: Test Set 2 features a new human subject
(male) previously unseen in the training dataset. This set aims
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Fig. 4: Test results of the re-trained EfficientNet-v2: The ground truth (red) and predicted (blue) bounding boxes of user’s
positions from the shadow images, sampled from Test Set 3 with distance and robot head configuration labels.

Fig. 5: Average mIoU scores with distance (ft) and angles
for two test subjects from Test Set 3.

to assess the model’s ability to generalize to a new human
subject in a real-world scenario. We captured 110 image
frames of this new test subject, capturing their movements
in front of the robot at various distances and with differing
robot head orientations. The model achieved a detection rate
of 0.836, with a precision of 0.890 and a recall of 0.875.
The Intersection over Union (IoU) scores for the successfully
detected samples averaged at 0.5624± 0.218.

3) Test Set 3: Test Set 3 includes two subjects previously
seen in the training dataset, but with different outfits. The
dataset features images that are collected and categorized
based on four varying distances between the human subjects
and the robot (4 ft, 6 ft, 8 ft, 10 ft), as well as ten
distinct angles of the robot’s head orientation (ranging from
-0.5 to +0.5 radians, with intervals of 0.1 radians), starting
from the robot’s standard neutral position (0 radian meaning
facing directly forward). In total, 800 image frames were
collected, with each subject being captured in 10 frames
for every distance and head orientation combination. This
aims to evaluate the model’s performance by considering
spatial relationships, including distance and head angle, as

Fig. 6: Average detection rates with distance (ft) and angles
for two test subjects from Test Set 3.

key factors in capturing the physical relationship between
humans and the robot.

Overall, the model has achieved an average detection rate
of 0.9445, with precision of 1 and recall of 0.967. The
average Intersection over Union (IoU) scores are 0.6845 ±
0.0834. Figure 6 captures the average detection rate for each
distance and head orientation combination; where as figure 5
depicts the mean IoU score and standard deviation for each
distance and head orientation combination. Figure 7 further
captures the accuracy-distance relationship, where as the
distance between humans and the robot increase, the mean
IoU scores decrease for both test human subjects. In sum, as
the algorithm can achieve relatively high detection accuracy,
the accuracy (mIoU) is affected by the distance between the
human and the robot, whereas the robot’s head orientation
does not affect the accuracy in a noticeable way.

V. PRIVACY-PROTECTED HUMAN-ROBOT GAZE
INTERACTION

To illustrate the practical application of our method in
real-world human-robot interaction scenarios, we integrate
a privacy-preserving interaction scenario wherein the robot
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Fig. 7: Average mIoU scores with distance (ft) for two test
subjects from Test Set 3

tracks the user and “gaze” at the user in real-time. Below,
we detail the interaction design of the robot’s behavior and
the implementation within the robot control system.

A. Interaction Design of Robot Behaviors

To illustrate the interactions facilitated by the privacy-
preserving algorithms, we have designed an interaction sce-
nario that necessitates visual information gathering while
emphasizing the importance of privacy preservation. We
imagined the interaction of human tracking behavior within
a home setting for social scenarios, where the robotic “gaze”
employs human-like nonverbal communication. This human
tracking behavior can demonstrate the robot’s attention,
awareness of the user, signal interest and engagement, and
make the interactions feel more natural and intuitive. How-
ever, human tracking behavior could potentially lead to
discomfort if users feel they are being stared at constantly.
This discomfort may stem from low trust in the robot and
concerns over the leakage of their personal visual data
captured through gaze interaction. Thus, we aim to utilize the
system to enable human tracking and gaze interaction while
preserving user privacy and increasing users’ psychological
comfort during the interaction.

We utilize the Reachy robot platform [4] and its built-
in actuators and controller for behavior generation. This
includes its neck with 3 degrees of freedom (DOF) and two
antennas, each with one DOF. We use neck movement to
orient Reachy’s ’eyes’ to always face the human, and the
antennas to reflect the robot’s internal state in relation to the
physical distance between the human and the robot, as this
distance may indicate the level of interaction engagement and
interest. Specifically, the behaviors are defined as follows:
Upon detecting a human, Reachy rotates its head to gaze
towards the user, simultaneously shifting its antennas slowly
to express human recognition. When the robot detects that
a human subject’s distance is within its close proximity, it
shakes its antennas to express “excitement”. In the absence of
a human, the robot maintains a static gaze. A supplementary
video demonstrates the interaction of the human tracking
behavior.

Fig. 8: Integration of shadow tracking in human-robot gaze
interaction.

B. Integration with Robot Control System

Below, we describe the control algorithms designed to
execute human tracking behavior upon receiving the hu-
man tracking bounding box from the detection algorithm,
enabling real-time gazing at the user.

The robot is equipped with high-resolution cameras capa-
ble of capturing images up to 1080p at 30 fps. We activate
the built-in auto-focus function when wearing the privacy-
preserving glasses to control the clarity of the incoming video
feed, helping the robot clearly capture the user’s shadow.
Upon capturing the real-time frame of the shadow image,
it is fed into the re-trained EfficientNet model to predict
the bounding box coordinates of the detected human subject
in the image. We annotate (x1, y1), and (x2, y2) as the
diagonal pixel coordinates of the predicted bounding boxes.
The spatial position of the human (D, θ) in relation to the
robot - where D denotes distance, and the θ denotes angular
position from the robot’s gazing direction - is then derived
based on the image coordinates through a pre-calibrated
camera-space transformation matrix.

We employed a proportional control strategy to quantify
the discrepancy between the robot’s built-in ‘look at’ func-
tion and the observed human spatial coordinates in relation to
the robot. We fine-tuned the control parameter K iteratively
to achieve optimal tracking to real-time detection. We use
feedback from the camera’s image data to update the human’s
current position relative to the robot with proportional control
until the person is positioned in the center of the robot’s
perspective, within a certain threshold. As a result, the
control algorithm achieves real-time human tracking at a rate
of approximately 1 fps, taking into account the delay from
the visual prediction and the head movement.

In addition, the distance between the human and the robot
D is derived from the proportional size of the bounding
box x2 − x1 and y2 − y1 in relation to the size of the
image frame (W and H). When the robot detects that the
subject’s distance is within 2ft, the antenna motors are
actuated to oscillate back and forth three times to express
’excitement.’ To avoid control conflicts, both the tracking
function and head motion are temporarily paused during the
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antenna motion. Figure 8 depicts the control pipeline in the
interaction scenario.

CONCLUSION

In this paper, we introduced a vision-based, privacy-
preserving method for human-robot interaction, designed
specifically for robots interacting within personal spaces. We
describe our hardware setup and software architecture for
tracking human shadows using a retrained EfficientNet-v2
model, utilizing self-collected and automatically annotated
shadow images. The model is evaluated across three test
sets, demonstrating reasonably high detection accuracy for
unseen human subjects, and subjects that may blend into the
background color. Additionally, we assess the detection ac-
curacy across various distances and robot head orientations,
noting a slight decline in accuracy as the distance between
the user and the robot increases. Lastly, we demonstrate the
application of our method in human tracking behavior, en-
abling real-time tracking and gazing with the user. For future
work, we aim to conduct user studies to better understand the
interaction experience and user perceptions of the privacy-
preserving detection method in real-world scenarios.
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