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Computational modeling of assembly is challenging for many systems because their timescales can vastly
exceed those accessible to simulations. This article describes the MultiMSM, which is a general framework
that uses Markov state models (MSMs) to enable simulating self-assembly and self-organization of finite-sized
structures on timescales that are orders of magnitude longer than those accessible to brute force dynamics sim-
ulations. As with traditional MSM approaches, the method efficiently overcomes free energy barriers and other
dynamical bottlenecks. In contrast to previous MSM approaches to simulating assembly, the framework de-
scribes simultaneous assembly of many clusters and the consequent depletion of free subunits or other small
oligomers. The algorithm accounts for changes in transition rates as concentrations of monomers and interme-
diates evolve over the course of the reaction. Using two model systems, we show that the MultiMSM accurately
predicts the concentrations of the full ensemble of intermediates on timescales required to reach equilibrium.
Importantly, after constructing a MultiMSM for one system concentration, yields at other concentrations can
be approximately calculated without any further sampling. This capability allows for orders of magnitude ad-
ditional speed up. In addition, the method enables highly efficient calculation of quantities such as free energy
profiles, nucleation timescales, flux along the ensemble of assembly pathways, and entropy production rates.
Identifying contributions of individual transitions to entropy production rates reveals sources of Kinetic traps.
The method is broadly applicable to systems with equilibrium or nonequilibrium dynamics, and is trivially

parallelizable and thus highly scalable.

I. INTRODUCTION

The self-assembly of basic subunits into larger, more com-
plex structures is fundamental to life. Critical functions of
cells and pathogens are performed by assembled structures
with a well-defined finite-size and architecture such as the
outer shells (capsids) of viruses [1-8] or bacterial microcom-
partments [9-17], cytoskeletal filaments [18-20], and ordered
protein layers on bacteria exteriors [21]. Self-assembly is
also transforming nanotechnology, where designing synthetic
building blocks that are preprogrammed to form particular
structures is enabling scalable bottom-up synthesis of mate-
rials with desirable properties [22—44].

Since it is an inherently out-of-equilibrium process, under-
standing or designing self-assembly requires detailed knowl-
edge of assembly intermediates and the dynamical transitions
among them. Computational modeling is an essential tool for
revealing such assembly pathways, since most intermediates
are too transient to characterize in experiments. In particu-
lar, molecular dynamics simulations of tractable models for
subunits have revealed numerous insights about the princi-
ples controlling assembly (e.g. [7, 45-61], and references
in [62]). However, simulating assembly dynamics at exper-
imentally relevant conditions is intractable for many models,
since assembled structures are much larger than their com-
ponents and form on timescales that are orders of magnitude
beyond computational limitations. One approach to overcome
this limitation is to coarse-grain over length and/or timescales;
e.g. by treating subunit association at the level of reaction dif-
fusion equations [63—65] or kinetic Monte Carlo approaches
[66-75]. However, these approaches require alternative as-
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sumptions and restrictions on validity, and can also become
intractable for systems with sufficiently large sizes or free en-
ergy barriers.

This article describes a Markov state model (MSM) frame-
work that can overcome limitations on accessible timescales
for a broad array of self-assembly and self-organization sys-
tems. The algorithm reduces computational times by orders
of magnitude while describing the time-dependent concen-
trations of subunits and the complete ensemble of assembly
intermediates and products. This capability enables dynami-
cal particle-based simulations of systems with unprecedented
size and complexity, at experimentally relevant conditions.
The framework can also be applied to reaction-diffusion [76]
and kinetic Monte Carlo approaches. Further, MSMs enable
highly efficient analysis of the resulting simulation data. We
focus on self-limited assembly examples that preferentially
terminate at a finite-size [8], but note that the method can also
be applied to unlimited assembly examples such as crystal-
lization or extended ribbons or sheets [75, 77-79] if the struc-
tures are limited to a maximum size.

MSMs are a powerful approach to simulate dynamics on
long timescales; by performing short simulations to esti-
mate transition rates among system configurations, one can
construct an MSM that accurately describes dynamics on
timescales that are orders of magnitude longer than the indi-
vidual simulations [80-99]. Importantly, because only short
trajectories are required to estimate transition rates, MSMs
efficiently harvest trajectories that involve barrier crossings
or other dynamical bottlenecks [80-99]. In contrast to many
other non-Boltzmann sampling techniques for rare events (e.g.
[100-117]), MSMs can be used to study reactions with multi-
ple barriers and relevant transition pathways, and are applica-
ble to nonequilibrium systems. MSMs also provide a means to
coarse-grain complex dynamical processes into reduced-order
forms that facilitate identifying key slow degrees of freedom
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and corresponding mechanisms. Furthermore, MSMs can en-
able designing non-equilibrium assembly protocols that can
accelerate assembly and increase selectivity of a specific tar-
get state by orders of magnitude in comparison to equilibrium
processes [118-122].

In contrast to previous MSM approaches to self-assembly
that pre-assume the state space and transition rates [123—134],
we seek a framework in which the state space and transition
rates are computed directly from dynamical simulations, and
the accuracy of the resulting MSM (including the validity of
the Markov assumption) can be directly tested against micro-
scopic dynamics. While several approaches have been devel-
oped to construct MSMs from particle-based assembly simu-
lations [122, 135-140], these algorithms are designed to track
individual assembling clusters evolving under constant condi-
tions such as the concentration of free subunits. Thus, they
cannot describe a typical experiment in which a fixed total
number of subunits assemble into many structures. In this
case, the concentrations of intermediates and free subunits,
and thus the transition rates, continuously evolve over time.
Moreover, some transitions involve association or dissocia-
tion of oligomers or larger intermediates. Therefore, although
sophisticated approaches have been recently developed to de-
sign optimal assemblies and compute free energy landscapes
[141-152], to our knowledge, there is no existing enhanced
sampling method that can comprehensively model such self-
assembly experiments.

In this article we present the MultiMSM approach, which
provides a complete description of assembly reactions, ac-
counting for changes in transition rates as concentrations
evolve, as well as association between intermediates. Us-
ing two model systems, we show that that the MultiMSM al-
gorithm accurately predicts the depletion of monomers and
the ensemble of resulting intermediate and target assembly
species, on the long timescales required for reactions to reach
equilibrium. While brute-force dynamics simulations with re-
lated models have been limited to restricted parameter ranges,
such as high subunit concentrations [48, 56, 153—-155], the
MultiMSM approach enables simulation over a broad range
of experimentally relevant parameter values. In particular, the
algorithm reduces simulation times by orders of magnitude
for systems with large nucleation barriers, which are typically
required for productive assembly at experimental conditions
[8, 156-160].

Crucially, once the MultiMSM has been constructed for one
value of the total subunit concentration, assembly dynamics
can be simulated over a wide range of lower concentrations
without any additional sampling. This enables representing
a typical experiment in which assembly is performed over a
range of subunit concentrations, but with the computational
cost of a single subunit concentration. Further, the method
provides a detailed analysis of assembly mechanisms by com-
puting quantities such as the free energy landscape, nucleation
timescales, committor probabilities and flux along different
assembly pathways, and entropy production rates. The latter
quantify the extent to which a reaction is out of equilibrium
and identify sources of kinetic trapping that impede produc-
tive assembly. These capabilities allow analyzing data from

particle-based assembly simulations in unprecedented ways.

We provide an open-source Python library [161, 162] which
performs all calculations required to construct MultiMSMs
and the analysis described in this work, from simulations per-
formed with the open-source molecular dynamics simulation
package HOOMD-blue [163, 164]. The library can be readily
generalized to other software packages.

II. MODEL SYSTEMS

We first describe the two model self-assembly systems that
we use to test and demonstrate our MultiMSM approach. Our
first example, dodecahedral capsid assembly from pentago-
nal subunits, is sufficiently tractable that brute-force dynamics
simulations can be performed on relatively long-time scales to
stringently test the MultiMSM results. Our second example,
T = 3 capsid assembly from triangular subunits, is more com-
plex and computationally expensive, and shows that the Mul-
tiMSM method scales well for complicated problems with a
large state space.

For all models and results presented in this work, we give
energies in units of the thermal energy kg7 and lengths and
concentrations in units of lg and [; 3 respectively, where [ is
related to the subunit size for each model (see Appendix A).

A. Dodecahedron Assembly

Our model subunit (Fig. 1a) is adapted from previous stud-
ies of dodecahedral capsids, including assembly of empty
capsids and assembly around RNA and synthetic polyelec-
trolytes [53, 154, 167-169]. The subunit is a rigid body
consisting of five attractor sites, placed at the vertices of a
regular pentagon, that have attractive interactions through a
Morse potential with well-depth €;1. Each subunit also has
a ‘Top’ and ‘Bottom’ pseudoatom; Top-Top and Top-Bottom
pairs on nearby subunits each have repulsive Weeks-Chandler-
Anderson (WCA) interactions [170]. Top-Top interactions
drive subunit-subunit binding angles consistent with a do-
decahedron (116.57°), while Top-Bottom interactions sup-
press subunit-subunit binding in inverted orientations [53,
154, 167]. We perform simulations in three distinct assem-
bly regimes by setting €17 € {5.0,5.5,6.0} with total subunit
concentration ¢y = 0.0156, which spans from almost no as-
sembly to rapid assembly.

B. T=3 Capsid Assembly

Our second example model was previously developed as a
simplified representation of an experimental system in which
DNA origami forms rigid triangular subunits that assemble
into T" = 3 icosahedral capsids [165, 166]. The model builds
on extensive previous simulations of capsid assembly [7, 48—
60, 171, 172]. The model subunit excluded volume shape is
represented by three layers of ‘excluder’ atoms arranged so



FIG. 1. Schematics of the subunits and their interactions for the two model self-assembly systems. (a) (Left) The subunit is a rigid body with
Attractors at the vertices of a pentagon and a ‘“Top” and ‘Bottom’ pseudoatom above and below the vertex plane. (Middle) Subunit-subunit
interactions. Attractor-Attractor interactions drive subunit association, with binding affinity parameter €¢1;. Top-Top repulsions result in a
preferred subunit-subunit binding angle of 116.57°, making a dodecahedral capsid the ground state. (Right) A snapshot of an assembled
capsid from a simulation. (b) (Left) The subunit is a rigid triangular body, motivated by recent DNA origami experiments [165, 166]. The cyan
pseudoatoms enforce excluded volume, and complementary pairs of attractor beads (other colors) on each side drive association between Side
1 — Side 2 and Side 3 — Side 3 pairs. (Middle) These interactions, with binding affinity parameters €12 and €33, respectively stabilize pentamers
and dimers. (Right) A snapshot of a complete 7" = 3 capsid from a simulation. (c¢) Snapshots of the simulation box during dodecahedron
assembly with €11 = 5.5 at early times (left) and late times (right). (d) Same as (c) for 7" = 3 capsid assembly with €12 = 11 and e33 = 8.

that the edges have a bevel angle consistent with an icosahe-
dron (156.72°). Each excluder interacts with all pseudoatoms
through a WCA potential. Subunit-subunit attractions in the
experimental system are driven by DNA blunt-end stacking
and hybridization of single-stranded DNA molecules on com-
plementary subunit edges. In the computational model, these
short-ranged interactions are represented by placing two ‘at-
tractor’ atoms on each subunit edge, on the middle layer of
excluders. Complementary pairs of attractors interact through
a Lennard-Jones potential. To match the experimental 7' = 3
system, attractors on Side 1 and Side 2 of two interacting sub-
units are complementary with binding energy (Lennard-Jones
potential well-depth) €12, and attractors on Side 3 are com-
plementary with binding energy e33. Attractors that are not
complementary interact through a repulsive WCA potential.
Fig. 1b shows a representation of the triangular subunit, the
preferred intermediate for each interaction, and an example
of the fully assembled capsid in simulation. Despite the sim-
plicity of the model, Wei et al. 2024 [166] found that the
simulation results semi-quantitatively match experimental ob-
servations of capsid assembly dynamics.

Simulations and experiments in Wei 2024 [166] showed
that sufficiently imbalanced values of €15 and €33 lead to hi-
erarchical assembly pathways, since €15 and €33 respectively
stabilize intra-pentamer and intra-dimer interactions. Stronger
€12 leads to pentamer-biased assembly pathways, in which
subunits rapidly form pentamers, which in turn undergo as-

sembly into capsids; whereas stronger €33 leads to dimer-
biased pathways, with rapid formation of dimers and their
subsequent assembly of capsids. In this work, we focus on
parameters that lead to pentamer-biased assembly pathways,
€12 = 11 and e33 = 8, with total subunit concentration
co=1.7x10"%

All dynamics simulations described in this work were per-
formed with HOOMD-blue [163]. Full simulation details can
be found in Appendix A.

III. METHODS

Here we review how a traditional MSM is constructed and
then describe the protocol to construct and use the MultiMSM.
The procedure is separated into four steps: selection of dis-
crete states, data processing and transition counting, monomer
fraction discretization and transition matrix construction, and
model evaluation and prediction.

Our python libraries to construct MultiMSMs from
HOOMD simulations and perform all the calculations de-
scribed below are available on Github [161, 162].



A. Constructing an MSM

We first review how a traditional MSM is constructed from
relatively short, unbiased simulations. Configurations from
these simulations are partitioned into discrete states, which
are defined so that conformations that inter-convert rapidly are
within the same state. Transitions between configurations in
different states occur on longer timescales, ensuring that the
model will behave Markovian on timescales longer than a ‘lag
time’ 7. The state probability vector, p”, a row vector giving
the probability distribution over the discrete states at timepoint
n, is then given by the forward Kolmogorov equation

Pt =p" P, (1)

with P as the transition matrix, which gives the probability
of a transition between each pair of states after a lag time 7.
The transition matrix is estimated by counting the number of
transitions separated by a lag time of 7 in the simulation data
and normalizing the rows into a probability distribution.
Several statistical tests exist for selecting an appropriate
lag time to ensure Markovianity [173-175]. The most com-
monly used approach is to compute the implied timescales of
the transition matrix as a function of 7, given by ¢;(1) =
—Tog x> Where A; are the eigenvalues of the transition
matrix P(7). For the Markov assumption to hold, these
timescales should be approximately independent of 7. Note
that this condition is not always sufficient to guarantee Marko-
vianity, which further requires that the eigenvectors of the
transition matrix be independent of 7 [85, 173, 174]. A more
comprehensive and reliable approach for assembly systems is
to test that the MSM prediction for the assembly time distribu-
tion, which depends on all of the implied timescales, becomes
independent of lag time above a threshold value of 7 [136].

B. Selection of Discrete States

A crucial aspect of constructing an accurate MSM is choos-
ing a mapping of configurations into discrete states that en-
sures sufficient separation of timescales to justify the Marko-
vian approximation. That is, pairs of configurations within
a state inter-convert much more rapidly than pairs of con-
figurations in different states. In this section we focus on
characterizing the state of an individual assemblage (cluster);
we address multiple clusters in section III C. We have previ-
ously shown that a general state decomposition for assembly
is enabled by mapping an assemblage to an undirected graph,
with nodes and edges respectively corresponding to subunits
and ‘bonds’ (subunit-subunit interactions) [136, 140]. Al-
ternative approaches based on pairwise distances between
subunits and other structural properties have also been used
[96, 98, 136, 139, 176-182]. However, these descriptions
can be simplified, and the size of the state space significantly
decreased, with a simplified state definition that character-
izes the number of subunits and bonds within an assemblage
[122, 136, 154]. We use the latter approach for both examples
in this article; we define a state as S = (AN, B) where N is

the number of subunits in the configuration and B is a count
of the number of each type of bond present in the configura-
tion. For the examples we consider in this work, 3 is a scalar
for the dodecahedron assembly since there is only one type of
bond, but is a vector with two components for the 7' = 3 cap-
sid assembly, since there are two interaction types (the Sidel-
Side2 bond and the Side3-Side3 bond, see Fig. 1b). We find
that these coordinates are sufficient to accurately characterize
the dynamics of both systems studied here. However, for sys-
tems in which such simple descriptions cannot uniquely define
clusters, the more complex discretizations mentioned above,
or data-driven discretization approaches [183, 184] should be
used. Further, the choice of discretization should be tested as
described in Appendix C 1.

Since a bond refers to a pair of sufficiently strongly interact-
ing subunits, it must be defined based on a threshold. In this
work, we use cutoff distances between corresponding particle
types to define a bond. See Appendix A 3 for details on the
bond definition for each system.

C. Processing Simulation Data and Counting Transitions

We seek to model self-assembly dynamics in the canonical
(NVT) ensemble. Since there may be many clusters under-
going different stages of nucleation and growth at the same
time, we must compute the time evolution of the joint prob-
ability distribution of all cluster types 7. A complete state
decomposition would classify the assembly configuration of
every cluster at a given time point. However, for a large sys-
tem with many clusters the number of such states would be
intractable. Therefore, we use the independent Markov de-
composition (IMD) method [185], in which each cluster is
considered as a quasi-independent local subsystem. However,
note that the clusters are not strictly independent since pairs
of clusters can merge or split during assembly. In this frame-
work, the state probability distribution at frame ¢ is given by
[185]

Pi=Pi®p®... P 2)

where p is the probability distribution for the state of cluster
J at frame %, nypes s the total number of cluster-types, and
® is the Kronecker product [185, 186]. Here, each cluster
is defined according to the state decomposition described in
section III B.

For self-assembly, it is useful to cast the cluster probabili-
ties as concentrations

¢ = Ninl )V (3)

where A7 is the number of subunits in cluster-type j, n] is the
number of such clusters at a given frame, and V' is the volume.
It is important that we use mass-weighted concentrations to
maintain the constant total subunit concentration

J



Using number-weighted concentrations would result in a
probability that is normalized to the cluster distribution, which
depends on time and interaction parameters, whereas the
mass-weighted concentrations maintain a normalization that
depends only on the control parameter cg.

The transition matrix elements can be estimated from
the ensemble of short simulations by recording the num-
ber of each cluster type j at each simulation window, and
then computing the number of transitions between all cluster
types, ranging from monomer to dimer transitions to associa-
tion/dissociation of larger intermediates and complete capsids,
as a function of lag time. Importantly, to maintain the mass-
weighted cluster distribution, the transition counts need to be
weighted by the number of subunits involved in each transi-
tion. For example, if a cluster j with A/J subunits transitions
to a cluster [ with A" > A7 subunits, then all A/7 of those
subunits undergo the transition. That is, the transition j — k
occurs N7 times. Intuitively, this can be thought of as viewing
transitions from the perspective of individual subunits rather
than clusters (see Fig. 2).

Procedure for counting transitions. For each frame in the
simulation, we group the subunits into clusters, with a clus-
ter defined as any collection of more than one subunit that is
bonded together. On the first frame, all clusters are given an
ID. On subsequent frames, we check if any newly found clus-
ters are derived from existing clusters, either through merging
or splitting of sub-clusters, and update any matching existing
cluster with the new configuration. In the case of splitting,
we record what the parent cluster was and form a new clus-
ter. Any cluster that was not derived from an existing one is
assigned a new ID.

We treat monomers separately, tracking their addition and
removal as a separate time series. For example, if a 10-mer
loses two subunits, but they do not form a dimer after disso-
ciating, we record two transitions to monomers. If they do
form a dimer, we record nothing in the monomer time series,
since no monomers are involved in this transition, but record
a transition to the dimer. To track monomer-to-monomer tran-
sitions, we store the IDs of all subunits that are not bonded in
frame 7 in a list M;. To determine the number of monomer-to-
monomer transitions after a lag time %, we take the cardinality
of the intersection of these lists, |M; N M, |. Finally, we also
save the monomer fraction, f(¢) = | M;|/No, where Ny is
the total number of subunits, at every frame, and augment any
transitions that occur in that frame with this value.

We then construct the transition count matrix as follows.
We loop over every cluster’s time series of configurations and
extract every pair of configurations separated by a lag time k,
incrementing the corresponding entry of the count matrix by
1. Then, to ensure mass-weighting, we multiply that transition
count by min(N;, Nytx).

D. Monomer Fraction Discretization and Construction of
MSMs

In this section we describe how to construct the transition
matrices for the different monomer concentrations that arise

as subunits are depleted during an assembly reaction.

The first step is to discretize the monomer fraction in
the interval [0, 1], where the monomer fraction is defined as
fi = ¢! /co with ¢! the concentration of monomers (free sub-
units). The discretization contains N + 1 intervals, Dy =
(0,dy,da,- -+ ,dn,1). We then estimate the transition matrix
for each of these intervals, following the approach described
in Section III C. Note that, by construction, the state space is
the same for each concentration. Although we will describe
a smoothing procedure in Section IIIE 1 to interpolate tran-
sition matrices between interval edges, the accuracy of the
MultiMSM depends strongly on the choice of discretization.
While increasing the resolution leads to higher accuracy, it
also increases the amount of total sampling required for con-
vergence of the MSMs. Thus, the size of each interval must be
chosen such that a sufficiently large number of relevant transi-
tions are sampled. Sampling efficiency can be improved using
adaptive sampling [187-194].

We have employed a heuristic, but adaptive discretization
procedure, in which intervals are defined to contain monomer
fraction values that give rise to similar dynamics. For ex-
ample, in most cases monomer fractions between 0.95 and
1 correspond to the initial stage of a reaction when most tran-
sitions correspond to monomer-dimer association or dissoci-
ation. In contrast, when the monomer fraction approaches
its infinite-time limit (e.g. the equilibrium monomer concen-
tration for reversible assembly), most transitions will involve
large intermediates. Ensuring that each interval separates dif-
ferent types of dynamics improves the accuracy of the Mul-
tiMSM. Appendix B describes a systematic method for refin-
ing the monomer fraction discretization in cases where there
is a ground truth to compare to. Additionally, we propose an
error-based refinement in Appendix C 1 that can be used even
when a ground truth is infeasible to compute, which helps re-
fine the monomer fraction discretization as well as identify
bins that can benefit the most from additional sampling.

We compute the MSM in each interval as follows. We ini-
tialize a sparse count matrix to store the number of observed
transitions between each pair of states on each of these inter-
vals. Using the output of our cluster analysis at a given lag
time (see section III C), we identify the monomer fraction at
which each transition occurred and increment the count for the
corresponding transition and monomer fraction interval. Once
all transitions have been recorded, we compute the probability
transition matrix for each interval by normalizing the rows of
the count matrices to sum to 1.

Choosing an appropriate lag time for the MultiMSM re-
quires testing that the choice is appropriate for the transition
matrix in each monomer fraction bin of the discretization.
The same statistical tests used for traditional MSMs (see sec-
tion IIT A) can be used for each component MSM here. We
ensured that, given the true starting distribution of states on
a discretization interval, the correct final distribution on that
interval was predicted by the corresponding transition matrix.
In the absence of a ground truth distribution, one can verify
that the predicted assembly distributions become independent
of lag time. For simplicity, we use the same lag time for all
discretization intervals, but it would be straightforward to ex-
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FIG. 2. A simple assembly example showing two equivalent approaches to count transitions. (a) A time series of four disk shaped particles
with attractive interactions undergoing clusterization. (b) A table detailing how to count transitions from both a subunit and cluster perspective
for this example. In the subunit perspective, a time series of the cluster size containing each subunit is computed, and a count matrix is
built from the number of times each transition is observed. In the cluster perspective, only merging and splitting of clusters is tracked. The
count matrix is built by tallying the number of times a cluster of size ¢ transitions to a cluster of size j, and then multiplied elementwise by
W;; = min(z, j) to get the mass-weighted counts (i.e in the subunit perspective).

tend the implementation to nonuniform lag times if needed.

E. Calculating the yield as a function of time

The forward equation to compute yields for the MultiMSM
is a straightforward extension of the forward equation for a
standard MSM (Equation (1)). For the MultiMSM, the equa-
tion has the same form, but involves a collection of transition
matrices. At each timepoint n we use the transition matrix
corresponding to the current monomer fraction. By construc-
tion, we store the monomer fraction in the first component of
the probability distribution, pg, and the mass-weighted frac-
tion for each intermediate is given by p}} = ¢}/ /co, with ¢; and
co given by Egs. (3) and (4). Formally, we write

—-n+1 _ —=n
p =P P’rn"a

m” = index(py), 3)
where the index operator converts a value in [0, 1] to its corre-
sponding interval in the discretization. We perform this calcu-
lation for each monomer increment, which gives the full dis-
tribution of intermediate concentrations as a function of time
for each monomer interval.

Note that some of the methods typically used to efficiently
solve the forward equation, such as computing the spectral de-
composition or pre-computing large powers of the transition
matrix, cannot be directly used here since we do not know
a priori at what timepoints the monomer fraction will cross

the discretization boundaries and change the transition ma-
trix. The most straightforward approach is to solve Eq. (5) it-
eratively via vector-matrix multiplication for each timepoint.
However, it is also possible to pre-assume the monomer con-
centration as a function of time, and then iteratively apply an
efficient approach such as spectral decomposition, in which
the computed monomer concentration is updated at each iter-
ation.

1. Smoothing Solutions

Solving Eq. (5) following the above approach typically
leads to solutions that are well behaved within each interval of
the discretization, but have ‘jumps’ (abrupt changes in slope)
at time steps when a discretization boundary is crossed. These
jumps reflect the abrupt change in the transition dynamics due
to changing the transition matrix. The jumps introduce small
errors in the solution that can accumulate and reduce the ac-
curacy of the MultiMSM prediction at long times. To solve
this problem, we describe a smoothing procedure to continu-
ously interpolate between the two transition matrices across a
discretization boundary.

Consider the two intervals closest to 1, I1 = (dy—_1,dn)
and I, = (dN, 1). Let Li =dy —dy_1and Ly =1 —dy
be the length of each interval and let P; and P, be the transi-
tion matrices on intervals 1 and 2, respectively. Since neigh-
boring intervals can have significantly different lengths, we



define a smoothing region that is agnostic of absolute inter-
val sizes. Let x be the fraction of each interval that is used
to smoothly interpolate between them. The transition region
will then begin at a = dy — xL; and end at b = d + x L.
If the monomer fraction falls within [a, b], we construct a lin-
ear combination of each interval’s transition matrix to use at
that value. We choose the weights proportional to where in
the region the monomer fraction falls, with an even split if the
monomer fraction is precisely dy. In general, we compute

1 fi—a .
alf)) = ?d;v?zﬂ—dN %fanISde ©)
§+§b—d1\/ ldeSflea

where fi is the current monomer fraction. We then construct
the final transition matrix as

P, = (1 — Oé(fl))Pl =+ a(fl)Pg. 7

Since each individual transition matrix is normalized and their
coefficients sum to 1, P, is also normalized and thus a valid
transition matrix.

This smoothing procedure works remarkably well for x €
[0.2,0.3]. We include x as an optional parameter to our
solvers, with a default value of 0.25. Setting a value of O turns
off all smoothing and solves Eq. (5) as stated.

IV. RESULTS AND TESTING OF THE MULTIMSM

We constructed a MultiMSM using simulation data for each
of the model systems described in Section II. For each exam-
ple, we solved Eq. (5) to predict the time-dependent yields of
each discrete state. See Section A 5 for a detailed description
of how many trajectories were used to build each MSM, adap-
tive sampling strategies, and the values used for all parameters
to the models, such as the monomer fraction discretization.

A. Dodecahedron Capsids

Fig. 3 shows example results of assembly dynamics pre-
dicted by the MultiMSM for the dodecahedron system at sev-
eral values of the binding energy €11, compared against brute-
force dynamics. Fig. 3a shows results for the strongest inter-
actions, €17 = 6, for which assembly is rapid and thus the
MultiMSM results can be directly compared against brute-
force dynamics simulations on all relevant timescales. Note
that for this relatively strong binding energy, it is common
for the 12-th subunit to bind to an 11-mer in the wrong ori-
entation, and then become trapped for long times. We re-
fer to this off-target, metastable configuration as a ‘dangler’.
The smooth lines (blue, green, purple) in Fig. 3a show the
MultiMSM prediction of the mass-weighted yields of the
monomer, dodecahedra, and the size-12 structures (dodeca-
hedron and dangler), respectively, while the noisy lines show
estimates from brute-force dynamics. The agreement is excel-
lent, with the largest differences being only a few percent at
intermediate times, while the short- and long-time behaviors
show even closer agreement.

At early times about half of the 12-mers are danglers. These
off-pathway intermediates gradually anneal into the target do-
decahedron structure.

Figs. 3b,c show the MultiMSM predictions for lower bind-
ing energy values €;; = 5.5 and 5.0 respectively. No-
tably, the weaker subunit-subunit attractions result in signif-
icantly longer assembly timescales (about 20x and 500X
respectively). Note that the dangler intermediates do not
occur for these weaker binding energies, and thus we fo-
cus on the most common structures (monomers and dodec-
ahedrons). Fig. 3b shows that the MultiMSM predictions
closely match the brute-force dynamics predictions, even on
the long timescales required for this system to approach equi-
librium. We provide further evidence that this model is ac-
curate over longer timescales in Section V A and Fig. 7b. In
Fig. 3c we cannot directly compare the MultiMSM predic-
tions against brute-force dynamics across all timescales, as
the simulations would take about 2 GPU-months per trajec-
tory. We do perform a comparison over accessible timescales
(Ty = 2.5 x 10°ty) and see good agreement (see supplement
Fig. S7) [51, 53, 80, 195-204].

To further test the accuracy of the MultiMSM prediction,
we note that the MultiMSM predictions (see Fig. 4), brute-
force dynamics simulations, and previous modeling results
(e.g. [153, 202, 205, 206]) show that intermediates are present
at extremely low concentrations for weak binding energies
such as €17 = 5.0. Thus, Fig. 3c also compares 1 — f;
with the dodecahedron fraction, showing that these two re-
sults are within a few percent for all times as expected for
small intermediate concentrations. Additionally, Fig. 4 shows
the MultiMSM results for the full cluster-size distribution as
a function of time for €17 = 6 and ¢;; = 5. In the case of
stronger binding, there is a broad distribution of detectable
intermediate sizes during the rapid assembly phase. In con-
trast, weak binding results in approximately two-state kinet-
ics — only dodecahedra and monomer occur at high concen-
trations, with low concentrations of dimers and trimers, and
trace amounts of other transient intermediates. The snapshots
in Fig. 4c,d show representative system configurations during
the rapid assembly phase for each case. For €17 = 6 (Fig. 4c)
we see dodecahedra and monomers coexisting with interme-
diates of various sizes, while for €17 = 5 (Fig. 4d) we observe
two dodecahedra and monomers along with a few transient
dimers.

These results demonstrate a powerful aspect of MSMs that
is preserved in our MultiMSM approach; the simulations used
to construct the model are all of length 0.2 x 10°¢y, which
is orders of magnitude smaller than the relevant assembly
timescales.

B. T=3 Capsids

Fig. 5a shows MultiMSM predictions (smooth curves) for
T = 3 capsid assembly dynamics, with results shown for
monomers, complete capsids, and ‘near-capsids’ which in-
clude any structure with 56 or more subunits (including
complete capsids with 60 subunits). These predictions are
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FIG. 3. MultiMSM predictions for dodecahedron capsid assembly dynamics at three values of the binding affinity parameter €11, compared
against results from brute-force dynamics on accessible timescales. Note the increasing timescale on the x-axis as binding affinity decreases.
(a) Strong affinity €17 = 6. The blue, green, and purple curves denote the MultiMSM predictions for mass-fraction of monomer, dodecahedron,
and all size 12 structures (capsids and ‘danglers’), respectively, with representative structures from simulations labeling each curve. The noisy
curves (orange, red, brown) show the same mass-fractions estimated from 50 independent brute-force dynamics trajectories. (b) Moderate
affinity €17 = 5.5. MultiMSM predictions for the monomer (blue) and dodecahedron (green) mass fractions; danglers do not form at this
binding affinity. The noisy curves (orange, red) show the same mass-fractions estimated from 20 independent brute-force dynamics trajectories.

(c) Weaker affinity €11

= 5.0. MultiMSM predictions are shown for monomers and capsids. The dashed line is 1 — f; with f; the monomer

fraction. The total subunit concentration for (a)-(c) is co = 0.0156. Error bars are estimated for the MultiMSM by bootstrapping with 1000
resamplings (see Section IV C). In this work, all energies are given in units of the thermal energy kg7 and all length scales in units of [y (see

text).
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FIG. 4. Comparison of MultiMSM intermediate size distributions as
a function of time for dodecahedron assembly with (a) €11 = 6.0 and
(b) €11 = 5.0. Times and yields are plotted on a log-log scale, over
the same time intervals for the corresponding plot in Fig. 3. (c), (d)
Snapshots of representative configurations at times corresponding to
the red dashed lines in (a), (b).

compared against results from brute-force dynamics (noisy
curves) on accessible timescales (up to 12.5 x 10%¢). This
comparison is shown in more detail in Fig. 5b, where we also
include pentamers. We observe extremely close agreement,
within the statistical error of the brute-force simulations. In
particular, the MultiMSM captures the rapid conversion of
monomers into pentamers at early times, slow monomer de-
pletion at late times, and the tendency of assembly pathways
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FIG. 5. MultiMSM predictions of T' = 3 capsid assembly dynam-
ics with (e12,€33) = (11,8) and ¢g = 1.7 x 10™*, compared
against results from brute-force dynamics on accessible timescales.
(a) MultiMSM predictions of mass-fractions (smooth curves) are
shown for monomers (blue), capsids (green), and ‘near-capsids’
(purple, 56 — 60 subunits), with example snapshots labeling each
curve. These predictions are compared against mass fractions es-
timated from 40 brute-force dynamics trajectories performed up to
12.5 x 10%¢g (noisy curves). Error bars are estimated for the Mul-
tiMSM by bootstrapping with 1000 resamplings (see Section IV C)
(b) A more detailed comparison of MultiMSM and brute-force re-
sults, also showing mass fractions of pentamers (pink).

to become trapped in near-capsid intermediates.

These behaviors arise because these simulations are per-
formed at binding affinity values €12 = 11 and e33 = 8 for
which intra-pentamer interactions are strong and intra-dimer
interactions are relatively weak [166]. This imbalance leads
to hierarchical assembly pathways in which many subunits
first form pentamers, which in turn assemble into nearly com-
plete capsids. However, due to a combination of steric ef-
fects, monomer binding, and pentamer depletion, many as-
sembly pathways become trapped in near-capsid structures
with 56 — 59 subunits. While some of these structures are



converted into complete capsids by monomer additions, they
persist at ~ 10% mass fraction even at very long times.

C. Error and Efficiency

D12 D12 D12 T3
€11 = 6.0[€e11 = 5.5|€11 = 5.0 (€12, €33) = (11, 8)
Dynamics | 0.85(6) | 0.75(5) | 0.11(7) 0.21(8)
MultiMSM | 0.826(9) | 0.74(2) | 0.13(3) 0.25(2)

TABLE I. Comparing the estimated capsid yield and error at 7} for
each of the four examples with brute-force dynamics and the Mul-
tiMSM. Yields and errors are estimated from brute-force dynamics
by sample averages (see Fig. 3 and 5), and from the MultiMSM by
bootstrapping with 1000 resamplings. Final simulation times for
the dodecahedron examples are Tt = 0.5 x 10%¢y for €11 = 6,
Tt = 10 x 10%to for e11 = 5.5, Tt = 2.5 x 10°tq for €11 = 5;
for the T' = 3 capsid Tt = 12.5 x 10°%,.

Error. For a standard MSM, the uncertainty in the equilib-
rium distribution and other quantities can be directly propa-
gated from uncertainty estimates in transition matrix entries
[207-210]. However, in the MultiMSM such propagation
is complicated by the unknown switching times between the
component MSMs and the smoothing procedure. Therefore,
we quantify errors using bootstrapping [211, 212] (see Ap-
pendix C for further details).

Table I shows a comparison of the estimated means and
standard errors of the capsid yield for each of the examples
from the MultiMSM by bootstrapping with 1000 resamples.
These results are compared against sample averages from the
brute-force dynamics simulations. In each example the com-
parison is shown for the final simulation time point 7;. We
see that the MultiMSM yields are within the statistical error
of the estimates from brute-force dynamics, and that the sta-
tistical error for the MultiMSM is consistently smaller than
that from the dynamics.

We have used the same bootstrapping approach to compute
the statistical error of the MultiMSM yield predictions as a
function of time for each of the assembly examples (Fig. 3
and 5a). Where available, the sample-averaged yields are typ-
ically within the error bars of the MultiMSM prediction. An
exception is dodecahedron assembly with €;; = 6 (Fig. 3a),
for which the computed error bars are quite small at some
times and sample averages lay outside them. This is likely
because this example used the fewest sample trajectories to
build the MultiMSM and we did not perform adaptive sam-
pling, so the sampling with replacement step performed for
the bootstrap results in very similar models. For the examples
with longer assembly timescales (Fig. 3c and 5a), the errors
generally grow in time due to accumulated error from each
monomer fraction interval of the MultiMSM. While the error
for dodecahedron assembly with €;; = 5 is particularly large
at long time scales, our analysis shows that this is because we
had very limited sampling at the small monomer fraction val-
ues that occur at long timescales. Importantly though, this er-

ror could be significantly reduced with further sampling. The
error estimates provide a guide to refining the discretization
of the monomer fractions and performing additional sampling
(see Appendix A 4 and Appendix C 1).

As for a traditional MSM, the accuracy of the MultiMSM
at long times is limited by the sampling of the most rele-
vant slow transitions. For example, in the triangles system
which involves strong intra-pentamer interactions, we sam-
pled pentamer-to-monomer transitions only 25 times and dis-
sociation from complete capsids only ~ 500 times. As noted
above, adaptive sampling techniques focus on such transitions
to improve statistics. However, estimates of transition matrix
elements that involve such rare events can be improved much
more efficiently by incorporating non-Boltzmann techniques
[213-216].
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FIG. 6. Estimate of the computational speedup provided by the Mul-
tiMSM. The plot shows the efficiency, defined as the ratio of the total
computational time required to simulate a given observation time 7t
by constructing a MultiMSM or by brute-force dynamics, tmsm /tmp.
Estimates are shown for the four example systems considered in this
work: dodecahedron assembly with €11 = 6 (blue), €11 = 5.5 (or-
ange), €11 = 5 (green), and 7' = 3 capsid assembly (red) with
€12 = 11 and €33 = 8. As noted in the text, the ratio is indepen-
dent of the standard error of the estimate of the capsid yield.

Efficiency. Next, we compare the efficiency of construct-
ing a MultiMSM compared to performing an ensemble of
straight-forward dynamics simulations. We find that the stan-
dard error of the estimated capsid yield for both the brute-
force dynamics and the MultiMSM (without adaptive or en-
hanced sampling) scale with the number of statistically inde-
pendent samples, consistent with the central limit theorem.
Thus, defining the total computational time for brute-force
dynamics and the time required to build a converged Mul-
tiMSM respectively as tyvp and tysm, the standard error scales

as ~ tl;nl)/ % and ~ t&;{f. The time required to perform the
bootstrapping with the MultiMSM is negligible compared to
the simulation time, so we exclude this time from the calcu-
lation. The efficiency of the MultiMSM can be improved by

adaptive sampling and enhanced sampling as noted in the pre-



vious paragraph.

As a measure of speedup of the MultiMSM, we define the
efficiency as the ratio of sampling time ¢vp /tmsm required to
simulate to a given observation time 7}. Since the simulation
time for both approaches has the same scaling with error (not
accounting for adaptive/enhanced sampling) the efficiency is
independent of error tolerance. However, the efficiency scales
linearly with observation time, since the brute-force dynam-
ics simulation time is ~ T}, while once the MultiMSM is
constructed, it can be simulated to any timescale with a cost
that is negligible compared to sampling time. The propor-
tionality coefficient and relevant timescales are system depen-
dent. Thus, as with any enhanced sampling method, the Mul-
tiMSM speedup depends on the separation of timescales. For
self-assembly, the speedup will increase exponentially with
the height of nucleation barriers; i.e., with decreasing binding
affinity or subunit concentration.

Fig. 6 shows the efficiency values as a function of observa-
tion time for each example system studied in this work. We
see that the efficiency or speedup of the MultiMSM can be
quite significant, as large as 10° for considered timescales for
the dodecahedron system with €;; = 5. The speedup is sig-
nificantly lower for the 7' = 3 system, for which we used a
very strong binding affinity with correspondingly small nu-
cleation barriers and rapid assembly. For reference, Table II
in Appendix A 5 shows the total computational times required
for the estimates of capsid yields by the MultiMSM and brute-
force dynamics (Figs. 3 and 5). Here, the speedup of the Mul-
tiMSM is modest because parameters were chosen to enable
direct comparison with brute-force dynamics as much as pos-
sible. Thus, we were restricted to small 7¢ and parameters
that lead to relatively small barrier heights and consequently
a small proportionality coefficient. As evident from Fig. 6, a
longer observation time and lower binding affinities or subunit
concentrations would lead to significantly higher efficiency of
the MultiMSM.

V. APPLICATIONS

In this section we describe additional dynamics calculations
and analysis that can be performed from the MultiMSM with-
out any additional sampling of short trajectories. First, we de-
scribe how the assembly dynamics can be computed for total
subunit concentrations below that of the original calculation.
Then we show how free energy profiles and entropy produc-
tion rates can be computed over the course of the assembly
reaction. Finally, in the supplement section S2D, we show
how previous applications of transition path theory to com-
pute assembly pathways and committor probabilities can be
extended to the MultiMSM.

A. Concentration Sweeps

A powerful consequence of how the MultiMSM is con-
structed is that assembly dynamics at total subunit concentra-
tions ¢g below that used in the simulations to build the Mul-
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tiMSM can be computed from the same set of transition matri-
ces, requiring no additional sampling. While the calculation
is not rigorous, the procedure is an excellent approximation
provided that concentrations of intermediates remain small,
which is typically the case for productive assembly reactions.

Consider a discretization of the monomer fraction, D =
[0,ds,...,dn, 1], such that a monomer fraction of 1 corre-
sponds to a maximum total subunit concentration of ¢j'**. For
our primary analysis, we initialize the system using the MSM
defined on the interval [dy, 1] with a starting distribution of
all monomers, p? = d,0, and the solution to Eq. (5) gives the
system dynamics with concentration cg®*.

We can then approximate the dynamics for lower subunit
concentrations cg = dpcg™ without any additional sampling,
by initializing the MSM defined on one of the inner intervals,
[dx—1,dx] for k& < N, with the same initial distribution of
all monomers. We define a new monomer fraction discretiza-
tion Dy, = [0,dy/dy,da/dy, ..., dx—1/dx, 1], and assign cor-
responding transition matrices to the same intervals. For ex-
ample, if P; originally was the transition matrix on the inter-
val [0, d4], in the reduced system it will be the transition ma-
trix on the interval [0, d; /dj]. A limitation is that we are con-
strained to the finite set of concentrations corresponding to the
bins of our discretization, dycg, and depending on the quality
and amount of sampling initially performed in the bins closer
to zero, the error may increase as smaller concentrations are
probed. However, if needed, additional sampling can be per-
formed to refine the discretization based on error analysis as
described in Section IV C and Appendix C 1.

Fig. 7a shows the results of a concentration sweep per-
formed using this method for the dodecahedron system with
€11 = 5.5. The capsid yield curves are computed for the ini-
tial concentration ¢f®* and smaller values corresponding to
the monomer fraction discretization bin cutoffs, and then in-
terpolated between these discrete values. The results show
that the final capsid yields decrease while assembly timescales
increase as the total subunit concentration is reduced, consis-
tent with previous theory and experiment [2-5, 7, 49, 50, 57—
61, 67, 78, 127, 156, 169, 171, 172, 195, 202-205, 217-
232]. We can also infer the critical assembly concentration, as
the MultiMSM initialized at concentration 0.25¢y'** predicts a
capsid yield of zero.

This procedure provides an excellent approximation to the
dynamics when there is a large separation of timescales be-
tween nucleation and growth timescales, so that monomers are
depleted slowly in comparison to the timescale for transitions
among larger intermediates. Such a separation of timescales
is consistent with the usual criteria for MSMs to provide ef-
fective computational speed up. The dodecahedron assem-
bly examples with lower binding energies (e1; = 5.0,5.5)
are good examples of this scenario. Cluster nucleation is a
rare event, and entire transition pathways from monomer to
capsid are frequently sampled in each of the monomer frac-
tion discretization bins. Consequently the approximation is
highly accurate in these cases, as shown in Fig. 7b, which
compares the MultiMSM predictions made by extrapolating
to lower total concentrations against brute-force dynamics tra-
jectories. We performed simulations until 10 x 10%t,, when
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FIG. 7. Using the MultiMSM to estimate how assembly dynamics depends on total subunit concentration, co, without requiring additional
simulations. (a) The MultiMSM prediction for the capsid mass fraction is shown as a function of time and ¢y for the dodecahedron assembly
with €11 = 5.5. Representative snapshots of the simulation box are shown for four choices of time and total subunit concentration. (b) Com-
parison of the MultiMSM predictions of monomer (dashed lines) and capsid (solid lines) mass fractions against brute-force dynamics results
(symbols) for total subunit concentrations 0.7¢g™ (red), 0.35¢5™ (green), and 0.25¢5™ (blue). For the brute-force dynamics simulations, the
total number of subunits was fixed at Ny = 125, the box size was increased to Lo = 22.525lg, 28.380[p, and 31.750l respectively, and 20
independent trajectories were performed for each system. Results from the brute-force dynamics simulations at lower concentrations were not

used in construction of the MultiMSM.

the capsid yield reaches ~ 99% of its equilibrium value ac-
cording to the MultiMSM for ¢y = 0.7¢g* = 0.011 and
co = 0.35¢f™ = 0.0055. For ¢y = 0.25¢H* = 0.004, the
MultiMSM predicts no assembly, and we observe only a sin-
gle capsid out of a possible 200 in the brute-force dynamics.
These comparisons provide further evidence that the transition
matrix estimation is accurate in the lower monomer fraction
bins of the original MultiMSM. This reinforces the accuracy
of the long-time predictions at the original concentration cj**
in Fig. 3b, which depends on the accuracy of the transition
matrix on each interval.

For the example in Fig. 3c, approaching equilibrium with
brute-force simulations is computationally intractable, and
thus we cannot directly test the MultiMSM predictions. Im-
portantly though, performing this concentration sweep out to
such timescales using the MultiMSM takes only a few min-
utes on a CPU, demonstrating many orders of magnitude of
computational speed-up.

The approximate concentration results are less accurate in
cases with poor separation of timescales. The triangle system
at the simulated binding affinity provides an example of this
scenario, in which monomers deplete quickly, but larger inter-
mediates form over a longer timescale. Fig. 8 shows the result
of performing the concentration sweep for the 7' = 3 cap-

sid assembly, comparing to brute-force dynamics simulations
over the computationally accessible timescale of Tf = 12.5 x
10°ty. The blue curves used the initial total subunit concen-
tration, co = cj™, as a reference, while the green and purple
curves used concentrations cg = 0.63¢I™ = 1.0 x 10~* and
co = 0.1cf™ = 1.7 x 107>, respectively. We see that for
the intermediate concentration (green), co = 1.0 x 1074, the
MultiMSM predictions match well with the brute-force esti-
mates except for a slight overestimate of capsid yields at early
times. Monomer depletion is still accurately characterized by
the MultiMSM in this case. However, for lower concentra-
tions such as ¢ = 1.7 x 10~° (purple), the method breaks
down; the MultiMSM predicts too rapid monomer depletion
and a nonzero capsid yield, even though the largest interme-
diate size is 10 in brute-force simulations on this timescale.
This breakdown can be attributed to the relatively high popu-
lations of intermediates; once the monomer fraction becomes
small enough (< 10%) in the initial system, most of the sam-
pled transitions are between monomers and larger intermedi-
ates. When we then use these transition matrices to predict the
dynamics of a system with all monomers in the approximate
concentration sweep, the prediction overestimates the rate of
monomers forming larger intermediates. This breakdown of
the concentration sweep approximation can be identified by
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FIG. 8. The T = 3 capsid assembly example shows that the concen-
tration sweep approximation can become inaccurate for insufficient
separation of timescales. Comparison of the MultiMSM predictions
of monomer (dashed lines) and capsid (solid lines) mass fractions
against brute-force dynamics results (symbols) for total subunit con-
centrations cg™ (blue), 0.63cy™ (green), and 0.1cy™ (purple). For
the brute-force dynamics simulations, the total number of subunits
was fixed at Ny, = 600, the box size was set to Lo = 153, 179.4o,
and 331.4[p respectively, and 20 independent trajectories were per-
formed for each system. Results from the brute-force dynamics sim-
ulations at lower concentrations were not used in construction of the
MultiMSM.

comparing the yield of intermediates to the total subunit con-
centration. When the triangle monomer fraction reaches 0.63,
intermediates with sizes between 5 and 55 subunits account
for ~ 10% of the yield, and the concentration sweep remains
accurate when initialized at this total subunit concentration.
When the triangle monomer fraction reaches 0.1, the same set
of intermediates account for over 55% of the yield and the
concentration sweep approximation breaks down. In our ex-
amples, an intermediate yield of about 20% seems to be an up-
per bound for getting reasonable results from the MultiMSM
concentration sweep.

B. Entropy Production Rates

The entropy production rate provides a means to quanti-
tatively measure how far from equilibrium a process is, thus
elucidating the irreversibility of a process (which produces en-
tropy), the heat produced or work done by the system, or the
efficiency of a process [233—236]. Much recent work has de-
veloped optimal control algorithms for non-equilibrium sys-
tems to minimize entropy production [155, 237-250]. How-
ever, entropy production is frequently difficult to measure in
experiments or simulations of complex models, due to the
large amount of data needed to reliably estimate probability
distributions and currents, although approaches based on ma-
chine learning [251-257] and automatic-differentiation [258]
can help. Fortunately, the MSMs enable computationally effi-
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cient computation of entropy production.
The time-dependent entropy production rate for a Markov
chain at step n is given by the expression

n_ 1 np  onp pi Pij
5 —Qg(pi Pi—piPi)log pts ®

where p' is the probability of being in state ¢ at time n, and
P;; is the transition probability from state ¢ to state j. This
extends naturally to the MultiMSM framework, with the tran-
sition matrix replaced by the time-dependent transition matrix
across the monomer fraction bins

n_ 1 n n pi'Pij(n)
=3 %: (pi Pij(n) — p} Pji(n)) log m, 9
where P(n) is the transition matrix used to update the system
at time step n. This quantity can be computed while solv-
ing the forward Kolmogorov equation as described in Section
IIE.
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FIG. 9. Entropy production rates as a function of time as computed
by the MultiMSM for (a) dodecahedron assembly with €11 = 5.5
and ¢o = 0.0156 and (b) T=3 capsid assembly with (e12,€33) =
(11,8) and co = 1.7 x 107*. Selected peaks and other areas of
interest are labeled with the transition or transitions that contribute
most to the total entropy at that time.

Figs. 9a,b show the result of computing the entropy pro-
duction rate as a function of time using the MultiMSM for
dodecahedron assembly at the intermediate binding energy,
€11 = 5.5, and the T=3 model. For the dodecahedron case, we
observe an initial spike in the entropy production rate at early
times, corresponding to a non-equilibrium flux of monomers
into larger intermediates. The entropy production rate then de-
creases rapidly and remains small throughout the remainder of
the simulation. Importantly, note the difference in timescales
for the entropy production rate decreasing toward zero and the
yields reaching a steady state in Fig. 4b. This suggests the as-
sembly is near-equilibrium once the monomer concentration
reaches roughly half its starting value. This is consistent with
the accepted notion that productive assembly occurs when the
system is near equilibrium [7, 203, 259].

We can also track the dominant contributions to the sum in
Eq. (9) to better understand the assembly process. The two
initial peaks are labeled with a representation of the transition
contributing the most to the entropy at that time. The first
peak corresponds to the transition between (N, B) = (7,12)
to (N, B) = (8, 15), accounting for approximately 7% of the



entropy production rate, while the second peak corresponds
to the transition between (N,B) = (9,18) to (N,B) =
(10,21), accounting for approximately 11% of the entropy
production rate. These two transitions are dominant consid-
ering that the next largest contributions account for less than
2%. This observation suggests these are the dominant nearly
irreversible transitions in the assembly process, and indeed
we can see these transitions occur on the most likely assem-
bly pathway identified in supplement Fig. S5b. The enhanced
lack of reversibility for these transitions can be understood
because both transitions add three bonds to the configuration,
compared to just one or two for most of the other early tran-
sitions along the pathway. This result demonstrates that the
entropy production can provide important insights into a reac-
tion pathway by identifying the key transitions that stabilize
intermediates or products.

The T" = 3 model (Fig. 9b) exhibits a similar large spike
in entropy production at early times due to rapid formation
of dimers and small intermediates, followed by a decay over
time. The initial peak corresponds to the monomer to dimer
transition, accounting for approximately half the entropy pro-
duction at this time. The next peak is dominated by transitions
from a dimer, trimer, or tetramer to a pentamer, with each tran-
sition contributing approximately 2.5% for a total of 7.5%.
These are the expected dominant contributions, as the strong
intra-pentamer interactions make pentamerization a nearly ir-
reversible process under these parameter values. There are
no intermediate peaks that have a dominant contribution to
the total entropy production, but rather many transitions with
roughly the same contribution. An interesting observation for
this example is that the entropy production rate does not tend
to zero at large times, but rather decays to a small positive
number, approximately 0.006. It does not decay further even
if we increase the final time by up to two orders of magnitude.
This entropy production is almost entirely (> 99%) due to
configurations with 59 subunits transitioning to the T=3 cap-
sid, as well as configurations with 60 subunits but the wrong
bond configuration transitioning to the T=3 capsid. At this
point in the assembly, the free monomer concentration has al-
ready decayed to less than 1% of its initial value, which indi-
cates that the system has become trapped in metastable states.
This result demonstrates that entropy production provides a
useful measure of the extent to which a system is kinetically
trapped.

C. Free Energy

Another useful application of MSMs is calculating the equi-
librium free energy of each microstate, which can then be pro-
jected onto reaction coordinate(s) for mechanistic insight. No-
tably, the MultiMSM allows computing the equilibrium free
energy profile independent of free monomer concentration,
from nonequilibrium simulations at arbitrary monomer con-
centration.

While a typical MSM enables computing the Helmholtz
free energy from the equilibrium distribution of microstates
7 as F; = —kgTlog(m;), in the MultiMSM framework the
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FIG. 10. The grand free energy for dodecahedron assembly at
€11 = 5.5, computed analytically from the Helmholtz free energy
using Eq. (10) and evaluated at the average monomer fraction within
each discretization bin (solid lines). Dashed lines show the grand free
energy computed directly from the MSM equilibrium distribution,
for monomer fractions and intermediate sizes that are sufficiently
close to equilibrium to enable comparison.

transition matrix depends on the free subunit concentration
and thus the corresponding chemical potential. Therefore, the
MultiMSM gives the grand free energy for the j-th component
MSM as

O = —kgTlog(n!) = F; — pj(n; — 1), (10)

where Q] is the grand free energy for state i in the j-th MSM,
w; = kgTlog(c;j/css) is the chemical potential for the j-th
MSM with ¢; as the average monomer concentration within
the bin and ¢y as the standard state concentration, and n; is
the number of subunits in microstate 4.

Importantly, since the Helmholtz free energy F; in Eq. (10)
is independent of the chemical potential (and thus the free
monomer concentration), it should be the same for each com-
ponent MSM of the MultiMSM. Therefore, its statistics can be
improved by averaging over each of the component MSMs.

To simplify the following presentation, we project the free
energy onto a reaction coordinate where there is one state per
intermediate size n, but the approach readily generalizes to
multiple states per size. To compute F; within a particular
MSM, we compute the equilibrium distribution from the tran-
sition matrix and then the set of equilibrium constants for the
formation of each n-mer,

Kn=[n]/[1]", (11)

where [n] denotes the equilibrium concentration of n-mers.
Note that any absorbing states (states or groups of states for
which there were an insufficient number of exit transitions to
estimate an outward transition rate) should be eliminated from
the transition matrix before computing equilibrium quantities.
As noted above, outward transition rates could be computed



for such states by combining free energy calculations with the
dynamical simulations used to estimate transition rates [213],
but we have not implemented this approach for the present
work. Then, the concentration of subunits in absorbing states
should be subtracted from the total subunit concentration to
ensure proper normalization of the grand free energy (see Ap-
pendices D 1 and D 2 for details).
The Helmholtz free energy can be computed as

F, = —kgTlog(c" ' K,,). (12)

While the equilibrium constant corresponds to the true observ-
able and is thus independent of standard state, the free energy
values necessarily depend on cg. For the results presented
here, we choose ¢y in simulation units such that there is one
subunit per circumscribed volume occupied by the subunit:
css = 0.66/13 for the pentagonal subunit and ci, = 0.17/13
for the triangular subunits. See supplement Section S2C 1
and Fig. S2 for plots of the Helmholtz free energy for both sys-
tems, verifying the collapse with respect to monomer fraction.
We also independently test the MSM free energy calculations
against direct calculations from the Brownian dynamics sim-
ulations in supplement Fig. S4, showing excellent agreement.

The Helmbholtz free energy enables computing the grand
free energy at any free monomer concentration by adding the
chemical potential term as in Eq. (10). For example, Fig. 10
shows the grand free energy for dodecahedra with €;; = 5.5
at several representative subunit concentrations. We evaluate
the grand free energy at monomer fractions corresponding to
the average monomer fraction within each discretization win-
dow (solid lines). This allows for a direct comparison of our
computed grand free energy with the result of computing it
directly from the component MSM equilibrium distribution
(dashed lines). Note that the nucleation barrier increases, and
the stability of intermediates decrease, as free monomer con-
centrations decrease due to the increased monomer chemical
potential. Note that these curves should coincide only when
the assembly is at or near equilibrium. Fig. 9a shows that
the entropy production vanishes once the monomer fraction is
below roughly 0.5, and we see excellent agreement between
the two calculations at lower monomer fractions. For larger
monomer fractions, we may expect structures smaller than the
critical nucleus to be in quasi-equilibrium [203], so we make
comparisons up to an intermediate size of 5. In this case, we
find loose agreement between the curves that improves as the
monomer fraction decreases.

We show free energy profiles for a range of monomer frac-
tions for 7' = 3 capsids in supplement Section S2C 1 and
Fig. S3. However, since we have shown above that this system
is kinetically trapped and thus not in equilibrium for our cho-
sen parameters, we do not make comparisons with the equi-
librium MSM for this case.

VI. CONCLUSIONS

We have described the MultiMSM, a general framework to
construct MSMs for systems in which many clusters assemble
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simultaneously and concentrations (and potentially other pa-
rameters) change over the course of the reaction. Using two
model systems, we show that MultiMSMs can accurately de-
scribe assembly dynamics over the long timescales required
to approach equilibrium, even when constructed from trajec-
tories that are orders of magnitude shorter. This capability
enables particle-based simulations with complex models to be
simulated at experimentally relevant concentrations. The de-
gree of speed up enabled by the MultiMSM increases expo-
nentially for systems with large nucleation barriers, and the
method is well-suited for systems that assemble by diverse
pathways. Moreover, the method is trivially parallelizable and
thus highly scalable.

In addition to extending on previous work by allowing for
multiple clusters and the depletion of free subunits, the Mul-
tiMSM approach allows for a number of further applications.
Notably, a MultiMSM constructed at one total subunit con-
centration can be used to perform an approximate parameter
sweep over a wide range of concentrations with no additional
sampling. This capability corresponds to orders of magnitude
additional speed up in comparison to brute-force simulations.
The results are highly accurate for conditions leading to pro-
ductive assembly, under which concentrations of intermedi-
ates remain relatively low, and qualitatively accurate for more
aggressive assembly conditions that lead to a buildup of in-
termediates. The MultiMSM framework computes transition
path theory quantities, such as the committor probability de-
scribing the extent of progress along a reaction coordinate and
the relative flux along different assembly pathways. It can
also be used to estimate the Helmholtz free energy of a sys-
tem, as well as compute the grand free energy as a function
of the monomer concentration. Further, the method allows
for efficient calculation of entropy production rates, a quan-
tity which has been difficult to compute from particle-based
simulation trajectories. We find that the entropy production
rate provides a useful quantification of how far an assembly
reaction is from equilibrium and whether it is susceptible to
kinetic traps. More interestingly, by analyzing which transi-
tions contribute most to the entropy production rate, one can
identify factors that stabilize critical nuclei or other key in-
termediates, and whether these transitions lead to productive
assembly or engender kinetic traps. These insights can form
the basis for rational design of synthetic assembly systems, or,
in the case of biomedically relevant assembly systems such as
viruses, help to identify targets for antiviral molecules that in-
terfere with assembly [68, 260-264].
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Appendix A: Simulation and MultiMSM Construction Details
1. Dodecahedron system

The subunits are rigid bodies composed of several kinds
of pseudoatoms. There are attractor pseudoatoms (‘A’) at
the vertices of a regular pentagon, which facilitate subunit
assembly via an attractive Morse potential with an equilib-
rium length of Ly = 0.2, a range parameter « = 2.5/Lg, a
cutoff distance of 2, and a well-depth (subunit-subunit bind-
ing strength) €17 that can be varied. In this work, we use
values €17 € {5.0,5.5,6.0}. We also include a top pseu-
doatom (‘T”) and a bottom pseudoatom (‘B’), located at po-
sitions z = 0.5 with respect to the center of the regular
pentagon in the xy plane. The ‘T’ pseudoatoms interact with
other ‘T’ pseudoatoms via a repulsive Lennard-Jones potential
with opr = 2.1, cutoff distance equal to orr, and well-depth
err = €11/4. These values favor a subunit-subunit binding
angle consistent with that of a dodecahedron. The ‘B’ pseu-
doatoms have a similar repulsive interaction with “T” pseu-
doatoms, with org = 1.8, a cutoff distance equal to orp, and
well-depth ey = €11/4. This interaction helps to prevent
upside down assembly, i.e. ensuring that the top atom is in
the direction of the outward normal vector. Finally, we add
edge (‘E’) pseudoatoms at the midpoint between each adja-
cent vertex. These have no interactions and thus do not affect
the simulation, but they are used to track assembly progress
more easily compared to vertex pseudoatoms.

Results are reported in units for which the unit length [
corresponds to the edge length of the pentagonal subunit and
energies are measured in units of kg7". Simulations are initial-
ized with 125 pentagonal subunits, enough to form 10 dodec-
ahedral capsids (12 subunits each), on an equally spaced lat-
tice. Subunit positions and orientations are then equilibrated
with a purely repulsive potential for 2 x 10° time steps before
writing any output. The simulation box is a cube with peri-
odic boundary conditions and side lengths 20!, giving a total
subunit concentration of ¢y = 0.0156/13. The time step is
0.001tg, and the base simulations to construct MSMs are run
for 5 x 10° time steps unless otherwise specified. The sim-
ulations use the HOOMD-blue [163] version 3.9.0 Langevin
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integrator, with an inverse temperature 5 = 1. The configura-
tions are recorded every At = t( units of simulation time.

2. T = 3 capsid system

The subunits are rigid triangles with each edge consisting
of three stacked layers of six overlapping ‘excluder’ pseu-
doatoms at a specified bevel angle. These excluder pseu-
doatoms interact with all other pseudoatoms in the simulation
through a Weeks-Chandler-Anderson (WCA) potential to en-
force excluded volume. Embedded in the middle row of each
edge of the triangle are two attractor pseudoatoms, which have
attractive Lennard-Jones interactions with the pseudoatoms on
complementary edges to facilitate edge-edge binding of the
subunits. Each pseudoatom has the same diameter, o, which
we set as the unit distance [;. To match the dimensions of
the experimental subunit [166], we can set 0 = 18nm in real
units.

As described so far, the triangular subunits can be designed
to form a broad variety of target structures by tuning the
interaction strengths, side lengths, and bevel angles. For a
T = 3 capsid target, we make two sides of the triangle equiv-
alent. Sides 1 and 2 have an edge length of 30 = 54nm and
have complementary pseudoatoms (Side 1 has pseudoatoms
‘4> and ‘5°, which bind with pseudoatoms ‘7’ and ‘6’ on
Side 2, respectively) that attract with a binding energy of €15.
These two sides do not interact at all with Side 3, which
has a slightly longer edge length of 3.350 = 60.3nm, with
attractive pseudoatoms (pseudoatoms ‘2’ and ‘3’) that are
self-complementary with a binding well-depth of e33. The
bevel angle of each side is the same, approximately 11.64°.
This design can produce hierarchical assembly [166]. When
€33 > €19, dimers form rapidly via the Side 3 — Side 3 inter-
action, and then the dimers more slowly assemble into larger
structures via the Side 1 — Side 2 interaction. Conversely,
when €33 < €12, pentamers form rapidly and then subse-
quently assemble into larger structures. In this work, we con-
sider an example of pentamer-biased assembly, with €15 = 11
and €33 = 8.

The simulations contain N = 600 triangular subunits,
enough to form 10 T' = 3 capsids (60 subunits each). The
simulation domain is an L x L x L box with periodic bound-
ary conditions, whose side lengths determine the total subunit
concentration, cg = N/(NaL?), where N, is Avogadro’s
number. We set ¢g = 50nM to be on the order of ex-
perimental conditions, for which the corresponding box side
length is L = 2.71 microns. In simulation units, the box
side lengths are 153/, giving a total subunit concentration of
co=1.7x1074/13.

We initialize subunit positions on an equally spaced, trun-
cated lattice. Subunit positions and orientation are then equili-
brated with a purely repulsive potential for 8 x 10* time steps,
after which attractive interactions are turned on. We use a time
step of 0.0025t(, and the base simulations to construct MSMs
are run for 5 x 108 time steps unless stated otherwise.



3. Bond Definitions and Discrete States

For the dodecahedron system, the pentagonal subunits have
edge (‘E’) pseudoatoms that align when the adjacent vertex at-
tractors bind with another subunit. We use a cutoff distance of
0.3l between these edge pseudoatoms to define a bond. For
the T = 3 capsid assembly, there are a pair of complemen-
tary pseudoatoms on Sides 1 and 2 (‘4’ and ‘7’ pseudoatoms),
and Side 3 is self-complementary (2’ and ‘3’ pseudoatoms).
We use a cutoff distance of 1.3y for both pairs of comple-
mentary pseudoatoms in this case. These values were chosen
by selecting the minimum distance that would correctly iden-
tify fully formed capsids across many different realizations of
the assembly. Our results are insensitive to increasing these
cutoffs up to the next-nearest neighbor bond distances, which
are approximately 0.8]( for the pentagonal subunit and 2.4/
for the triangular subunits. Decreasing these cutoffs results in
frequent oscillations in the number of bonds, even for stable
configurations like the fully formed dodecahedron. Such be-
havior is undesirable when building a Markov state model, as
it overestimates the rate of bond breakage in the model, so we
ensure our choice of cutoff correctly identifies the target struc-
ture over long timescales at the strongest binding energies.

Using this definition of a bond, we construct our discrete
state space as all observed combinations of (N, B), where N/
is the number of subunits in a cluster and B is the distribution
of the number of bonds in a cluster. Defined in this way, the
number of unique discrete states we observe is system depen-
dent. There are 180 states for dodecahedral capsid assembly
with binding energies €11 = 5 and €17 = 5.5. For €11 = 6, the
interactions are strong enough to result in transient intermedi-
ates that are larger than 12 subunits, resulting in a state space
size of 447. Despite the enhanced size, most of these states are
extremely low probability and could likely be excluded with-
out affecting the model predictions, though we have not tested
this. For T' = 3 capsid assembly, the number of states is much
larger due to a larger capsid size and having two distinguish-
able bond types. For the pentamer-biased assembly set that
we consider, the state space size is 1662.

4. Additional Enhanced Sampling

A powerful feature of MSMs is the ability to simulate dy-
namics on timescales that are much longer than those of the
brute force dynamics simulations that are used to estimate the
transition matrix elements. Adaptive sampling, in which sam-
pling is focused on important, potentially under-sampled tran-
sitions, increase the accuracy of such predictions.

Ensuring the accuracy of longtime predictions is more chal-
lenging for the MultiMSM than a standard MSM because
the transition matrices change over time in the MultiMSM.
Straightforward brute-force sampling may not result in good
statistics for the long time behaviors. For example, in the
pentamer-biased simulations of the 7' = 3 capsid, the aver-
age monomer fraction at the final simulation time is about
5%. About 1/4 of the base trajectories sampled lower val-
ues than this, but there are only ~ 20000 transitions sam-

16

pled for 0% < f; < 3.5% while there are ~ 160000 tran-
sitions sampled for the smaller interval 3.5% < f; < 6%.
Thus, MultiMSM dynamics on timescales that lead to such
low monomer fractions will have limited accuracy without ad-
ditional sampling at low monomer fractions. We have devel-
oped techniques to more efficiently generate such data, partic-
ularly in typical challenging cases.

The first case, mentioned above, occurs when the monomer
fraction at the final simulation time has not yet reached its
equilibrium value, but is close to it. To generate additional
sampling at lower monomer fractions, we identify which of
the existing trajectories ended with the lowest monomer frac-
tion and initialize a new simulation in the final frame of the
existing one. Since transition rates will depend on the precise
distribution of intermediates present, we try to perform this
for as many different starting frames as possible, with mul-
tiple random seeds for each. We refer to this as ‘continued’
sampling.

A particularly challenging sub-case occurs when the inter-
action strengths are relatively weak. In this case, the nucle-
ation of a cluster is a rare event, and reaching equilibrium
may take orders of magnitude longer than available compu-
tational times. Furthermore, as the reaction proceeds and
the monomer concentration is depleted, the nucleation bar-
rier grows. In this case, we artificially push the system closer
to equilibrium, in a way that does not bias the equilibrium
distribution of intermediates. Since the equilibrium distribu-
tion in assembly systems with a large nucleation barrier can
be well approximated by a coexistence of just full capsids and
monomers, we can construct a starting frame from an existing
frame by randomly selecting monomers and manually assem-
bling them into a capsid, placing them in the simulation box
in such a way that there is no overlap. We refer to this as
‘fraction’ sampling, since we can target a particular monomer
fraction range to sample. Alternatively, one can also remove
the monomers forming full capsids from the simulation box.
As long as the simulation box size is reduced to account for
the volume of the capsid, this should not bias the dynamics of
the remaining monomers, and could significantly speed up the
simulations depending on the system size. We refer to this as
‘reduced’ sampling.

Another issue can arise in cases where the interaction
strengths are relatively strong. In this case, monomers will
very quickly deplete, resulting in very few sample transitions
being used to construct MSMs in the discretization bins cor-
responding to larger monomer fractions. In this case, we per-
form many short simulations, anywhere from 5 to 10 percent
of the original simulation time, to gather more samples for the
larger monomer fraction values. We refer to this as ‘short’
sampling. Fortunately, we have found that in cases of fast de-
pletion, we can choose the monomer fraction discretization
such that the entire fast depletion region is contained within a
single discretization bin, which reduces the need for this ad-
ditional sampling.



5. MultiMSM Parameter Overview

Here we summarize the parameters used to construct our
MultiMSMs for each example in the main text. Relevant pa-
rameters include the amount of sampling data and what type
of enhanced sampling simulation it came from, the monomer
fraction discretization, the minimum number of observations
of a transition, and the smoothing parameter used to solve the
forward equation for the yields.

First, we list the monomer fraction discretization for each
example. These were

Dodecahedron, €17 = 6.0: [0,0.05,0.12,0.13,0.23,
0.27,0.52,0.59,0.76, 1.0]

Dodecahedron, €17 = 5.5: [0,0.15,0.25,0.35, 0.45,
0.55,0.71,0.81, 1.0

Dodecahedron, €17, = 5.0: [0,0.08,0.16,0.31, 0.45,
0.61,0.75,0.89,0.98, 1.0]

T=3 Capsid: [0, 0.035,0.06,0.1,0.2,

0.57,0.63, 1.0

In general, these were the result of applying the optimization
scheme described next in Appendix B, using test data to gen-
erate sample estimates to optimize over computationally ac-
cessible timescales. In the cases where no simulation data is
available to compare against, such as taking the dodecahedron
estimates out to equilibrium for the smaller binding energies,
the bins closer to one were optimized as before, and subse-
quent bins selected manually by performing the error-based
refinement procedure detailed in Appendix C 1. We find the
resulting solutions in these cases to be insensitive to small per-
turbations in the bin locations (£0.01).

The two scalar parameters to the MultiMSM are the
smoothing parameter to the forward solver, x, and the min-
imum number of observations to keep for a particular transi-
tion, which we call the prune tolerance. The latter removes
transitions that are rare and unlikely to be important to the dy-
namics. The default values for these parameters are y = 0.25
and a prune tolerance of 1, which means no pruning. The only
exception for the smoothing parameter is the dodecahedron
assembly with €;; = 6, which used x = 0.5. The only ex-
ception for the prune tolerance is the dodecahedron assembly
with €11 = 5.5, which used a prune tolerance of 2.

Finally, we report the amount of sampling (including en-
hanced sampling) performed to build each MultiMSM. The
base simulations for each system are described above, with
dodecahedron and 7' = 3 simulations run for 5 x 10° and
5 x 10® time steps respectively. For ‘fraction’ and ‘reduced’
sampling, a variable number of these simulations were per-
formed per 0.1 monomer fraction bin, so we report the num-
ber of trajectories per bin. Note that bin ¢ in this case refers
to simulations initialized with monomer fraction 0.1(¢ 4 1).
These simulations were the same length as the base simula-
tions for each system.

For the dodecahedron assembly with €17 = 6, we per-
formed 120 base simulations and 35 ‘continued’ simulations
that were twice the length of the base simulations, for a total
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simulation time of 9.5 x 108 time steps. For €17 = 5.5, we
performed 80 base simulations. The number of ‘fraction’ sim-
ulations was 200 in bin 3, 300 in bin 4, 100 in bin 5, and 40 in
bin 6. The number of ‘reduced’ simulations was 200 in bin 2,
200 in bin 3, and 50 in bins 4, 5, and 6. The total simulation
time is 6.35 x 109 time steps. For €117 = 5, we performed
100 base simulations. In addition to this, we performed 200
‘reduced’ simulations in each bin 1 through 9. The total sim-
ulation time is 9.5 x 10° time steps. For the T' = 3 assembly,
we performed 35 base simulations, as well as 10 ‘continued’
simulations that were half the length of the base simulations.
The total simulation time is 101° time steps. The total compu-
tational time required for the MSM estimates of capsid yields
shown in Figs. 3 and 5 are given in Table II under ¢yspm. For
comparison, we also show the corresponding simulation time
that would be required to make these estimates with the same
level of error using only brute-force dynamics simulations as
tMD-

Example tmsm | tmp
€11 = 6.0 110 | 520
€11 =55 107 | 2580
€11 =5.0 420 142050
(12, €33) = (11,8)]1120(24200

TABLE II. Total simulation time required for the MultiMSM (tmsm)
and brute-force dynamics (tmp) for the comparison of capsid yields
predicted by both approaches in Figs. 3 and 5.

Appendix B: Choosing a Good Monomer Fraction
Discretization

In this section we describe a protocol that aims to select
an optimal monomer fraction discretization, and a metric to
gauge the quality of the discretization.

Our cluster analysis software, in addition to returning all
transitions a particular cluster makes along its lifetime, can
also be used to track the yield of any of the discrete states,
s, from any set of simulations. For each system, we perform
a set of simulations that are initialized with all subunits as
monomers with thermalized positions and orientations. We
average the mass-weighted yields of each discrete state over
each of these simulations to get an estimate of the true proba-
bility of observing that structure, {p” },,. In particular, we can
do this for ‘important’ intermediate states, such as monomers,
dimers, pentamers, the full capsid, other intermediates that
are relatively high probability or are involved in important
transitions, or any combination thereof. We can then com-
pare these curves to the corresponding entries of the time-
dependent probability distribution we get from solving Eq. (5)
from the MultiMSM with a discretization D, {p?(D)},,. Our
metric for the quality of the discretization is then a normed
difference of these two quantities,

1/p
C(D) = ||ps —ps(D)|P = (ZIﬁ?—ﬂ;(@l”) , (BI)



where we typically use the 2-norm, but leave this as a tunable
parameter for the optimization.

This metric can then be used as the cost function to mini-
mize for some optimization procedure in which the discretiza-
tion points d; are varied. We experimented with both Monte
Carlo and gradient descent optimization schemes, but both
tended to be both slow and prone to getting stuck in local
minima. Instead, we apply a sequential optimization proce-
dure that works as follows.

Consider the discretization Dy = (0,d;,da, - ,dn, 1) as
an initial guess. Since all our examples begin with a monomer
fraction of 1 and deplete monomers over time, the bins closer
to 1 have a larger effect on the accuracy of the MultiMSM
yield curves. This is because any error made in the bin clos-
est to 1 will propagate to all future bins as the monomers de-
plete. Therefore, our sequential optimizer works by fixing d;
through dx_; and choosing the optimal value for dy, that
minimizes the cost function. We then vary d_; while keep-
ing all of the other bins fixed, then dy_», and so on, con-
tinuing until we reach d;. It is possible that modifying the
other bin locations has shifted the optimal value for d, so we
perform another sequential optimization cycle. We repeat the
procedure until we reach a cutoff number of cycles, or until a
cycle terminates without changing any of the d;.

Every time a new discretization is tested the MultiMSM
must be reconstructed since many of the transitions may now
lie in a different bin. While we have implemented a caching
system to reduce the time it takes to reconstruct the Mul-
tiMSM with a new discretization, the construction time and
time to solve the forward equation is non-negligible. There-
fore, we want to minimize the number of discretizations we
test while performing this optimization. When optimizing d;,
we construct the interval between neighboring discretization
points, [d;_1, d;+1], and place M equally spaced points within
this interval. We keep M relatively small, typically M = 4,
and check if using those value for d; reduces the cost func-
tion. If not, we keep the same d; and move to the next point.
This keeps the optimization time to a reasonable level; typi-
cally we observe convergence in about 5—10 minutes, using
N =6—8, M = 4, and 5 cycles on a single 3.5 GHz CPU.

Appendix C: Bootstrapping Procedure
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FIG. 11. Error estimates by bootstrapping for the MultiMSM capsid
yield estimate at the final simulation time for the 7' = 3 system. (a)
Histogram of MultiMSM capsid yield estimates using 1000 boot-
straps. (b) and (c) show the sample mean and standard deviation,
respectively, as a function of the number of bootstraps.
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To estimate errors for the MultiMSM yield predictions, par-
ticularly in cases where comparison against brute-force simu-
lation is intractable, we perform a bootstrapping procedure.
Bootstrapping is a resampling technique in which multiple
random samples, known as bootstrap samples, are drawn with
replacement from an observed dataset. This method allows
for the estimation of the sampling distribution of a statistic, to
estimate uncertainties when the underlying distribution is un-
known or performing error propagation is not straightforward
[211, 212].

The typical bootstrapping procedure begins with a dataset
with N measurements. From this set, we construct a resam-
pling that consists of N samples from the original dataset,
drawn uniformly at random with replacement. The quantity
of interest is evaluated for the resampled dataset and becomes
a bootstrap sample. After collecting M bootstrap samples, a
histogram can be constructed to show the full distribution, and
the bootstrap sample mean and standard deviation can be com-
puted. We perform this procedure for the MultiMSM yields,
using the training trajectories as our dataset, with a small mod-
ification; we keep the number of each type of trajectory (see
Sections A4 and A 5) fixed during the resampling, instead of
just the total number of trajectories. This is particularly impor-
tant for the examples with slow monomer depletion, as a re-
sampling that does not include enough trajectories in the lower
monomer fraction regimes will give nonsensical results. We
generate M = 1000 bootstrap samples for each yield mea-
surement for which we wish to estimate errors, which are re-
ported in the main text. Fig. 11 shows an example histogram
of bootstrapping samples for the 7' = 3 capsid yield at the fi-
nal simulation time, as well as the sample mean and standard
deviation as a function of number of bootstrap samples. We
can see the histogram is approximately normally distributed,
and that the sampling estimates do not vary by much over the
last 200 samples, indicating we have performed enough boot-
straps.

1. Error-Based Refinement

Bootstrapping can be performed on the MultiMSM at var-
ious time points during the assembly to estimate the model
error as a function of time. These errors can then be used
as a guide for refining the MultiMSM model; by identify-
ing which monomer fraction bin the MultiMSM is using at
the time the error becomes large, this gives information about
where the monomer fraction discretization should be refined
or more sampling should be performed.

For example, the solid lines and error bars in Fig. 12
were computed by bootstrapping for the dodecahedron ex-
ample with binding energy ¢;; = 5.5, but with a poor
choice for the monomer fraction discretization, Diy =
[0,0.1,0.35,0.45,0.55,0.71,0.81,1.0]. This model differs
from the converged model from the main text (dashed lines),
Dinain = [0,0.15,0.25,0.35,0.45,0.55,0.71,0.81, 1.0] only
in the first two monomer fraction bins. We see a large spike
in the error when the monomer fraction goes below 0.35 for
Dy, indicating an issue with the model in this bin, despite
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FIG. 12. Example error refinement using bootstrapping error es-
timates. The dashed lines show the MultiMSM yield predic-
tions for monomers (blue) and dodecahedral capsids (orange) us-
ing the converged model from the main text for €;1 = 5.5. Solid
lines and error bars are generated using 1000 bootstrap samples
with a poor choice of monomer fraction discretization, Diss =
[0,0.1,0.35,0.45,0.55,0.71,0.81,1.0]. Refinement of the dis-
cretization then gives the converged MultiMSM that produced the
dashed line results.

the model means being quite close at this time, which is all
the optimization based refinement in Appendix B addresses.
Over longer timescales, the test model performs poorly; over-
estimating capsid formation and monomer depletion as well
as the timescale to reach equilibrium.

Since we have a converged and validated model with Din,
we can directly assess why the test model fails. We have noted
in the main text that the critical aggregation concentration
(CAC) for this example corresponds to a monomer fraction
of approximately 0.25. Slightly above this value, the system
assembles slowly, while below it the system does not assemble
at all. Both of these possibilities are captured in the discretiza-
tion window [0.1,0.35] of the test model. This means that
transition data above the CAC is being used to approximate
the dynamics below the CAC, resulting in poor model perfor-
mance. The resampling process for the bootstrap will con-
struct models that are biased toward either side of the CAC,
resulting in estimates with a large spread of possible values
and therefore large error estimates. By breaking up this large
window with the intermediate monomer fraction of 0.25, we
get the model reported in the main text, which presents far
smaller error estimates and matches well with sample aver-
ages from brute-force dynamics simulations.

While this example may seem a bit contrived, this error
analysis is precisely how we arrived at our final monomer dis-
cretization for this model. Before identifying the CAC or ver-
ifying the MultiMSM predictions with simulations, the test
model above was our best working model for this example,
obtained partly through trial-and-error and partly by running
the optimization in Appendix B using trajectories up until a
final time of 2.5 x 10°¢,. Since there were no estimates of the
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late time yields at that point, we could not evaluate this test
model without additional error analysis. By performing this
error analysis, we were able to identify a place to refine the
discretization and construct a model that accurately predicts
the equilibrium yields without knowing them a priori. While
we have not done this, an interesting possibility is to add these
bootstrap error bars as a metric to the refinement objective
function in Appendix B, which would allow for model refine-
ment in the absence of sample trajectories, the main weakness
of the refinement approach we used there.

Appendix D: Free Energy Calculation Details
1. Removal of Absorbing States

The free energy computations detailed in the main text all
involve computing the equilibrium distribution for each com-
ponent transition matrix of the MultiMSM. The equilibrium
distribution is given by the left eigenvector of the transition
matrix corresponding to an eigenvalue of 1. If the transition
matrix is ergodic, this distribution is guaranteed to be unique
and can be computed using standard numerical linear alge-
bra techniques. This is often not the case in practice; tar-
get structures are typically designed to be stable which means
they may not be sampled reversibly, particularly in cases with
strong interactions between subunits. States (or sets of states)
that can be entered but cannot be left are reffered to as ab-
sorbing states, which must be identified and removed from
the transition matrix before computing the equilibrium distri-
bution.

We use a depth-first search algorithm to determine the
strongly connected component of the transition matrix; the
maximal sub-graph for which every state has a non-zero prob-
ability of reaching any other state in a finite number of steps.
Each state that is not a member of the strongly connected
component is classified as an absorbing state. For each ab-
sorbing state, we remove its corresponding row and column in
the transition matrix to form a reduced transition matrix. The
rows of this reduced transition matrix need to be renormalized
to sum to one, and the resulting ergodic matrix is used to com-
pute the equilibrium distribution over the remaining states.

2. Equilibrium Constants

Another subtlety arises when computing the equilibrium
constants as a function of intermediate size. The equilibrium
constants are a function of the equilibrium concentrations of
each species, not the equilibrium probability as we have com-
puted thus far. For an n-mer, we can write the equilibrium
concentration (in simulation units) as [n] = ~ycom,, where ¢
is the total subunit concentration, 7, is the total equilibrium
probability for observing an n-mer, and vy is a scaling factor to
account for the lost concentration due to removal of absorbing
states. This scaling factor is necessary because removing the
absorbing states from the equilibrium calculation effectively



reduces the total subunit concentration, while the probabil-
ity distribution remains normalized to sum to one. Its value
depends on the fraction of absorbing states, which generally
increases in time, and thus depends on the monomer fraction
discretization bin. For a discretization bin between monomer
fractions d; and d; 1, and corresponding times ¢; and ¢;41
for which f; = d; and f, = d;11, respectively, we compute
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~v; as the average yield of non-absorbing states over this time
interval,
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where pi‘ is the total yield of absorbing states at time j, com-
puted from the original transition matrix.
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